
Pratial Constrution of Metri t-Spanners ?Gonzalo Navarro and Rodrigo ParedesCenter for Web Researh, Dept. of Computer Siene, University of Chile.Blano Enalada 2120, Santiago, Chile.fgnavarro,raparedeg�d.uhile.lAbstrat. LetG(V; A) be a onneted graph with a nonnegative ost funtion d : A! R+ . Let dG(u; v)be the ost of the heapest path between u; v 2 V . A t-spanner of G is a subgraph G0(V;E), E � A,suh that 8 u; v 2 V; dG0(u; v) � t � dG(u; v); t > 1. We fous on the metri spae ontext, whih meansthat A = V � V , d is a metri, and t � 2. Several algorithms to build t-spanners are known, but theydo not apply well to our ase. We present four pratial algorithms to build t-spanners with empirialO(n2+ 0:1:::0:2t�1 ) time ost and O(n1+ 0:1:::0:2t�1 ) edges. These algorithms are useful on general graphs aswell.1 IntrodutionLet G be a onneted graph G(V;A) with a nonnegative ost funtion d(e) assigned to its edges e 2 A.The shortest path among every pair of verties u; v 2 V is the one minimizing the sum of the ost of theedges traversed. This an be omputed with Floyd's algorithm or with jV j iterations of Dijkstra's algorithmonsidering eah vertex as the origin node [18℄. A t-spanner it is a subgraph G0(V;E), with E � A, whihpermits to ompute paths with streth t, that is, ensuring that 8u; v 2 V; dG0(u; v) � t � dG(u; v) [13℄. We allthis the t-ondition.In this work we are interested in using t-spanners as tools for searhing metri spaes [6℄. A metri spaeis a set of objets X and a distane funtion d de�ned among objets, whih satis�es the metri properties(positiveness, reexivity, symmetry, triangle inequality). Given a �nite subset U � X, of size n, the goal isto build a data struture over U suh that later, given a query objet q 2 X, one an �nd the elements of Ulose to q with as few distane omputations as possible.One of the best existing algorithms to searh metri spaes is AESA [17℄. AESA preomputes and storesthe matrix of n(n � 1)=2 distanes among elements of U. This huge spae requirement makes it unsuitablefor most appliations, however.This matrix an be seen as a omplete graph G(V;A) where the set of verties V = U orresponds tothe objets of the metri spae, and the set of edges A orresponds to the n(n� 1)=2 distanes among theseobjets. A t-spanner G0 of G would represent all these distanes using a small number of edges E;E � A,and still would be able to approximate all the distanes with a maximum error t, that is:d(u; v) � dG0(u; v) � t � d(u; v) (1)In most metri spaes the distane histogram follows a distribution that beomes onentrated as thedimension inreases [6℄. This means that in pratie we are interested in the range t 2 (1; 2℄.We pursue this line in [12℄, where we fous on the searh proess but not on t-spanner onstrution. Inthat paper we show that the searh algorithm is ompetitive against urrent approahes, e.g., we need 1.09times the time ost of AESA using only 3.83% of its spae requirement, in a metri spae of douments; and1.5 times the time ost of AESA using only 3.21% of its spae requirement, in a metri spae of strings. Wealso show that t-spanners provide better spae-time tradeo�s than lassial alternatives suh as pivot-basedindexes.Hene our interest in this paper is in building t-spanners over metri spaes whih work well in pratie.Few algorithms exist apart from the basi O(mn2) tehnique (m = jEj), whih inserts the edges needed oneby one and reomputes all the shortest paths to every edge inserted.Four t-spanner onstrution algorithms are presented in this paper, with the goals of dereasing CPU andmemory ost and of produing t-spanners of good quality, i.e., with few edges. Our four algorithms are:? This work has been supported in part by the Millenium Nuleus Center for Web Researh, Grant P01-029-F,Mideplan, Chile (both authors) and AT&T LA Chile (2nd author).



1. An optimized basi algorithm, where we limit the propagation of edge insertions.2. A massive edge insertion algorithm, where we amortize the ost of reomputing distanes aross manyedge insertions.3. An inremental algorithm, where nodes are added one by one to a orret t-spanner.4. A reursive algorithm applying a divide and onquer tehnique.Table 1 shows the omplexities obtained. We obtain empirial O(n2:24) time ost and O(n1:13) edges.This shows that good quality t-spanners an be built in reasonable time (just the minimum spanning treeomputation needs O(n2) time). We take no partiular advantage of the metri properties of the edge weights,so our algorithms an be used on general graphs too. As far as we know, there has not been previous workon omparing, in pratie, t-spanner onstrution algorithms on metri spaes.Basi Basi Massive edge Inremental Reursiveoptimized insertionCPU time O(mn2) O(mk2) O(nm logm) O(nm logm) O(nm logm)Memory O(n2) O(n2) O(m) O(m) O(m)Distane evaluations O(n2) O(n2) O(nm) O(n2) O(n2)Table 1. t-Spanner algorithm omplexities omparison. The value k refers to the number of nodes that have to beheked when updating distanes due to a new inserted edge.
2 Previous WorkSeveral studies on general graph t-spanners have been undertaken [8, 13, 14℄. Most of them resort to the naiveO(mn2) time onstrution approah detailed in the next setion, where n = jV j and m = jEj refer to theresulting t-spanner. It was shown in [1, 2℄ that this tehnique produes t-spanners with n1+O( 1t�1 ) edges ongeneral graphs of n nodes. This result, however, is not interesting for t � 2.More sophistiated algorithms have been proposed in [7℄, produing t-spanners withO(n1+(2+")(1+lognm)=t)edges in time O(mn(2+")(1+logn m)=t), where in this ase m refers to the original graph. In a metri spaem = �(n2), whih means that we need time O(n5) time at least. Additionally, the algorithms in [7℄ workfor t 2 [2; logn℄, unsuitable for our appliation. Other reent algorithms [16℄ work only for t = 1, 3, 5,. . . also unsuitable for us. Parallel algorithms have been pursued in [11℄, but they do not give new sequentialalgorithms.As it an be seen, none of these results is useful for our problem.As it regards to Eulidean t-spanners, i.e., the sublass of metri t-spanners where the objets are pointsin a D-dimensional spae with Eulidean distane, muh better results exist [8, 1, 2, 10, 9, 15℄, showing thatone an build t-spanners with O(n) edges in O(n logD�1 n) time. These results, unfortunately, make heavyuse of oordinate information and annot be extended to general metri spaes.Other related results refer to probabilisti approximations of metri spaes using tree metris [4, 5℄. Theidea is to build a set of trees suh that their union makes up a t-spanner with high probability. However, thet values are of the form O(logn log logn).Hene the need to �nd algorithms that allow building appropriate t-spanners for metri spaes, that is,with t � 2, for omplete graphs, and taking advantage of the triangle inequality.3 Basi t-Spanner Constrution AlgorithmThe intuitive idea to solve this problem is iterative. We begin with an initial t-spanner that ontains all theverties and no edges, and alulate the distane estimations among all vertex pairs. These are all in�nite atstep zero, exept for the distanes between a node and itself (d(u; u) = 0). The edges are then inserted untilall the distane estimations ful�ll the t-ondition.



The edges are onsidered in asending ost order, so we start by sorting them. Using smaller-ost edges�rst is in agreement with the geometri idea of inserting edges between near neighbors and making up pathsfrom low ost edges in order to use few edges overall.Hene the algorithm uses two matries. The �rst, real, ontains the true distane between all the objets,and the seond, estim, ontains the distane estimations obtained with the t-spanner under onstrution.The t-spanner is stored in an adjaeny list.The insertion riterion is that an edge is added to the set E only when its urrent estimation does notsatisfy the t-ondition. After inserting the edge, it is neessary to update all the distane estimations. Theupdate mehanism is similar to the distane alulation mehanism of Floyd's algorithm, but onsideringthat edges, not nodes, are inserted into the set. Figure 6 (Appendix) depits the basi t-spanner onstrutionalgorithm.This algorithm makes O(n2) distane evaluations, like AESA [17℄; O(mn2) CPU time (reall that n = jV jand m = jEj); and O(n2 +m) = O(n2) memory. Its main de�ienies are exessive edge insertion ost andtoo high memory requirements.4 Optimized Basi AlgorithmLike the basi algorithm (Setion 3), this algorithm onsiders the use of real and estim matries, hoosingthe edges in inreasing weight order. The optimization fouses on the distane estimation update mehanism.The main idea is to ontrol the propagation of the omputation, that is, only updating the distaneestimations that are a�eted by the insertion of a new edge. Figure 1 shows the insertion of a new edge. Inthe �rst update we must modify only the edge that was inserted, between nodes a1 and a2. The omputationthen propagates to the neighbors of the ai nodes, namely the nodes fb1; b2; b3g; then to the nodes f1; 2gand �nally d1. The propagation stops when a node does not improve its urrent estimation or when it doesnot have further neighbors.

Fig. 1. Propagation of distane estimations.In order to ontrol the propagation, the algorithm uses two sets, ok and hek.{ ok: The nodes that already have updated their shortest path estimations due to the inserted edge.{ hek: The adjaeny of ok, hek = adyaeny(ok)� ok = fu 2 U; 9v 2 ok; (u; v) 2 Eg � ok . These arethe nodes that we still need to update.Note that it is neessary to propagate the omputation only to the nodes that improve their estimationto a1 or a2. The omplete algorithm reviews all the edges of the graph. For eah edge, it iterates until nofurther propagation is neessary. Figure 7 (Appendix) depits the optimized basi algorithm.This algorithm takes O(n2) distanes evaluations. In terms of CPU time it takes O(mk2), where k isthe number of neighbors to hek when inserting an edge. In the worst ase this beomes O(mn2) just likethe basi algorithm, but the average is muh better. From the point of view of the memory it still takesO(n2 +m) = O(n2). This algorithm redues the CPU time used, but even so this is still very high, and thememory requirements are still too high.A good feature of this algorithm is that it produes good-quality t-spanners (few edges), just like the basialgorithm. So we have used its results to predit the expeted number of edges per node in order to speed



up other algorithms that rely on massive edge insertion. We all Et�Spanner1(n; d; t) the expeted number ofedges in a metri spae of n objets, distane funtion d, and streth t. In Setion 8 we show some estimationsobtained, see Table 2.5 Massive Edges Insertion AlgorithmThis algorithm tries to redue both the CPU proessing time and memory requirements. To redue the CPUtime, the algorithm updates the distane estimations only after performing many edge insertions, using anO(m logn)-time Dijkstra's algorithm to update distanes. To redue the memory requirement, it omputesthe distanes between objets on the y.Sine we insert edges less arefully than before, the resulting t-spanner is neessarily of lower quality. Oure�ort is in minimizing this e�et.The algorithm has three stages. In the �rst one, it builds the t-spanner bakbone by inserting wholeminimum spanning trees (MSTs), and determines the global wrongly t-estimated edge list (pending); in theseond one, it re�nes the t-spanner by adding more edges to improve the wrongly t-estimated edges; and inthe third one, it inserts all the remaining \hard" edges.This algorithm uses two heuristi values:H1 determines the expeted number of edges per node, and it is obtained from the t-Spanner1 edge model:H1 = jEt�Spanner1(n; d; t)j=n . With H1 we will de�ne thresholds to determine whether or not to insertthe remaining edges (those still wrongly t-estimated) of the urrent node.H2 is used to determine the pending list size and will give a riterion to determine when to insert an additionalMST. The maximum pending list size isH2 = 1:2�jEj, where E refers to the t-spanner under onstrution.The algorithm stages are:1. We insert suessive MSTs to the t-spanner. The �rst MST follows the basis Prim algorithm [18℄, butthe next MSTs are built using Prim over the edges that have not been inserted yet.We traverse the nodes sequentially, building the list of pending edges (wrongly t-estimated). At the sametime, we insert suessive MSTs and remove pending edges aordingly. Additionally, when the urrentnode has no more than H1=2 pending edges, we just insert them. The insertion of MSTs ontinues aslong as there are more than H2 pending edges (note that H2 depends on the urrent t-spanner size jEj).This stage ontinues until we review all the nodes. The output is the t-spanner bakbone (t-Spanner) andthe gobal list of pending edges (pending).2. In the seond stage we redue the pending list. For this sake, we traverse the list of nodes with pendingedges (pendingNodes), from more to less pending edges. For eah suh node, we hek whih edges haveto improve their t-estimation and whih do not (edges originally in the pending list may have beomewell t-estimated along the proess). From the still wrongly t-estimated edges, we insert the H1=4 smallerost edges and proeed to the next node.This allows us to review in the �rst plae the nodes that require more attention, without onentratingall the e�orts in the same node.The proess onsiders two speial ases. The �rst one is that we have inserted more than n edges, inwhih ase we regenerate and re-sort the pendingNodes list and restart the proess. The seond one isthat the pending list of the urrent node is so small that we simply insert its elements.The output ondition of the seond stage is that the pending list size is smaller than n=2.3. We insert the pending list to the t-spanner.Figure 8 (Appendix) depits the massive edges insertion algorithm. This algorithm takes O(nm) distaneevaluations, O(nm logm) CPU time (sine we run Dijkstra's algorithm one per node), and O(n+m) = O(m)memory. It is easy to see that the spae requirement is O(m): the pending list is never larger than O(m)beause at eah iteration of stage 1 it grows at most by n, and as soon as it beomes larger than 1:2�m we takeout edges from it by adding a new MST, until it beomes short enough. The CPU time omes from runningDijkstra's algorithm one per node at stage 1. At stage 2 we insert edges in groups of O(m=n), runningDijkstra's algorithm after eah insertion, until we have inserted jpendingj � n=2 = O(m) edges overall. Thisaounts for other n times we run Dijkstra's algorithm. Hene the O(nm logm) omplexity.This algorithm redues both CPU time and memory requirements, but the amount of distane evaluationsis very high (O(nm) � O(n2)).



6 Inremental Node Insertion AlgorithmThis version redues the amount of distane evaluations to just n(n � 1)=2, while preserving the amortizedupdate ost idea.This algorithm, unlike the previous ones, makes a loal analysis of nodes and edges. We insert the nodesone by one, not the edges. The invariant is that for nodes 1 : : : i� 1 we have a well formed t-spanner, and wewant to insert the i-th node to the growing t-spanner. Sine the insertion proess only loally analyzes theedge set, the resulting t-spanner is suboptimal.For eah new node i, the algorithm makes two operations: the �rst is to onnet the node to the growing t-spanner using the heapest edge (towards a node < i); the seond one is to verify that the distane estimationssatisfy the t-ondition, adding some edges to node i until the invariant is restored. We repeat this proessuntil we insert the whole node set.We also use the H1 heuristi, with the di�erene that we reompute H1 at every iteration (sine thet-spanner size hanges). We �xed that the number of edges to insert at a time should be Æ = H1=(5 � i).For the distane veri�ation we use an inremental Dijkstra's algorithm with limited propagation, that is,the �rst time, Dijkstra's algorithm takes an array with preomputed distanes initialized at t � d(ui; uj) + ",with " > 0, j 2 [1; i� 1℄. This is beause, if a distane to node i is not well t-estimated, we do not really needto know how bad estimated it is. For the next iterations, Dijkstra's algorithm reuses the previously omputedarray, beause there is no need to propagate distanes from nodes whose estimation has not improved.Figure 9 (Appendix) depits the inremental node insertion algorithm. This algorithm takesO(n2) distaneevaluations, O(nm logm) CPU time, and O(n +m) = O(m) memory. The CPU time omes from the fatthat every node runs Dijkstra's algorithm n=Æ = O(1) times.7 Reursive AlgorithmThe inremental algorithm is a good approah to onstrut t-spanners, but it does not onsider spatialproximity (or remoteness) among the objets. A way to solve this is that the set in whih the t-spanner isinrementally built is made up of near objets. Following this priniple, we present a solution that reursivelydivides the objet set into two ompat subsets, builds sub-t-spanners in the subsets, and then merges them.For the initial set division we take two far away objets, p1 and p2, that we all representatives, and thengenerate two subsets: objets nearer to p1 and nearer to p2. Figure 2 (left) shows the onept graphially.For the reursive divisions we reuse the representative as one of the two objets, and the element farthest toit as the other. The reursion �nishes when we have less than 3 objets.
Fig. 2. On the left, we selet p1 and p2, and then divide the set. On the right, the merge step takes the objetsaording to their distanes towards p1.The merge step also takes into aount the spatial proximity among the objets. When we merge thesub-t-spanners, we have two node subsets V1 and V2, where jV1j � jV2j (otherwise we swap the subsets).Then, in the sub-t-spanner represented by p2 (stsp2), we hoose the objet losest to p1 (u), and insert it intothe sub-t-spanner represented by p1 (stsp1) verifying that all the distanes towards V1 are well t-estimated.Note that this is equivalent to onsider that we use the inremental algorithm, where we insert u into thegrowing t-spanner stsp1. We ontinue with the seond losest and repeat the proedure until all the stsp2nodes are inserted into stsp1. Figure 2 (right) illustrates. Note that the edges already present in stsp2 areonserved.



This algorithm also uses an inremental Dijkstra's algorithm with limited propagation, but this time weare only interested in limiting the propagation towards stsp1 nodes (beause we know that towards stsp2we already satisfy the t-ondition). Hene, Dijkstra's algorithm takes an array with preomputed distanesinitialized at t � d(ui; uj) + " for (ui; uj) 2 V2 � V1, and 1 for (ui; uj) 2 V2 � V2, where " is a small positiveonstant. For the next iterations, Dijkstra's algorithm reuses the previously omputed array.Figure 10 (Appendix) depits the reursive algorithm and the auxiliary funtions used to build and mergesub-t-spanners. This algorithm takes O(n2) distane evaluations, O(nm logm) CPU time, and O(n +m) =O(m) memory. The ost of dividing the sets does not a�et that of the underlying inremental onstrution.8 Experimental ResultsWe have tested our algorithms on syntheti and real-life metri spaes. The syntheti set is formed by 2,000points in a 20-dimensional spae with oordinates in the range [�1; 1℄, with Gaussian distribution forming256 randomly plaed lusters. We onsider three di�erent standard deviations to make more risp or morefuzzy lusters (� = 0.1, 0.3, 0.5). Of ourse, we have not used the fat that the spae has oordinates, buthave treated the points as abstrat objets in an unknown metri spae.Two real-life data sets were tested. The �rst is a string metri spae using the edit distane (a disretefuntion that measures the minimum number of harater insertions, deletions and replaements needed tomake the strings equal). The strings form an English ditionary, where we index a subset of n = 24,000 words.The seond is a spae of 1,215 douments under the Cosine similarity, whih is used to retrieve doumentsmore similar to a query under the vetor spae model. In this model the spae has one oordinate per termand douments are seen as vetors in this high dimensional spae. The similarity orresponds to the osine ofthe angle (inner produt) among the vetors, and a suitable distane measure is the angle itself. Both spaesare of interest to Information Retrieval appliations [3℄.The experiments were run on an Intel Pentium IV of 2 GHz, with 512 MB of RAM and a loal disk. Weare interested in measuring the CPU time needed and the amount of edges generated by eah algorithm. Forshortness we have alled t-Spanner 1 the optimized basi algorithm, t-Spanner 2 the massive edges insertionalgorithm, t-Spanner 3 the inremental algorithm, and t-Spanner 4 the reursive algorithm.Figure 3 shows a omparison among the four algorithms on the Gaussian data set. As it an be seen,all the algorithms produe t-spanners of about the same quality, although the optimized basi algorithm isonsistently better, as expeted.In the onstrution time, however, there are large di�erenes. The optimized basi algorithm is imprati-ally ostly. On the other hand, the massive edges insertion algorithm is still quite ostly in omparison to theinremental and reursive algorithms. However, we notie that, unlike all the others, this algorithm improvesinstead of degrading as the lusters beome more fuzzy, beoming a ompetitive hoie on uniformly dis-tributed datasets. The quality of the t-spanner also varies from (by far) the worst t-spanner on risp lustersto the seond best on more fuzzy lusters.The inremental and reursive algorithms are quite lose in both measures, being by far the fastestalgorithms. The reursive algorithms usually produes slightly better t-spanners. It is interesting to notiethat, for t as low as 1.5, we obtain t-spanners whose size is 5% to 15% of the full graph.For lak of spae we do not show results as a funtion of the database size. However, we show in Table 2our least squares �ttings on the data using the model jEj = an1+ bt�1 and time = an2+ bt�1 miroseonds.This model has been hosen aording to the analytial results of [1, 2℄. As it an be seen, t-spanner sizesare slightly superlinear and times are slightly superquadrati. This shows that our algorithms represent inpratie a large improvement over the urrent state of the art.We show now some results on the metri spae of strings, this time fousing on the behavior in terms ofthe database size n. Sine these tests are more massive, we leave out the optimized basi and the massive edgeinsertion algorithms: They were really slow even for small subsets. This means, in partiular for the massiveedges insertion algorithm, that this spae is far from uniform. Figure 4 shows that, also for strings, the numberof edges generated is slightly superlinear (8:03 n1+ 0:16t�1 for the inremental algorithm and 8:45 n1+ 0:15t�1 forthe reursive one), and the onstrution time is slightly superquadrati (1:46 n2+ 0:10t�1 miroseonds for theinremental algorithm and 1:67 n1+ 0:09t�1 for the reursive one). The reursive algorithm is almost always a bitbetter than the inremental algorithm in both aspets.Finally, Figure 5 shows experiments on the spae of douments. We have exluded the massive edgesinsertion algorithm, whih was too slow. The reason this time is that it is the algorithm that makes, by far,
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Fig. 3. t-Spanner onstrution in the syntheti metri spae of 2,000 nodes, as a funtion of t. On the left, edgesgenerated (t-spanner quality). On the right, onstrution time. Eah row orresponds to a di�erent variane.



Basi Massive edge Inremental Reursiveoptimized insertionStdev 0.1CPU time 17:8 n2+ 0:09t�1 1:67 n2+ 0:24t�1 0:670 n2+ 0:10t�1 0:909 n2+ 0:08t�1Edges 5:76 n1+ 0:10t�1 6:50 n1+ 0:18t�1 6:17 n1+ 0:13t�1 5:77 n1+ 0:14t�1Stdev 0.3CPU time 25:0 n2+ 0:16t�1 1:52 n2+ 0:22t�1 0:771 n2+ 0:13t�1 0:865 n2+ 0:13t�1Edges 5:69 n1+ 0:18t�1 5:41 n1+ 0:19t�1 6:52 n1+ 0:19t�1 6:50 n1+ 0:18t�1Stdev 0.5CPU time 21:0 n2+ 0:19t�1 1:33 n2+ 0:25t�1 0:587 n2+ 0:17t�1 0:650 n2+ 0:17t�1Edges 4:89 n1+ 0:21t�1 4:50 n1+ 0:22t�1 5:20 n1+ 0:22t�1 5:37 n1+ 0:21t�1Table 2. Empirial omplexities of our algorithms, as a funtion of n and t. Time is measured in miroseonds.

0

1

2

3

4

5

6

7

8

9

10

4000 8000 12000 16000 20000 24000

|E
| x

 1
,0

00
,0

00

nodos

1.4-Spanner 3
1.8-Spanner 3
1.4-Spanner 4
1.8-Spanner 4

0

2000

4000

6000

8000

10000

12000

14000

4000 8000 12000 16000 20000 24000

tim
e 

[s
ec

]

nodos

1.4-Spanner 3
1.8-Spanner 3
1.4-Spanner 4
1.8-Spanner 4

Fig. 4. t-Spanner onstrution on the spae of strings, for inreasing n. On the left, number of edges generated. Onthe right, onstrution time.more distane omputations, whih was learly the dominant term in this spae (omparing two doumentvoabularies takes several milliseonds). We an see again that, although all the algorithms produe t-spannersof about the same quality, the optimized basi algorithm is muh more expensive than the other two, whihare rather similar.9 ConlusionsWe have presented several algorithms for t-spanner onstrution when the underlying graph is the ompletegraph representing distanes in a metri spae. This is motivated by our reent researh on searhing metrispaes and shows that t-spanners are well suited as data strutures for this problem. For this sake, we needpratial onstrution algorithms for 1 < t � 2. To the best of our knowledge, no existing tehnique works wellunder this senario (omplete graph, metri distanes, small t, pratial onstrution time) and no pratialstudy has been arried out on the subjet. However, our algorithms are also well suited to general graphs.Our fous has been on pratial algorithms. We have shown that it is possible to build good quality t-spanners in reasonable time. We have empirially obtained O(n2+ 0:1:::0:2t�1 ) time ost and O(n1+ 0:1:::0:2t�1 ) edges.Note that just omputing the minimum spanning tree requires O(n2) time. Moreover, just omputing allthe distanes in a general graph requires O(n3) time. Compared to the existing algorithms, our ontributionrepresents in pratie a large improvement over the urrent state of the art.It is possible to add and remove elements from the t-spanner in reasonable time while preserving its quality.The inremental algorithm permits adding new elements. Remotion of a node an be arranged by adding alique among its neighbors and periodially reonstruting the t-spanner with the reursive algorithm.
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Appendix - Pseudoodes (to be read at the disretion of the Reviewer)t-Spanner0 (Streth t, Verties U)real real distane matrixestim estimated distane matrixt-Spanner  t-spanner edge struture // initially ;for e = (eu; ev) 2 real hosen in inreasing ost order doif estim(e) > t � real(e) // e is not well t-estimatedt-Spanner  t-Spanner [ fegfor vi; vj 2 Ud1  estim(vi; eu) + estim(vj ; ev)d2  estim(vj ; eu) + estim(vi; ev)estim(vi; vj) min(estim(vi; vj), min(d1; d2)+real(e))Fig. 6. Basi t-spanner onstrution algorithmi (t-Spanner 0).t-Spanner1 (Streth t, Verties U)real real distane matrixestim estimated distane matrixt-Spanner  t-spanner edge struture // initially ;for e = (eu; ev) 2 real hosen in inreasing ost order doif estim(e) > t � real(e) // e is not well t-estimatedt-Spanner  t-Spanner [ fegok  feu; evghek  adjaeny(ok) � okfor  2 hekif ((estim(; ev) + real(e) � estim(; eu) or (estim(; eu) + real(e) � estim(; ev))for o 2 okd1  estim(; eu) + estim(o; ev)d2  estim(; ev) + estim(o; eu)estim(,o)  min(estim(,o), min(d1,d2) + real(e))hek hek [ (adjaeny() - ok)ok  ok [ fghek  hek � fgFig. 7. Optimized basi algorithm (t-Spanner 1).



t-Spanner2 (Streth t, Verties U)t-Spanner  t-spanner edge struture // initially has the first MSTpending  ; // global pending egde listH1  jEt�Spanner1(n; d; t)j = nStage 1: generating t-Spanner and pendingfor u 2 Uif jpendingj > 1:2 � jt-Spanner j // using H2t-Spanner  t-Spanner [ MST // built over the edges not yet inserteddistanes Dijkstra(t-Spanner, u) // distanes(v) = dt-Spanner(u; v)for v 2 Uif distane(v) � t � d(u; v) then pending  pending � f(u; v)gelse pending pending [ f(u; v)gif jpending(u)j � H1=2t-Spanner  t-Spanner [ pending(u), pending  pending � pending(u)Stage 2: Reduing pendingwhile jpendingj > n=2pendingNodes nodes sorted in dereasing number of pending edgesfor u 2 pendingNodesif more than n edges have been inserted break // speial ase 1if jpending(u)j < H1=4 // speial ase 2t-Spanner  t-Spanner [ pending(u), pending pending � pending(u)elsedistanes Dijkstra(t-Spanner, u)for v 2 pending(u)if distanes(v) � t � d(u; v) then pending  pending � f(u; v)gsmallest H1=4 smallest edges 2 pending(u)t-Spanner  t-Spanner [ smallest, pending  pending � smallestStage 3: t-Spanner  t-Spanner [ pendingFig. 8. Massive edges insertion algorithm (t-Spanner 2), pending(u) denotes fe 2 pending; 9v; e = (u; v)g.
t-Spanner3 (Streth t, Verties U)t-Spanner  t-spanner edge struture // initially ;for i 2 [1; n℄Æ  jEt�Spanner1(i; d; t)j = (i � 5) // inremental H1k  argminj2[1;i�1℄fd(nodei; nodej)gt-Spanner  t-Spanner [ f(nodei; nodek)g // inserting the heapest edgedistanes f(nodej ; t � d(nodei; nodej) + "); j 2 [1; i� 1℄g // defining the propagation limitwhile nodei has wrongly t-estimated edgesdistanes Dijkstra(t-Spanner, u, distanes)// inremental Dijkstrapendingi  f(nodei; nodej); j < i; distane(nodej) > t � d(nodei; nodej)gsmallest Æ heapest edges in pendingit-Spanner  t-Spanner [ smallestFig. 9. Inremental node insertion algorithm (t-Spanner 3).



t-Spanner4 (Streth t, Verties U)t-Spanner  t-spanner edge struture // initially ;(p1, p2)  two distant objets(V1, V2)  U divided aording to distanes towards (p1, p2)stsp1  makeSubtSpanner(p1,V1), stsp2  makeSubtSpanner(p2,V2)t-Spanner  mergeSubtSpanner(stsp1, stsp2)makeSubtSpanner(representative p, Verties V )if jV j = 1 return t-spanner (nodes = fpg, edges = ;)else if jV j = 2 return t-spanner (nodes = V = fv1; v2g, edges = f(v1; v2)g)elsepremote  argmaxv2V fd(p; v)g(V , Vremote)  V divided aording to distanes towards (p, premote)stspp  makeSubtSpanner(p,V ), stspremote  makeSubtSpanner(premote,Vremote)return mergeSubtSpanner(stspp, stspremote)mergeSubtSpanner (t-Spanner stsp1, t-Spanner stsp2)if jnodes(stsp1)j � jnodes(stsp2)j stsp1 , stsp2nodes  nodes(stsp1) [ nodes(stsp2)edges  edges(stsp1) [ edges(stsp2)Æ  jEt�Spanner1(jnodesj; d; t)j = (i � 5) // inremental H1p1  representative(stsp1)for u 2nodes(stsp2) in inreasing order of d(u; p1)for v 2 nodes(stsp1) do distanes(v) t � d(u; v) + " // defining the propagation limit towards stsp1for v 2nodes(stsp2) do distanes(v) 1while u has wrongly t-estimated edges towards stsp1distanes Dijkstra(edges, u, distanes)// inremental Dijkstrapendingu  f(u; v); v 2 stsp1; distane(v) > t � d(u; v)gsmallest Æ heapest edges 2 pendinguedges edges[ smallestreturn t-Spanner (nodes = nodes, edges = edges)Fig. 10. Reursive algorithm (t-Spanner 4).


