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Abstract
On natural language text collections, finding the k docu-
ments most relevant to a query is generally solved with in-
verted indexes. On general string collections, however, more
sophisticated data structures are necessary. Navarro and
Nekrich [SODA 2012] showed that a linear-space index can
solve such top-k queries in optimal time O(m + k), where
m is the query length. Konow and Navarro [DCC 2013]
implemented the scheme, managing to solve top-k queries
within microseconds with an index using 3.3–4.0 bytes per
character (this includes the storage of the collection itself).
In this paper we introduce a new implementation using sig-
nificantly less space, 2.5–3.0 bytes per character (again, in-
cluding the collection), and retaining similar query times.
For short queries, which are the most difficult, our new in-
dex actually outperforms the previous one, as well as all
the other solutions in the literature. We also show that our
index can be built on very large text collections, and that
it can handle phrase queries efficiently on natural language
text collections. In the latter case, it uses about the same
space of the tokenized text (and replaces it), while answering
phrase queries an order of magnitude faster than a positional
inverted index.

1 Introduction
The landmark problem in Information Retrieval is to
find, from a set of documents, those that are most rel-
evant to a user-entered query. Relevance is generally
measured using some function of the occurrences of the
query in the documents. An index, that is, a data struc-
ture built on the documents, is used to solve this prob-
lem efficiently. When the documents and queries are
formed by so-called “natural language” (i.e., sequences
of words from a vocabulary), the inverted index is the
preferred data structure [2]. The inverted index, how-
ever, cannot handle the more general scenario where
the documents are arbitrary strings and queries can
match any substring. This is the case of bioinformatic
sequences, multimedia sequences, source code reposito-
ries, and even East Asian languages where word sepa-
rators are implicit [16].
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Handling collections of general strings has proved
much more challenging. Suffix trees [25] are indexes
using linear space that find all the occ occurrences
of a query string P [1,m] in the collection in time
O(m+ occ). While the k documents most relevant to P
can generally be computed from this set of occurrences,
it is not efficient to generate all the occurrences of P in
order to solve such “top-k” queries. The first efficient
linear-space solution for top-k queries on general string
collections was given by Hon, Shah and Vitter [13],
who achieved O(m + k log k) time. Later, Navarro and
Nekrich [18] improved this time to the optimal O(m+k).
While in this latter theoretical work the “linear space”
was about 80n bytes for a collection of n characters
in total, Konow and Navarro [14] engineered a version
that used 3.3n–4.0n bytes1 and solved queries within
microseconds (µs).

Our contributions. We present a new implemen-
tation of Navarro and Nekrich’s data structure. The
main idea of their structure is to associate to each suf-
fix tree node a number of weighted points on consecu-
tive columns of a two-dimensional grid, and then reduce
top-k queries to finding the k heaviest points on a 3-
sided interval of this grid. Our first novelty is a simple
and clever mapping from suffix tree nodes to the range
of grid columns associated to their subtrees, which we
adapt from a data structure by Sadakane [24] originally
designed for document counting (i.e., count the number
of documents P appears in). The second main compo-
nent of our solution is a recent data structure for top-k
queries on a grid of points [1], which uses little space
and, although does not offer worst-case time guarantees,
performs competitively. We also introduce efficient con-
struction algorithms that allow us build our structures
on very large text collections.

Our experimental results show that our structure
uses 2.5n–3.0n bytes (which includes the space to store
the collection itself), well below the 3.3n–4.0n of Konow
and Navarro [14], while the query time performance is
very similar. Indeed, for short queries, where occ is
very large and thus top-k queries cannot resort to just
finding all the occ occurrences and filtering the top-k
documents, our new index is actually faster than the

1See http://www.dcc.uchile.cl/gnavarro/fixes/dcc13.1.html.



previous one. It is also orders of magnitude faster
than previous heuristics [4], naive solutions [9], and
compressed solutions [19], the latter of which does use
less space. For example, our index solves any top-10
query in less than 300 µs.

We also consider collections of natural language
text, regarded as sequences of words (not characters),
so that our index offers a functionality similar to an
inverted index. In this case our index takes about
the same space of the tokenized collection (i.e., one
integer per word, and still including the storage of the
collection itself), and solves word and phrase top-k
queries more efficiently than an engineered (positional)
inverted index.

2 Basic Concepts
Let D be a collection of N documents (strings)
d0, . . . , dN−1, and let n be the length of their concate-
nation C. Fig. 1 shows our running example with N = 3
documents of total length n = 13. The suffix tree [25]
of C is shown on the left of Fig. 2. It is a digital tree
built on all the suffixes of C, with unary paths com-
pacted. Internal nodes represent repeated substrings
and are circled, whereas leaves represent unique suffixes
and are in squares that indicate their starting positions
in C. The concatenation of the squared nodes forms the
so-called suffix array of C, SA [15]. Below the leaves we
show the document id each suffix belongs, which forms
the so-called document array D (its cells are easily com-
puted on the fly from SA). The locus of a string P is
the node p whose string is the shortest one prefixed by
P . Each occurrence of P in the collection starts a suffix
whose leaf descends from its locus. For example, there
are 2 occurrences of P = AA (locus v7), at positions 6
and 5.

The structure of Hon et al. [13] marks also with each
document id d all the internal nodes that are lowest com-
mon ancestors (LCAs) of two leaves belonging to docu-
ment d. The figure shows those not leaving from leaves:
v7 is marked with document 1, v6 with documents 0
and 1, and the root v0 with the three documents. Up-
ward arrows are drawn for each node v marked with a
document d to its nearest ancestor node u that is also
marked with d. The arrows are assigned a weight, cor-
responding to the relevance score of the string of v in
document d. Hon et al. prove that, if an internal node p
is the locus of P , then there is exactly one upward arrow
per distinct document where P appears, going from a
subtree of p (or p itself) towards a (strict) ancestor of
p. Therefore a top-k query can be solved by finding the
k heaviest arrows that cross through node p.

Navarro and Nekrich [18] recast this latter search
into a geometric problem. They define a grid where

each upward arrow from v to u is assigned a unique
column where a point with height equal to the depth
of u is placed, with weight equal to that of the arrow.
The columns are assigned by preorder of the nodes v.
Therefore, the query is reduced to (1) finding the locus p
of P , (2) finding the range of columns corresponding to
all the arrows leaving from a node descending from the
locus p of P , and (3) finding the k heaviest points within
the column range, and with row range up to the depth
of p. The grid is shown on the right of Fig. 2, with
weights corresponding to term frequencies (number of
times the string appears in the document): the leftmost
point refers to the leftmost arrow that goes from v6 to
v0, corresponding to document d0 (document ids are not
drawn in the grid), with weight 2 (as A, the string of v6,
appears twice in d0) and depth of the arrived node (v0)
equal to zero. Following in preorder of the source nodes
of the arrows, we have the second arrow from v6 to v0,
the arrow from v7 to v6, and the arrow from v12 to v0.

Konow and Navarro [14] implemented this scheme
with the aim of reducing space. The suffix tree is
represented with a compressed suffix array (CSA) [17],
which finds the leaf range [sp, ep] of the locus node of
P , plus a parentheses representation of the suffix tree
topology [22], which finds the locus node p with an LCA
operation from the spth and epth leaves. Given p, the
topology representation can also compute its depth and
subtree size. The numbers of columns induced by each
suffix tree node are written in unary and concatenated
into a bitvector M (similar to H in Fig. 2, but in
preorder, whereas H uses our new ordering), which
allows determining the column range in the grid that
corresponds to p and its descendants. Konow and
Navarro use a grid representation G using 3 logh bits
per column, where h is the suffix tree height, which finds
the k heaviest points efficiently. In addition, they must
store the document identifier and weight of each point
(see DOC and w in Fig. 2). Finally, they reduce space
by removing from the grid all the arrows with weight
1 (i.e., leaving from leaves; these are already omitted
in the figure), and marking them in a second bitvector,
L. If there are less than k points in the range with
weight more than 1, then the answer set is completed
by listing up to k distinct documents appearing under
p. This can be done efficiently with 2n + o(n) extra
bits of space with a range minimum query (RmQ) data
structure called RmQC [23, 6].

Related work. Culpepper et al. [4] studied various
heuristics to solve top-k queries on top of a CSA and
the document array D (typically using 2n–4n bytes).
We compare their best performing variant, GREEDY,
in this paper. Culpepper et al. [5] adapted the scheme
to large natural language text collections (where each
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Figure 1: Concatenation C of our 3-document example collection D.
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Figure 2: Left: Suffix tree of the example collection in Fig. 1, with the document marks and upward arrows of Hon
et al.’s scheme. The index i of inner node vi corresponds to the index of the rightmost leaf in the subtree of the
leftmost child of vi. Right: Bitvector H concatenates a 1 per new suffix tree node and a 0 per new column induced
by an arrow leaving from that node. Each 0 has associated the document id and weight of the corresponding
arrow.

word is taken as an atomic symbol), showing that it was
competitive with inverted indexes for some queries (see
previous work on this line by Patil et al. [20]). The sem-
inal work of Hon et al. [13] also included succinct vari-
ants, which were implemented by Navarro and Valen-
zuela [19] on top of a compressed representation of D.
They showed that the extra space induced by Hon et
al. was low and significantly reduced the time of earlier
heuristics [4]. Their compressed representations used
1.0n–2.5n bytes, but compression raised query times
to the order of milliseconds, much slower than the mi-
croseconds achieved in this paper, so their work is not
compared here. There is another possibly practical so-
lution by Hon et al. [12], which has not yet been imple-
mented. Finally, we compare with SORT [9], a baseline
that also uses the CSA and D. It just obtains the occ
occurrences of P from D and then extracts the k most
relevant documents. In this and previous experimen-
tal comparisons, the relevance measure used is the term
frequency and the query is a single pattern string; we
briefly mention extensions in the conclusions.

3 A New Implementation
In this section we present the main two ideas that lead
to a conceptually simpler and, as we will see later, faster
and smaller representation than the previous one [14].

Mapping the suffix tree to the grid. We reor-
ganize the grid so that a more space-efficient mapping
from a pattern P to a 3-sided range query in the grid is

possible. The previous solution [14] used 2t bits to rep-
resent the topology of the suffix tree (of t nodes, where
n ≤ t ≤ 2n), plus t bits for L, plus between n/(σ−1) and
n bits for M , where σ is the alphabet size. This gives
a total of 3n to 7n bits for the mapping. Our repre-
sentation will consist of a single bitvector, H, of length
2n −N , and the mapping will be simpler.

We first explain how we list the upward arrows
leaving the suffix tree nodes in the grid, and then show
how we can efficiently map to the grid. We identify
each internal node with the position of the rightmost
leaf of its leftmost subtree. Fig. 2 already shows this
naming for the internal nodes: The root node is named
v0 because the position of its first child (which is also
a leaf) is 0, the rightmost leaf of the leftmost child of
node v6 is at position 6, and so on. Note that the names
are between 0 and n − 1 and they are unique (although
not all names must exist, e.g., there is no node v3 in
our suffix tree). The bitvector H is generated by first
writing n 1s and then inserting a 0 right before the i-th
1 per upward arrow leaving node vi.

The 0s in H then correspond to the x-domain in
the grid, while the y-coordinate (depth of target node),
weight and document id of the upward arrow, are stored
associated to the corresponding 0 in H (in arrays y, w,
and DOC, respectively, see the right of Fig. 2).

Now assume the CSA search yields the leaf interval
[sp, ep] for P . These are the positions of the leftmost
and rightmost leaves that descend from the locus node p



map_interval([sp, ep])
[sp′, ep′] ← [0,−1]
if sp > 0 then
sp′ ← select(sp − 1,H) − (sp − 1)

if ep > 0
ep′ ← select(ep − 1,H) − ep

return [sp′, ep′]

Figure 3: Constant-time mapping from a leaf interval
[sp, ep] to the x-domain of the grid G.

of P (although we will not compute p). In the following
we will use the key property of our new data layout.

Lemma 3.1. A node vi, if it exists, lies in the subtree
of p (including p) if and only if i ∈ [sp, ep − 1].

Proof. If vi is in the subtree of p, then its range of
descendant leaves is included in that of p, [sp, ep]. Since
there are no unary nodes, the rightmost child vr of vi
has at least one descendant leaf, and thus the leaves
descending from the leftmost child vl of vi are within
[sp, ep−1]. In particular, the rightmost leaf descending
from vl, i, also belongs to [sp, ep − 1]. Conversely, if
i ∈ [sp, ep−1] and vi exists, then vi is an ancestor of leaf
i and so is p, thus they are the same or one descends
from the other. However, if p descended from vi, then i
could only be ep (if p was the leftmost child vl of vi or
belonged to the rightmost path descending from vl), or
it would be outside [sp, ep]. ∎

Therefore, all the upward arrows leaving from nodes
in the subtree of p are stored contiguously in the grid,
and can be obtained by finding the 0s that are between
the (sp − 1)th and the (ep − 1)th 1 in H (as the 0s are
placed before their corresponding 1). Note that no LCA
operation on any suffix tree topology is necessary, only
operation select(j,H), which finds the position of the
jth 1 in H and can be implemented in constant time
and o(n) bits of space [3]. The pseudocode is given in
Fig. 3.

Note that, since we do not represent the suffix tree
topology, we cannot compute the depth of the locus
node p. Instead of node depths, we will store the string
depths of the nodes (that is, the length of the string they
represent) as the y-coordinates. Thus the query can use
simply ∣P ∣ as the y-coordinate limit of the 3-sided query.
That is, after applying the mapping of Fig. 3, we find
the k heaviest points in the range [sp′, ep′] × [0, ∣P ∣ − 1]
of G.

A smaller grid representation. In the previous
implementation [14], the grid G is represented with a

combination of wavelet tree [11] and range maximum
query (RMQ) data structures [6], that ensure query time
O((k+ logh) logh). The price of this guaranteed worst-
case time is a heavy representation of the grid, which
uses 3 times the space needed to just represent the y
vector, and they have to store in addition vector w in
plain form.

We use instead a representation that compresses
the vectors x, y and w. The K2-treap [1] is essentially
a quad-tree representation of the grid (more precisely,
the grid is split into K ×K sub-grids at each iteration,
so a quad-tree corresponds to a 22-treap). Each node
appends K2 bits to a bitvector T , telling whether
each sub-grid is empty or not. The nonempty sub-
grids are recursively subdivided, and the final bitvector
T represents all the points. The K2-treap can be
navigated using select(j, T ) and rank(i, T ) (how many
1s are there in T [0, i]) operations, which need o(∣T ∣)

bits and constant time [3]. Moreover, each node stores
explicitly the position and weight of the heaviest point
in its sub-grid, and the point is removed from its
recursive refinement. This information on each K2-
treap node is associated to the 1-bit of its parent, and
stored in the appropriate order in (reshuffled) arrays x,
y, and w. Note that values x and y require fewer bits as
we advance in the grid subdivision, and weights w can
be stored differentially with respect to the maximum
weight of the parent grid, so they also generally require
fewer bits as we descend.

The search for the top-k points on aK2-treap starts
at its root node. It includes the heaviest point in
the result set if the point falls inside the query range.
Then, it continues recursively inside all the subgrids
that intersect the query range. Those subgrids are not
immediately processed, but rather inserted into a global
priority queue and processed in order of their maximum
weight. The result set always stores the k heaviest
points we have seen up to now. As soon as the maximum
weight of the next sub-grid to process is not larger than
the weight of the kth point in the result set, the process
stops.

This process has no good worst-case time complex-
ity. However, the experiments will show that this grid
representation uses less space and yields a query time
comparable with that of the heavyweight implementa-
tion [14].

Time- and space-efficient construction A bot-
tleneck not yet addressed by Konow and Navarro [14] is
the efficient construction of the index2. Both time-and
space-efficiency have to be considered. We will concen-

2For example, their liner-time LCA-based index construction
method takes 1.5 hours for an 80MB Wikipedia collection, where
their peak main memory usage is 12.25 GB.



trate here on the construction of H, the grid G, and
its K2-treap representation. For H we construct an
entropy-compressed suffix tree (CST) of C and a wavelet
tree over the document array, WTD, of n logN bits. We
then perform a depth-first-search traversal on the CST
and calculate, for each node vi, the list of its document
id marks, by intersecting the document array ranges of
v’s children. This can be done in time proportional to
the intersection result using the intersection on wavelet
trees [7]. Since we can calculate the nodes in the order
of their names, we can write H and the document ids
(DOC) directly to disk. In a second traversal we calcu-
late the upward arrows. For each document d we use
a stack to maintain the string depth of the last occur-
rence of d in the tree. For a node v marked with d we
push the string depth of v at the first visit and pop it
after all the subtree of v is traversed. Note that this
time we can read H and DOC from disk (in streamed
mode) and avoid the intersection. In the same traver-
sal we can calculate the weight array w by performing
counting queries on WTD. Again, arrays y and w can
be streamed to disk.

Finally, the K2-treap is constructed in-place by
a top-down level by level process. Let the input be
stored as a sequence of triples (x, y,w) and let 1 be
the root level and b be the bottom level. First, we
determine the heaviest element by a linear scan, stream
its weight out to disk and mark the element as deleted.
We then partition the elements of the root level into
K2 ranges, such that all elements in range r (0 ≤ r ≤

K2) have the property that x/Kb−` modK = r modK
and y/Kb−` modK = r/K. For each non-empty (resp.
empty) range r we add a 1 (resp. 0) to the bitvector T ,
which is streamed to disk. On the next level ` − 1 we
can detect nodes by checking the partitioning condition
of the last level, find and mark the maximum weighted
entry and apply the partitioning in the node. The time
complexity of the process is O(nK2 logK n) and does
not use extra space.

Summing up. Our structure consists of five main
components: the compressed suffix array (CSA), the
CSA-to-grid mapping (H), the K2-treap over the grid,
including coordinates and weights (G), the document
ids associated with the grid elements, in the same
order of the weights (DOC), and the RmQ structure
to retrieve documents occurring once (RmQC).

4 Experiments
For this publication we have implemented the K2-treap
structure and added it to the Succinct Data Structure
Library (SDSL) [9]. The K2-treap implementation is
generic (the value K, the bitvector representation of
the K2-ary tree, and the representation of the vector of

relative weights, can be parametrized) and complements
the description of Brisaboa et al. [1] with the efficient
in-place construction described in the previous section.
We use a compressed bitvector representation [21] of
H, whose slight extra select time compared to a plain
representation is negligible because only two select
operations on H are done per query (recall Fig. 3). The
new system is dubbed IDX_GN, and we compare it
to IDX_KN, the system of Konow and Navarro [14].
As additional reference points we add the GREEDY
solution [4] and the SORT framework [9], mentioned
in Section 2.

Test environment and data set All experiments
were run on a server equipped with an Intel(R) Xeon(R)
E5-4640 CPU clocking at 2.40GHz. All experiments
use a single core and at most 150GB of the installed
512GB of RAM. All programs were compiled with
optimizations using g++ version 4.9.0. We are using
test collections from the natural language domain: two
Wikipedia dumps of different size, parsed as character
and as word sequences [9], and a word parsing of the
TREC GOV2 collection [10]. Table 1 summarizes their
properties. Our implementation and benchmarks are
publicly available3 as part of the SUccinct Retrieval
Framework (SURF), which was introduced in [10]. The
experiments can be easily reproduced by running the
provided scripts. Detailed information about all index
parameters (e.g. the sampling density of the CSA)
are provided in the configuration files. Note that the
interested reader can also vary the parameters and rerun
the benchmarks to study the effects on query time and
index size.

Space usage We exemplify the space reduction
of IDX_GN compared to IDX_KN in the case of
enwiki-smlc(since IDX_KN does not support multi-
gigabyte inputs or word alphabets). While the grid
mapping takes 46.5 MB (8.6 + 12.8 + 25.1 for bitvector
B, M , and the tree topology) in IDX_KN, the new
solution just takes 6.8 MB for bitvector H (13.0MB in
uncompressed form).

The new grid representation as K2-treap takes
57.7 MB (21.7 + 24.5 + 11.5 for weights, y-values, and
topology) compared to 77.7 MB (23.3 MB for weights
and 55.4 MB for the RmQ-enabled wavelet tree) in
IDX_KN. These space savings result in index sizes
between 2.5–3.0 times the original collection size for
character alphabet collections, see Fig. 4. For word-
parsed collections, IDX_GN takes space close to the
original input, for example, for the 71.0 GB word
parsing4 of gov2w, the index size is 64.6 GB. Recall

3https://github.com/simongog/surf/tree/single_term
4Note that the unparsed GOV2 collection is 426 GB of

text. The preprocessing of the Indri search engine (http://



Collection n N n/N σ ∣C∣ in MB

character alphabet
enwiki-smlc 68,210,334 4,390 15,538 206 65
enwiki-bigc 8,945,231,276 3,903,703 2,291 211 8,535

word alphabet
enwiki-smlw 12,741,343 4,390 2,902 281,577 29
enwiki-bigw 1,690,724,944 3,903,703 433 8,289,354 4,646
gov2w 23,468,782,575 25,205,179 931 39,177,922 72,740

Table 1: Collection statistics: number of characters/words, number of documents, average document length,
alphabet size, and total size in MB assuming that the character based collections use one byte per symbol and
the word based ones use ⌈logσ⌉ bits per symbol.

that this space includes the CSA component, which can
recover any portion of the text collection, and thus the
collection does not need to be separately stored.

Retrieval speed The time of a top-k query con-
sists of the time to match the pattern in the CSA, the
time to map [sp, ep] to the grid, the time to report the
top-k documents using the K2-treap, and —if less than
k documents are found— the time to report frequency-
one documents (which are not stored in the grid) using
RmQC and, again, the CSA. We examine the cost of
the different phases in our first experiment. We have
fixed the pattern length (m = 5), the index (IDX_GN),
and the collection (enwiki-bigc) since we are first in-
terested in the effects of a varying k. We ran 40,000
queries, each a pattern of length m extracted from a po-
sition chosen uniformly at random from C. We increase
k exponentially from 1 to 128 an report the average time
per query in Fig. 5. As expected, the pattern match-
ing with the CSA is independent of k and takes about
21µs. The time to retrieve the first document out of the
K2-treap is relatively expensive. It is 71µs and is dom-
inated by the cost of the priority-queue based search
down the treap until a first (heaviest) element within
the query range is found. The subsequent documents
are cheaper to report. The time spent in the K2-treap
to report 16 documents (131µs) is about twice the time
to report a single document. The average time per doc-
ument retrieved via the K2-treap is typically about 3–5
µs for k ≥ 64. Fig. 5 also depicts the time spent on
reporting single-occurrence documents. Essentially, for
each such document, a constant number of RmQs and
extraction of a suffix array cell from the CSA are per-
formed. The cost of a RmQ is typically below 2 µs
[8, Sec. 6.2], while the CSA access accounts for the re-
maining 100–300µs. The CSA access time is linearly
dependent on a space/time tradeoff parameter s, which

www.lemurproject.org/indri/) generated the sequence of stems
words excluding html tags.

is set to s = 32. Note that top-k queries are meaningful
when documents have different weights, and thus large
k values that retrieve many documents with frequency
1 are not really interesting.

Fig. 6 shows our second experiment, where we
explore the effect of varying the collection. We used
m = 5 on the character collections and m = 1 on the
word collections. We fix k = 10, a popular value for Web
search engines, for which our query time is dominated
by the K2-treap operations. We show that the query
time improves significantly if we use an uncompressed
bitvector representation for the K2-treap, while the
space increases just by 1%–5%. In the following we will
use this index version, denoted IDX_GN*. With this
index, the query time is 30–90 µs for any collection.

Fig. 7 shows our last experiment, where we com-
pare the query time of IDX_GN* to the simple solu-
tions GREEDY and SORT, which worsen with larger
intervals [sp, ep], as well as IDX_KN. Due to a limi-
tation of the latter implementation, the comparison is
only possible on enwiki-smlc. Compared to the simple
schemes, IDX_GN* provides an excellent runtime for
the important case of short patterns and phrases, for
both small and large collections. For enwiki-bigw, as
well as gov2w, the query time stays below 300µs (see
Fig. 8), which is at least an order of magnitude faster
than engineered positional inverted index implementa-
tions, which take a few milliseconds to solve phrase
queries. On enwiki-smlc we observe that IDX_GN*
outperforms IDX_KN for pattern length ≤ 10, while us-
ing considerably less space. The query times for index
IDX_GN+, which is created by investing the space sav-
ing of IDX_GN* vs IDX_KN into a faster CSA, shows
that our new solution outperforms IDX_KN if we use
the same amount of memory.

For long queries, the problem is trivial, since there
are only a few occurrences of P and the naive method
SORT, which just scans the range [sp, ep] of the un-
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compressed D array, is superior. Unlike GREEDY and
SORT methods, our solution is robust, that is, it can
also efficiently answer queries for short patterns. Note
that solutions GREEDY or SORT use about the same
space of our index, as both require the CSA plus n logN
bits for the D array. This adds up to 2.0 times the text
size on enwiki-smlc and 3.2 on enwiki-bigc. On the
word-based texts, instead, our index is much smaller.

Construction process The construction of
IDX_KN for enwiki-smlc takes 85 minutes with a
peak memory of 9.3 GB (140 times the collection size!),
which compromises its practical applicability. We re-
placed its linear-time LCA-based calculation of the grid
by a more space-efficient O(n logN) time construction,
which only takes 7 minutes to build IDX_GN* with a
peak memory of 280 MB. This dramatic improvement
made it also possible to build the index for gov2w

(taking 4 days, memory peak 140 GB).

5 Conclusion
We have proposed a more efficient and conceptually
simpler implementation of the top-k document retrieval
index of Navarro and Nekrich [18]. Our index signifi-
cantly improves previous work [14] in space and query
time, and it outperforms all other approaches in the
literature. We also proposed an efficient construction
method, which enables handling large IR collections.
We showed on those collections that our index is faster
than typical positional inverted outperforms positional
inverted indexes on phrase queries.

A relevant open problem is to reduce the space fur-
ther while retaining competitive query times; current
existing approaches using less space [19] are thousand
times slower. Another interesting direction is to com-
pete with inverted indexes in weighted Boolean queries,
which are much harder than phrase queries for our data
structure. Finally, we plan to adapt our index to more
complex relevance measures, such as BM25.
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