
Searching in Metric SpacesEdgar Ch�avezEscuela de Ciencias F��sico-Matem�aticas, Universidad Michoacana.Gonzalo NavarroRicardo Baeza-YatesDepto. de Ciencias de la Computaci�on, Universidad de Chile.Jos�e Luis Marroqu��nCentro de Investigaci�on en Matem�aticas (CIMAT).The problem of searching the elements of a set which are close to a given query element undersome similarity criterion has a vast number of applications in many branches of computer science,from pattern recognition to textual and multimedia information retrieval. We are interested inthe rather general case where the similarity criterion de�nes a metric space, instead of the morerestricted case of a vector space. A large number of solutions have been proposed in di�erent areas,in many cases without cross-knowledge. Because of this, the same ideas have been reinventedseveral times, and very di�erent presentations have been given for the same approaches. Wepresent some basic results that explain the intrinsic di�culty of the search problem. This includesa quantitative de�nition of the elusive concept of \intrinsic dimensionality". We also present auni�ed view of all the known proposals to organize metric spaces, so as to be able to understandthem under a common framework. Most approaches turn out to be variations on a few di�erentconcepts. We organize those works in a taxonomy which allows us to devise new algorithms fromcombinations of concepts which were not noticed before because of the lack of communicationbetween di�erent communities. We present experiments validating our results and comparing theexisting approaches. We �nish with recommendations for practitioners and open questions forfuture development.Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complex-ity]: Nonnumerical algorithms and problems|Computations on discrete structures, GeometricalThis project has been partially supported by CYTED VII.13 AMYRI Project (all authors), byCONACyT grant R-28923A (�rst author) and by Fondecyt grant 1-000929 (second and thirdauthors).Address: Edgar Ch�avez, Escuela de Ciencias F��sico-Matem�aticas, Universidad Michoacana,Edi�cio \B", Ciudad Universitaria, Morelia, Mich. M�exico 58000. elchavez@zeus.ccu.umich.mx.Gonzalo Navarro and Ricardo Baeza-Yates, Depto. de Ciencias de la Computaci�on, Universidadde Chile, Blanco Encalada 2120, Santiago, Chile. fgnavarro,rbaezag@dcc.uchile.cl. Jos�eLuis Marroqu��n, Centro de Investigaci�on en Matem�aticas (CIMAT), Callej�on de Jalisco S/N,Valenciana, Guanajuato, Gto. M�exico 36000. jlm@fractal.cimat.mx.Permission to make digital or hard copies of part or all of this work for personal or classroomuse isgrantedwithout fee provided that copies are not made or distributed for pro�t or direct commercialadvantage and that copies show this notice on the �rst page or initial screen of a display alongwith the full citation. Copyrights for components of this work owned by others than ACM mustbe honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post onservers, to redistribute to lists, or to use any component of this work in other works, requires priorspeci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACMInc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 � E. Ch�avez et al.problems and computations, Sorting and searching; H.2.1 [Database management]: Physicaldesign|Access methods; H.3.1 [Information storage and retrieval]: Content analysis andindexing|Indexing methods; H.3.2 [Information storage and retrieval]: Information stor-age|File organization; H.3.3 [Information storage and retrieval]: Information search andretrieval|Clustering, Search process; I.5.1 [Pattern recognition]: Models|Geometric; I.5.3[Pattern recognition]: ClusteringGeneral Terms: AlgorithmsAdditional Key Words and Phrases: Vector spaces, nearest neighbors, similarity searching, curseof dimensionality1. INTRODUCTIONSearching is a fundamental problem in computer science, present in virtually everycomputer application. Simple applications pose simple search problems, while amore complex application will require, in general, a more sophisticated form ofsearching.The search operation has been traditionally applied to \structured data", i.e. nu-merical or alphabetical information which is searched for exactly. That is, a searchquery is given and the number or string which is exactly equal to the search queryis retrieved. Traditional databases are built around the concept of exact search-ing: the database is divided into records, each record having a fully comparablekey. Queries to the database return all the records whose keys match the searchkey. More sophisticated searches such as range queries on numerical keys or pre�xsearching on alphabetical keys still rely on the concept that two keys are or arenot equal, or that there is a total linear order on the keys. Even in recent years,when databases have included the ability to store new data types such as images,the search has still been done on a predetermined number of keys of numerical oralphabetical types.With the evolution of information and communication technologies, unstructuredrepositories of information have emerged. Not only new data types such as free text,images, audio and video have to be queried, but also it is not possible anymore tostructure the information in keys and records. Such structuring is very di�cult(either manually or computationally) and restricts beforehand the types of queriesthat can be posed later. Even when a classical structuring is possible, new applica-tions such as data mining require to access the database by any �eld, not only thosemarked as \keys". Hence, new models for searching in unstructured repositoriesare needed.The above scenarios require more general search algorithms and models thanthose classically used for simple data. A unifying concept is that of \similaritysearching" or \proximity searching", i.e. searching for database elements which aresimilar or close to a given query element1. Similarity is modeled with a distancefunction that satis�es the triangular inequality, and the set of objects is calleda metric space. Since the problem has appeared in many diverse areas, solutions1The term \approximate searching" is also used, but it is misleading and we use it here only whenreferring to approximation algorithms.



Searching in Metric Spaces � 3have appeared in many unrelated �elds, such as statistics, computational geometry,arti�cial intelligence, databases, computational biology, pattern recognition anddata mining, to name a few. Since the current solutions come from so diverse�elds, it is not surprising that the same solutions have been reinvented many times,that obvious combinations of solutions have not been noticed, and that no thoroughcomparisons have been done. More importantly, there have been no attempts toconceptually unify all those solutions.In some applications the metric space turns out to be of a particular type called\vector space", where the elements consist of k real-valued coordinates. A lotof work has been done on vector spaces by exploiting their geometric properties,but normally these cannot be extended to general metric spaces where the onlyavailable information is the distance among objects. In this general case, moreover,the distance is normally quite expensive to compute, so the general goal is to reducethe number of distance evaluations. In contrast, the operations in vector spaces tendto be simple and hence the goal is mainly to reduce I/O. Some important advanceshave been done for general metric spaces, in general around the concept of buildingan index, i.e. a data structure to reduce the number of distance evaluations atquery time. Some recent work [Ciaccia et al. 1997; Prabhakar et al. 1998] tries toachieve at the same time the goals of reducing the number of distance evaluationsand the amount of I/O performed.The main goal of this work is to present a unifying framework to describe andanalyze all the existing solutions to this problem. We show that all the existingindexing algorithms for proximity searching consist in building a set of equivalenceclasses, discarding some classes, and searching exhaustively the rest. Two maintechniques based on equivalence relations, namely pivoting and Voronoi partitions,are shown to encompass all the existing methods. As a consequence of the analysiswe are able to build a taxonomy on the existing algorithms for proximity search, toclassify them according to their essential features, and to analyze their e�ciency.We are able to identify essentially similar approaches, to point out combinationsof ideas which have not previously been noticed, and to identify the main openproblems in this area. We also present quantitative methods to assert the intrinsicdi�culty in searching on a given metric space and provide lower bounds on thesearch problem. This includes a quantitative de�nition of the up to now conceptualnotion of \intrinsic dimensionality", which we show to be very appropriate. Wepresent some experimental results that help to validate our assertions.We remark that we are concerned with the essential features of the search algo-rithms for general metric spaces. That is, we try to extract the basic features fromthe wealth of existing solutions, so as to be able to categorize and analyze themunder a common framework. We focus mainly on the number of distance evalu-ations needed to execute range queries (i.e. with �xed tolerance radius), whichare the most basic ones. However, we also pay some attention to the total CPUtime, time and space cost to build the indexes, nearest neighbor queries, dynamiccapabilities of the indexes and I/O considerations. There are some features whichwe de�nitely do not cover in order to keep our scope reasonably bounded, such as(1) complex similarity queries involving more than one similarity predicate [Ciacciaet al. 1998b], as few works on them exist and they are an elaboration over thesimple similarity queries (a particular case is polygon searching in vector spaces);



4 � E. Ch�avez et al.(2) sub-queries (i.e. searching a small element inside a larger element) since thesolutions are basically the same after a domain-dependent transformation is done;and (3) inverse queries (i.e. �nd the elements for which q is their closest neighbor)and total queries (e.g. �nd all the closest neighbors) since the algorithms are, again,built over the simple ones.This paper is organized as follows. A �rst part (Sections 2{5) is a pure surveyof the state of the art in searching metric spaces, with no attempt to provide anew way to think on the problem. A second part (Sections 6{8) presents ourbasic results on the di�culty of the search problem and our unifying model thatallows understanding the essential features of the problem and its existing solutions.Finally, Section 9 gives our conclusions and points out future research directions.2. MOTIVATING APPLICATIONSWe present now a sample of applications where the concept of proximity searchingappears. Since we have not presented a formal model yet, we do not try to explainthe connections between the di�erent applications. We rather delay this discussionto Section 3.2.1 Query by Content in Structured DatabasesIn general, the query posed to a database presents a piece of a record of information,and it needs to retrieve the entire record. In the classical approach, the piecepresented is �xed (the key). Moreover, it is not allowed to search with an incompleteor an erroneous key. On the other hand, in the more general approach requirednowadays the concept of searching with a key is generalized to searching with anarbitrary subset of the record, allowing errors or not.Possible types of searches are point or key search (all the key information is given),range search (only some �elds are given or only a range of values is speci�ed forthem) and proximity search (in addition, records \close" to the query are consideredinteresting). These types of search are of use in data mining (where the interestingparts of the record cannot be predetermined), when the information is not precise,when we are looking for a range of values, when the search key may have errors(e.g. a misspelled word), etc.A general solution to the problem of range queries by any record �eld is thegrid �le [Nievergelt and Hinterberger 1984]. The domain of the database is seenas a hyper-rectangle of k dimensions (one per record �eld), where each dimensionhas an ordering according to the domain of the �eld (numerical or alphabetical).Each record present in the database is considered as a point inside the hyper-rectangle. A query speci�es a sub-rectangle (i.e. a range along each dimension),and all the points inside the speci�ed query are retrieved. This does not address theproblem of searching on non-traditional data types, nor allowing errors that cannotbe recovered with a range query. However, it converts the original search problemto a problem of obtaining, in a given space, all the points \close" to a given querypoint. Grid �les are essentially a disk organization technique to e�ciently retrieverange queries in secondary memory.



Searching in Metric Spaces � 52.2 Query by Content in Multimedia ObjectsNew data types such as images, �ngerprints, audio and video (called \multimedia"data types) cannot be meaningfully queried in the classical sense. Not only theycannot be ordered, but they cannot even be compared for equality. No applicationwill be interested in searching an audio segment exactly equal to a given one. Theprobability that two di�erent images are pixel-wise equal is negligible unless theyare digital copies of the same source. In multimedia applications, all the queries askfor objects similar to a given one. Some example applications are face recognition,�ngerprint matching, voice recognition, and in general multimedia databases [Aperset al. 1997; Yoshitaka and Ichikawa 1999].Think for example in a repository of images. Interesting queries are of the type\�nd an image of a lion with a savanna background". If the repository is tagged,and each tag contains a full description of what is inside the image, then our exam-ple query can be solved with a classical scheme. Unfortunately, such a classi�cationcannot be done automatically with the available image processing technology. Ob-ject recognition in real world scenes is still in an immature state to perform suchcomplex tasks. Moreover, we cannot predict all the possible queries that will beposed so as to tag the image for every possible query. An alternative to automaticclassi�cation consists in considering the query as an example image, so that thesystem searches all the images similar to the query. This can be built inside a morecomplex feedback system where the user approves or rejects the images found, anda new query is submitted with the approved images. It is also possible that thequery is just part of an image and the system has to retrieve the whole image.These approaches are based on the de�nition of a similarity function amongobjects. Those functions are provided by an expert, but they pose no assumptionson the type of queries that can be answered. In many cases, the distance is obtainedvia a set of k \features" which are extracted from the object (e.g. in an image auseful feature is the average color). Then each object is represented as its k features,i.e. a point in a k-dimensional space, and we are again in a case of range querieson vector spaces.There is a growing community of scientists deeply involved with the developmentof such similarity measures [Cascia et al. 1998; Bhanu et al. 1998; Bimbo andVicario 1998].2.3 Text RetrievalAlthough not considered a multimedia data type, unstructured text retrieval posessimilar problems as multimedia retrieval. This is because textual documents are ingeneral not structured to easily provide the desired information. Text documentsmay be searched for strings that are present or not, but in many cases they aresearched for semantic concepts of interest. For instance, an ideal scenario wouldallow searching a text dictionary for a concept such as \to free from obligation",retrieving the word \redeem". This search problem cannot be properly stated withclassical tools.A large community of researchers has been working on this problem from a longtime ago [Salton and McGill 1983; Frakes and Baeza-Yates 1992; Baeza-Yates andRibeiro-Neto 1999]. A number of measures of similarity have emerged. The problem



6 � E. Ch�avez et al.is basically solved by retrieving documents similar to a given query. The user caneven present a document as a query, so that the system �nds similar documents.Some similarity approaches are based on mapping a document to a vector of realvalues, so that each dimension is a vocabulary word and the relevance of the wordto the document (computed using some formula) is the coordinate of the documentalong that dimension. Similarity functions are then de�ned in that space. Noticehowever that the dimensionality of the space is very high (thousands of dimensions).Another problem related to text retrieval is spelling. Since huge text databaseswith low quality control are emerging (e.g. the Web), and typing, spelling or OCR(optical character recognition) errors are commonplace in the text and the query,we have that documents which contain a misspelled word are no longer retrievableby a correctly written query. Models of similarity among words exist (variants ofthe \edit distance" [Sanko� and Kruskal 1983]) which capture very well those kindof errors. In this case, we give a word and want to retrieve all the words close to it.Another related application is spelling checkers, where we look for close variants ofthe misspelled word.In particular, OCR can be done using a low-level-classi�er, so that misspelledwords can be corrected using the edit distance to �nd promising alternatives toreplace incorrect words.2.4 Computational BiologyADN and protein sequences are the basic object of study in molecular biology. Asthey can be modeled as texts, we have the problem of �nding a given sequenceof characters inside a longer sequence. However, an exact match is unlikely tooccur, and computational biologists are more interested in �nding parts of a longersequence which are similar to a given short sequence. The fact that the search isnot exact is due to minor di�erences in the genetic streams that describe beingsof the same or closely related species. The measure of similarity used is related tothe probability of mutations such as reversals of pieces of the sequences and otherrearrangements [Waterman 1995; Sanko� and Kruskal 1983].Other related problems are to build phylogenetic trees (a tree sketching the evo-lutionary path of the species), to search patterns for which only some propertiesare known, and others.2.5 Pattern Recognition and Function ApproximationA simpli�ed de�nition of pattern recognition is the construction of a function ap-proximator. In this formulation of the problem one has a �nite sample of the data,and each data sample is labeled as belonging to a certain class. When a fresh datasample is provided, the system is required to label this new sample with one ofthe known data labels. In other words, the classi�er can be thought of as a func-tion de�ned from the object (data) space to the set of labels. In this sense all theclassi�ers are considered function approximators.If the objects are m-dimensional vectors of real numbers then a natural choice isneural nets and fuzzy function approximators. Another popular universal functionapproximator, the k-nearest neighbor classi�er, consists in �nding the k objectsnearest to the unlabeled sample, and assigning to this sample the label havingmajority among the k nearest objects. Opposed to neural nets and fuzzy classi�ers,



Searching in Metric Spaces � 7the k-nearest neighbor rule has zero training time, but if no indexing algorithm isused it has linear complexity [Duda and Hart 1973].Other applications of this universal function approximator are density estimation[Devroye 1987] and reinforcement learning [Sutton and Barto 1998]. In general,any problem where we want to infer a function based on a �nite set of samples is apotential application.2.6 Audio and Video CompressionAudio and video transmission over a narrow-band channel is an important problem,for example in Internet-based audio and video conferencing or in wireless commu-nication. A frame (a static picture in a video, or a fragment of the audio) canbe thought of as formed by a number of (possibly overlapped) subframes (16� 16subimages in a video, for example). In a very succinct description, the problemcan be solved by sending the �rst frame as-is and for the next frames sending onlythe subframes having a signi�cative di�erence from the previously sent subframes.This description encompasses the MPEG standard.The algorithms use in fact a subframe bu�er. Each time a frame is about to besent it is searched (with a tolerance) in the subframe bu�er and if it is not foundthen the entire subframe is added to the bu�er. If the subframe is found thenonly the index of the similar frame found is sent. This implies, naturally, that afast similarity search algorithm has to be incorporated to the server to maintain aminimum of frames-per-second rate.3. BASIC CONCEPTSAll the applications presented in the previous section share a common framework,which is in essence to �nd close objects, under some suitable similarity function,among a �nite set of elements. In this section we present the formal model com-prising all the above cases.3.1 Metric SpacesWe introduce now the basic notation for the problem of satisfying proximity queriesand for the model used to group and analyze the existing algorithms.The set Xwill denote the universe of valid objects. A �nite subset of it, U, ofsize n = jUj, is the set of objects where we search. Uwill be called the dictionary,database or simply our set of objects or elements. The functiond : X�X�! Rwill denote a measure of \distance" between objects (i.e. the smaller the distance,the closer or more similar are the objects). Distance functions have the followingproperties:(p1) 8x; y 2X; d(x; y) � 0 positiveness,(p2) 8x; y 2X; d(x; y) = d(y; x) symmetry,(p3) 8x 2X; d(x; x) = 0 reexivity,and in most cases(p4) 8x; y 2X; x 6= y ) d(x; y) > 0 strict positiveness.



8 � E. Ch�avez et al.The similarity properties enumerated above only ensure a consistent de�nitionof the function, and cannot be used to save comparisons in a proximity query. If dis indeed a metric, i.e. if it satis�es(p5) 8x; y; z 2X; d(x; y) � d(x; z) + d(z; y) triangular inequality,then the pair (X; d) is called a metric space.If the distance does not satisfy the strict positiveness property (p4) then the spaceis called a pseudo-metric space. Although for simplicity we do not consider pseudo-metric spaces in this work, all the presented techniques are easily adapted to themby simply identifying all the objects at distance zero as a single object. This worksbecause, if (p5) holds, one can easily prove that d(x; y) = 0) 8z; d(x; z) = d(y; z).In some cases we may have a quasi-metric, where the symmetry property (p2)does not hold. For instance, if the objects are corners in a city and the distancecorresponds to how much a car must travel to move from one to the other, then theexistence of one-way streets makes the distance asymmetric. There exist techniquesto derive a new, symmetric, distance function from an asymmetric one, such asd0(x; y) = d(x; y) + d(y; x). However, to be able to bound the search radius of aquery when using the symmetric function we need speci�c knowledge of the domain.Finally, we can relax the triangular inequality (p5) to d(x; y) � �d(x; z) +�d(z; y) + �, and after some scaling we can search in this space using the samealgorithms designed for metric spaces. If the distance is symmetric we need � = �for consistency.In the rest of paper we use the term distance in the understanding that we referto a metric.3.2 Proximity QueriesThere are basically three types of queries of interest in metric spaces:Range query (q; r)d. Retrieve all elements which are within distance r to q. Thisis, fu 2U= d(q; u) � rg.Nearest neighbor query NN (q). Retrieve the closest elements to q in U. Thisis, fu 2U= 8v 2U; d(q; u) � d(q; v)g. In some cases we are satis�ed with onesuch element (in continuous spaces there is normally just one answer anyway).We can also give a maximum distance r� such that if the closest element is atdistance more than r� we do not want anyone reported.k-Nearest neighbor query NNk(q). Retrieve the k closest elements to q in U.This is, retrieve a set A � Usuch that jAj = k and 8u 2 A; v 2U�A; d(q; u)�d(q; v). Note that in case of ties we are satis�ed with any set of k elementssatisfying the condition.The most basic type of query is the range query. The left part of Figure 1illustrates a query on a set of points which will be our running example, using R2as the metric space for clarity.A range query will be therefore a pair (q; r)d with q an element in Xand r a realnumber indicating the radius (or tolerance) of the query. The set fu 2U; d(q; u) �rg will be called the outcome of the range query.We use \NN" as an abbreviation of \nearest neighbor", and give the generic name\NN-query" to the last two types of queries and \NN searching" to the techniques



Searching in Metric Spaces � 9to solve them. As we see later, NN-queries can be systematically built over rangequeries.The total time to evaluate a query can be split asT = distance evaluations � complexity of d() + extra CPU time + I=O timeand we would like to minimize T . In many applications, however, evaluating d() isso costly that the other components of the cost can be neglected. This is the modelwe use in this paper, and hence the number of distance evaluations performed willbe the measure of the complexity of the algorithms. We can even allow a linear in n(but reasonable) amount of CPU work and a linear traversal over the database ondisk, as long as the number of distance computations is kept low. However, we willpay some marginal attention to the so-called extra CPU time. The I/O time canbe the dominant factor in some applications and negligible in others, dependingon the amount of main memory available and the relative cost to compute thedistance function. We cover the little existing work on relating metric spaces andI/O considerations in Section 5.3.2.It is clear that either type of query can be answered by examining the entiredictionary U. In fact if we are not allowed to preprocess the data, i.e. to build anindex data structure, then this exhaustive examination is the only way to proceed.An indexing algorithm is an o�-line procedure to build beforehand a data structure(called index) designed to save distance computations when answering proximityqueries later. This data structure can be expensive to build, but this will be amor-tized by saving distance evaluations over many queries to the database. The aim istherefore to design e�cient indexing algorithms to reduce the number of distanceevaluations. All these structures work on the basis of discarding elements using thetriangular inequality (the only property that allows saving distance evaluations).4. THE CASE OF VECTOR SPACESIf the elements of the metric space (X; d) are indeed tuples of real numbers (actuallytuples of any �eld) then the pair is called a �nite dimensional vector space, or vectorspace for short.A k-dimensional vector space is a particular metric space where the objects areidenti�ed with k real-valued coordinates (x1; :::; xk). There are a number of optionsfor the distance function to use, but the most widely used is the family of Lsdistances, de�ned asLs((x1; :::; xk); (y1; :::; yk)) =  kXi=1 jxi � yijs!1=sThe right part of Figure 1 illustrates some of these distances. For instance, theL1 distance accounts for the sum of the di�erences along the coordinates. It is alsocalled \block" or \Manhattan" distance, since in two dimensions it corresponds tothe distance to walk between two points in a city of rectangular blocks. The L2distance is better known as \Euclidean" distance, as it corresponds to our notionof spatial distance. The other most used member of the family is L1, whichcorresponds to taking the limit of the Ls formula when s goes to in�nity. Theresult is that the distance between two points is the maximum di�erence along a



10 � E. Ch�avez et al.coordinate: L1((x1; :::; xk); (y1; :::; yk)) = kmaxi=1 jxi � yijSearching with the L1 distance corresponds directly to a classical range searchquery, where the range is the k-dimensional hyper-rectangle. This distance plays aspecial role in this survey.
L

L

L

L1 2

6

u10

u13
u5

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u9

qFig. 1. On the left, an example of a range query on a set of points. On the right, the set ofpoints at the same distance to a center point, for di�erent Ls distances.In many applications the metric space is indeed a vector space, i.e. the objectsare k-dimensional points and the similarity is interpreted geometrically. A vectorspace permits more freedom than a general metric space when designing searchapproaches, since it is possible to use geometric and coordinate information whichis unavailable in a general metric space.In this framework optimal algorithms (on the database size) exist in both theaverage and the worst case [Bentley et al. 1980] for closest point search. Searchstructures for vector spaces are called spatial access methods (SAM). Among themost popular are kd-trees [Bentley 1975; Bentley 1979], R-trees [Guttman 1984],quad-trees [Samet 1984] and the more recent X-trees [Berchtold et al. 1996]. Thesetechniques make extensive use of coordinate information to group and classify pointsin the space. For example kd-trees divide the space along di�erent coordinates andR-trees groups points in hyper-rectangles. Unfortunately the existing techniquesare very sensitive to the vector space dimension. Closest point and range searchalgorithms have an exponential dependency on the dimension of the space [Chazelle1994] (this is called the curse of dimensionality).Vector spaces may su�er from large di�erences between their representationaldimension (k) and their intrinsic dimension (i.e. the real number of dimensions inwhich the points can be embedded while keeping the distances among them). Forexample a plane embedded in a 50-dimensional space has intrinsic dimension 2 andrepresentational dimension 50. This is in general the case of real applications, where



Searching in Metric Spaces � 11the data is clustered, and it has lead to attempts to measure the intrinsic dimensionsuch as the concept of \fractal dimension" [Faloutsos and Kamel 1994]. Despitethat no techniques can cope with intrinsic dimension higher than 20, much higherrepresentational dimensions can be handled by dimensionality reduction techniques[Faloutsos and Lin 1995; Cox and Cox 1994; Hair et al. 1995].Since e�cient techniques to cope with vector spaces exist, application designerstry to give their problems a vector space structure. However, this is not alwayseasy or feasible at all. For example, experts in image processing try to express thesimilarity between images as the distance between \vectors" of features extractedfrom the images, although in many cases better results are obtained by codingspeci�c functions that compare two images, despite that they cannot be easilyexpressed as the distance between two vectors (e.g. cross-talk between features[Faloutsos et al. 1994]). Another example that resists conversion into a vector spaceis similarity functions between strings, to compare DNA sequences for instance.For this reason several authors resort to general metric spaces, even knowingthat the search problem is much more di�cult. Of course it is also possible totreat a vector space as a general metric space, by using only the distances betweenpoints. One immediate advantage is that the intrinsic dimension of the space showsup, independent of any representational dimension (this requires extra care in vec-tor spaces). It is interesting to remark that in [Ciaccia et al. 1997] they presentpreliminary results showing that a metric space data structure (the M-tree) canoutperform a well known vector space data structure (the R�-tree) when appliedto a vector space.Speci�c techniques for vector spaces is a whole di�erent world which we do notintend to cover in this work (see [Samet 1984; White and Jain 1996; Gaede andG�unther 1998] for good surveys). However, we discuss in the next section a tech-nique which, instead of treating a vector space as a metric space, tries to embeda general metric space into a vector space. This concept is central in this survey,despite that speci�c knowledge on speci�c techniques for vector spaces is, as weshortly show, not necessary to understand it.4.1 Resorting to Vector SpacesAn interesting and natural reduction of the similarity search problem consists in amapping � from the original metric space into a vector space. In this way, eachelement of the original metric space will be represented as a point in the targetvector space. The two spaces will be related by two distances: the original oned(x; y) and the distance in the projected space D(�(x);�(y)). If the mapping iscontractive, i.e. D(�(x);�(y)) � d(x; y) for any pair of elements, then one canprocess range queries in the projected space with the same radius. Since somespurious elements can be captured in the target space, the outcome of the query inthe projected space is a candidate list, which is later veri�ed element-wise with theoriginal distance to obtain the actual outcome of the query.Intuitively, the idea is to \invent" k coordinates and map the points onto a vectorspace, using some vector space technique as a �rst �lter to the actual answer toa query. One of the main thesis of this work is a large subclass of the existingalgorithms can be regarded as relying on some mapping of this kind. A widely usedmethod (explained in detail in Section 6.6) is to select fp1 : : : pkg � U and map



12 � E. Ch�avez et al.each u 2 U to (Rk; L1) using �(u) = (d(u; p1); : : : ; d(u; pk)). It can be seen thatthis mapping is contractive but not proximity preserving.If, on the other hand, the mapping is proximity preserving, i.e. d(x; y) � d(x; z) )D(�(x);�(y)) � D(�(x);�(z)), then NN-queries can be directly performed in theprojected space. Indeed, most current algorithms for NN-queries are based in rangequeries, and with some care they can be done in the projected space if the mappingis contractive, even if it is not proximity preserving.This type of mapping is a special case of a general idea in the literature which saysthat one can �nd cheaper to compute distances that lower-bound the real one, anduse the cheaper distance to �lter out most elements (e.g. for images, the averagecolor is cheaper to compute than the di�erences in the color histograms). While ingeneral this is domain-dependent, mapping onto a vector space can be done withoutknowledge of the domain. After the mapping is done and we have identi�ed eachdata element with a point in the projected space, we can use a general purposespatial access method (SAM) for vector spaces to retrieve the candidate list. Theelements found in the projected space must be �nally checked using the originaldistance function.Therefore, there are two types of distance evaluations: �rst to obtain the co-ordinates in the projected space and later to check the �nal candidates. Theseare called \internal" and \external" evaluations, respectively, later in this work.Clearly, incrementing internal evaluations improves the quality of the �lter andreduces external evaluations, and therefore we seek for a balance.Notice �nally that the search itself in the projected space does not use evaluationsof the original distance, and hence it is costless under our complexity measure.Therefore, the use of kd-trees, R-trees or other data structure aims at reducing theextra CPU time, but it makes no di�erence in the number of evaluations of the ddistance.How well do metric space techniques perform in comparison to vector spacemethods? It is di�cult to give a formal answer because of the di�erent cost modelsinvolved. In metric spaces we use the number of distance evaluations as the ba-sic measure of complexity, while vector space techniques may very well use manycoordinate manipulations and not a single evaluation of the distance. Under ourmodel, the cost of a method that maps to a vector space to trim the candidate listis measured as the number of distance evaluations to realize the mapping plus the�nal distances to �lter the trimmed candidate list, while the work on the arti�cialcoordinates is seen as just extra CPU time.A central question related to this reduction is: how well can a metric space beembedded into a vector space? How many coordinates have to be considered sothat the original metric space and the target vector spaces are similar enough sothat the candidate list given by the vector space is not much larger than the actualoutcome of the query in the original space? This is a very di�cult question thatlies behind all this paper, and we return to it in Section 7.The issue is better developed in vector spaces. There are di�erent techniques toreduce the dimensionality of a set of points while preserving the original distancesas much as possible [Cox and Cox 1994; Hair et al. 1995; Faloutsos and Lin 1995],that is, to �nd the intrinsic dimension of the data.



Searching in Metric Spaces � 135. CURRENT SOLUTIONS FOR METRIC SPACESIn this section we explain the existing indexes to structure metric spaces and howare they used for range and NN searching. Since we have not yet developed theconcepts of a unifying perspective, the description will be kept at an intuitive level,without any attempt to analyze why some ideas are better or worse. We add a�nal subsection devoted to more advanced issues such as dynamic capabilities, I/Oconsiderations and approximate and probabilistic algorithms.5.1 Range SearchingWe divide the presentation in three parts. The �rst one deals with tree indexes fordiscrete distance functions, that is, functions that deliver a small set of values. Thesecond part corresponds to tree indexes for continuous distance functions, wherethe set of alternatives is in�nite or very large. Third, we consider other methodsthat are not tree-based.Table 1 summarizes the complexities of the di�erent structures. These are ob-tained from the source papers, which use di�erent (and incompatible) assumptionsand in many cases give just gross analyses or no analysis at all (just heuristic con-siderations). Therefore, we give the complexities as claimed by the authors of eachpaper, not as a proven fact. At best, the results are analytical but rely on diversesimplifying assumptions. At worst, the results are based on a few incomplete ex-periments. Keep also in mind that there are hidden factors depending (in manycases exponentially) on the dimension of the space, and that the query complexityis always on average, as in the worst case we can be forced to compare all theelements. Even in the simple case of orthogonal range searching on vector spacesthere exist 
(n�) lower bounds for the worst case [Melhorn 1984].5.1.1 Trees for Discrete Distance Functions. We start by describing tree datastructures that apply to distance functions that return a small set of di�erentvalues. At the end we show how to cope with the general case with these trees.5.1.1.1 BKT. Probably the �rst general solution to search in metric spaces waspresented in [Burkhard and Keller 1973]. They propose a tree (thereafter calledBurkhard-Keller Tree, or BKT), which is suitable for discrete-valued distance func-tions. It is de�ned as follows: an arbitrary element p 2U is selected as the root ofthe tree. For each distance i > 0, we de�ne Ui = fu 2 U; d(u; p) = ig as the set ofall the elements at distance i to the root p. Then, for any nonempty Ui, we build achild of p (labeled i), where we recursively build the BKT for Ui. This process canbe repeated until there is only one element to process, or until there are no morethan b elements (and we store a bucket of size b). All the elements selected as rootsof subtrees are called pivots.When we are given a query q and a distance r, we begin at the root and enterinto all children i such that d(p; q) � r � i � d(p; q) + r, and proceed recursively.If we arrive to a leaf (bucket of size one or more) we compare sequentially all itselements. Each time we perform a comparison (against pivots or bucket elementsu) where d(q; u) � r, we report the element u.The triangular inequality ensures that we cannot miss an answer. All the subtreesnot traversed contain elements u which are at distance d(u; p) = i from some node



14 � E. Ch�avez et al.Data Space Construction Claimed Query Extra CPUStructure Complexity Complexity Complexity query timeBKT n ptrs n log n n� |FQT n::n log n ptrs n log n n� |FHQT n::nh ptrs nh log n (*) n�FQA nhb bits nh log n (*) n� log nVPT n ptrs n log n log n (**) |MVPT n ptrs n log n log n (**) |VPF n ptrs n2�� n1�� log n(��) |BST n ptrs n log n not analyzed |GHT n ptrs n log n not analyzed |GNAT nm2 dsts nm logm n not analyzed |VT n ptrs n log n not analyzed |MT n ptrs n(m::m2) logm n not analyzed |SAT n ptrs n log n= log log n n1��(1= log log n) |AESA n2 dsts n2 O(1) (***) n::n2LAESA kn dsts kn k +O(1) (***) log n::kn(*) If h = log n.(**) Only valid when searching with very small radii.(***) Empirical conclusions without analysis, in case of LAESA for \large enough" k.Table 1. Average complexities of the existing approaches, according to the source papers. Timecomplexity considers only n, not other parameters such as dimension. Space complexity mentionsthe most expensive storage units used (\ptrs" is a short for \pointers" and \dsts" for \distances").� is a number between 0 and 1, di�erent for each structure, while the other letters are parametersparticular of each structure.p, where jd(p; q)� ij > r. By the triangular inequality, d(p; q) � d(p; u) + d(u; q),and therefore d(u; q) � d(p; q)� d(p; u) > r.Figure 2 shows an example, where the element u11 has been selected as the root.We have built only the �rst level of the BKT for simplicity. A query q is alsoshown, and we have emphasized the branches of the tree that would have to betraversed. In this and all the examples of this section we discretize the distances ofour example, so that they return integer values.The results of Table 1 for BKTs are extrapolated from those made for FixedQueries Trees [Baeza-Yates et al. 1994], which can be easily adapted to this case.The only di�erence is that the space overhead of BKTs is O(n) because there isexactly one element of the set per tree node.5.1.1.2 FQT. A further development over BKTs is the \Fixed-Queries Tree" orFQTs [Baeza-Yates et al. 1994]. This tree is basically a BKT where all the pivotsstored in the nodes of the same level are the same (and of course do not necessarilybelong to the set stored in the subtree). The actual elements are all stored at theleaves. The advantage of such construction is that some comparisons between thequery and the nodes are saved along the backtracking that occurs in the tree. If wevisit many nodes of the same level, we do not need to perform more than one com-parison because all the pivots in that level are the same. This is at the expense ofsomewhat taller trees. FQTs are shown experimentally in [Baeza-Yates et al. 1994]



Searching in Metric Spaces � 15
u13

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u10

u5

u9

u11

2 3 4 5 6

u2 u9 u8u3 u5 u12 u13u1 u10u4 u6 u7 u14 u15qFig. 2. On the left, the division of the space obtained when u11 is taken as a pivot. On the right,the �rst level of a BKT with u11 as root. We also show a query q and the branches that it has totraverse. We have discretized the distances so they return integer values.to perform less distance evaluations at query time using a couple of di�erent metricspace examples. Under some simplifying assumptions (experimentally validated inthe paper) they show that FQTs built over n elements are O(log n) height on aver-age, are built using O(n log n) distance evaluations, and that the average numberof distance computations is O(n�), where 0 < � < 1 is a number that depends onthe range of the search and on the structure of the space (this analysis is easy toextend to BKTs as well). The space complexity is superlinear since, unlike BKTs,it is not true that a di�erent element is placed at each node of the tree. An upperbound is O(n logn) since the average height is O(log n).5.1.1.3 FHQT. In [Baeza-Yates et al. 1994; Baeza-Yates 1997], the authors pro-pose a variant which is called \Fixed-Height FQT" (or FHQT for short), where allthe leaves are at the same depth h, regardless of the bucket size. This makes someleaves deeper than necessary, which makes sense because we may have already per-formed the comparison between the query and the pivot of an intermediate level,therefore eliminating for free the need to consider the leaf. In [Baeza-Yates 1997;Baeza-Yates and Navarro 1998] it is shown that by using O(log n) pivots, the searchtakes O(log n) distance evaluations (although the cost depends exponentially on thesearch radius r). The extra CPU time, i.e. number of nodes traversed, remainshowever O(n�). The space, like FQTs, is somewhere between O(n) and O(nh). Inpractice the optimal h = O(logn) cannot be achieved because of space limitations.5.1.1.4 FQA. In [Ch�avez et al. 1999], the Fixed Queries Array (FQA) is pre-sented. The FQA, although not properly a tree, is no more than a compact rep-resentation of the FHQT. Imagine that an FHQT of �xed height h is built on theset. If we traverse the leaves of the tree left to right and put the elements in anarray, the result is the FQA. For each element of the array we compute h numbersrepresenting the branches to take in the tree to reach the element from the root(i.e. the distances to the h pivots). Each of these h numbers is coded in b bits andthey are concatenated in a single (long) number so that the higher levels of the treeare the most signi�cant digits.As a result the FQA is sorted by the resulting hb-bits number, each subtree of theFHQT corresponds to an interval in the FQA, and each movement in the FHQT is



16 � E. Ch�avez et al.simulated with two binary searches in the FQA (at O(log n) extra CPU cost factor,but no extra distances are computed). There is a similarity between this idea andsu�x trees versus su�x arrays [Frakes and Baeza-Yates 1992]. This idea of usingfewer bits to represent the distances appeared also in the context of vector spaces[Blott and Weber 1997].Using the same memory, the FQA simulation is able to use much more pivotsthan the original FHQT, which improves the e�ciency. The b bits needed by eachpivot can be lowered by merging branches of the FHQT, trying that about the samenumber of elements lies in each cell of the next level. This allows using even morepivots with the same space usage. For reasons that are made clear later, the FQAis also called FMVPA in this work.Figure 3 shows an arbitrary BKT, FQT, FHQT and FQA built on our set ofpoints. Notice that, while in the BKT there is a di�erent pivot per node, in theothers there is a di�erent pivot per level, the same for all the nodes of that level.
BKT u11

2 3 4 5 6

u2 u9 u8u1 u10u7

3 4

u6

u5

5 6 7

u13 u3 u12u14

2 3

u15 u4

0

u11

4

2

u7

3

2

u14

4

u10

3

6

2

u15

3

2

u4

5

2

u6

5

u1

3

3

4

u5

0

4

u13

5

4

u3

6

4

u12

7

5

u2

7

5

u9

7

6

u8

7

3 6543 7 7

FQHT

0 2 3 4 5 6

u5

u11

u11

u5

2 3 4 5 6

u2 u9 u8u1 u10

3 4 5

u7 u15 u14 u4 u6

FQT

0

4

u12u3u13

7650

u5

u11

7650

FQA

u14 u4 u6 u2 u9 u8u7 u15u11 u12u3u13u5u10u1Fig. 3. Example BKT, FQT, FHQT and FQA for our set of points. We use b = 2 for the BKTand FQT, and h = 2 for FHQT and FQA.5.1.1.5 Hybrid. In [Shapiro 1977], the use of more than one element per node ofthe tree is proposed. Those k elements allow eliminating more elements per level atthe cost of doing more distance evaluations. The same e�ect would be obtained ifwe had a mixture between BKTs and FQTs, so that for k levels we had �xed keysper level, and then we allowed a di�erent key per node of the level k+1, continuingthe process recursively on each subtree of the level k + 1. The authors conjecturethat the pivots should be selected to be outside the clusters.5.1.1.6 Adapting to continuous functions. If we have a continuous distance or ifit gives too many di�erent values, it is not possible to have a child of the root forany such value. If we did that, the tree would degenerate into a at tree of height2, and the search algorithm would be almost like sequential searching for the BKT



Searching in Metric Spaces � 17and FQT. FHQTs and FQAs do not degenerate in this sense, but they loose theysublinear extra CPU time.In [Baeza-Yates et al. 1994] the authors mention that the structures can beadapted to a continuous distance by assigning a range of distances to each branchof the tree. However, they do not specify how to do this. Some approaches explic-itly de�ned for continuous functions are explained later (VPTs and others), whichassign the ranges trying to leave the same number of elements at each class.5.1.2 Trees for Continuous Distance Functions. We present now the data struc-tures designed for the continuous case. They can be used also for discrete distancefunctions with virtually no modi�cations.5.1.2.1 VPT. The \Metric Tree" is presented in [Uhlmann 1991b] as a tree datastructure designed for continuous distance functions. A more complete work onthe same idea [Yianilos 1993; Chiueh 1994] calls them \Vantage-Point Trees" orVPTs. They build a binary tree recursively, taking any element p as the root andtaking the median of the set of all distances, M = medianfd(p; u) = u 2 Ug. Thoseelements u such that d(p; u) �M are inserted into the left subtree, while those suchthat d(p; u) > M are inserted into the right subtree. The VPT takes O(n) spaceand is built in O(n logn) worst case time, since it is balanced. To solve a query inthis tree, we measure d = d(q; p). If d� r �M we enter into the left subtree, andif d + r > M we enter into the right subtree (notice that we can enter into bothsubtrees). We report every element considered which is close enough to the query.See Figure 4.
u13

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u9

u11 VPT

u7 u9

u15

> 2.9 > 4.0

> 3.1

u14 u4

u6

u10 u1

u8

u13 u2

u3

u12 u6

u5

u10
<= 3.1

<= 2.9 <= 4.0Fig. 4. Example VPT with root u11. We plot the radiusM used for the root. For the �rst levelswe show explicitly the radii used in the tree.The query complexity is argued to be O(logn) in [Yianilos 1993], but as theypoint out, this is true only for very small search radii, too small to be an interestingcase.In trees for discrete distance functions, the exact distance between an elementin the leaves and any pivot in the path to the root can be inferred. However, herewe only know that the distance is larger or smaller than M . Unlike the discretecase, it is possible that we arrive to an element in a leaf which we do not needto compare, but the tree has not enough information to discover that. Some of



18 � E. Ch�avez et al.those exact distances lost can be stored explicitly, as proposed in [Yianilos 1993],to prune more elements before checking them. Finally, the author of [Yianilos 1993]considers the problem of pivot selection and argues that it is better to take elementsfar away from the set.5.1.2.2 MVPT. The VPT can be extended tom-ary trees by using the m�1 uni-form percentiles instead of just the median. This is suggested in [Brin 1995; Bozkayaand Ozsoyoglu 1997]. In [Bozkaya and Ozsoyoglu 1997], the \Multi-Vantage-PointTree" (MVPT) is presented. They propose the use of many elements in a singlenode, much as in [Shapiro 1977]. It can be seen that the space is O(n), since eachinternal node needs to store the m percentiles but the leaves do not. The construc-tion time is O(n log n) if we search the m percentiles hierarchically at O(n logm)instead of O(mn) cost. The authors of [Bozkaya and Ozsoyoglu 1997] show exper-imentally that the idea of m-ary trees slightly improves over VPTs (and not in allcases), while a larger improvement is obtained by using many pivots per node. Theanalysis of query time for VPTs can be extrapolated to MVPTs in a straightforwardway.5.1.2.3 VPF. Another generalization of the VPT is given by the VPF (short-hand for Excluded Middle Vantage Point Forest) [Yianilos 1999]. This algorithm isdesigned for radii limited NN search (an NN (q) query with a maximum radius r�),but in fact the technique is perfectly compatible with a range search query. Themethod consists in excluding, at each level, the elements at intermediate distancesto their pivot (this is the most populated part of the set): if r0 and rn stand forthe closest and farthest elements to the pivot p, the elements u 2 U such thatd(p; r0) + � � d(p; u) � d(p; rn) � � are excluded from the tree. A second treeis built with the excluded \middle part" of the �rst tree, and so on to obtain aforest. With this idea they eliminate the backtracking when searching with a ra-dius r� � (rn � r0 � 2�)=2, and in return they have to search all the trees of theforest. The VPF, of O(n) size, is built using O(n2��) time and answers queries inO(n1�� logn) distance evaluations, where 0 < � < 1 depends on r�. Unfortunately,to achieve � > 0, r� has to be quite small.5.1.2.4 BST. In [Kalantari and McDonald 1983], the \Bisector Trees" (BSTs)are proposed. The BST is a binary tree built recursively as follows. At each node,two \centers" c1 and c2 are selected. The elements closer to c1 than to c2 go intothe left subtree and those closer to c2 into the right subtree. For each of the twocenters, its \covering radius" is stored, i.e. the maximum distance from the elementto any other element in its subtree. At search time, we enter into each subtree ifd(q; ci) � r is not larger than the covering radius of ci. That is, we can discard abranch if the query ball (i.e. the hypersphere of radius r centered in the query)does not intersect the ball that contains all the elements inside that branch. In[Nolteimer et al. 1992], the \Monotonous BST" is proposed, where one of the twoelements at each node is indeed the parent center. This makes the covering radiito decrease as we move downward in the tree. Figure 5 illustrates the �rst step ofthe tree construction.5.1.2.5 GHT. Proposed in [Uhlmann 1991b], the \Generalized-Hyperplane Tree"(GHT) is identical in construction to a BST. However, the algorithm uses the



Searching in Metric Spaces � 19
u2   u5

u4 u6 u12 u10 u9 u8 u3 u7 u11 u15 u14 u1 u13

u10

u13
u5

u2

u12
u3

u7

u1

u15

u6

u8

u9
u14

q

u11

u4

Fig. 5. Example of the �rst level of a BST or GHT and a query q. Either using covering radii(BST) or hyperplanes (GHT), both subtrees have to be considered in this example.hyperplane between c1 and c2 as the pruning criterion at search time, instead ofthe covering radius. At search time we enter into the left subtree if d(q; c1) � r <d(q; c2) + r and into the right subtree if d(q; c2) � r � d(q; c1) + r. Again, it ispossible to enter into both subtrees. In [Uhlmann 1991b] it is argued that GHTscould work better than VPTs in high dimensions. The same idea of reusing theparent node is proposed in [Bugnion et al. 1993], this time to avoid performing twodistance evaluations at each node.5.1.2.6 GNAT. The GHT is extended in [Brin 1995] to an m-ary tree, calledGNAT (Geometric Near-neighbor Access Tree), keeping the same essential idea.We select, for the �rst level, m centers c1:::cm, and de�ne Ui = fu 2 U; d(ci; u) <d(cj; u); 8j 6= ig. That is, Ui are the elements closer to ci than to any other cj .From the root, m children numbered i = 1::m are built, each one recursively asa GNAT for Ui. Figure 6 shows a simple example of the �rst level of a GNAT.Notice the relationship between this idea and a Voronoi-like partition of a vectorspace [Aurenhammer 1991].
u10

u13
u5

u4

u2

u12
u3

u7

u1

u15

u14

u8

u9

u2   u5   u3   u9

u10 u12 u6 u14 u13 u8u4u7 u11 u15 u1

u11
u6Fig. 6. Example of the �rst level of a GNAT with m = 4.



20 � E. Ch�avez et al.The search algorithm, however, is quite di�erent. At indexing time, the GNATstores at each node an O(m2) size table rangeij = [minu2Uj(ci; u);maxu2Uj(ci; u)],which stores minimum and maximum distances from each center to each class. Atsearch time the query q is compared against some center ci and then it discards anyother center cj such that d(q; ci)� r does not intersect rangei;j . All the subtree Ujcan be discarded using the triangle inequality. The process is repeated with randomcenters until no one can be discarded. The search then enters recursively in eachnon discarded subtree. In the process, any center close enough to q is reported.The authors use a gross analysis to show that the tree takes O(nm2) space andis built in close to O(nm logm n) time. Experimental results show that the GHT isworse than the VPT, which is only beaten with GNATs of arities between 50 and100. Finally, they mention that the arities of the subtrees could depend on theirdepth in the tree, but give no clear criteria to do this.5.1.2.7 VT. The \Voronoi Tree" (VT) is proposed in [Dehne and Nolteimer 1987]as an improvement over BSTs, where this time the tree has 2 or 3 elements (andchildren) per node. When a new tree node has to be created to hold an insertedelement, its closest element from the parent node is also inserted in the new node.VTs have the property that the covering radius is reduced as we move downwardsin the tree, which provides better packing of elements in subtrees. It is shown in[Dehne and Nolteimer 1987] that VTs are superior and better balanced than BSTs.In [Nolteimer 1989] they show that balanced VTs can be obtained by insertionprocedures similar to those of B-trees, a fact later exploited in M-trees (see next).5.1.2.8 MT. The M-tree (MT) data structure is presented in [Ciaccia et al. 1997],aiming at providing dynamic capabilities and good I/O performance in addition tofew distance computations. The structure has some resemblances with a GNAT,since it is a tree where a set of representatives are chosen at each node and theelements closer to each representative2 are organized into a subtree rooted by thatrepresentative. The search algorithm, however, is closer to BSTs. Each represen-tative stores its covering radius. At query time, the query is compared against allthe representatives of the node and the search algorithm enters recursively into allthose that cannot be discarded using the covering radius criterion.The main di�erence of the MT is the way in which insertions are handled. Anelement is inserted into the \best" subtree, de�ned as that causing the subtreecovering radius to expand less (zero expansion is the ideal), and in case of tiesselecting the closest representative. Finally, the element is added to the leaf nodeand if the node overows (i.e. becomes of size m+1) it is split in two and one nodeelement is promoted upwards, as in a B-tree or an R-tree [Guttman 1984]. Hencethe MT is a balanced data structure, much as the VP family. There are manycriteria to select the representative and to split the node, the best results beingobtained by trying a split that minimizes the maximum of the two covering radiiobtained. They show experimentally that the MT is resistant to the dimensionalityof the space and that it is competitive against R�-trees.2There are many variants but this is reported as the most e�ective.



Searching in Metric Spaces � 215.1.2.9 SAT. The algorithm SAT (\Spatial Approximation Tree") [Navarro 1999]does not use centers to split the set of candidate objects, but rather relies on\spatial" approximation. An element p is selected as the root of a tree, and it isconnected to a set of \neighbors" N , de�ned as a subset of elements u 2 U suchthat u is closer to p than to any other element in N (note that the de�nition isself-referential). The other elements (not in N [ fpg) are assigned to their closestelement in N . Each element in N is recursively the root of a new subtree containingthe elements assigned to it.This allows searching elements with radius zero by simply moving from the rootto its \neighbor" (i.e. connected element) which is closest to the query q. If a radiusr > 0 is allowed, then we consider that an unknown element q0 2Uis searched withtolerance zero, from which we only know that d(q; q0) � r. Hence, we search asbefore for q and consider that any distance measure may have an \error" of at most�r. Therefore, we may have to enter into many branches of the tree (not only theclosest one), since the measuring \error" could make that a di�erent neighbor isthe closest one. That is, if c 2 N is the closest neighbor of q, we enter into allc0 2 N such that d(q; c0) � r � d(q; c) + r. The tree is built in O(n log n= log logn)time, takes O(n) space and inspects O(n1��(1= log logn)) elements at query time.Covering radii are also used to increase pruning. Figure 7 shows an example andthe search path for a query.
u13

u4

u2

u12
u3

u7

u15

u6

u8

u9
u14

u11

u1
q

u5

u10Fig. 7. Example of a SAT and the traversal towards a query q, starting at u11.5.1.3 Other Techniques5.1.3.1 AESA. An algorithm which is close to many of the presented ideas butperforms surprisingly better by an order of magnitude is [Vidal 1986] (called AESA,for \Approximating Eliminating Search Algorithm"). The structure is simply amatrix with the n(n � 1)=2 precomputed distances among the elements of U. Atsearch time, they select an element p 2 U at random and measure rp = d(p; q),eliminating all elements u of Uwhich do not satisfy rp � r � d(u; p) � rp + r.Notice that all the d(u; p) distances are precomputed, so only d(p; q) has beencalculated at search time. This process of taking a random pivot among the (notyet eliminated) elements of U and eliminating more elements from U is repeated



22 � E. Ch�avez et al.until few enough elements remain in the set. These are compared against q directly.Figure 8 shows an example with a �rst pivot u11.
u10

u13
u5

u4

u11

u2

u12

u7

u1

u15

u14

u6

u8

u9
q

u3

Fig. 8. Example of the �rst iteration of AESA. The points between both rings centered at u11qualify for the next iteration.Although this idea seems very similar to FQTs, there are some key di�erences.The �rst one, only noticeable in continuous spaces, is that there are no prede�ned\rings" so that all the intersected rings qualify (recall Figure 2). Instead, only theminimal necessary area of the rings quali�es. The second di�erence is that thesecond element to compare against q is selected from the qualifying set, instead offrom the whole set as in FQTs. Finally, the algorithm determines on the y whetherto take more pivots, while FQTs must precompute that decision (i.e. bucket size).The problem with the algorithm [Vidal 1986] is that it needs O(n2) space andconstruction time. This is unacceptably high for all but very small databases.In this sense the approach is close to [Sasha and Wang 1990], although in thislatter case they may take fewer distances and bound the unknown ones. AESA isexperimentally shown to have O(1) query time.5.1.3.2 LAESA and variants. In a newer version of AESA, called LAESA (forLinear AESA) [Mic�o et al. 1994], they propose to use k �xed pivots, so that thespace and construction time is O(kn). In this case, the only di�erence with anFHQT is that �xed rings are not used, but the exact set of elements in the rangeis retrieved. FHQT uses �xed rings to reduce the extra CPU time, while in thiscase no such an algorithm is given. In LAESA, the elements are simply linearlytraversed, and those that cannot be eliminated after considering the k pivots aredirectly compared against the query.A way to reduce the extra CPU time is presented later in [Mic�o et al. 1996],which builds a GHT-like structure using the same pivots. The algorithm is arguedto be sublinear in CPU time. Alternative search structures to reduce CPU time notloosing information on distances are presented in [Nene and Nayar 1997; Ch�avezet al. 1999], where the distances to each pivot are sorted separately so that therelevant range [d(q; p)� r; d(q; p) + r] can be binary searched3. Extra pointers are3Although in [Nene and Nayar 1997] they consider only vector spaces, the same technique can be



Searching in Metric Spaces � 23added to be able to trace an element across the di�erent orderings for each pivot(this needs more space, however).5.1.3.3 Clustering approaches. Clustering is a very wide area with lots of appli-cations [Jain and Dubes 1988]. The general goal is to divide a set in subsets ofelements close to each other in the same subset. A few approaches to index metricspaces based on clustering exist.A technique proposed in [Burkhard and Keller 1973] is to recursively divide theset Uin compact subsets Ui and choose a representative ci for each. They computecovering radii ri. To search for the closest neighbor, the query q is compared againstall the ci and the sets are considered from smallest to largest distance. The ri areused to determine that there cannot be interesting elements in some sets Ui. Theypropose a complex \clique" criterion to select the sets and their representatives.The experimental results show that this method is slightly worse than the BKT,and that the algorithm to �nd the cliques is very slow. They also propose that theelements in a clique could be in turn subdivided into clusters, which is a formulationvery similar to (though less complete than) GNATs and MTs.5.2 Nearest Neighbor QueriesWe have concentrated in range search queries up to now. This is because, aswe show in this section, most of the existing solutions for NN-queries are builtsystematically over range searching techniques, and indeed can be adapted to anyof the data structures presented (despite having been originally designed for speci�cones).5.2.1 Increasing Radius. The simplest NN search algorithm is based on using arange searching algorithm as follows. Search q with �xed radii r = ai" (a > 1),starting with i = 0 and increasing it until at least the desired number of elements(1 or k) lies inside the search radius r = ai". Later, the radius is re�ned betweenr = ai�1" and r = ai" until the exact number of elements is included.Since the complexity of the range searching normally grows sharply on the searchradius, the cost of this method can be very close to the cost of a range searchingwith the appropriate r (which is not known in advance). The increasing stepscan be made smaller (a ! 1) to avoid searching with a radius much larger thannecessary.5.2.2 Backtracking with Decreasing Radius. A more elaborated technique is asfollows. We �rst explain the search for the closest neighbor. Start the search onany data structure using r� =1. Each time q is compared against some element p,update the search radius as r�  min(r�; d(q; p)) and continue the search with thisreduced radius. This has been for example proposed for BKTs and FQTs [Burkhardand Keller 1973; Baeza-Yates et al. 1994].As closer and closer elements to q are found, we search with smaller radius andthe search becomes cheaper. For this reason it is important to try to �nd quicklyelements that are close to the query (which is unimportant in range queries). Theway to achieve this is dependent on the particular data structure. For example,used here.



24 � E. Ch�avez et al.in BKTs and FQTs we can begin at the root and measure i = d(p; q). Now, weconsider the edges labeled i, i�1, i+1, i�2, i+2, and so on, and proceed recursivelyin the children (other heuristics may be better). Therefore, the exploration endsjust after considering the branch i + r� (r� is reduced along the process). At theend r� is the distance to the closest neighbors and we have already seen all of them.NNk(q) queries are solved as an extension of the above technique, where wekeep the k elements seen that are closest to q and set r� as the maximum distancebetween those elements and q (clearly we are not interested in elements fartheraway than the current k-th closest element). Each time a new element is seenwhose distance is relevant, it is inserted as one of the k nearest neighbors knownup to now (possibly displacing one of the old candidates out of the list) and r� isupdated. In the beginning we start with r� =1 and keep this value until the �rstk elements are found.A variant of this type of queries is the limited radius NN searching. Here we startwith the maximum expected distance between the query element and its nearestneighbor. This type of queries has been the focus of [Yianilos 1999; Yianilos 2000].5.2.3 Priority Backtracking. The previous technique can be improved by a smarterselection of which elements to consider �rst. For clarity we consider backtrackingin a tree, although the idea is general. Instead of following the normal backtrackingorder of the range query, modifying at most the order in which the subtrees aretraversed, we give much more freedom to the traversal order. The goal is to increasethe probability of quickly �nding elements close to q and therefore reduce r� fast.This technique has been used in vector and metric spaces several times [Uhlmann1991a; Roussopoulos et al. 1995; Ciaccia et al. 1997].At each point of the search we have a set of possible subtrees that can be traversed(not necessarily all at the same level). We select among them using some heuristic(e.g. �rst traverse subtrees whose root is closest to q). Once a subtree has beenselected we compare q against its root, update r� and the candidates for outputif necessary, and determine which of the children of the considered root deservetraversal. Unlike the normal backtracking, those children are not immediatelytraversed but added to the set of subtrees that have to be traversed at some moment.Then we select again a subtree from the set using the optimization heuristic.The best way to implement this search is with a priority queue ordered by theheuristic \goodness", where the subtrees are inserted and removed. We start withan empty queue where we insert the root of the tree. Then, we repeat the stepof removing the most promising subtree, processing it, and inserting the relevantsubtrees until the queue gets empty.If applied to a BKT or a FQT, this method yields the same result as the previoussection, but this technique is superior to deal with continuous distances.5.2.4 Speci�c NN Algorithms. The techniques described above cover almost allthe existing proposals for solving NN-queries. The only exception we are aware ofwas presented in [Clarkson 1999], which is a GNAT-like data structure where thepoints are inserted into more than one subtree to limit backtracking (hence thespace requirement is superlinear).After selecting the representatives for the root of the tree, each element u is notonly inserted into the subtree of its closest representative p, but also in the tree



Searching in Metric Spaces � 25of any other representative p0 such that d(u; p0) � 3d(u; p). At search time, thequery q enters not only into its nearest representative p but also into every otherrepresentative p0 such that d(q; p0) � 3d(q; p). As shown in [Clarkson 1999] this isenough to guarantee that the nearest neighbor will be reached.By using subsets of size n1=2k+1 at depth k in the tree, the search time is poly-logarithmic in n and the space requirement is O(n polylog n) if some conditionshold in the metric space.5.3 ExtensionsWe cover in this section the work that has been pursued on extensions of the basicproblems or in alternative models. None of these are the main focus of our survey.5.3.1 Dynamic Capabilities. Many of the data structures for metric spaces aredesigned to be built on a static data set. In many applications this is not reasonablebecause elements have to be inserted and deleted dynamically. Some data structurestolerate insertions well, but not deletions.We �rst consider insertions. Among the structures that we have surveyed, theleast dynamic is SAT, which needs full knowledge of the complete set at indexconstruction time and has di�culty in handling later insertions (some workaroundsare described in [Navarro 1999]). The VP family (VPT, MVPT, VPF) has theproblem of relying on global statistics (such as the median) to build the tree, so laterinsertions can be performed but the performance of the structure may deteriorate.Finally, the FQA needs in principle insertion in the middle of an array, but thiscan be handled by using standard techniques. All the other data structures canhandle insertions in a reasonable way. There are some structure parameters thatmay depend on n and thus require periodical structural reorganization, but wedisregard this issue here (e.g. adding or removing pivots is generally problematic).Deletion is a little more complicated. In addition to the above structures, whichpresent the same problems as for insertion, BKTs, GHTs, BSTs, VTs, GNATs andthe VP family cannot tolerate deletion of an internal tree node because it playsan essential role in organizing the subtree. Of course this can be handled as justmarking the node as removed and actually keeping it for routing purposes, but thequality of the data structure is a�ected over time.Therefore, the only structures that fully support insertions and deletions are theFQ family (FQT, FQHT, FQA, since there are no truly internal nodes), AESA andLAESA approaches (since they are just vectors of coordinates), the MT (which isdesigned with dynamic capabilities in mind and whose insertion/deletion algorithmsremind those of the B-tree), and a variant of GHTs designed to support dynamicoperations [Verbarg 1995]. The analysis of this latter structure shows that dynamicinsertions can be done in O(log2 n) amortized worst case time, and that deletionscan be done at similar cost under some restrictions.5.3.2 I/O Considerations. Most of the research on metric spaces deals with re-ducing the number of distance evaluations or at most the total CPU time. However,depending on the application, the I/O cost may play an important role. As most ofthe research on metric spaces has focused on algorithms to discard elements, I/Oconsiderations have been normally left aside.The only exception to the rule is MT, designed speci�cally for secondary memory.



26 � E. Ch�avez et al.The tree nodes in the MT are to be stored in a single disk page (indeed, the MTdoes not �x an arity but rather a node capacity in bytes). Earlier balanced treesexist (such as the VP family), but the purpose of this balancing is to keep lowthe extra CPU costs. As we show later, unbalanced data structures perform muchbetter in high dimensions and it is unlikely that the reduced CPU costs may playan important role. The purpose of balancing the MT, on the other hand, is to keepI/O costs low, and depending on the application this may be even more importantthan the number of distance evaluations.Other data structures could probably be adapted to perform well in secondarymemory, but the authors simply have not considered the problem. For instance,it is not hard to imagine strategies for the tree data structures to pack \compact"subtrees in disk pages, so as to make as good use as possible of a page that is readfrom disk. When a subtree grows larger than a page it is split in two pages ofapproximately the same number of nodes. Of course, a B-tree like scheme as thatof MT has to be superior in this respect. Finally, array oriented approaches suchas FQA, AESA and LAESA are likely to read all the disk pages of the index foreach query, hence having bad I/O performance.5.3.3 Approximate and Probabilistic Algorithms. For the sake of a complete over-view we include a brief description of an important branch of similarity searching,where a relaxation on the query precision is allowed to obtain a speedup in thequery time complexity. This is reasonable in some applications because the metricspace modelization involves already an approximation to the true answer (recallSection 2), and therefore a second approximation at search time may be acceptable.Additionally to the query one speci�es a precision parameter " to control how faraway (in some sense) we want the outcome of the query from the correct result. Areasonable behavior for this type of algorithms is to asymptotically approach to thecorrect answer as " goes to zero, and complementarily to speed up the algorithm,loosing precision, as " moves in the opposite direction.This alternative to exact similarity searching is called approximate similaritysearching, and encompasses approximate and probabilistic algorithms. We do notcover them in depth here but present a few examples. Approximation algorithmsfor similarity searching are considered in depth in [White and Jain 1996].As a �rst example, we mention an approximate algorithm for NN search in realvector spaces using any Ls metric [Arya et al. 1994]. They propose a data struc-ture, the BBD-tree, inspired in kd-trees, that can be used to �nd \(1 + ") nearestneighbors": instead of �nding u such that d(u; q) � d(v; q) 8v 2U, they �nd anelement u�, an (1 + ")-nearest neighbor, di�ering from u by a factor of (1 + "), i.e.u� such that d(u�; q) � (1 + ")d(v; q) 8v 2 U.The essential idea behind this algorithm is to locate the query q in a cell (eachleaf in the tree is associated with a cell in the decomposition). Every point insidethe cell is processed to obtain the current nearest neighbor (u). The search stopswhen no promising cells are encountered, i.e. when the radius of any ball centeredat q and intersecting a nonempty cell exceeds the radius d(q; p)=(1+ "). The querytime is O(d1 + 6k="ekk logn).A second example is a probabilistic algorithm for vector spaces [Yianilos 2000].The data structure is like a standard kd-tree, using \aggressive pruning" to improve



Searching in Metric Spaces � 27the performance. The idea is to increase the number of branches pruned at theexpense of losing some candidate points in the process. This is done in a controlledway, so the probability of success is always known. In spite of the vector space focusof the algorithm, it could be generalized to metric spaces as well. The data structureis useful for �nding only limited radius nearest neighbors, i.e. neighbors within a�xed distance to the query. Finally, an example of a probabilistic NN algorithm forgeneral metric spaces is that of [Clarkson 1999]. The original intention is to builda Voronoi-like data structure on a metric space. As this is not possible in generalbecause there is no enough knowledge of the characteristics of the queries that willcome later [Navarro 1999], the author of [Clarkson 1999] chooses to have a \trainingset" of queries and to build a data structure able to answer correctly only queriesbelonging to the training set. The idea is that this is enough to answer correctlyan arbitrary query with high probability. Under some probabilistic assumptionson the distribution of the queries, it is shown that the probability of not �ndingthe nearest neighbor is O(logn)2=K), where K can be made arbitrarily large atthe expense of O(Kn�) space and O(K� log n) expected search time. Here � is thelogarithm of the ratio between the farthest and the nearest pairs of points in theunion of Uand the training set.6. A UNIFYING MODELAt �rst sight, the indexes and the search algorithms seem to emerge from a greatdiversity, and di�erent approaches are analyzed separately, often under di�erentassumptions. Currently, the only realistic way to compare two di�erent algorithmsis to apply them to the same data set.In this section we make a formal introduction to our unifying model. Our in-tention is to provide a common framework to analyze all the existing approachesto proximity searching. As a result, we will be able to capture the similarities ofapparently di�erent approaches. We will also obtain truly new ways of viewing theproblem.The conclusion of this section can be summarized in Figure 9. All the indexingalgorithms partition the setUinto subsets. An index is built which allows determin-ing a set of candidate subsets where the elements relevant to the query can appear.At query time, que index is searched to �nd the relevant subsets (the cost to do thisis called \internal complexity") and those subsets are checked exhaustively (whichcorresponds to the \external complexity" of the search).The last two subsections describe the two main approaches to similarity searchingin abstract terms.6.1 Equivalence RelationsThe relevance of equivalence classes for this paper comes from the possibility ofpartitioning a metric space so that a new metric space is derived from the quotientset. Readers familiar with equivalence relations can safely skip this short section.Given a set X, a partition �(X) = f�1; �2; : : :g is a collection of pairwise disjointsubsets whose union is X, i.e. [�i =Xand 8i 6= j; �i \ �j = ;.A relation, denoted by �, is a subset of the cross product X�X (the set ofordered pairs) of X. Two elements x; y are said to be related, denoted by x � y, ifthe pair (x; y) is in the subset. A relation � is said to be an equivalence relation



28 � E. Ch�avez et al.
Index

Equivalence classes

Data

Query q

Traverse index
(internal
complexity)

q

Search in candidate classes
(external complexity)

Indexing Querying

Fig. 9. The uni�ed model for indexing and querying metric spaces.if it satis�es, for all x; y; z 2 X, the properties of reexivity (x � x), symmetry(x � y , y � x) and transitivity (x � y ^ y � z ) x � z).Every partition �(X) induces an equivalence relation � and, conversely, everyequivalence relation induces a partition: two elements are related if they belongto the same partition element. Every element �i of the partition is then called anequivalence class. An equivalence class is often named after one of its representatives(any element of �i can be taken as a representative). An alternative de�nition ofan equivalence class of an element x is the set of all y such that x � y. We willdenote the equivalence class of x as [x] = fy; x � yg:Given the set Xand an equivalence relation �, we obtain the quotient �(X) =X=�. It indicates the set of equivalence classes (or just classes), obtained whenapplying the equivalence relation to the set X.6.2 Indexing and PartitionsThe equivalence classes in the quotient set �(X) of a metric space Xcan be con-sidered themselves as objects in a new metric space, provided we de�ne a distancefunction in �(X).We introduce a new function D0 : �(X)��(X)�! Rnow de�ned in the quotient.De�nition 1. Given a metric space (X; d) and a partition �(X), the extension ofd to �(X) is de�ned as D0([x]; [y]) = infx2[x];y2[y]fd(x; y)g.D0 gives the maximum possible values that keep the mapping contractive (i.e.D0([x]; [y]) � d(x; y) for any x; y). Unfortunately, D0 does not satisfy the triangleinequality, just (p1) to (p3), and in most cases (p4) (recall Section 3.1). Hence, D0itself is not suitable for indexing purposes.However, we can use any metric D that lower bounds D0 (i.e. D([x]; [y]) �D0([x]; [y])). Since D is a metric, (�(X); D) is a metric space and therefore we can



Searching in Metric Spaces � 29make queries in �(X) in the same way we have done in X. We rede�ne the outcomeof a query in �(X) as ([q]; r)D = fu 2 U; D([u]; [q]) � rg (although formally weshould retrieve classes, not elements).Since the mapping is contractive (D([x]; [y]) � d(x; y)) we can convert one searchproblem into another, hopefully simpler, search problem. For a given query (q; r)dwe �nd out which equivalence class the query q belongs to (i.e. [q]). Then, using thenew distance function D the query is transformed into ([q]; r)D. As the mapping iscontractive, we have (q; r)d � ([q]; r)D. That is, ([q]; r)D is indeed a candidate list,so it is enough to perform an exhaustive search on that candidate list (now usingthe original distance d), to obtain the actual outcome of the query (q; r)d.Our main thesis is that the above procedure is in fact used in virtually everyindexing algorithm (recall Figure 9). In other words:Proposition. All the existing indexing algorithms for proximity searching consistin building an equivalence relation, so that at search time some classes are discardedand the others are exhaustively searched.As we see shortly, the most important tradeo� when designing the partition isto balance the cost to �nd ([q]; r)D and the cost to verify this candidate list.In Figure 10 we can see a schematic example of the idea. We divide the spacein several regions (equivalence classes). The objects inside each region becomeindistinguishable. We can consider them as elements in a new metric space. To�nd the answer, instead of exhaustively examining the entire dictionary we justexamine the classes that contain potentially interesting objects. In other words, ifa class can contain an element that should be returned in the outcome of the query,then the class will be examined (see also the rings considered in Figure 2).
D([x],[y])

y

d(x,y)

x

p

[y]

[x]Fig. 10. Two points x and y, and their equivalence classes (the shaded rings). D gives theminimal distance among rings, which lower bounds the distance between x and y.We recall that this property is not enough for an arbitrary NN search algorithmto work (since the mapping would have to preserve proximity instead), but mostexisting algorithms for NN are based on range queries (recall Section 5.2), and thesealgorithms can be applied as well.



30 � E. Ch�avez et al.Some examples may help to understand the above de�nitions, for both the con-cept of equivalence relation and the obtained distance function.Example 1. Say that we have an arbitrary reference pivot p 2 Xand the equiv-alence relation is given by x � y , d(p; x) = d(p; y). In this case D([x]; [y]) =jd(x; p)� d(y; p)j is a safe lower bound for the D0 distance (guaranteed by the tri-angle inequality). For a query of the form (q; r)d the candidate list ([q]; r)D consistsof all elements x such thatD([q]; [x]) � r, or which is the same, jd(q; p)�d(x; p)j � r.Graphically, this distance represents a ring centered at p containing a ball centeredat q with radius r (recall Figures 10 and 8). This is the familiar rule used in manyindependent algorithms to trim the space.Example 2. As explained, the similarity search problem was �rstly introduced invector spaces, and the very �rst family of algorithms used there was based on apartition operation. These algorithms were called bucketing methods, and consist inthe construction of cells or buckets [Bentley et al. 1980]. Searching for an arbitrarypoint in Rk is converted into an exhaustive search in a �nite set of cells. Theprocedure used two steps: (1) �rst they �nd which cell the query point belongs toand then they build a set of candidate cells using the query range; (2) they inspectthis set of candidate cells exhaustively to �nd the actual points inside the queryrange4. In this case the equivalence classes are the cells, and the tradeo� is that thelarger the cells, the cheaper it is to �nd the appropriate ones, but the more costlyis the �nal exhaustive search.6.3 Coarsening and Re�ning a PartitionWe start by de�ning the concept of re�nement and coarsening.De�nition 2. Let �1 and �2 be two equivalence relations over a set X. We saythat �1 is a re�nement of �2 or that �2 is a coarsening of �1 if for any pairx; y 2 Xsuch that x �1 y it holds x �2 y. The same terms can be applied to thecorresponding partitions �1(X) and �2(X).Re�nement and coarsening are important concepts for the topic we are discussing.The following lemma shows the e�ect of coarsening on the e�ectiveness of thepartition for searching purposes.Lemma 1. If �1is a coarsening of �2 then their extended distances D1 and D2have the property D1([x]; [y]) � D2([x]; [y]).Proof. Let us denote [x]i and [y]i the equivalence classes of x and y underequivalence relation �i. Then,D1([x]; [y]) = infx2[x]1 ;y2[y]1fd(x; y)g � infx2[x]2 ;y2[y]2fd(x; y)g = D2([x]; [y]);since [x]2 � [x]1 and [y]2 � [y]1.An interesting idea arising from the above lemma is to build a hierarchy ofcoarsening operations. Using this hierarchy we could proceed downwards from a4The algorithm is in fact a little more sophisticated because they try to �nd the nearest neighborof a point. However, the version presented here for range queries is in the same spirit as theoriginal one.



Searching in Metric Spaces � 31very coarse level building a candidate list of equivalence classes of the next level.This candidate list will be re�ned using the next distance function and so on untilwe reach the bottom level.6.4 Discriminative PowerAs sketched previously, most indexing algorithms rely on building an equivalencerelation. The corresponding search algorithms have two parts:(1) Find the classes that may be relevant for the query.(2) Exhaustively search all the elements of these classes.The �rst part involves performing some evaluations of the d distance, as shownin the Example 1 above. It may also involve some extra CPU time (which althoughnot the central point in this paper, must be kept reasonable). The second partconsists of directly comparing the query against the candidate list. The followingde�nition gives a name to both parts of the search cost.De�nition 3. Let A be a search algorithm over (X; d) based on a mapping to(�(X); D), and let (q; r)d be a range query. Then the internal complexity of Ais the number of evaluations of d necessary to compute ([q]; r)D, and the externalcomplexity is j([q]; r)Dj.We recall that j([q]; r)Dj refers to the number of elements in the original metricspace, not the number of classes retrieved.There is a concept related to the external complexity of a search algorithm, whichwe de�ne next.De�nition 4. The discriminative power of a search algorithm based on a mappingfrom (X; d) to (�(X); D), with regard to a query (q; r)d of nonempty outcome, isde�ned as j(q; r)dj=j([q]; r)Dj.Although the de�nition depends on q and r, we can speak in general termsof the discriminative power by averaging over the q's and r's of interest. Thediscriminative power serves as an indicator of the performance or �tness of theequivalence relation.In general, it will be more costly to have more discriminative power. The indexingscheme needs to �nd a balance between the complexity to �nd the relevant classesand the discriminative power.Let us consider Example 1. The internal complexity is 1 distance evaluation (thedistance from q to p), and the external complexity will correspond to the numberof elements that lie in the selected ring. We could intersect it with more rings(increasing internal complexity) to reduce the external complexity.The tradeo� is partially formalized with this lemma.Lemma 2. If A1 and A2 are search algorithms based on equivalence relations �1and �2, respectively, and �1 is a coarsening of �2, then A1 has higher externalcomplexity than A2.Proof. We have to show that, for any r, ([q]; r)D2 � ([q]; r)D1. But this is clear,since D1([x]; [y]) � D2([x]; [y]) implies ([q]; r)D2 = fy 2U; D2([q]; [y]) � rg � fy 2U; D1([q]; [y]) � rg = ([q]; r)D1:



32 � E. Ch�avez et al.Although having more discriminative power normally costs more internal evalu-ations, one can make better or worse use of the internal complexity. We elaboratemore on this next.6.5 Locality of a PartitionThe equivalence classes can be thought of as a set of non intersecting cells in thespace, where every element inside a given cell belongs to the same equivalence class.However, the mathematical de�nition of an equivalence class is not con�ned to asingle cell. We de�ne \locality" as a property of a partition that stands for howmuch the classes resemble cells. More formally,De�nition 5. The non-locality of a partition �(X) = f�1; �2; : : :g with respectto a �nite dictionary U is de�ned as maxifmaxx;y2�i\Ud(x; y)g, that is, as themaximum distance between elements lying in the same class.We say that a partition is \local" or \non local" meaning that it has high or lowlocality. Figure 11 shows an example of a non local partition (u5 and u12 lie inseparate fragments of a single class). It is natural to expect more discriminativepower from a local partition than from a non-local one. This is because in a nonlocal partition the candidate list tends to contain elements actually far away fromthe query.
u13

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u8

u11

u3

u7u4

u8

u9

u10

u11

u6

u15

q

u5

u5

q

u10

u9
u13

u1

u14

u2

u12Fig. 11. An equivalence relation induced by intersecting rings centered in two pivots, and how aquery is transformed.Notice that in Figure 11 the locality would improve sharply if we added a thirdpivot. In a vector space of k dimensions, it su�ces to consider k + 1 pivots ingeneral position5 to obtain a highly local partition. In general metric spaces we canalso take a su�cient number of pivots so as to obtain highly local partitions.However, obtaining local partitions may be expensive in internal complexity andnot enough to achieve low external complexity, otherwise the bucketing method forvector spaces [Bentley et al. 1980] explained in Example 2 would have excellentperformance. Even with such a local partition and assuming uniformly distributed5That is, not lying on a (k � 1)-hyperplane.



Searching in Metric Spaces � 33data, a number of empty cells are veri�ed, whose volume grows exponentially withthe dimension. We return later to this issue.6.6 The Pivot Equivalence RelationA large class of algorithms to build the equivalence relations are based on pivoting.This consists in considering the distances between an element and a number ofpreselected \pivots" (i.e. elements of U or even X, called also reference points,vantage points, keys, queries, etc. in the literature).The equivalence relation is de�ned in terms of the distances of the elements tothe pivots, so that two elements are equivalent if they are at the same distance toall the pivots. If we consider one pivot p, then this equivalence relation isx �p y () d(x; p) = d(y; p)The equivalence classes correspond to the intuitive notion of the family of sphereshells with center p. Points falling in the same sphere shell (i.e. at the same distanceto p) are equivalent from the view point of p.The above equivalence relation is easily generalized to k pivots.De�nition 6. The pivot equivalence relation based on elements fp1; : : : ; pkg (thek pivots) is de�ned asx �fpig y () 8i; d(x; pi) = d(y; pi)A graphical representation of the class in the general case corresponds to theintersection of several sphere shells centered at the points pi (recall Figure 11).The distance d(x; y) cannot be smaller than jd(x; p)� d(y; p)j for any element p,because of the triangular inequality. Hence D([x]; [y]) = jd(x; p)� d(y; p)j is a safelower bound to the D0 function corresponding to the class of sphere shells centeredin p. With k pivots, this becomes D([x]; [y]) = maxifjd(x; pi) � d(y; pi)jg. ThisD distance lower bounds d and hence can be used as our distance in the quotientspace.Alternatively, we can consider the equivalence relation as a projection to thevector space Rk, being k the number of pivots used. The i-th coordinate of anelement is the distance of the element to the i-th pivot. Once this is done, we canidentify points in Rk with elements in the original space with the L1 distance. Aswe have described in Section 6, the indexing algorithm will consist in �nding theset of equivalence classes such that they fall inside the radius of the search whenusing D in the quotient space. In this particular case for a query of the form (q; r)dwe have to �nd the candidate list as the set ([q]; r)D, i.e. the set of equivalenceclasses [y] such that D([q]; [y]) � r. In other words, we want the set of objectsy such that maxifjd(q; pi) � d(y; pi)jg � r. This is equivalent to search with theL1 distance in the vector space Rk where the equivalence classes are projected.Figure 12 illustrates this concept (Figure 11 is also useful).Yet a third way to see the technique, less formal but perhaps more intuitive, is asfollows: to check if an element u 2Ubelongs to the query outcome, we try a numberof random pivots pi. If, for any such pi, we have jd(q; pi)�d(u; pi)j > r, then by thetriangular inequality we know that d(q; u) > r without need to actually evaluated(q; u). At indexing time we precompute the d(u; pi) values and at search time we



34 � E. Ch�avez et al.
u1

u2

q

q

a1

b1

a2

b2

d(x,u1)

d(x,u2)

a2

b1a1

b2

Fig. 12. Mapping from a metric space onto a vector space under the L1 metric, using two pivots.compute the d(q; pi) values. Only those elements u that cannot be discarded bylooking at the pivots are actually checked against q.6.7 The Voronoi Equivalence RelationA di�erent type of equivalence relation, used by another large class of algorithms,is de�ned with respect to the proximity to a set of elements (that we call \centers"to distinguish them from the pivots of the previous section).De�nition 7. The Voronoi equivalence relation based on fc1; : : : ; cmg (the cen-ters) is x �fcig y () closest(x; fcig) = closest(y; fcig)where closest(z; S) = fw 2 S; 8w0 2 S; d(z; w) � d(z; w0)g. The associatedpartition is called a Voronoi partition.That is, we divide the space with one partition for each ci and the class of ci isthat of the points that have ci as their closest center6. Figure 13 shows an examplein (R2; L2). In particular note that we can select Uas the set of centers, in whichcase the partition has optimal locality. Even if fcig is not U, Voronoi partitionshave good locality.In vector spaces the Voronoi partition is assumed to use Uas the set of centers.Its associated concept, the \Delaunay tesselation" is a graph whose nodes are theelements of U and whose edges connect nodes whose classes share a border. TheDelaunay tesselation is the basis of very good algorithms for proximity searching[Aurenhammer 1991; Yao 1990]. For example, an O(logn) NN algorithm existsin two dimensions. Unfortunately, this algorithm does not generalize e�ciently tomore than two dimensions. The Delaunay tesselation, which has O(n) edges in twodimensions, can have O(n2) edges in three and more dimensions.In a general metric space, theD0([x]; [y]) distance in the space �(X) of the Voronoiclasses is, as before, the smallest distance between points x 2 [x] and y 2 [y]. To6We are using our own de�nition of \Voronoi partition", which matches with the concept of\Dirichlet domain" if all the elements of the set are centers.



Searching in Metric Spaces � 35
u10

u13
c1

u4

c3

u12
c2

u7

u1

u15

u14
c4

u6

u8

q1

u11

q2

Fig. 13. A Voronoi partition using four centers and two query balls intersecting some classes.Note that the class of c3 could be excluded from consideration for q1 by using the covering radiuscriterion but not the hyperplane criterion, while the opposite happens to discard c4 for q2.�nd [q] we basically need to �nd the nearest neighbor of q in the set of centers. Theoutcome of the query ([q]; r)D0 is the set of classes intersected by query ball (seeFigure 13).A problem in general metric spaces is that it is not easy to bound a class so asto determine whether or not the query ball intersects it. From the many possiblecriteria, two are the most popular:6.7.0.1 Hyperplane criterion:. this is the most basic one and the one that bestexpress the idea of a Voronoi partition. In essence, if c is the center of the class[q] (i.e. the center closest to q), then (1) the query ball of course intersects [c]; (2)the query ball does not intersect [ci] if d(q; c) + r < d(q; ci) � r. Graphically, ifthe query ball does not intersect the hyperplane dividing its closest neighbor andanother center ci, then the ball is totally outside the class of ci.6.7.0.2 Covering radius criterion:. this tries to bound the class [ci] by consideringa ball centered at ci that contains all the elements of U that lie in the class. Wede�neDe�nition 8. The covering radius of c for U is cr(c) = maxu2[c]\Ud(c; u).Now it is clear that we can discard ci if d(q; ci)� r > cr(ci).7. THE CURSE OF DIMENSIONALITYAs explained, one of the major obstacles for the design of e�cient search techniqueson metric spaces is the existence and ubiquity in real applications of the so calledhigh dimensional spaces. Traditional indexing techniques for vector spaces (suchas kd-trees) have an exponential dependency on the representational dimensionof the space (as the volume of a box or hypercube containing the answers growsexponentially with the dimension).More recent indexing techniques for vector spaces and those for generic metricspace can get rid of the representational dimension of the space. This makes a big



36 � E. Ch�avez et al.di�erence in many applications that handle vector spaces of representational highdimension but intrinsic low dimension (e.g. a plane immersed in a 50-dimensionalvector space, or simply clustered data). However, in some cases even the intrinsicdimension is very high and the problem becomes intractable for exact algorithms,and we have to resort to approximate or probabilistic algorithms (Section 5.3.3).Our aim in this section is (a) to show that the concept of intrinsic dimensionalitycan be conceived even in a general metric space; (b) to give a quantitative de�nitionof the intrinsic dimensionality; (c) to show analytically the reason for the so-called\curse of dimensionality"; and (d) to discuss the e�ects of pivot selection techniques.This is partially based on previous work [Ch�avez and Navarro 2000].7.1 Intrinsic DimensionalityLet us start with a well-known example. Consider a distance such that d(x; x) = 0and d(x; y) = 1 for all x 6= y. Under this distance (in fact an equality test), we donot obtain any information from a comparison except that the element consideredis or is not our query. It is clear that it is not possible to avoid a sequential searchin this case, no matter how smart is our indexing technique.Let us consider the histogram of distances between points in the metric spaceX. This can be approximated by using the dictionary U as a random sample ofX. This histogram is mentioned in many papers, e.g. [Brin 1995; Ch�avez andMarroqu��n 1997; Ciaccia et al. 1998a], as a fundamental measure related to theintrinsic dimensionality of the metric space. The idea is that, as the space hashigher intrinsic dimension, the mean � of the histogram grows and its variance �2is reduced. Our previous example is an extreme case.Figure 14 gives an intuitive explanation of why the search problem is harder whenthe histogram is concentrated. If we consider a random query q and an indexingscheme based on random pivots, then the possible distances between q and a pivotp are distributed according to the histogram of the �gure. The elimination rulesays that we can discard any point u such that d(p; u) 62 [d(p; q) � r; d(p; q) + r].The grayed areas in the �gure show the points that we cannot discard. As thehistogram is more and more concentrated around its mean, less and less points canbe discarded using the information given by d(p; q).This phenomenon is independent on the nature of the metric space (vectorialor not, in particular) and gives us a way to quantify how hard is to search on anarbitrary metric space.De�nition 9. The intrinsic dimensionality of a metric space is de�ned as � = �22�2 ,where � and �2 are the mean and variance of its histogram of distances.The technical convenience of the exact de�nition is made clear shortly. Theimportant part is that the intrinsic dimensionality grows with the mean and reduceswith the variance of the histogram.The particular cases of the Ls distances in vector spaces are useful illustrations.As shown in [Yianilos 1999], a uniformly distributed k-dimensional vector space un-der the Ls distance has mean �(k1=s) and standard deviation �(k1=s�1=2). There-fore its intrinsic dimensionality is �(k) (although the constant is not necessarily1). So the intuitive concept of dimensionality in vector spaces matches our generalconcept of intrinsic dimensionality.



Searching in Metric Spaces � 37
2r

d(p,q)

2r

d(p,q)

d(p,x) d(p,x)Fig. 14. A low-dimensional (left) and high-dimensional (right) histogram of distances, showingthat on high dimensionsvirtually all the elementsbecome candidates for the exhaustive evaluation.Moreover, we should use a larger r in the second plot in order to retrieve some elements.7.2 A Lower Bound for Pivoting AlgorithmsOur main result in this section relates the intrinsic dimensionality with the di�cultyof searching with a given search radius r using a pivoting equivalence relation thatchooses the pivots at random. As we show next, the di�culty of the problem isrelated to r and the intrinsic dimensionality �.We are considering independent identically distributed (i.i.d.) random variablesfor the distribution of distances between points. Although not accurate, this sim-pli�cation is optimistic and hence can be used to lower bound the performance ofthe indexing algorithms. We come back to this shortly.Let (q; r)d be a range query over a metric space indexed by means of k randompivots, and let u be an element of U. The probability that u cannot be excludedfrom direct veri�cation after considering the k pivots is exactlyPr(jd(q; p1)� d(u; p1)j � r; : : : ; jd(q; pk)� d(u; pk)j � r)Since all the pivots are assumed to be random and their distance distributionsi.i.d. random variables, this expression is the product of probabilitiesPr(jd(q; p1) � d(u; p1)j � r) � : : : � Pr(jd(q; pk)� d(u; pk)j � r)which for the same reason can be simpli�ed toPr(not discarding u) = Pr(jd(q; p)� d(u; p)j � r)kfor a random pivot p.If X and Y are two i.i.d. random variables with mean � and variance �2, thenthe mean of X � Y is 0 and its variance is 2�2. Using Chebyschev's inequality7 wehave that Pr(jX � Y j > ") < 2�2="2. Therefore,Pr(jd(q; p)� d(u; p)j � r) � 1� 2�2r2where �2 is precisely the variance of the distance distribution in our metric space.The argument that follows is valid for 2�2=r2 < 1, or r > p2� (large enough radii),7For an arbitrary distribution Z with mean �z and variance �2z , Pr(jZ � �z j > ") < �2z="2.



38 � E. Ch�avez et al.otherwise the lower bound is zero. Then, we havePr(not discarding u) � �1� 2�2r2 �kWe have now that the total search cost is the number of internal distance eval-uations (k) plus the external evaluations, whose number is on average n� Pr(notdiscarding u). Therefore Cost � k + n �1� 2�2r2 �kis a lower bound to the average search cost by using pivots. Optimizing we obtainthat the best k is k� = lnn + ln ln(1=t)ln(1=t)where t = 1�2�2=r2. Using this optimal k�, we obtain an absolute (i.e. independenton k) lower bound for the average cost of any random pivot-based algorithm:Cost � ln n + ln ln(1=t) + 1ln(1=t) � ln nln(1=t) � r22�2 ln nwhich shows that the cost depends strongly on �=r. As r increases t tends to 1 andthe scheme requires more and more pivots and it is anyway more and more costly.A nice way to represent this result is to assume that we are interested in retrievinga �xed fraction of at most f of the elements, in which case r can be written asr = �� �=pf by Chebyschev's inequality. In this case the lower bound becomesr22�2 ln n = (�� �=pf )22�2 lnn = ��1� 1p2�f �2 ln n = �p�� 1p2f �2 lnnwhich is valid for f � 1=(2�). We have just provedTheorem 1. Any pivot based algorithm using random pivots has a lower bound(p� � 1=p2f )2 lnn in the average number of distance evaluations performed fora random range query retrieving at most a fraction f of the set, where � is theintrinsic dimension of the metric space.This result matches that of [Baeza-Yates 1997; Baeza-Yates and Navarro 1998]on FHQTs, about obtaining �(logn) search time using �(log n) pivots, but herewe are more interested in the \constant" term, which depends on the dimension.The theorem shows clearly that the parameters governing the performance ofrange searching algorithms are � and f . One can expect that f keeps constant as� grows, but it is possible that in some applications the query q is known to bea perturbation of some element of U and therefore we can keep a constant searchradius r as the dimension grows. Even in those cases the lower bound may grow if� shrinks with the dimension, as in the Ls vector spaces with s > 2.We have considered i.i.d. random variables for each pivot and the query. This is areasonable approximation, as we do not expect much di�erence between the \viewpoints" from the general distribution of distances to the individual distributions



Searching in Metric Spaces � 39(see Section 7.4). The expression given in Eq. (7.2) cannot be obtained withoutthis simpli�cation.A stronger assumption comes from considering all the variables as independent.This is an optimistic consideration equivalent to assuming that in order to discardeach element u of the set we take k new pivots at random. The real algorithm �xesk random pivots and uses them to try to discard all the elements u of the set. Thelatter alternative can su�er from dependencies from a point u to another, whichcannot happen in the former case (for example, if u is close to the 3rd pivot and u0 isclose to u then the distance from u0 to the third pivot carries less information). Sincethe assumption is optimistic, using it to reduce the joint distribution in Eq. (7.2)to the expression given in Eq. (7.2) keeps the lower bound valid.Figures 15 and 16 show an experiment on the search cost in (R`; L2) using di�er-ent number of pivots k and dimensions `. The n = 100; 000 elements are generatedat random and the pivots are randomly chosen from the set. We average over1,000 random queries whose radius is set to retrieve 10 elements of the set. Wecount the number of distance evaluations. Figure 15 shows the existence of anoptimum k� = 110, while Figure 16 shows the predicted O(n(1� 1=�(`))k) behav-ior. We have not enough memory in our machine to show the predicted growth ink� � �(`) ln(n).
0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

D
is

ta
nc

e 
C

om
pu

ta
tio

ns

 [pivots] 100,000 elements. Radius captures 0.01% of N 

 8 [ext] 
 8 [in+ext] 

 8 [in] 

Fig. 15. Internal, external and overall distance evaluations in 8 dimensions, using di�erent num-ber of pivots k.Figure 17 shows the e�ect in a di�erent way. As the dimension grows, the his-togram of L2 moves to the right (� = �(p`)). Yet the pivot distance D (in theprojected space (Rk; L1)) remains about the same for �xed k. Increasing k from32 to 512 moves the histogram slightly to the right. This shift is e�ective in low



40 � E. Ch�avez et al.
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e 
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N 

k = 4 pivots
k = 8 pivots

k = 16 pivots
k = 32 pivots
k = 64 pivots

k = 128 pivots
k = 256 pivots

Fig. 16. Overall distance evaluations as the dimension grows for �xed k.dimensional metric spaces, but it is une�ective in high dimensions. The plots ofthese two histograms can measure how good are the pivoting algorithms. Intu-itively, the overlap between the histogram for the pivot distance and the histogramfor the original distance is directly proportional to the discriminative power of thepivot mapping. As the overlap increases the algorithms become more e�ective.The particular behavior ofD in �gure 17 is due to the fact thatD is the maximumof k random variables whose mean is �(�) (i.e. jd(p; q)� d(p; x)j). The fact thatD does not grow with ` means that, as a lower bound for d, it gets less e�ective inhigher dimensions.7.3 A Lower Bound for Voronoi AlgorithmsWe now try to obtain a lower bound to the search cost of algorithms based on theVoronoi partition. The result is surprisingly similar to that of the previous section.Our lower bound considers only the hyperplane criterion, which is the most purelyassociated to the Voronoi partition. We assume just the same facts about thedistribution of distances as in the previous section: all of them are i.i.d. randomvariables.Let (q; r)d be a range query over a metric space indexed by means of m randomcenters fc1 : : : cmg. The m distances d(q; ci) can be considered random variablesX1 : : :Xm whose distribution is that of the histogram of the metric space. The dis-tribution of the distance from q to its closest center c is that of Y = minfX1 : : :Xmg.The hyperplane criterion speci�es that a class [ci] cannot be excluded if d(q; c)+r �d(q; ci) � r. The probability that this happens is Pr(Y � Xi � 2r). But since Yis the minimum over m variables with the same distribution, the probability isPr(Z � X � 2r)m, where X and Z are two random variables distributed according



Searching in Metric Spaces � 41
0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

16 dimensions. 32 pivots

L2
MaxDist

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

16 dimensions. 512 pivots

L2
MaxDist

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

128 dimensions. 32 pivots

L2
MaxDist

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8

128 dimensions. 512 pivots

L2
MaxDist

Fig. 17. Histograms comparing the L2 distance in di�erent `-dimensional Euclidean spaces andthe pivot distance (MaxDist) obtained using di�erent numbers k of pivots. In the top row ` = 16and in the bottom row ` = 128. On the left k = 32 and on the right k = 512.to the histogram. Using Chebyschev's inequality and noticing that if Z < X � 2rthen X or Z are at distance at least r from their mean, we can say thatPr(not discarding [ci]) = Pr(Z � X � 2r)m � �1� �2r2�mOn average each class has n=m elements, so that the external complexity is n�Pr(not discarding [ci]). The internal cost to �nd the intersected classes deserves somediscussion. In all the hierarchical schemes that exist, we consider that the realpartition is that induced by the leaves of the trees, i.e. the most re�ned ones. Wesee all the rest of the hierarchy as a mechanism to reduce the internal complexity of�nding the small classes (hence the m we use here is not, say, the m of GNATs, butthe total number of �nal classes). It is di�cult to determine this internal complexity(an upper bound is m), so we call it CI(m), knowing that it is between 
(logm)and O(m). Then a lower bound to the search complexity isCost � CI(m) + n �1� �2r2�mwhich indeed is very similar to the lower bound on pivot based algorithms. Opti-mizing on m yields m� = ln n + ln ln(1=t0) � ln C0I(m�)ln(1=t0)



42 � E. Ch�avez et al.where t0 = 1� �2=r2. Using the optimal m� the search cost is lower bounded byCost = 
�CI(log1=t0 n)� = 
�CI � r2�2 ln n��which also shows an increase in the cost as the dimensionality grows. As before wecan write r = �� �=pf . We have just provedTheorem 2. Any Voronoi based algorithm based on random centers has a lowerbound CI(2(p��1=p2f)2) in the average number of distance evaluations performedfor a random range query retrieving a fraction of at most f of the database, where� is the intrinsic dimension of the space and CI() is the internal complexity to �ndthe relevant classes, satisfying 
(logm) = CI(m) = O(m).This result is weaker than Theorem 1 because of our inability to give a good lowerbound on CI , so we cannot ensure more than a logarithmic increase with respect to�. However, even assuming CI(m) = �(m) (i.e. exhaustive search of the classes),when the theorem becomes very similar to Theorem 1, there is an important reasonthat explains why the Voronoi based algorithms can in practice be better than pivotbased ones. We can in this case achieve the optimal number of centers m�, whichis impossible in practice for pivot-based algorithms. The reason is that it is muchmore economical to represent the Voronoi partition using m centers than the pivotpartition using k pivots.Figure 18 shows an experiment on the same dataset, where we have used di�erentm values and a hierarchical Voronoi partitioning based on them. We have used thehyperplane and the covering radius criteria to prune the search. As can be seen,the dependency on the dimension of the space is not so sharp as for pivot basedalgorithms, and is closer to a dependency of the form �(`).The general conclusion is that, even if the lower bounds using pivot based orVoronoi based algorithms look similar, the �rst ones need much more space tostore the classes resulting from k pivots than the last ones using the same numberof partitions. Hence, the latter can reallistically use the optimal number of classes,while the former cannot. If pivot based algorithms are given all the necessarymemory, then using the optimal number of pivots they can improve over Voronoibased algorithms, because t is better than t0, but this is more and more di�cult asthe dimension grows.Figure 19 compares both types of partitioning. As can be seen, the pivotingalgorithm improves over the Voronoi partitioning if we give it enough pivots. How-ever, \enough" is a number that increases with the dimension and with the fractionretrieved (i.e. � and f). For � and f large enough, the required number of pivotswill be unacceptably high in terms of memory requirements.7.4 Pivot and Center Selection TechniquesIn [Farag�o et al. 1993], they prove formally that if the dimension is constant, thenafter properly selecting (not at random!) a constant number k of pivots the ex-haustive search costs O(1). This contrasts with our 
(log n) lower bound. Thedi�erence is that they do not take the pivots at random but select a set of pivotswhich is assumed to have certain selectivity properties. This shows that the wayin which the pivots are selected can a�ect the performance. Unfortunately, their



Searching in Metric Spaces � 43
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e 
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N 

m =     2
m =     4
m =     8
m =   16
m =   32
m =   64
m = 128
m = 256

Fig. 18. Overall distance evaluations using a hierarchical Voronoi partitioning with di�erentarities.theorem is not constructive and does not show how to select such a set of pivots.Little is known about pivot/center (let us call them collectively \references")selection policies, and in practice most methods choose them at random, with afew exceptions. For instance, in [Shapiro 1977] it is recommended to select pivotsoutside the clusters while in [Baeza-Yates et al. 1994] they suggest to use one pivotfrom each cluster. All authors agree in that the references should be far apartfrom each other, which is evident since close references will give almost the sameinformation. On the other hand, references selected at random are already far apartin a high-dimensional space.The histogram of distances gives a formal characterization of good references.Let us start with a de�nition.De�nition 10. The local histogram of an element u is the distribution of distancesfrom u to every x 2X.A good reference has a atter histogram, which means that it will discard moreelements at query time. The measure � = �2=(2�2) of intrinsic dimensionality (nowde�ned on the local histogram of u) can be used as a good parameter to evaluatehow good is a reference (good references have local histograms with small �).This is related to the di�erence in viewpoints (histograms) between di�erentreferences, a subject discussed in depth in [Ciaccia et al. 1998a]. The idea is thatthe local histogram of a reference umay be quite di�erent from the global histogram(especially if u is not selected at random). This is used in [Ciaccia et al. 1998a]to show that if the histograms for di�erent references are similar then they canaccurately predict the behavior of instances of their data structure (the MT), acompletely di�erent issue.



44 � E. Ch�avez et al.
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e 
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of n 

k=4 pivots
k=16 pivots
k=64 pivots

Voronoi m=128

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e 
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.10% of n 

k=4 pivots
k=16 pivots
k=64 pivots

Voronoi m=128

Fig. 19. Distance evaluations for increasing dimension. We compare the Voronoi algorithm ofFigure 18 using 128 centers per level against the �ltration using k pivots for k = 4, 16, 64. Ontop the search radius captures 0.01% of the set, on the bottom 0.1%.



Searching in Metric Spaces � 45Note also that good reference selection becomes harder as the intrinsic dimensiongrows. As the global histogram reduces its variance, it becomes more di�cult to�nd references that deviate signi�cantly from it, as already noted in [Ciaccia et al.1998a].The histogram characterization explains a well-known phenomenon: to discrim-inate among the elements in the class of a local partition (or in a cluster), it isa good idea to select a pivot from the same class. This makes it more probableto select an element close to them (the ideal would be a centroid). In this case,the distances tend to be smaller and the histogram is not so concentrated in largevalues. For instance, for LAESA [Mic�o et al. 1994] they do not use the pivots ina �xed order, but the next one is that with minimal L1 distance to the currentcandidates. On the other hand, outliers can be good at a �rst approximation, inorder to discriminate among clusters, but later they are unable to separate well theelements of the same cluster.Selecting good individual references, i.e. with a atter histogram, is not enoughto ensure a good performance. For example, a reference close to a good one isprobably good as well, but using both of them gives almost the same informationas using only one. It is necessary to include a variety of independent viewpoints inthe selection. If we consider the selection of references as an optimization problem,the goal is to obtain a set of references that are collectively good for indexingpurposes. The set of references is good if it approximates the original distance well.This is more evident in the case of pivoting algorithms, where a contractive distanceis implicitly used. A practical way to decide whether our set of centers is e�ectiveis to compare the histograms of the original distance and the pivot distance as inFigure 17. A good reference set will give a pivot distance histogram with a largeintersection with the histogram of the original distance.7.5 The E�ect on the Discriminative PowerAnother reason that explains the curse of dimensionality is related to the decrease inthe discriminative power of a partition, because of the odd \shapes" of the classes.As explained before, a non local partition su�ers from the problem of being unableto discriminate between points that are actually far away from each other, whichleads to unnecessarily high external complexity. The solution is to select enoughpivots or to use a Voronoi method that yields a local partition. However, even in alocal partition, the shape of the cell is �xed at indexing time, while the shape of thespace region de�ned as interesting for a query q is a ball dynamically determined atquery time. The discriminative power can ve visualized as the volume of the queryball divided by the total volume of the classes intersected by that ball.A good example is that of a ball inside a box in a k-dimensional L2 space. Thebox is the class obtained after using k orthogonal pivots, and the partition obtainedis quite local. Yet the volume of the ball is smaller, and the ratio with respect tothe volume of the box (i.e. the discriminative power) decreases exponentially withk. This means that we have to examine a volume (and a number of candidateelements) that, with respect to the size of the �nal result, grows exponentially withthe dimension k. This fact is behind the exponential dependency on the dimensionin data structures for vector spaces such as the kd-tree or the R-tree.The same phenomenon occurs in general metric spaces, where the \shapes" of the



46 � E. Ch�avez et al.cells cannot possibly �t an unknown query ball. We can add more pivots to boundbetter any possible ball, but this increases the internal complexity and becomesmore di�cult as the intrinsic dimension grows (the smaller the variance, the morepivots are needed to make a di�erence).8. A TAXONOMY OF SEARCH ALGORITHMSIn this section we apply our unifying model to organize all the known approachesin a taxonomy. This helps to identify the essential features of all the existingtechniques, to �nd possible combinations of algorithms not noticed up to now, andto detect which are the most promising areas for optimization.We �rst concentrate on pivoting algorithms. They di�er in their method toselect the pivots, in when is the selection made, and in how much information onthe comparisons is used. Later, we consider the Voronoi algorithms. These di�erin their methods to select the centers and to bound the equivalence classes.Figure 20 summarizes our classi�cation of methods attending to their most im-portant features (explained throughout the section).
BKT

Coarsified

Arrays

FHQAFMVPA

FHQT

FQT

FMVPT

VPFGHT Covering Radius

BST VT MT

SAT

Voronoi Type Pivot-Based

Trees

MVPT

LAESA-like

AESA

Fixed Height

Scope Coarsened

Indexing Algorithms

GNATHyperplane

Fig. 20. Taxonomy of the existing algorithms. The methods in italics are combinations thatappear naturally as soon as the taxonomy is built.8.1 Pivot Based Algorithms8.1.1 Search Algorithms. Once we have determined the equivalence relation touse (i.e. the k pivots), we preprocess the dictionary by storing, for each element ofU, its k coordinates (i.e. distance to the k pivots). This takes O(kn) preprocessingtime and space overhead. The \index" can be seen as a table of n rows and kcolumns storing d(ui; pj).



Searching in Metric Spaces � 47At query time, we �rst compare the query q against the k pivots, hence obtainingits k coordinates [q] = (y1; :::; yk) in the target space, i.e. its equivalence class. Thecost of this is k evaluations of the distance function d, which corresponds to theinternal complexity of the search. We have now to determine, in the target space,which classes may be relevant to the query (i.e. which ones are at distance r or lessin the L1 metric, which corresponds to the D distance). This does not use furtherevaluations of d, but it may take extra CPU cost. Finally, the elements belongingto the qualifying classes (i.e. those that cannot be discarded after considering thek pivots) are directly compared against q (external complexity).The simplest search algorithm proceeds row-wise: consider each element of theset (i.e. each row (x1; :::; xk) of the table) and see if the triangular inequalityallows discarding that row, i.e. whether maxi=1::kfjxi� yijg > r. For each row notdiscarded using this rule, compare the element directly against q. This is equivalentto traversing the quotient space, using D to discard uninteresting classes.Although this traversal does not perform more evaluations of d than necessary,it is not the best choice. The reasons will be made clear later, as we discover theadvantages of alternative approaches. First, notice that the amount of CPU workis O(kn) in the worst case. However, as we abandon a row as soon as we �nd adi�erence larger than r along a coordinate, the average case is much closer to O(n)for queries of reasonable selectivity.The �rst improvement is to process the set column-wise. That is, we comparethe query against the �rst pivot p1. Now, we consider the �rst column of the tableand discard all the elements which satisfy jx1 � y1j > r. Then, we consider thesecond pivot p2 and repeat the process only on the elements not discarded up tonow. An algorithm implementing this idea is LAESA.It is not hard to see that the amount of evaluations of d and the total CPUwork remains the same as for the row-wise case. However, we can do better now,since each column can be sorted so that the range of qualifying rows can be binaryinstead of sequentially searched [Nene and Nayar 1997; Ch�avez et al. 1999]. Thisis possible because we are interested, at column i, in the values [yi� r; yi+ r]. Theextra CPU cost gets closer to O(k logn) than to O(n) by using this technique.This is not the only improvement allowed by a column-wise evaluation whichcannot be done row-wise. A very important one is that it is not necessary toconsider all the k coordinates (recall that we have to perform one evaluation of d toobtain each new query coordinate yi). As soon as the remaining set of candidates issmall enough, we can stop considering the remaining coordinates and directly verifythe candidates using the d distance. This point is di�cult to estimate beforehand:despite the (few) theoretical results existing [Farag�o et al. 1993; Baeza-Yates 1997;Baeza-Yates and Navarro 1998], one cannot normally understand the applicationwell enough to predict the actual optimal number of pivots k� (i.e. the point whereit is better to switch to exhaustive evaluation).Another improvement that can be used with column-wise evaluation is that theselection of the pivots can be done on the y instead of beforehand as we havepresented it. That is, once we have selected the �rst pivot p1 and discarded all theuninteresting elements, the second pivot p2 may depend on which was the result ofp1. However, for each potential pivot p we have to store the coordinates of all theelements of the set for p (or at least some, as we see later). That is, we select k



48 � E. Ch�avez et al.potential pivots and precompute the table as before, but we can choose in whichorder are the pivots used (according to the current state of the search) and wherewe stop using pivots and compare directly.An extreme case of this idea is AESA, where k = n, i.e. all the elements arepotential pivots, and the new pivot at each iteration is randomly selected amongthe remaining elements. Despite its practical inapplicability because of its O(n2)preprocessing time and space overhead (i.e. all the distances among the knownelements are precomputed), the algorithm performs a surprisingly low number ofdistance evaluations, much better than when the pivots are �xed. This shows thatit is a good idea to select pivots from the current set of candidates (as discussed inthe previous sections).Finally, we notice that instead of a sequential search in the mapped space, wecould use an algorithm to search in vector spaces of k dimensions (e.g. kd-trees orR-trees). Depending on their ability to handle larger k values, we could be able touse more pivots without signi�cantly increasing the extra CPU cost. Recall alsothat, as more pivots are used, the search structures for vector spaces perform worse.This is a very interesting subject which has not been pursued yet, that accountsfor balancing between distance evaluations and CPU time.8.1.2 Coarsening the Equivalence Relation. The alternative of not considering allthe k pivots if the remaining set of candidates is small is an example of coarseningan equivalence relation. That is, if we do not consider a given pivot p, we aremerging all the classes that di�er only in that coordinate. In this case we prefer tocoarsify the pivot equivalence relation because computing it with more precision isworse than checking it as is.There are many other ways to coarsify the equivalence relation, and we cover themhere. However, in these cases the coarsi�cation is not done for the sake of reducingthe number of distance evaluations, but to improve space usage and precomputationtime, asO(kn) can be prohibitively expensive for some applications. Another reasonis that, via coarsening, we obtain search algorithms that are sublinear in their extraCPU time. We consider in this section range coarsening, bucket coarsening andscope coarsening. Their ideas are roughly illustrated in Figure 21.
u1
u2

un
p3p2p1

d(ui,pj)

Bucket CoarseningRange Coarsening

of cell values
Restricted domain

Original

Last coordinates
not always computed

Pivots have
only local scope

Scope Coarsening

Fig. 21. Di�erent coarsi�cation methods.



Searching in Metric Spaces � 49It must be clear that all these types of coarsenings reduce the discriminative powerof the resulting equivalence classes, making it necessary to exhaustively considermore elements that in the uncoarsened versions of the relations. In the exampleof the previous section this is amortized by the lower cost to obtain the coars-ened equivalence relation. Here we reduce the e�ectiveness of the algorithms viacoarsening, for the sake of reduced preprocessing time and space overhead.However, space reduction may have a counterpart in time e�ciency. If we useless space, then with the same amount of memory we can have more pivots (i.e.larger k). This can result in an overall improvement. The fair way to compare twoalgorithms is to give them the same amount of memory to use.8.1.3 Range Coarsening. The auxiliary data structures proposed by most authorsfor continuous distance functions are aimed at reducing the amount of space neededto store the coordinates of the elements in the mapped space, as well as the timeto �nd the relevant classes. The most popular form is to reduce the precision of d.This is written asx �p;frig y () 9i; ri � d(x; p) < ri+1 and ri � d(y; p) < ri+1with frig a partition of the interval [0;1). That is, we assign the same equivalenceclass to elements falling in the same range of distances with respect to the samepivot p. This is obviously a coarsening of the previous relation �p and can benaturally extended to more than one pivot.Figure 2 exempli�es a pivoting equivalence relation where range coarsening isapplied, for one pivot. Points in the same ring are in the same equivalence class,despite that their exact distance to the pivot may be di�erent.A number of actual algorithms use one or another form of this coarsening tech-nique. VPTs and MVPTs divide the distances in slices so that the same numberof elements lie in each slice (note that the slices are di�erent for each pivot). VPTsuse two slices and MVPTs use many. Their goal is to obtain balanced trees. BKTs,FQTs and FHQTs, on the other hand, propose range coarsening for continuousdistance functions but do not specify how to coarsify.In this work we consider that the \natural" extension of BKTs, FQTs and FHQTsassigns slices of the same width to each branch, and that the tree has the same arityacross all its nodes. At each node, the slice width is recomputed so that using slicesof that �xed width the node has the desired arity.Therefore, we can have slices of �xed width (BKT, FQT, FHQT) or determinedby percentiles (VPT, MVPT, FQA). We may have a di�erent pivot per node (BKT,VPY, MVPT) or per level (FQT, FHQT, FQA). Among the last, we can de�ne theslices at each node (FQT, FHQT) or for the whole level (FQA). All these choicesare drawn in Table 2. The empty slots have been �lled with new structures thatare de�ned now.8.1.3.1 FHQA. Is similar to an FQA except because the slices are of �xed width.At each level the slice width is recomputed so that a maximum arity is guaranteed.In the FHQT, instead, each node has a di�erent slice width.8.1.3.2 FMVPT. Is a cross between an MVPT and a FHQT. The range of valuesis divided using the m � 1 uniform percentiles to balance the tree, as in MVPTs.



50 � E. Ch�avez et al. Fixed percentiles Fixed widthDi�erent pivot VPT, MVPT BKTper node(scope coarsening) Di�erent slice FMVPT FQT, FHQTDi�erent pivot per nodeper level Di�erent slice FMVPA (FQA) FHQAper levelTable 2. Di�erent options for range coarsening. We put in italics the new structures created to�ll the empty holes.The tree has a �xed height h, as FHQTs. At each node the ranges are recomputedaccording to the elements lying in that subtree. The particular case where m = 2will be called FHVPT.8.1.3.3 FMVPA. Is just a new name for the FQA, more appropriate for ourdiscussion since it is to MVPTs as FHQAs to FHQTs: the FMVPA uses variablewidth slices to ensure that the subtrees are balanced in size, but the same slices areused for all the nodes of a single level, so that the balance is only level-wise.The combinations we have just created allow us to explain some important con-cepts.8.1.3.4 Amount of range coarsening.. Let us consider FHQAs and FMVPAs.They are no more than LAESA with di�erent forms of range coarsening. Theyuse k �xed pivots and use b bits to represent the coordinates (i.e. the distancesfrom each point to each of the h pivots). So only 2b di�erent values can be ex-pressed. The two structures di�er only in how they coarsify the distances to putthem into 2b ranges. Their total space requirement is then reduced to kbn bits.However, range coarsening is not just a technique to reduce space, but the samespace can be used to accommodate more pivots. It is not immediate how much is itconvenient to coarsify in order to use more pivots, but it is clear that this techniquecan improve the overall e�ectiveness of the algorithm.8.1.3.5 Percentiles versus �xed width.. Another unclear issue is whether �xedslices is better or worse than percentile splitting. On one hand, a balanced datastructure has obvious advantages because the internal complexity may be reduced.Fixed slices produce unbalanced structures since the outer rings have much moreelements (especially on high dimensions). On the other hand, in high dimensionsthe outer rings tend to be too narrow if percentile splitting is used (because asmall increment in radius gets many new elements inside the ring). If the rings aretoo narrow, many rings will be frequently included in the radius of interest of thequeries (see Figure 22). An alternative idea is shown in [Ch�avez 1999], where theslices are optimized to minimize the number of branches that must be considered.In this case, each class can be an arbitrary set of slices.8.1.3.6 Trees versus arrays. FHQTs and FMVPTs are almost tree versions ofFHQAs and FMVPAs, respectively. They are m-ary trees where all the elementsbelonging to the same coarsened class are stored in the same subtree. Instead of



Searching in Metric Spaces � 51
Uniform percentilesUniform width

Fig. 22. The same query intersects more rings when using uniform percentiles.explicitly storing the m coordinates, the trees store them implicitly : the elementsare at the leaves, and their path from the root spell out the coarsened coordinatevalues. This makes the space requirements closer to O(n) in practice, instead ofO(bkn) (although the constant is very low for the array versions, which may actuallytake less space). Moreover, the search for the relevant elements can be organizedusing the tree: if all the interesting elements have their �rst coordinate in the i-thring, then we just traverse the i-th subtree. This reduces the extra CPU time. Ifthe distance is too �ne-grained, however, the root will have nearly n children andthe subtrees will have just 1 child. The structure will be very similar to a tableof k coordinates per element and the search will degenerate into a linear row-wisetraversal. Hence, range coarsening is also a tool to reduce the extra CPU time.We have given the trees the ability to de�ne the slices at each node instead of ateach level as the array versions. This allows them to adapt better to the data, butthe values of the slices used need more space. It is not clear whether it pays o� ornot to store all these slice values.Summarizing, range coarsening can be applied using �xed-width or �xed-percentileslices. They can reduce the space necessary to store the coordinates, which can al-low the use of more pivots with the same amount of memory. Therefore, it is notjust a technique to reduce space but it can improve the search complexity. Rangecoarsening can also be used to organize tree-like search schemes which are sublinearin extra CPU time.8.1.4 Bucket Coarsening. To reduce space requirements in the above trees, wecan avoid building subtrees which have few elements. Instead, all their elementsare stored in a bucket. When the search arrives to a bucket, it has to exhaustivelyconsider all the elements.This is a form of coarsening, since for the elements in the bucket we do notconsider the last pivots, and resembles the previous idea (Section 8.1.1) of notcomputing the k pivots. However, in this case the decision is taken o�-line, at indexconstruction time, and this allows reducing space by not storing those coordinates.In the previous case the decision was taken at search time. The crucial di�erence isthat if the decision is taken at search time, we can know exactly the total amountof exhaustive work to do by not taking further coordinates. On the other hand, in



52 � E. Ch�avez et al.an o�-line decision we can only consider the search along this branch of the tree,while we cannot predict how many branches will be considered at search time.This idea is used for discrete distance functions in FQTs, which are similar toFHQTs except for the use of buckets. It has been also applied to continuous setupsto reduce space requirements further.8.1.5 Scope Coarsening. The last and least obvious form of coarsening is the onewe call \scope coarsening". In fact, the use of this form of coarsening makes it di�-cult to notice that many algorithms based on trees are in fact pivoting algorithms.This coarsening is based on, instead of storing all the coordinates of all theelements, just storing some of them. Hence, comparing the query against somepivots helps to discriminate on some subset of the database only. To use this factto reduce space, we must determine o�-line which elements will store their distanceto which pivots. There is a large number of ways to use this idea, but it has beenused only in the following way.In FHVPTs there is a single pivot per level of the tree, as in FHQTs. The leftand right subtrees of VPTs, on the other hand, use di�erent pivots. That is, if wehave to consider both the left and right subtrees (because the radius r does notallow us to completely discard one), then comparing the query q against the leftpivot will be useful for the left subtree only. There is no information stored aboutthe distances from the left pivot to the elements of the right subtree, and vice-versa.Hence, we have to compare q against both pivots. This continues recursively. Thesame idea is used for BKTs and MVPTs.Although at �rst sight it is clear that we reduce space, this is not the direct wayin which the idea is used in those schemes. Instead, they combine it with a hugeincrease in the number of potential pivots. For each subtree, an element belongingto the subtree is selected as the pivot and deleted from the set. If no bucketingis used, the result is a tree where each element is a node somewhere in the treeand hence a potential pivot. The tree takes O(n) space, which shows that we cansuccessfully combine a large number of pivots with scope coarsening to have lowspace requirements (n instead of n2 as in AESA).The possible advantage (apart from guaranteed linear space and slightly reducedspace in practice) of these structures over those that store all the coordinates (asFQTs and FHQTs) is that the pivots are better suited to the searched elements ineach subtree, since they are selected from the same subset. This same property iswhich makes AESA such a good (though impractical) algorithm.In [Shapiro 1977; Bozkaya and Ozsoyoglu 1997] they propose hybrids (for BKTand VPT, respectively) where a number of �xed pivots are used at each node, andfor each resulting class a new set of pivots is selected. Note that, historically, FQTsand FHQTs are an evolution over BKTs.8.2 Voronoi Partition AlgorithmsAll the remaining algorithms (GHTs, BSTs, GNATs, VTs, MTs, SATs) rely on ahierarchical Voronoi partition of the metric space. A �rst source of di�erences isin how the centers are selected at each node. GHTs and BSTs take two elementsper level. VTs repeat previous centers when creating new nodes. GNATs selectm centers far apart. MTs try to minimize covering radii. SATs select a variable



Searching in Metric Spaces � 53With hyperplanes GHT, SATWith balls BST, VT, MT, SATWith rings GNATTable 3. Di�erent options for limiting classes.number of close neighbors of the parent node.The main di�erence, however, lies in the search algorithm. While GHTs usepurely the hyperplane criterion, BSTs, VTs and MTs use only the covering radiuscriterion. SATs use both criteria to increase pruning. In all these algorithms thequery q is compared against all the centers of the current node and the criteria areused to discard subtrees.GNATs are a little di�erent, as they use none of the above criteria. Instead, theyapply an AESA-like search over the m centers considering their \range" values.That is, a center ci is selected, and if the query ball does not intersect a ringaround ci that contains all the elements of cj, then cj and all its class (subtree)can be safely discarded. In other words, GNATs limit the class of each center byintersecting rings around the other centers. This way of limiting the extent of aclass is di�erent from both the hyperplane and the covering radius criteria. It isprobably more e�cient, but it requires storing O(m2) distances at each level.Table 3 summarizes the di�erences. It is clear that there are many possiblecombinations that have not been tried, but we do not attempt to enumerate allthem.The Voronoi partition is an attempt to obtain local classes, more local than thosebased on pivots. A general technique to do this is to identify clusters of close objectsin the set. There exist many clustering algorithms to build equivalence relations.However, most are de�ned on vector spaces instead of general metric spaces. Anexception is [Brito et al. 1996], which reports very good results. However, it is notclear that good clustering algorithms directly translate into good algorithms forproximity searching. Another clustering algorithm, based on cliques, is presentedin [Burkhard and Keller 1973], but the results are similar to the simpler BKT.This area is largely unexplored, and the developments here could be converted intoimproved search algorithms.9. CONCLUSIONSMetric spaces are becoming a popular model for similarity retrieval in many unre-lated areas. We have surveyed the algorithms that index metric spaces to answerproximity queries. We have not just enumerated the existing approaches to discusstheir good and bad points. We have, in addition, presented a uni�ed frameworkthat allows understanding the existing approaches under a common view. It turnsout that most of the existing algorithms are indeed variations on a few commonideas, and by identifying them, previously unnoticed combinations have naturallyappeared. We have also analyzed the main factors that a�ect the e�ciency whensearching metric spaces. The main conclusions of our work are summarized asfollows(1) The concept of intrinsic dimensionality can be de�ned on general metricspaces as an abstract and quanti�able measure that a�ects the search perfor-



54 � E. Ch�avez et al.mance.(2) The main factors that a�ect the e�ciency of the search algorithms are theintrinsic dimensionality of the space and the search radius.(3) Equivalence relations are a common ground underlying all the indexing al-gorithms, and they divide the search cost in terms of internal and externalcomplexity.(4) A large class of search algorithms rely on taking k pivots and mapping themetric space onto Rk using the L1 distance. Another important class usesVoronoi-like partitions.(5) The equivalence relations can be coarsened to save space or to improve theoverall e�ciency by making better use of the pivots. A hierarchical re�nementof classes can improve performance.(6) Although there is an optimal number of pivots to use, this number is toohigh in terms of space requirements. In practical terms, a pivot based indexcan outperform a Voronoi based index if it has enough memory.(7) As this amount of memory becomes unfeasible as the dimension grows,Voronoi based algorithms normally outperform pivot based ones in high di-mensions.(8) In high dimension the search radius needed to retrieve a �xed percent of thedatabase is very large. This is the reason of the failure to overcome the bruteforce search with an exact indexing algorithm.A number of open issues require further attention. The main ones follow.|For pivot based algorithms, understand better the e�ect of pivot selection, devis-ing methods to choose e�ective pivots. The subject of the appropriate numberof pivots and its relation to the intrinsic dimensionality of the space plays a rolehere. The histogram of distances may be a good tool for pivot selection.|For Voronoi based algorithms, work more on clustering schemes in order to selectgood centers. Find ways to reduce construction times (which are in many casestoo high).|Search for good hybrids between Voronoi and pivoting algorithms. The �rst onescope better with high dimensions and the second ones improve as more memory isgiven to them. After the space is clustered the intrinsic dimension of the clustersis smaller, so a top-level clustering structure joined with a pivoting scheme forthe clusters is an interesting alternative. Those pivots should be selected fromthe cluster because the clusters have high locality.|Take extra CPU complexity into account, which we have barely considered inthis work. In some applications the distance is not so expensive that one candisregard any other type of CPU cost. The use of specialized search structures inthe mapped space (especially Rk) and the resulting complexity tradeo� deservesmore attention.|Take I/O costs into account, which may very well dominate the search time insome applications. The only existing work on this is the M-tree [Ciaccia et al.1997].



Searching in Metric Spaces � 55|Focus on nearest neighbor search. Most current algorithms for this problem arebased on range searching, and despite that the existing heuristics seem di�cultto improve, truly independent ways to address the problem could exist.|Consider approximate and probabilistic algorithms, which may give much betterresults at a cost that, especially for this problem, seems acceptable.REFERENCESApers, P., Blanken, H., and Houtsma, M. 1997. Multimedia Databases in Perspective.Springer.Arya, S., Mount, D., Netanyahu, N., Silverman, R., and Wu, A. 1994. An optimalalgorithm for approximate nearest neighbor searching in �xed dimension. In Proc. 5thACM-SIAM Symposium on Discrete Algorithms (SODA'94) (1994), pp. 573{583.Aurenhammer, F. 1991. Voronoi diagrams { a survey of a fundamental geometric datastructure. ACM Computing Surveys 23, 3.Baeza-Yates, R. 1997. Searching: an algorithmic tour. In A. Kent and J. Williams Eds.,Encyclopedia of Computer Science and Technology, Volume 37, pp. 331{359.Marcel DekkerInc.Baeza-Yates, R., Cunto, W., Manber, U., and Wu, S. 1994. Proximity matching using�xed-queries trees. In Proc. 5th Combinatorial Pattern Matching (CPM'94), LNCS 807(1994), pp. 198{212.Baeza-Yates, R. and Navarro, G. 1998. Fast approximate stringmatching in a dictionary.In Proc. 5th South American Symposium on String Processing and Information Retrieval(SPIRE'98) (1998), pp. 14{22. IEEE CS Press.Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley.Bentley, J. 1975. Multidimensional binary search trees used for associative searching.Comm. of the ACM 18, 9, 509{517.Bentley, J. 1979. Multidimensional binary search trees in database applications. IEEETrans. on Software Engineering 5, 4, 333{340.Bentley, J., Weide, B., and Yao, A. 1980. Optimal expected-time algorithms for closestpoint problems. ACM Trans. on Mathematical Software 6, 4, 563{580.Berchtold, S., Keim, D., and Kriegel, H. 1996. The X-tree: an index structure for high-dimensional data. In Proc. 22nd Conference on Very Large Databases (VLDB'96) (1996),pp. 28{39.Bhanu, B., Peng, J., and Qing, S. 1998. Learning feature relevance and similarity metricsin image databases. In Proc. IEEE Workshop on Content-Based Access of Image and VideoLibraries (Santa Barbara, California, 1998), pp. 14{18. IEEE Computer Society.Bimbo, A. D. and Vicario, E. 1998. Using weighted spatial relationships in retrieval byvisual contents. In Proc. IEEE Workshop on Content-Based Access of Image and VideoLibraries (Santa Barbara, California, 1998), pp. 35{39. IEEE Computer Society.Blott, S. and Weber, R. 1997. A simple vector-approximation �le for similarity search inhigh-dimensional vector spaces. Technical report, Institute for Information Systems, ETHZentrum, Zurich, Switzerland.Bozkaya, T. and Ozsoyoglu, M. 1997. Distance-based indexing for high-dimensionalmet-ric spaces. In Proc. ACM SIGMOD International Conference on Management of Data(1997), pp. 357{368. Sigmod Record 26(2).Brin, S. 1995. Near neighbor search in large metric spaces. In Proc. 21st Conference onVery Large Databases (VLDB'95) (1995), pp. 574{584.Brito, M., Ch�avez, E., Quiroz, A., and Yukich, J. 1996. Connectivity of the mutualk-nearest neighbor graph in clustering and outlier detection. Statistics & Probability Let-ters 35, 33{42.Bugnion, E., Fhei, S., Roos, T., Widmayer, P., and Widmer, F. 1993. A spatial indexfor approximate multiple string matching. In R. Baeza-Yates and N. Ziviani Eds., Proc.



56 � E. Ch�avez et al.1st South American Workshop on String Processing (WSP'93) (1993), pp. 43{53.Burkhard, W. and Keller, R. 1973. Some approaches to best-match �le searching.Comm. of the ACM 16, 4, 230{236.Cascia, M. L., Sethi, S., and Sclaroff, S. 1998. Combining textual and visual cues forcontent-based image retrieval on the world wide web. In Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries (Santa Barbara, California, 1998), pp. 24{28.IEEE Computer Society.Ch�avez, E. 1999. Optimal discretization for pivot based algorithms. Manuscript. ftp://-garota.fismat.umich.mx/pub/users/elchavez/minimax.ps.gz.Ch�avez, E. and Marroqu��n, J. 1997. Proximity queries in metric spaces. In R. Baeza-Yates Ed., Proc. 4th South American Workshop on String Processing (WSP'97) (1997),pp. 21{36. Carleton University Press.Ch�avez, E., Marroqu��n, J., and Baeza-Yates, R. 1999. Spaghettis: an array basedalgorithmfor similarity queries in metric spaces. InProc. String Processing and InformationRetrieval (SPIRE'99) (1999), pp. 38{46. IEEE CS Press.Ch�avez, E., Marroqu��n, J., and Navarro, G. 1999. Overcoming the curse of dimension-ality. In European Workshop on Content-Based Multimedia Indexing (CBMI'99) (1999),pp. 57{64. ftp://garota.fismat.umich.mx/pub/users/elchavez/fqa.ps.gz.Ch�avez, E. and Navarro, G. 2000. Measuring the dimensionality of general metric spaces.Technical Report TR/DCC-00-1, Dept. of Computer Science, University of Chile.Chazelle, B. 1994. Computational geometry: a retrospective. In Proc. of the 26th ACMSymposium on the Theory of Computing (STOC'94) (1994), pp. 75{94.Chiueh, T. 1994. Content-based image indexing. In Proc. of the 20th Conference on VeryLarge Databases (VLDB'94) (1994), pp. 582{593.Ciaccia, P., Patella, M., and Zezula, P. 1997. M-tree: an e�cient access method forsimilarity search in metric spaces. In Proc. of the 23rd Conference on Very Large Databases(VLDB'97) (1997), pp. 426{435.Ciaccia, P., Patella, M., and Zezula, P. 1998a. A cost model for similarity queries inmetric spaces. In Proc. 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principlesof Database Systems (PODS'98) (1998).Ciaccia, P., Patella, M., and Zezula, P. 1998b. Processing complex similarity querieswith distance-based access methods. In Proc. 6th International Conference on ExtendingDatabase Technology (EDBT'98) (1998).Clarkson, K. 1999. Nearest neighbor queries in metric spaces. Discrete ComputationalGeometry 22, 1, 63{93.Cox, T. and Cox, M. 1994. Multidimensional Scaling. Chapman and Hall.Dehne, F. and Nolteimer, H. 1987. Voronoi trees and clustering problems. InformationSystems 12, 2, 171{175.Devroye, L. 1987. A Course in Density Estimation. Birkhauser.Duda, R. and Hart, P. 1973. Pattern Classi�cation and Scene Analysis. Wiley.Faloutsos, C., Equitz, W., Flickner, M., Niblack, W., Petkovic, D., and Barber, R.1994. E�cient and e�ective querying by image content. J. of Intelligent InformationSystems 3, 3/4, 231{262.Faloutsos, C. and Kamel, I. 1994. Beyond uniformity and independence: analysis of R-trees using the concept of fractal dimension. In Proc. 13th ACM Symposium on Principlesof Database Principles (PODS'94) (1994), pp. 4{13.Faloutsos, C. and Lin, K. 1995. Fastmap: a fast algorithm for indexing, data miningand visualization of traditional and multimedia datasets. ACM SIGMOD Record 24, 2,163{174.Farag�o, A., Linder, T., and Lugosi, G. 1993. Fast nearest-neighbor search in dissimilarityspaces. IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 9, 957{962.Frakes, W. and Baeza-Yates, R. Eds. 1992. Information Retrieval: Data Structures andAlgorithms. Prentice-Hall.



Searching in Metric Spaces � 57Gaede, V. and G�unther, O. 1998. Multidimensional access methods. ACM ComputingSurveys 30, 2, 170{231.Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching. In Proc. ACMSIGMOD International Conference on Management of Data (1984), pp. 47{57.Hair, J., Anderson, R., Tatham, R., and Black, W. 1995. Multivariate Data Analysiswith Readings (4th ed.). Prentice-Hall.Jain, A. and Dubes, R. 1988. Algorithms for Clustering Data. Prentice-Hall.Kalantari, I. and McDonald, G. 1983. A data structure and an algorithm for the nearestpoint problem. IEEE Transactions on Software Engineering 9, 5.Melhorn, K. 1984. Data Structures and Algorithms, Volume III - MultidimensionalSearch-ing and Computational Geometry. Springer.Mic�o, L., Oncina, J., and Carrasco, R. 1996. A fast branch and bound nearest neighbourclassi�er in metric spaces. Pattern Recognition Letters 17, 731{739.Mic�o, L., Oncina, J., and Vidal, E. 1994. A new version of the nearest-neighbor ap-proximating and eliminating search (AESA) with linear preprocessing-time and memoryrequirements. Pattern Recognition Letters 15, 9{17.Navarro, G. 1999. Searching in metric spaces by spatial approximation. In Proc. StringProcessing and Information Retrieval (SPIRE'99) (1999), pp. 141{148. IEEE CS Press.Nene, S. and Nayar, S. 1997. A simple algorithm for nearest neighbor search in highdimensions. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 9, 989{1003.Nievergelt, J. and Hinterberger, H. 1984. The grid �le: an adaptable, symmetric mul-tikey �le structure. ACM Trans. on Database Systems 9, 1, 38{71.Nolteimer, H. 1989. Voronoi trees and applications. In Proc. International Workshop onDiscrete Algorithms and Complexity (Fukuoka Recent Hotel, Fukuoka, Japan, 1989), pp.69{74.Nolteimer, H., Verbarg, K., and Zirkelbach, C. 1992. Monotonous Bisector� Trees {a tool for e�cient partitioning of complex schenes of geometric objects. In Data Structuresand E�cient Algorithms, LNCS 594 (1992), pp. 186{203. Springer-Verlag.Prabhakar, S., Agrawal, D., and Abbadi, A. E. 1998. E�cient disk allocation for fastsimilarity searching. In Proc. ACM SPAA'98 (Puerto Vallarta, Mexico, 1998).Roussopoulos, N., Kelley, S., and Vincent, F. 1995. Nearest neighbor queries. In Proc.ACM SIGMOD'95 (1995), pp. 71{79.Salton, G. and McGill, M. 1983. Introduction to Modern Information Retrieval.McGraw-Hill.Samet, H. 1984. The quadtree and related hierarchical data structures. ACM ComputingSurveys 16, 2, 187{260.Sankoff, D. and Kruskal, J. Eds. 1983. Time Warps, String Edits, and Macromolecules:the Theory and Practice of Sequence Comparison. Addison-Wesley.Sasha, D. and Wang, T. 1990. New techniques for best-match retrieval. ACM Trans. onInformation Systems 8, 2, 140{158.Shapiro, M. 1977. The choice of reference points in best-match �le searching. Comm. ofthe ACM 20, 5, 339{343.Sutton, R. and Barto, A. 1998. Reinforcement Learning : an Introduction. MIT Press.Uhlmann, J. 1991a. Implementing metric trees to satisfy general proximity/similarityqueries. Manuscript.Uhlmann, J. 1991b. Satisfying general proximity/similarity queries with metric trees. In-formation Processing Letters 40, 175{179.Verbarg, K. 1995. The C-Ttree: a dynamically balanced spatial index. ComputingSuppl. 10, 323{340.Vidal, E. 1986. An algorithm for �nding nearest neighbors in (approximately) constantaverage time. Pattern Recognition Letters 4, 145{157.Waterman, M. 1995. Introduction to Computational Biology. Chapman and Hall.



58 � E. Ch�avez et al.White, D. and Jain, R. 1996. Algorithms and strategies for similarity retrieval. TechnicalReport VCL-96-101 (July), Visual Computing Laboratory, University of California, LaJolla, California.Yao, A. 1990. Computational Geometry, Chapter 7, pp. 345{380. Elsevier Science. J. VanLeeuwen, editor.Yianilos, P. 1993. Data structures and algorithms for nearest neighbor search in generalmetric spaces. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms (SODA'93)(1993), pp. 311{321.Yianilos, P. 1999. Excluded middle vantage point forests for nearest neighbor search. InDIMACS Implementation Challenge, ALENEX'99 (Baltimore, MD, 1999).Yianilos, P. 2000. Locally lifting the curse of dimensionality for nearest neighbor search. InProc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA'00) (2000). To appear.Yoshitaka, A. and Ichikawa, T. 1999. A survey on content-based retrieval for multimediadatabases. IEEE Trans. on Knowledge and Data Engineering 11, 1, 81{93.


