
UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

AUTO-́INDICE DE TEXTO BASADO EN LZ77

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS,
MENCIÓN COMPUTACIÓN

SEBASTIÁN ANDRÉS KREFT CARREÑO

PROFESOR GUÍA:
GONZALO NAVARRO BADINO

MIEMBROS DE LA COMISIÓN:
DIEGO ARROYUELO BILLIARDI

JÉRÉMY BARBAY
NIEVES BRISABOA

Este trabajo ha sido financiado en parte por la Beca Conicyt de Maǵıster
Nacional y por el Instituto Milenio de Dinámica Celular y Biotecnoloǵıa.

SANTIAGO DE CHILE
AGOSTO 2010

Resumen
Los dominios como bioinformática, sistemas de versionamiento de código, sistemas de
edición colaborativos (wikis), y otros, producen grandes colecciones de texto que son
sumamente repetitivas. Esto es, existen pocas diferencias entre los elementos de la
colección. Esto permite que la compresibilidad de la colección sea extremadamente
alta. Por ejemplo, una colección con versiones de un mismo art́ıculo de Wikipedia
puede ser comprimida a un 0.1% de su espacio original, utilizando el esquema de
compresión Lempel-Ziv de 1977 (LZ77).

Muchas de estas colecciones repetitivas contienen grandes volúmenes de texto. Es
por eso que se requiere un método que permita almacenarlas eficientemente y a la vez
operar sobre ellas. Las operaciones más comunes son extraer porciones aleatorias de
la colección y encontrar todas las ocurrencias de un patrón dentro de la colección.

Un auto-́ındice es una estructura que almacena un texto en forma comprimida y
permite encontrar eficientemente las ocurrencias de un patrón. Adicionalmente los
auto-́ındices permiten extraer cualquier porción de la colección. Uno de los objetivos
de estos ı́ndices es que puedan ser almacenados en memoria principal. Esta carac-
teŕıstica es sumamente importante ya que el disco puede llegar a ser un millón de
veces más lento que la memoria principal.

La mayoŕıa de los auto-́ındices existentes están basados en un esquema de com-
presión que predice los śımbolos siguientes en base a los k śımbolos anteriores. Este
esquema, sin embargo, no funciona con textos repetitivos, ya que no es capaz de
reconocer elementos repetidos en la colección. Un esquema que śı captura las repeti-
ciones es el LZ77, pero tiene el problema de no poder acceder aleatoriamente el texto.

En este trabajo se presenta un esquema para extraer substrings de un texto com-
primido con un esquema Lempel-Ziv. Adicionalmente se presenta una variante de
LZ77, LZ-End, que permite extraer el texto eficientemente usando espacio cercano al
de LZ77. LZ77 extrae del orden de 1 millón de caracteres por segundo, mientras que
LZ-End extrae más del doble.

Nuestro resultado más importante es el primer auto-́ındice orientado a textos
repetitivos basado en LZ77/LZ-End que supera al estado del arte (el auto-́ındice
RLCSA). La compresión de nuestros ı́ndices llega a ser dos veces mejor en ADN y
colecciones de Wikipedia que la del RLCSA. Cabe destacar que nuestro ı́ndice se
construye en 35% del tiempo requerido por el RLCSA, usando el 60% de espacio de
construcción. La búsqueda de patrones cortos es más rápida que en el RLCSA, y para
patrones largos la relación entre espacio y tiempo es favorable a nuestros ı́ndices.

Finalmente, se presenta también una colección de textos repetitivos provenientes
de diversos dominios. Esta colección está disponible públicamente con el objetivo que
se pueda convertir en un referente en experimentación.

UNIVERSITY OF CHILE

FACULTY OF PHYSICS AND MATHEMATICS

DEPARTMENT OF COMPUTER SCIENCE

SELF-INDEX BASED ON LZ77

SUBMITTED TO THE UNIVERSITY OF CHILE IN FULFILLMENT
OF THE THESIS REQUIREMENT TO OBTAIN THE DEGREE OF

MSC. IN COMPUTER SCIENCE

SEBASTIAN KREFT

ADVISOR:
GONZALO NAVARRO

COMMITTEE:
DIEGO ARROYUELO

JÉRÉMY BARBAY
NIEVES BRISABOA

This work was partially funded by Conicyt’s Master Scholarship and by
the Millennium Institute for Cell Dynamics and Biotechnology (ICDB).

SANTIAGO - CHILE
AUGUST 2010

Abstract
Domains like bioinformatics, version control systems, collaborative editing systems
(wiki), and others, are producing huge data collections that are very repetitive. That
is, there are few differences between the elements of the collection. This fact makes
the compressibility of the collection extremely high. For example, a collection with
all different versions of a Wikipedia article can be compressed up to the 0.1% of its
original space, using the Lempel-Ziv 1977 (LZ77) compression scheme.

Many of these repetitive collections handle huge amounts of text data. For that
reason, we require a method to store them efficiently, while providing the ability to
operate on them. The most common operations are the extraction of random portions
of the collection and the search for all the occurrences of a given pattern inside the
whole collection.

A self-index is a data structure that stores a text in compressed form and allows
to find the occurrences of a pattern efficiently. On the other hand, self-indexes can
extract any substring of the collection, hence they are able to replace the original
text. One of the main goals when using these indexes is to store them within main
memory. This characteristic is very important, as the disk may be 1 million times
slower than main memory.

Most current self-indexes are based on a compression scheme that predicts the
following symbol based on the previous k symbols. However, this scheme is not well
suited for repetitive texts as it does not capture long-range repetitions. The LZ77
compression scheme does capture such repetitions, but it is not able to access the
text at random.

In this thesis we present a scheme for random text extraction from text compressed
with a Lempel-Ziv parsing. Additionally, we present a variant of LZ77, called LZ-
End, that efficiently extracts text using space close to that of LZ77. LZ77 extracts
around 1 million characters per second, while LZ-End extracts over 2 million.

The main contribution of this thesis is the first self-index based on LZ77/LZ-End
and oriented to repetitive texts, which outperforms the state of the art (the RLCSA
self-index) in many aspects. The compression of our indexes is better than that of
RLCSA, being two times better for DNA and for Wikipedia articles. Our index is
built using just 60% of the space required by the RLCSA and within 35% of the time.
Searching for short patterns is faster than on the RLCSA, and for longer patterns the
space/time trade-off is in favor of our indexes.

Finally, we present a corpus of repetitive texts, coming from several application
domains. We aim at providing a standard set of texts for research and experimenta-
tion, hence this corpus is publicly available.

Contents

1 Introduction 1
1.1 Contributions of the Thesis . 2
1.2 Outline of the Thesis . 3

2 Basic Concepts 5
2.1 Strings . 5
2.2 Search Problems . 6
2.3 Entropy . 6
2.4 Encodings . 8

2.4.1 Directly Addressable Codes 9
2.5 Bitmaps . 10

2.5.1 Practical Dense Bitmaps . 12
2.5.2 Practical Sparse Bitmaps . 12

2.6 Wavelet Trees . 13
2.6.1 Range Search . 15

2.7 Permutations . 19
2.8 Tree Representations . 20
2.9 Tries . 22
2.10 Suffix Trees . 23
2.11 Suffix Arrays . 25
2.12 Backward Search . 26
2.13 Lempel-Ziv Parsings and Repetitions 28
2.14 Self-Indexes . 30

2.14.1 Run-Length Compressed Suffix Arrays (RLCSAs) 30
2.14.2 Indexes based on sparse suffix arrays 31
2.14.3 LZ78-based Self-Indexes . 32
2.14.4 Straight Line Programs (SLPs) 33

iii

CONTENTS CONTENTS

3 A Repetitive Corpus Testbed 35
3.1 Artificial Texts . 35

3.1.1 Fibonacci Sequence (Fn) . 35
3.1.2 Thue-Morse Sequence (Tn) . 36
3.1.3 Run-Rich String Sequence (Rn) 36

3.2 Pseudo-Real Texts . 37
3.3 Real Texts . 38

3.3.1 DNA . 38
3.3.2 Wikipedia Articles . 39
3.3.3 Source Code . 39
3.3.4 Documents . 39

3.4 Statistics . 39
3.4.1 Artificial Texts . 40
3.4.2 Pseudo-Real Texts . 42
3.4.3 Real Texts . 46

3.5 Discussion . 48

4 LZ-End: A New Lempel-Ziv Parsing 49
4.1 LZ77 on Repetitive Texts . 49
4.2 LZ-End . 50

4.2.1 Encoding . 51
4.2.2 Extraction Algorithm . 52

4.3 Compression Performance . 54
4.3.1 Coarse Optimality . 54
4.3.2 Performance on Repetitive Texts 56

4.4 Construction Algorithm . 57
4.5 Experimental Results . 60

4.5.1 Compression Ratio . 61
4.5.2 Parsing Time . 63
4.5.3 Text Extraction Speed . 64

5 An LZ77-Based Self-Index 67
5.1 Basic Definitions . 67
5.2 Primary Occurrences . 68

5.2.1 Right Part of the Pattern . 68
5.2.2 Left Part of the Pattern . 70
5.2.3 Connecting Both Parts . 71
5.2.4 Special Primary Occurrences 73
5.2.5 Converting Phrase Ids to Text Positions 73
5.2.6 Implementation Considerations 74

iv

CONTENTS CONTENTS

5.3 Secondary Occurrences . 75
5.3.1 Basic Idea . 75
5.3.2 Complete Solution . 77
5.3.3 Prev-Less Data Structure . 78

5.4 Query Time . 79
5.5 Construction . 81
5.6 Summary . 85

6 Experimental Evaluation 87
6.1 Experimental Setup . 87
6.2 Analysis of the Results . 101

7 Conclusions 104

Bibliography 107

Appendix A Experimental Results 115

v

List of Figures

2.1 Example of Directly Addressable Codes structure 10
2.2 Example of rank and select . 11
2.3 Example of a wavelet tree . 14
2.4 Example of access in a wavelet tree 15
2.5 Example of rank in a wavelet tree . 16
2.6 Example of select in a wavelet tree 16
2.7 Example of 2-dimensional range query 17
2.8 Example of counting the occurrences in a 2-dimensional range query

using a wavelet tree . 19
2.9 Example of DFUDS representation 21
2.10 Example of a trie . 23
2.11 Example of a PATRICIA trie . 23
2.12 The suffix tree for the text ‘alabar a la alabarda$’ 24
2.13 The suffix array for the text ‘alabar a la alabarda$’ 25
2.14 The BWT of the text ‘alabar a la alabarda$’ 27
2.15 Backward Search algorithm (BWS) 28

4.1 LZ-End extraction algorithm . 52
4.2 LZ-End construction algorithm . 57
4.3 Example of LZ-End construction algorithm 58
4.4 Compression ratio for different compressors 63
4.5 LZ77 and LZ-End parsing times . 64
4.6 Total text traversed during LZ-End construction algorithm. 64
4.7 LZ extraction speed vs extracted length 65
4.8 LZ extraction speed vs parsing size 66

5.1 The suffix trie for the string ‘alabar a la alabarda$’ 69
5.2 The reverse trie for the string ‘alabar a la alabarda$’ 71
5.3 The range structure for the string ‘alabar a la alabarda$’ 72
5.4 The bitmap B of phrases for the string ‘alabar a la alabarda’ . . 74

vi

LIST OF FIGURES LIST OF FIGURES

5.5 Marking sources on bitmap BS . 75
5.6 Permutation connecting bitmap of phrases and bitmap of sources . . 76
5.7 Searching for secondary occurrences from T [start, start+ len] (prelim-

inary version) . 76
5.8 The depth of the sources for the string ‘alabar a la alabarda$’ . . 78
5.9 PrevLess algorithm . 79
5.10 Searching for secondary occurrences from T [start, start+ len] 80

6.1 Construction time and space for the indexes 91
6.2 T29 results (1) . 95
6.3 T29 results (2) . 96
6.4 DNA 0.1% 1 results (1) . 97
6.5 DNA 0.1% 1 results (2) . 98
6.6 Kernel results (1) . 99
6.7 Kernel results (2) . 100

A.1 F41 results (1) . 115
A.2 F41 results (2) . 116
A.3 R13 results (1) . 117
A.4 R13 results (2) . 118
A.5 Proteins 0.1% 1 results (1) . 119
A.6 Proteins 0.1% 1 results (2) . 120
A.7 English 0.1% 2 results (1) . 121
A.8 English 0.1% 2 results (2) . 122
A.9 Sources 0.1% 2 results (1) . 123
A.10 Sources 0.1% 2 results (2) . 124
A.11 Para results (1) . 125
A.12 Para results (2) . 126
A.13 Cere results (1) . 127
A.14 Cere results (2) . 128
A.15 Influenza results (1) . 129
A.16 Influenza results (2) . 130
A.17 Escherichia Coli results (1) . 131
A.18 Escherichia Coli results (2) . 132
A.19 Coreutils results (1) . 133
A.20 Coreutils results (2) . 134
A.21 Einstein (en) results (1) . 135
A.22 Einstein (en) results (2) . 136
A.23 Einstein (de) results (1) . 137
A.24 Einstein (de) results (2) . 138

vii

LIST OF FIGURES LIST OF FIGURES

A.25 World Leaders results (1) . 139
A.26 World Leaders results (2) . 140

viii

List of Tables

2.1 Example of different coders . 9
2.2 Complexities for binary rank and select 11

3.1 Alphabet statistics for Artificial Collection 41
3.2 Compression statistics for Artificial Collection 41
3.3 Empirical entropy statistics for Artificial Collection 41
3.4 Alphabet statistics for Pseudo-Real Collection (Scheme 1) 42
3.5 Alphabet statistics for Pseudo-Real Collection (Scheme 2) 42
3.6 Compression statistics for Pseudo-Real Collection (Scheme 1) 43
3.7 Compression statistics for Pseudo-Real Collection (Scheme 2) 43
3.8 Empirical entropy statistics for Pseudo-Real Collection (Scheme 1) . . 44
3.9 Empirical entropy statistics for Pseudo-Real Collection (Scheme 2) . . 45
3.10 Alphabet statistics for Real Collection 46
3.11 Compression statistics for Real Collection 46
3.12 Empirical entropy statistics for Real Collection 47

4.1 Compression ratio of different LZ-like parsings 62
4.2 Least squares fitting for extraction time 65

5.1 Summary table of LZ77-Index . 86
5.2 Summary table of parameters of LZ77-Index 86

6.1 Compression ratio of different self-indexes 92
6.2 D value and mean depth for the LZ indexes 92
6.3 H value and mean extraction cost for the LZ indexes 93
6.4 Detailed space of LZ77 index structures 93
6.5 Detailed space of LZ-End index structures 94

ix

Chapter 1

Introduction

In recent times we have seen a rise in the amount of digital information. This may
be attributable to the drop of the data acquisition and storage costs. Most of this
information is text, that is, symbol sequences representing natural language, music,
source code, time series, biological sequences like DNA and proteins, and others.

Despite that the examples presented above seem very different, there is an opera-
tion that arises in most applications handling those types of sequences. This operation
is called text search and consists in finding all positions on the text where a given
pattern appears. This operation serves as a basis for building more complex and
meaningful operations, like finding the most common words, or finding approximate
patterns.

Text search can be solved by two different approaches. The first scans the text
sequentially looking for matches of the pattern. Classical examples of this type of
search are Knuth-Morris-Pratt [KMP77] and Boyer-Moore [BM77] algorithms. The
second way of searching is by querying an index of the text, a data structure we
have to build before performing the queries. This structure allows us to find the
occurrences of a given pattern without scanning the whole text.

To index the text we need enough space in order to store the index, and most
importantly we need to be able to access it efficiently. Nowadays, storage is not a
difficult problem, however efficient access is. In the last years the speed of hard-
drives has not experienced significant improvements. Hard-drive access times are
around 10ms = 107ns, while main memory access (RAM) is around 10ns; in other
words, accessing secondary storage is 1 million times slower than accessing main
memory. This problem is still present despite the appearance of solid state drives
(SSD), which have access times around 0.1ms = 105ns, being 10 thousand times

1

1.1 Contributions of the Thesis Chapter 1 Introduction

slower than main memory. For this reason, indexes using space proportional to the
compressed text have been proposed, aiming at storing them in main memory and
handling the data directly in compressed form, rather than decompressing before using
it [ZdMNBY00, NM07]. There are some indexes that, within that compressed space,
are able to replace the original text; these are called self-indexes and are obviously
preferable as one can discard the original text.

A particular kind of texts not yet fully benefited by current self-indexes are repet-
itive ones. These arise from domains that handle huge collections of very similar
entries or documents. For example, in a DNA collection of human genomes of dif-
ferent individuals, the similarity between any two DNA sequences would be close to
99.9% [B+08]. Source code collections are also very repetitive, as the changes be-
tween one version and the next are not substantial, except in the case of a major
release. Versioning systems, like wikis, also generate very repetitive collections be-
cause each revision is very similar to the previous one. The main problem is that
existing self-indexes do not sufficiently exploit these repetitions, being the self-index
orders of magnitude larger than the space achievable with a compression scheme that
does exploit the repetitions, like LZ77 [ZL77]. LZ77 parses the text into phrases so
that each phrase, except its last letter, appears previously in the text (these previous
occurrences are called sources)). It compresses by essentially replacing each phrase by
a backward pointer. A recent work, aiming at adapting current self-indexes to handle
large DNA databases of the same species [SVMN08] found that LZ77 compression
was still much superior to capture this repetitiveness, yet it was inadequate as a for-
mat for compressed storage because of its inability to retrieve individual sequences
from the collection. Another work [CN09, CFMPN10] shows that grammar-based
compression can allow extraction of substrings while capturing such repetitions, yet
LZ77 compression is superior to grammar compression [Ryt03, CLL+05].

For these reasons in this thesis we focus on the definition of a self-index oriented to
repetitive texts and based on LZ77-like compression schemes. Our main contributions
are two: (1) a scheme for random text extraction in LZ77-like parsing, as well as a
space-competitive variant, called LZ-End, achieving faster text extraction; (2) a self-
index based on LZ77/LZ-End that achieves a better space/time trade-off than the
best self-indexes oriented to repetitive texts.

1.1 Contributions of the Thesis

Chapter 3 : We create a public corpus of highly repetitive texts. The corpus
is composed of texts coming from different real domains like biology, source

2

1.2 Outline of the Thesis Chapter 1 Introduction

code repositories, document repositories, and others, as well as artificial texts
having interesting combinatorial properties. This corpus is available at http:

//pizzachili.dcc.uchile.cl/repcorpus.html.

Chapter 4 : The worst-case extraction time of a substring of length m in an LZ77
parsing is O(mH), where H is the maximum number of times a character is
transitively copied in the parsing. We present an alternative parsing, called
LZ-End, that performs very close to LZ77 in terms of compression but permits
faster text extraction, O(m + H) worst-case time. This work was published in
the 20th Data Compression Conference [KN10].

Chapter 5 : We introduce a new self-index oriented to repetitive texts and based
on the LZ77, LZ-End, and similar parsings. Let n′ be the number of phrases
of the parsing (for highly repetitive texts, n′ will be a small value). This index
uses in theory 2n′ log n + n′ log n′ + n′ logD + O(n′ log σ) + o(n) bits of space,
where σ is the size of the alphabet and D is upper-bounded by the maximum
number of sources covering each other. It finds the occ occurrences of a pattern
of length m in time O(m2H + m log n′ + occ · D log n′). We present several
practical variants that achieve better results, both in time and space, than the
Run-length Compressed Suffix Array (RLCSA) [SVMN08] and the Grammar-
based Self-index [CN09, CFMPN10], the state-of-the art self-indexes oriented
to repetitive texts.

1.2 Outline of the Thesis

Chapter 2 describes basic concepts and related work relevant to this thesis.

Chapter 3 presents a text corpus intended for repetitive text.

Chapter 4 explains the Lempel-Ziv (LZ) parsing and some of its properties. It
also introduces a new LZ variant called LZ-End, able to extract an arbitrary
substring in constant time per extracted symbol in some cases.

Chapter 5 presents a new self-index based on LZ77-like parsings. It covers the
theoretical proposal and the considerations we made when implementing the
index.

Chapter 6 shows the experimental results of our proposed index, comparing it with
the state-of-the-art self-indexes for repetitive texts.

3

http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html

1.2 Outline of the Thesis Chapter 1 Introduction

Chapter 7 presents our conclusions and gives some lines of research that can be
further investigated.

4

Chapter 2

Basic Concepts

In this chapter we introduce the basic concepts and notation used through this thesis.
Then, we present the data structures used to build our index. Finally, we present two
self-indexes oriented to repetitive texts. All logarithms in this thesis will be in base
2 and we will assume that 0 log 0 = 0.

2.1 Strings

Definition 2.1. A string T is a sequence of characters drawn from an alphabet Σ.
The alphabet is an ordered and finite set of size |Σ| = σ. The i-th character of a
string is represented as T [i]. The symbol ε represents the empty string of length 0.

Definition 2.2. Given a string T , and positions i and j, the substring of T starting at
i and ending at j is defined as T [i, j] = T [i]T [i+ 1] . . . T [j]. If i > j, then T [i, j] = ε.

Definition 2.3. Let T be a string of length n. The prefixes of T are the strings
T [1, j],∀ 0 ≤ j ≤ n and its suffixes are the strings T [i, n], ∀ 1 ≤ i ≤ n+ 1.

Definition 2.4. Let T1, T2 be strings of length n1 and n2, respectively. We define
the concatenation of these strings as T1T2 = T1[1] . . . T1[n1]T2[1] . . . T2[n2].

Definition 2.5. Given a string T of length n, the reverse of T is T rev = T [n]T [n −
1] . . . T [2]T [1].

Definition 2.6. The lexicographic order (<) between strings is defined as follows:
Let a, b be characters in Σ and X, Y be strings over Σ.

ε < X, ∀X 6= ε

aX < bY if a < b ∨ (a = b ∧X < Y)

5

2.2 Search Problems Chapter 2 Basic Concepts

2.2 Search Problems

Definition 2.7. Given a string T and a pattern P (a string of length m) both over an
alphabet Σ, the occurrence positions of P in T are defined as O = {1+|X|, ∃X, Y, T =
XPY }.

Definition 2.8. Given a string T and a pattern P , the following search problems are
of interest:

• exists(P, T) returns true iff P is in T , i.e., returns true iff O 6= ∅.

• count(P, T) counts the number of occurrences of P in T , i.e., returns occ = |O|.

• locate(P, T) finds the occurrences of P in T , i.e., returns the set O in some
order.

• extract(T, l, r) extracts the text substring T [l, r].

Remark 2.9. Note that exists and count can be answered after performing a locate
query.

2.3 Entropy

Definition 2.10. Let T be a string of length n. The zero-th order empirical entropy
is defined as

H0(T) = −
∑
c∈Σ

nc
n

log
nc
n

where nc is the number of times the character c appears in T , that is, nc/n is the
empirical probability of appearance of character c.

It is worth noticing that the zero-th order entropy is invariant to permutations in
the order of the text characters. The value nH0(T) is the least number of bits needed
to represent T using a compressor that gives each character a fixed encoding.

Definition 2.11. Let T be a string of length n. The k-th order empirical entropy
[Man01] is defined as

Hk(T) =
∑
S∈Σk

∣∣T S∣∣
n

H0

(
T S
)

where T S is the sequence composed of all characters preceded by string S in T .

6

2.3 Entropy Chapter 2 Basic Concepts

The value nHk(T) is the least number of bits needed to represent T using a
compressor that encodes each character taking into account the k preceding characters
in T . This value assumes the first k characters are encoded for free, thus it gives a
relevant lower bound only when n� k.

Hk is a decreasing function in k, that is,

0 ≤ Hk(T) ≤ Hk−1(T) ≤ . . . ≤ H1(T) ≤ H0(T) ≤ log σ.

The following lemma yields the ground to show that the empirical entropy Hk is
not a good lower-bound measure for the compressibility of repetitive texts.

Lemma 2.12. Let T be a string of length n. For any k ≤ n it holds Hk(TT) ≥ Hk(T).

Proof. As new relevant contexts may have arisen in the concatenation TT , we denote
by C(T, k) the contexts of length k present in T , and C(TT, k) the contexts of TT .
We have that C(T, k) ⊆ C(TT, k). The number of new contexts in TT is at most k.
For each S ∈ C(T, k), we have (TT)S = T SAST S, for some AS such that |AS| ≤ k.
Then,

Hk(TT) =
1

|TT |
∑

S∈C(TT,k)

|(TT)S|H0((TT)S)

≥ 1

2|T |
∑

S∈C(T,k)

|T SAST S|H0(T SAST S)

≥ 1

2|T |
∑

S∈C(T,k)

|T ST S|H0(T ST S)

=
1

|T |
∑

S∈C(T,k)

|T S|H0(T S)

= Hk(T).

In the first step we used C(T, k) ⊆ C(TT, k); in the second we used |T |H0(T) ≤
|TA|H0(TA), for T = T ST S and A = AS (since |T SAST S|H0(T SAST S) =
|T ST SAS|H0(T ST SAS)); and in the third we used H0(TT) = H0(T). The second

7

2.4 Encodings Chapter 2 Basic Concepts

property holds because

|TA|H0(TA) =
∑
c∈Σ

(nTc + nAc) log
nT + nA

nTc + nAc

≥ nT
∑
c∈Σ

nTc
nT

log
nT + nA

nTc + nAc

≥ nT
∑
c∈Σ

nTc
nT

log
nT

nTc

= |T |H0(T)

where nXc is the number of occurrences of character c in string X, and nX = |X| for
X = T orA. The last line is justified by the Gibbs inequality [Ham86].

It follows that |TT |Hk(TT) ≥ 2|T |Hk(T), that is, to encode TT this model uses
at least twice the space of the one used to encode T . An LZ77 encoding would need
just one more phrase, as seen later.

2.4 Encodings

Most data structures need to represent symbols and numbers. Classic data structures
use a fixed amount of space to store them, for example 1 byte for characters and 4
bytes for integers. Instead, compressed data structures aim to use the minimum
possible space, thus they represent symbols using variable-length prefix-free codes or
just using a fixed amount b of bits, where b is as small as possible. Table 2.1 shows
different encodings for the integers 1,. . . ,9, which we describe next.

Unary Codes This representation is the simplest and serves as a basis for other
coders. It represents a positive n as 1n−10, thus it uses exactly n bits.

Gamma Codes It represents a positive n by concatenating the length of its binary
representation in unary and the binary representation of the symbol, omitting
the most significant bit. The space is 2blog nc + 1, blog nc + 1 for the length
and blog nc for the binary representation.

Delta Codes This is an extension of γ-codes that works better on larger numbers.
It represents the length of the binary representation of n using γ-codes and then
n in binary without its most significant bit, thus using {2blog(blog nc + 1)c +
+1}+ blog nc bits.

8

2.4 Encodings Chapter 2 Basic Concepts

Symbol Unary Code γ-Code δ-Code Binary(b = 4) Vbyte(b = 2)

1 0 0 0 0001 001
2 10 100 1000 0010 010
3 110 101 1001 0011 011
4 1110 11000 10100 0100 001100
5 11110 11001 10101 0101 001101
6 111110 11010 10110 0110 001110
7 1111110 11011 10111 0111 001111
8 11111110 1110000 11000000 1000 001100100
9 111111110 1110001 110000001 1001 001100101

Table 2.1: Example of different coders

Vbyte Coding [WZ99] It splits the blog(n + 1)c bits needed to represent n into
blocks of b bits and stores each block in a chunk of b + 1 bits. The highest bit
is 0 in the chunk holding the most significant bits of n, and 1 in the rest of
the chunks. For clarity we write the chunks from most to least significant, just
like the binary representation of n. For example, if n = 25 = 11001 and b = 3,
then we need two chunks and the representation is 0011 · 1001. Compared to
an optimal encoding of blog(n+ 1)c bits, this code loses one bit per b bits of n,
plus possibly an almost empty final chunk. Even when the best choice for b is
used, the total space achieved is still worse than δ-encoding’s performance. In
exchange, Vbyte codes are very fast to decode.

2.4.1 Directly Addressable Codes

In many cases we need to store a set of numbers using the least possible space,
yet providing fast random access to each element. Variable-length codes complicate
this task, as they require storing, in addition, pointers to sampled positions of the
encoded sequence.

A simple solution that shows good performance in practice is the so-called Directly
Addressable Codes (DAC) [BLN09], a variant of Vbytes [WZ99]. They start with
a sequence C = C1, . . . , Cn of n integers. Then they compute the Vbyte encoding
of each number. The least significant blocks are stored contiguously in an array A1,
and the highest bits of the least significant chunks are stored in a bitmap B1. The
remaining chunks are organized in the same way in arrays Ai and bitmaps Bi, storing
contiguously the i-th chunks of the numbers that have them. Note that arrays Ai

9

2.5 Bitmaps Chapter 2 Basic Concepts

store contiguously the bits (i − 1) · b + 1, . . . , i · b and bitmaps Bi store whether a
number has further chunks or not, hence the name Reordered Vbytes.

Figure 2.1 shows an example of the resulting structure. The first element is
represented with two blocks, thus, A1[0] = C1,1, A2[0] = C1,2, B1[0] = 1 and B2[0] = 0.

C C1,1 C1,2 C2,1 C3,1 C3,2 C3,3 C5,1 . . .C4,1 C4,2

1 0 01 1 . . .

. . .010

0 . . .

A1

B1

A2

B2

A3

B3

C1,1 C2,1 C3,1 C4,1 . . .

. . .

. . .

C1,2 C3,2 C4,2

C3,3

C5,1

Figure 2.1: Example of Directly Addressable Codes structure

To access the element at position i = i1 we check whether B1[i1] is set. If it is
not set, this is the last chunk and we already have the value C[i] = A1[i1], otherwise
we have to fetch the following chunks. In that case, we recompute the position as
i2 = rank1(B1, i1), where rank1(B1, i1) is the number of ones up to position i1 on
bitmap B1 (see Section 2.5 for further details). If B2[i2] is not set we are done with
C[i] = A1[i1] + A2[i2] · 2b, otherwise we set i3 = rank1(B2, i2) and continue in the
following levels. Accessing a random element takes O(log(M)/b) worst case time,
where M = maxCi. However, the access time is lower for elements with shorter
codewords, which are usually the most frequent ones.

We will use the implementation of Susana Ladra1 (available by personal request)
in this thesis.

2.5 Bitmaps

Let B a binary sequence over Σ = {0, 1} (a bitmap) of length n and assume it has
m ones. We are interested in solving the following operations:

1Universidade da Coruña, Spain. sladra@udc.es

10

2.5 Bitmaps Chapter 2 Basic Concepts

01100111001110010101010101011110
105 20 2515 30

Figure 2.2: Example of rank and select

Variant Size Rank Select
Clark n+ o(n) O(1) O(1)
RRR nH0(B) + o(n) O(1) O(1)
esp nH0(B) + o(n) O(1) O(1)
recrank 1.44m log n

m
+m+ o(n) O

(
log n

m

)
O
(
log n

m

)
vcode m log(n/ log2 n) + o(n) O(log2 n) O(log n)

sdarray m log n
m

+ 2m+ o(m) O
(

log n
m

+ log4m
logn

)
O
(

log4m
logn

)
Table 2.2: Complexities for binary rank and select

• rankb(B, i): How many b’s are up to position i (included).

• selectb(B, i): The position of the i-th b bit.

Example 2.13. Figure 2.2 shows an example of the operations rank and select. We
show the values of both rank1(B, 20) = 11 and rank0(B, 20) = 9. Note that these
two values add up to 20, since the former returns the number of ones up to position
20, and the latter the number of zeroes. Also, access simply returns the bit stored
at that position, in our case at position 20 there is a 1. Finally, we show the value
of select1(B, 11) = 20, which was expected since access(B, 20) = 1. The value of
select0(B, 9) is 19.

Several solutions have been proposed to address this problem. The first solution
able to solve both kinds of queries in constant time uses n+O(n log logn

logn
) bits of space

[Cla96]. Raman, Raman and Rao’s solution (RRR) [RRR02] achieves nH0(B) +
O(n log logn

logn
) bits and answer the queries in constant time. Okanohara and Sadakane

[OS07] proposed several alternatives tailored to the case of small m (sparse bitmaps):
esp, recrank, vcode, and sdarray. Table 2.2 shows the time and space complexities
of these solutions. Note that the reported spaces include the representation of the
bitmap.

11

2.5 Bitmaps Chapter 2 Basic Concepts

2.5.1 Practical Dense Bitmaps

The extra o(n) space of theoretical solutions [Cla96] is large in practice. González
et al. [GGMN05] proposed a solution with good results in practice and small space
overhead (up to 5%). This implementation is very simple, yet its practical perfor-
mance is better than classical solutions. They store the plain bitmap in an array B
and have a table Rs where they store rank1(B, i · s), where s = 32k, where k is a
parameter for the frequency of the sampling of the bit vector. They use a function
called popcount that counts the number of 1 bits in a word (4 bytes). This operation
can be solved bit by bit, but it is easy to improve it, using either bit parallelism or
precomputed tables, requiring thus just a few operations. They solve the operations
as follows (rank0 and select0 are obvious variations):

• rank1(B, i): They start in the last entry of Rs that precedes i (Rs[bi/sc]),
and then sequentially scan the array B, popcounting consecutive words, until
reaching the desired position. The popcounting of the last word is done by first
setting all bits after position i to zero, which is done in constant time using a
mask. Thus the time is O(k).

• select1(B, i): They first binary search the Rs table for the last position p where
Rs[p] ≤ i. Then they scan B sequentially using popcount looking for the word
where the desired select position is. Finally they find the desired position in
the word by sequentially scanning the word bit by bit. Thus the time is
O(k + log n

k
).

We will use the implementation of Rodrigo González (available at http://code.
google.com/p/libcds) in this thesis.

2.5.2 Practical Sparse Bitmaps

When the bitmap is very sparse (i.e., the number of ones in the bitmap is very
low) one practical solution is to δ-encode the distances between consecutive ones.
Additionally we need to store absolute sample values select1(B, i · s) for a sampling
step s, plus pointers to the corresponding positions in the δ-encoded sequence. We
solve the operations as follows:

• select1(B, i) is solved within O(s) time by going to the last sampled position
preceding i and decoding the δ-encoded sequence from there.

12

http://code.google.com/p/libcds
http://code.google.com/p/libcds

2.6 Wavelet Trees Chapter 2 Basic Concepts

• rank1(B, i) is solved in time O(s+ log m
s

). First, we binary search the samples
looking for the last sampled position such that select1(B, ` · s) ≤ i. Start-
ing from that position we sequentially decode the bitmap and stop as soon as
select1(B, p) ≥ i.

• access(B, i) is solved in time O(s+ log m
s

) in a way similar to rank.

The space needed by the structure is W + n/s(blogmc + 1 + blogW c + 1), where
W is the number of bits needed to represent all the δ-codes. In the worst case
W = 2mblog(blog n

m
c+ 1)c+mblog n

m
c+m = m log n

m
+O(m log log n

m
).

This structure allows a space-time trade-off related to s and also has the property
that several operations cost O(1) after solving others. For example, select1(B, p) and
select1(B, p+ 1) cost O(1) after solving p← rank1(B, i).

2.6 Wavelet Trees

A wavelet tree [GGV03] is an elegant data structure that stores a sequence S of n
symbols from an alphabet Σ of size σ. This structure supports some basic queries
and is easily extensible to support others.

We split the alphabet into two halves L and R, so that the elements of L are
lexicographically smaller than those of R. Then, we create a bitmap B of size n
setting B[i] = 0 if the symbol at position i belongs to L and B[i] = 1 otherwise. This
bitmap is stored at the root of the tree. Afterward, we extract from S all symbols
belonging to L, generating sequence SL, and all symbols belonging to R, generating
sequence SR (these sequences are not stored). Finally, we recursively generate the
left subtree on SL and the right subtree on SR. We continue until we get a sequence
over a one-letter alphabet. Figure 2.3 shows the wavelet tree for the example text
alabar a la alabarda. Only the bitmaps (black color) are stored in the tree. The
labels of the tree show (gray color) the subsets L and R and the strings over the
bitmaps (gray color) show the conceptual subsequences SL and SR.

The resulting tree has σ leaves, height dlog σe, and n bits per level. Thus the space
occupancy is n log σ bits, plus o(n log σ) (more precisely, O(n log σ log logn

logn
)) additional

bits to support rank and select queries on the bitmaps.

In the following we explain how this structure supports the operations access,
rank and select on S. The last two operations are just a generalization for larger
alphabets of those defined in Section 2.5.

13

2.6 Wavelet Trees Chapter 2 Basic Concepts

_ _ _

_ _ _

_ _ _

Figure 2.3: Example of a wavelet tree for the text alabar a la alabarda

• Access: To retrieve the symbol S[i] we look at B[i] at the root. If it is a
0 we go to left subtree, otherwise to the right subtree. The new position is
i ← rank0(B, i) if we go to the left and i ← rank1(B, i) if we go to the right.
This procedure continues recursively until we reach a leaf. The bits read in the
path from the root to the leaf represent the symbol sought.

• Rank: To count how many c’s are up to position i we go to the left if c is in
L and otherwise to the right. The new position is i ← rank0(B, i) if we go to
the left and i← rank1(B, i) if we go to the right, where B is the bitmap of the
root. When we reach a leaf the answer is i.

• Select: To find the i-th symbol c we first go to the leaf corresponding to c and
then go upwards to the root. Let B the bitmap of the parent. If the current
node is a left child then the position at the parent is i← select0(B, i), otherwise
it is i← select1(B, i). When we reach the root the answer is the current i value.

The running time of these operations is O(log σ), since we use a bitmap supporting
constant-time rank, select and access.

Example 2.14. Figure 2.4 shows an example of how we retrieve the 11th symbol of
sequence S (access(S, 11) = a). First we access the bitmap of the root and see that at
position 11 there is a 0. Hence we descend to the left. Then using rank0(B, 11) = 8
we count how many zeroes are up to position 11. This value is our new position in

14

2.6 Wavelet Trees Chapter 2 Basic Concepts

_ _ _

_ _ _

_ _ _

Figure 2.4: Example of access in a wavelet tree

the next level. Then we continue the process until we reach a leaf; in that case the
symbol stored in that lead is the symbol sought, in our case an ‘a’.

Example 2.15. Figure 2.5 shows step by step how we compute rankl(S, 11) = 2.
Since symbol ‘l’ is mapped to a 1 we descend from the root to the right child. Using
rank1(B, 11) = 3 we count the number of ones up to that position. This is our new
position in the next level. Then we continue the process until we reach a leaf. The
value sought is the last value of rank, in our case 2.

Example 2.16. Figure 2.6 shows an example of how to select the second ‘b’ in
the sequence S (selectb(S, 2)). First we descend to the leaf representing symbol ‘b’.
Since that symbol was last mapped to a 1, we go to the parent and compute our new
position as select1(B, 2) = 12. In that level, ‘b’ was mapped to a 0, so we go to the
parent and the new position is select0(B, 12) = 16, and that is the value sought.

2.6.1 Range Search

A direct application of wavelet trees is to answer range search queries [MN07]. This
method is very similar to the idea of Chazelle [Cha88].

Definition 2.17. Given a subset R (|R| = t) of the discrete range [1, n] × [1, σ], a
range query returns the points p ∈ R belonging to a range [x1, x2]× [y1, y2].

15

2.6 Wavelet Trees Chapter 2 Basic Concepts

_ _ _

_ _ _

_ _ _

Figure 2.5: Example of rank in a wavelet tree

_ _ _

_ _ _

_ _ _

Figure 2.6: Example of select in a wavelet tree

16

2.6 Wavelet Trees Chapter 2 Basic Concepts

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

1

3

7

12

9

11

8

15

13

5

17

4

14

6

18

2

10

19
20
21

16

21 7 12 9 20 11 8 3 15 1 13 5 17 4 19 10 2 14 6 1816

Figure 2.7: Example of 2-dimensional range query

An extension of the wavelet tree supports range queries using n+ t log n+ o(n+
t log n) bits, counting the number of points within the range in time O(log n) and
reporting each occurrence in time O(log n). We will use a modified version of the
implementation of Gonzalo Navarro2.

We explain here a simplified version for the case in which there exists exactly
one point for each value of x. We order the points of R by their x coordinate and
create the sequence S[1, n], such that for each (x, y) ∈ R, S[x] = y. Then we build
the wavelet tree of S.

Example 2.18. Figure 2.7 shows a grid, with exactly one y value for each value of
x. The figure shows in yellow the range [17, 19]× [9, 18], containing two occurrences;
in red and yellow, the range [17, 19]× [1, 21], containing 3 occurrences; and in green
and yellow, the range [1, 21]× [9, 18], containing 10 occurrences.

2Check the LZ77-index source code (http://pizzachili.dcc.uchile.cl/indexes/
LZ77-index) for the updated version

17

http://pizzachili.dcc.uchile.cl/indexes/LZ77-index
http://pizzachili.dcc.uchile.cl/indexes/LZ77-index

2.6 Wavelet Trees Chapter 2 Basic Concepts

Projecting

A range in S represents a range along the x coordinate and the splits made by the
wavelet tree define ranges along the y coordinate. Every time we descend to a child of
a node we need to know where the range represented in that child is. The operation
of determining the range defined by a child, given the range of the parent, is called
projecting. Using rank we project a range downwards. Given a node with bitmap
B the left projection of [x, x′] is [1 + rank0(B, x − 1), rank0(B, x′)] and the right
projection is [1+rank1(B, x−1), rank1(B, x′)]. A range [y, y′] along the y coordinate
is projected to the left as [y, b(y + y′)/2c] and to the right as [b(y + y′)/2c+ 1, y′].

Counting

We start from the root with the one-dimensional ranges [x, x′] = [x1, x2] and [y, y′] =
[1, n] and project them in both subtrees. We do this recursively until:

1. [x, x′] = ∅;

2. [y, y′] ∩ [y1, y2] = ∅; or

3. [y, y′] ⊆ [y1, y2], in which case we add x′ − x+ 1 to the total.

As the interval [y1, y2] is covered by O(log n) maximal wavelet tree nodes, the total
time to count the occurrences is O(log n).

Example 2.19. Figure 2.8 shows the wavelet tree that represents the range of Figure
2.7. The figure represents how to count the occurrences in the range [17, 19]× [9, 18].
The figure shows in red how the range [17, 19] in the x coordinate is projected down-
wards. The nodes below the blue line are those whose y range is contained in the
range [9, 18]. Additionally, the nodes with a circle next to them are those in which
the counting process ends. The blue circle represents rule number 1 (see above), the
green one represents rule number 2 and finally rule number 3 is represented by the red
circle. In our case, at each node marked with red, we report one occurrence, yielding
a total of 2 occurrences.

Locating

To locate the actual points we start from each node in which we were counting. If
we want to know the x coordinate we go up using select and if we want to know the

18

2.7 Permutations Chapter 2 Basic Concepts

13

7 9 11 8 3 1 5 4 10 2 6

3 1 5 4 2 6

3 1 2 5 4 6

1 2 3

21

7 9 11 8 10

21 12 9 20 11 8 3 15 1 13 5 17 4 19 10 2 14 6 18167

1 00 1 0 0 0 1 0 1 1 1 1 1 10 0 0 0 01

21 12 20 15 13 17 16 19 14 18

1 1 1 1 10 0 0 0 0 0

0 0 01 1 1

1 0 0

0 1

1 1 0

5 4 6

1 0

4 5

0 0 0 0 01 1 1 1 1

0 00 1 1 0 01 1 0

13 14 17 1812 15 16 21 20 19

1 10 0 0

0

0 1

0 0 01

0 1

12 15 1614 21 2017 19 18

0 1 0 1 1

7 9 8 11 10

0 0 01 1

7 8 9 10 11

0 1

87

12 13 14 15 16 17 18 19 20 21

12 13 17 18

Figure 2.8: Example of counting the occurrences in a 2-dimensional range query using
a wavelet tree

y coordinate we go down using rank. This operation takes O(log n) for each point
located.

2.7 Permutations

A permutation is a bijection π : [1, n] → [1, n], and we are interested in computing
efficiently both π(i) and π−1(i) for any 1 ≤ i ≤ n. The permutation can be represented
in a plain array using n log n bits, by storing P = [π(1), . . . , π(n)]. This answers π(i)
in constant time. Solving π−1(i) can be done by sequentially scanning P for the
position j where π(j) = i. A more efficient solution [MRRR03] is based on the cycles
of a permutation. A cycle is a sequence i, π(i), π2(i), . . . , πk(i) such that πk+1(i) = i.
Every i belongs to exactly one cycle. Then, to compute π−1 we repeatedly apply π
over i, finding the element e of the cycle such that π(e) = i. These solutions do not
require any extra space to compute π−1(i), but they take O(n) time in the worst case.

Representing the sequence π[1, n] with a wavelet tree one can answer both queries
using O(log n) time and n log n+o(n log n) bits of space. A faster solution [MRRR03]
is based on the cycles of the permutation. By introducing shortcuts in the cycles, it
uses (1 + ε)n log n+O(n) bits and solves π(i) in constant time and π−1(i) in O(1/ε)
time, for any ε > 0.

19

2.8 Tree Representations Chapter 2 Basic Concepts

We will use the implementation of Munro et al.’s shortcut technique by Diego
Arroyuelo3, available at http://code.google.com/p/libcds.

2.8 Tree Representations

A classical representation of a general tree of n nodes requires O(nw) bits of space,
where w ≥ log n is the bit length of a machine pointer. Typically only operations such
as moving to the first child and to the next sibling, or to the i-th child, are supported
in constant time. By further increasing the constant, some other simple operations are
easily supported, such as moving to the parent, knowing the subtree size, or the depth
of the node. However, the Ω(n log n) bit space complexity is excessive in terms of
information theory. The number of different general trees of n nodes is Cn ≈ 4n/n3/2,
hence logCn = 2n−Θ(log n) bits are sufficient to distinguish any one of them.

There are several succinct tree representations that use 2n+o(n) bits of space and
answer most queries in constant time (see the review by Arroyuelo et al. [ACNS10]
for a detailed exposition); here we explain the DFUDS [BDM+05] representation as
this is the one that meets our requirements.

Definition 2.20. A sequence S drawn from alphabet Σ = {0, 1} is said to be balanced
if: (1) there are as many 0s as 1s and (2) at any position i the number of zeroes to
the left is greater or equal than the number of ones (i.e., rank0(S, i) ≥ rank1(S, i)).
Usually a balanced sequence is referred as balanced parentheses by identifying 0 as ‘(’
and 1 as ‘)’, as the nesting of parentheses satisfies the above definition.

The operations defined over a balanced sequence are: (1) findclose(S,i) (find-
open(S,i)) finds the matching 1 (0) of the 0 (1) at position i, and (2) enclose(S,i) is
the position of tightest 0 enclosing node i.

Definition 2.21 ([BDM+05]). The Depth-first unary degree sequence (DFUDS) is
generated by a depth-first traversal of the tree, at each node appending the degree of
the node in unary. Additionally a leading 1 is prepended to the sequence to make it
balanced and allow the concatenation of several such encodings into a forest.

The DFUDS sequence represents the topology of the tree using 2n bits. Tree nodes
are identified in the DFUDS sequence according to their rank in the order given by the
depth-first traversal (more precisely, the i-th node is identified by position select1(i)

3Yahoo! Research, Chile. darroyue@dcc.uchile.cl

20

http://code.google.com/p/libcds

2.8 Tree Representations Chapter 2 Basic Concepts

in the DFUDS encoding). Figure 2.9 shows the DFUDS bit-sequence for the example
tree. The red 1 in the sequence is the preceding 1 added to make the sequence
balanced. The green node is represented by the 10th 1 in the sequence, as it is the
10th node visited during a depth-first traversal. The blue sequence of five 1s and one
0 is the degree of the blue node.

11110011111000011000011000

Figure 2.9: Example of DFUDS representation

To solve the common operations over trees two data structures are built over
the DFUDS sequence: a bitmap data structure supporting rank and select (Section
2.5) and a data structure solving operations findclose, findopen and enclose [Jac89,
MR01, Nav09]. These structures allow one to compute the most common operations
in constant time using o(n) additional bits of space. Additionally, if we use labeled
trees we need to store the labels of the edges in an array chars, using n log σ additional
bits, where σ is the labels’ alphabet size. The label of the edge pointing to the i-th
child of node x is at chars[rank1(dfuds, x) + i]. The operations we are interested in
for this thesis are:

• degree(x): number of children of node x.

• isLeaf(x): whether node x is a leaf.

• child(x,i): i-th child of node x.

• labeledChild(x,c): child of node x labeled by symbol c.

• leftmostLeaf(x): leftmost leaf of the subtree starting at node x.

• rightmostLeaf(x): rightmost leaf of the subtree starting at node x.

• leafRank(x): number of leaves to the left of node x.

21

2.9 Tries Chapter 2 Basic Concepts

• preorder(x): preorder position of node x.

All these operations can be solved theoretically in constant time; however, in practice
labeledChild is solved by binary searching the labels of the children, because it is much
easier to implement and fast enough in practice. To solve leftmostLeaf, rightmostLeaf
and leafRank we need to solve the queries rank00(i) and select00(i). Rank00(i) returns
the number of occurrences of the substring 00 in the bitmap up to position i and
select00(i) returns the position p of the i-th occurrence of the substring 00 in the
bitmap. Solving these queries requires an additional data structure that uses o(n)
bits. It uses the same ideas as the one for solving rank and select for binary alphabets.

We will use a modified version of the implementation of Diego Arroyuelo available
at http://code.google.com/p/libcds, adding support for leaf-related operations.

2.9 Tries

A trie or digital tree is a data structure that stores a set of strings. It can find the
elements of the set prefixed by a pattern in time proportional to the pattern length.

Definition 2.22. A trie for a set S of distinct strings is a tree where each node
represents a distinct prefix in the set. The root node represents the empty prefix ε.
A node v representing prefix Y is a child of node u representing prefix X iff Y = Xc
for some character c, which labels the edge between u and v.

We suppose that all strings are ended by a special symbol $, not present in the
alphabet. We do this in order to ensure that no string Si is a prefix of some other
string Sj. This property guarantees that the tree has exactly |S| leaves. Figure 2.10
shows an example of a trie.

A trie for the set S = {S1, . . . , Sn} is easily built on O(|S1| + . . . + |Sn|) time
by successive insertions (assuming we can descend to any child in constant time). A
pattern P is searched for in the trie starting from the root and following the edges
labeled with the characters of P . This takes a total time of O(|P |).

A compact trie is an alternative representation that reduces the space of the
trie by collapsing unary nodes into a single node and labeling the edge with the
concatenation of all labels. A PATRICIA tree [Mor68], an alternative that uses even
less space, just stores the first character of the label string and its length. This variant
is used when the strings S are available separately, as not all information is stored
in the edges. In this variant, after the search we need to check if the prefix found

22

http://code.google.com/p/libcds

2.10 Suffix Trees Chapter 2 Basic Concepts

Figure 2.10: Example of a trie for the set S = {‘alabar’, ‘a’, ‘la’, ‘alabarda’}.

actually matches the pattern. For doing so, we have to extract the text corresponding
to any string with the prefix found and compare it with the pattern. It they are equal
then all leaves will be occurrences (i.e., strings prefixed with the pattern), otherwise
none will be an occurrence. Figure 2.11 shows an example of this kind of trie.

(a,1)

($,1)

(l,5)
($,1)

(d,3)

(l,3)

Figure 2.11: Example of a PATRICIA trie for the set S =
{‘alabar’, ‘a’, ‘la’, ‘alabarda’}. The values in parentheses are respectively
the first character of the label and the length of the label.

Definition 2.23. A suffix trie is a trie composed of all the suffixes T [i, n] of a given
text T [1, n]. The leaves of the trie store the positions where the suffixes start.

2.10 Suffix Trees

Definition 2.24 ([Wei73, McC76]). A suffix tree is a PATRICIA tree built over all
the suffixes T [i, n] of a given text T [1, n]. The leaves in the tree indicate the text

23

2.10 Suffix Trees Chapter 2 Basic Concepts

positions where the corresponding suffixes start.

Figure 2.12 shows the suffix tree for the text ‘alabar a la alabarda$’.

($,1)
(r,1)

(l,1)(a,1)

(_,1) (l,1)

($,1) (r,1)

(l,2)(d,1)(b,3)(_,1)

(d,1) (_,1)(b,3) (d,1)(_,1)

(d,1)(_,1)

(l,5)(b,3)(_,1)

(a,1)(l,1)(_,1) (d,1) (_,1) (d,1) (_,1) (d,1)

(a,1) (_,1)

Figure 2.12: The suffix tree for the text ‘alabar a la alabarda$’

The suffix tree can be built in O(n) time using O(n log n) bits of space [McC76,
Ukk95].

A suffix tree is able to find all the occ occurrences of a pattern P of length m
in time O(m + occ), i.e., to solve the locate query described in Section 2.2. After
descending by the tree according to the characters of the pattern, we could be in
three different cases: i) we reach a point in which there is no edge labeled with the
current character of P , which means that the pattern does not occur in T ; ii) we
finish reading P in an internal node (or in the middle of an edge), in which case the
suffixes of the corresponding subtree are either all occurrences or none, therefore we
only need to check if one of those suffixes matches the pattern P ; iii) we end up in a
leaf without consuming all the pattern, in which case at most one occurrence is found
after checking the suffix with the pattern. As a subtree with occ leaves has O(occ)
nodes, the total time for reporting the occurrences is as stated above.

24

2.11 Suffix Arrays Chapter 2 Basic Concepts

The suffix tree can solve the queries count and exists in O(m) time. The process
is similar to that of locate. First we descend the tree according to the pattern. Then,
we check if one of the suffixes of the subtree is a match. If it is a match the answer
of count is the number of leaves of the subtree (for which we need to store in each
internal node the number of leaves that descend from it), otherwise it is zero.

2.11 Suffix Arrays

Definition 2.25 ([MM93, GBYS92]). A suffix array A[1, n] is a permutation of the
integer interval [1, n], holding T [A[i], n] < T [A[i + 1], n] for all 1 ≤ i < n. In other
words, it is a permutation of the suffixes of the text such that the suffixes are lexico-
graphically sorted.

Figure 2.13 shows the suffix array for the text ‘alabar a la alabarda$’. The
character $ is the smallest one in lexicographical order. The zone highlighted in gray
represents those suffixes starting with ‘a’.

Figure 2.13: The suffix array for the text ‘alabar a la alabarda$’

Note that the suffix array could be computed by collecting the values at the leaves
of the suffix tree. However, several methods exist that compute the suffix array in
O(n) or O(n log n) time, using significantly less space. For a complete survey see
[PST07].

The suffix array can solve locate queries in O(m log n+ occ) time, and count and
exists queries in O(m log n) time. First, we search for the interval A[sp1, ep1] of the
suffixes starting with P [1]. This can be done via two binary searches on A. The first
binary search determines the starting position sp for the suffixes lexicographically
larger than or equal to P [1], and the second determines the ending position ep for
suffixes that start with P [1]. Then, we consider P [2], narrowing the interval to
A[sp2, ep2], holding all suffixes starting with P [1, 2]. This process continues until P

25

2.12 Backward Search Chapter 2 Basic Concepts

is fully consumed or the current interval becomes empty. Note that this algorithm
searches for the pattern from left to right. For each character of the pattern, we do two
binary searches taking at most time O(log n), hence the total time is O(m log n). Then
locate reports all occurrences in O(occ) time and the answer to count is epm−spm+1.
We can also directly search for the interval A[sp, ep] where the suffixes start with the
pattern P using just two binary searches on A, which find the first and last position
where the suffixes start with P . Each comparison between the pattern and a suffix
will take at most O(m) time, hence the total running time is also O(m log n). Yet,
this is faster in practice than the previous method and is what we use in this thesis.

2.12 Backward Search

Backward search is an alternative method for finding the interval [sp, ep] correspond-
ing to a pattern P in the suffix array. It searches for the pattern from right to left,
and is based on the Burrows-Wheeler transform.

Definition 2.26 ([BW94]). Given a text T terminated with the special character
T [n] = $ smaller than all others, and its suffix array A[1, n], the Burrows-Wheeler
transform (BWT) of T is defined as T bwt[i] = T [A[i] − 1], except when A[i] = 1,
where T bwt[i] = T [n]. In other words, the transformation is conceptually built first
by generating all the cyclic shifts of the text, then sorting them lexicographically, and
finally taking the last character of each shift. In practice it can be built in linear time
by building the suffix array first.

We can think of the sorted list of cyclic shift as a conceptual matrix M [1, n][1, n].
Figure 2.14 shows an example of how the BWT is computed for the text
‘alabar a la alabarda$’. This transformation has the advantage of being easily
compressed by local compressors [Man01]. It can be reversed as follows.

Definition 2.27. The LF-mapping LF (i) maps a position i in the last column of M
(L = T bwt) to its occurrence in the first column of M (F).

Lemma 2.28 ([FM05]). It holds

LF (i) = C[c] + rankc(T
bwt, i)

where c = T bwt[i] and C[c] is the number of symbols smaller than c in T .

Lemma 2.29 ([BW94]). The LF-mapping allows one to reverse the Burrows-Wheeler
transform.

26

2.12 Backward Search Chapter 2 Basic Concepts

Figure 2.14: The BWT of the text ‘alabar a la alabarda$’

Proof. We know that T [n] = $ and since $ is the smallest symbol, T [n] = F [1] = $

and thus T [n − 1] = L[1] = T bwt[1]. Using the LF-mapping we compute i = LF (1);
knowing that T [n− 1] is at F [i], we have T [n− 2] = L[i], as L[i] always precedes F [i]
in T . In general, it holds T [n− k] = T bwt[LF k−1(1)].

Given the close relation between the suffix array and the BWT, it is natural to
expect that a search algorithm can work on top of the BWT. Such algorithm is
called backward search (BWS), and at each stage it narrows the interval [spi, epi] of
the suffix array in which the suffixes start with P [i,m], starting from i = m and
ending with i = 1. Narrowing the interval A[sp, ep] with a new character c is called a
BWS(sp, ep, c) step and it is done very similarly to the LF-mapping (Lemma 2.28).
BWS searches a pattern from right to left, opposite to the search on suffix arrays,
that searches for a pattern from left to right.

Figure 2.15 shows the backward search algorithm. Lines 5-7 correspond to the
BWS step.

27

2.13 Lempel-Ziv Parsings and Repetitions Chapter 2 Basic Concepts

BWS(P)

1 i← len(P)
2 sp← 1
3 ep← n
4 while sp ≤ ep and i ≥ 1 do
5 c← P [i]
6 sp← C[c] + rankc(T

bwt, sp− 1) + 1
7 ep← C[c] + rankc(T

bwt, ep)
8 i← i− 1
9 if sp > ep then

10 return ∅
11 return (sp, ep)

Figure 2.15: Backward Search algorithm (BWS)

2.13 Lempel-Ziv Parsings and Repetitions

Lempel and Ziv proposed in the seventies a new compression method [LZ76, ZL77,
ZL78]. The basic idea is to replace a repeated portion of the text with a pointer
to some previous occurrence of that portion. To find the repetitions they keep a
dictionary representing all the portions that can be copied. Many variants of these
algorithms exist [SS82, Wel84, Wil91] which differ in the way they parse the text or
the encoding they use.

The LZ77 [ZL77] parsing is a dictionary-based compression scheme in which the
dictionary used is the set of substrings of the preceding text. This definition allows
it to get one of the best compression ratios for repetitive texts.

Definition 2.30 ([ZL77]). The LZ77 parsing of text T [1, n] is a sequence Z[1, n′] of
phrases such that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have already
processed T [1, i − 1] producing the sequence Z[1, p − 1]. Then, we find the longest
prefix T [i, i′− 1] of T [i, n] which occurs in T [1, i− 1],4 set Z[p] = T [i, i′] and continue
with i = i′ + 1. The occurrence in T [1, i − 1] of the prefix T [i, i′ − 1] is called the
source of the phrase Z[p].

Note that each phrase is composed of the content of a source, which can be the
empty string ε, plus a trailing character. Note also that all phrases of the parsing

4The original definition allows the source of T [i, i′ − 1] to extend beyond position i − 1, but we
ignore this feature in this thesis.

28

2.13 Lempel-Ziv Parsings and Repetitions Chapter 2 Basic Concepts

are different, except possibly the last one. To avoid that case, a special character $

is appended at the end, T [n] = $.

Typically a phrase is represented as a triple Z[p] = (start, len, c), where start is
the start position of the source, len is the length of the source and c is the trailing
character.

Example 2.31. Let T = ‘alabar a la alabarda$’; the LZ77 parsing is as follows:

a l ab ar a la alabard a$

In this example the seventh phrase copies two characters starting at position 2 and
has a trailing character ‘ ’.

One of the greatest advantages of this algorithm is the simple and fast scheme
of decompression, opposed to the construction algorithm which is more complicated.
Decompression runs in linear time by copying the source content referenced by each
phrase and then the trailing character. However, random text extraction is not as
easy.

The LZ78 [ZL78] compression scheme is also dictionary-based. Its dictionary is
the set of all phrases previously produced. Because of this definition of the dictionary
the construction process is much simpler than that of LZ77.

Definition 2.32 ([ZL78]). The LZ78 parsing of text T [1, n] is a sequence Z[1, n′] of
phrases such that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have already
processed T [1, i − 1] producing the sequence Z[1, p − 1]. Then, we find the longest
phrase Z[j], for j ≤ p− 1, that is a prefix of T [i, n], set Z[p] = Z[j]T [i + |Z[j]|] and
continue with i = i+ |Z[j]|+ 1.

Typically a phrase is represented as Z[p] = (j, c), where j is the phrase number
of the source and c is the trailing character.

Example 2.33. Let T = ‘alabar a la alabarda$’; the LZ78 parsing is as follows:

a l ab ar a la a lab ard a$

In this example the ninth phrase copies two characters starting at position 2 and has
a trailing character ‘b’.

With respect to compression, both LZ77 and LZ78 converge to the entropy of
stationary ergodic sources [LZ76, ZL78]. It also converges below the empirical entropy
(Section 2.3), as detailed next.

29

2.14 Self-Indexes Chapter 2 Basic Concepts

Definition 2.34 ([KM99]). A parsing algorithm is said to be coarsely optimal if
its compression ratio ρ(T) differs from the k-th order empirical entropy Hk(T) by
a quantity depending only on the length of the text and that goes to zero as the
length increases. That is, ∀k ∃fk, limn→∞ fk(n) = 0, such that for every text T ,
ρ(T) ≤ Hk(T) + fk(|T |).

Theorem 2.35 ([KM99, PWZ92]). The LZ77 and LZ78 parsings are coarsely opti-
mal.

As explained in Section 2.3, however, converging to Hk(T) is not sufficiently good
for repetitive texts. Repetitive texts are originated in applications where many similar
versions of one base text are generated (i.e., DNA sequences); or where successive
versions, each one similar to the preceding one (i.e., wiki), are generated. Statistical
compressors are not able to capture this characteristic, because they predict a symbol
based only on a short previous context, and such statistics do not change when the
text is replicated many times (see Section 2.3 for the relation between Hk(T) and
Hk(TT)). Compressors based on repetitions, such as Lempel-Ziv parsings or grammar
based ones, do exploit this repetitiveness.

2.14 Self-Indexes

Definition 2.36. A self-index [NM07] is an index that uses space proportional to
that of the compressed text and solves the queries locate and extract. As this kind of
indexes can reproduce any text substring, they replace the original text. Additionally,
some indexes provide more efficient ways of computing exists and count queries.

There are several general-purpose self-indexes, however most of them do not
achieve high compression for repetitive texts, as they are only able to compress up
to the k-th order empirical entropy (Section 2.3). Most are based on the BWT or
suffix array (see [NM07] for a complete survey). In the last years some self-indexes
oriented to repetitive texts have been proposed. We cover these now.

2.14.1 Run-Length Compressed Suffix Arrays (RLCSAs)

The Run-Length Compressed Suffix Array (RLCSA) [SVMN08] is based on the Com-
pressed Suffix Array of Sadakane [Sad03]. This is built around the so called Ψ func-
tion.

30

2.14 Self-Indexes Chapter 2 Basic Concepts

Definition 2.37 ([GV05]). Let A[1, . . . , n] be the suffix array of a text T . Then Ψ(i)
is defined as

Ψ(i) = A−1[(A[i] mod n) + 1]

The Ψ function is the inverse of the LF mapping. Ψ maps suffix T [A[i], n] to suffix
T [A[i] + 1, n], allowing one to scan the text from left to right. A run in the Ψ array
is an interval [a, b] for which it holds ∀i ∈ [a, b− 1], Ψ(i+ 1) = Ψ(i) + 1.

In the RLCSA, one run-length encodes the differences Ψ[i] − Ψ[i − 1] and store
absolute samples of the array Ψ. This structure is very fast for count and exists
queries. Its major drawback is the sampling it requires for locate and extract queries,
as it takes (n log n)/s extra bits to achieve locating time O(s), and time O(s+ r− l)
for extract(l, r), where s is the sampling step.

The number of runs may be much smaller than nHk(T) (for example runs(T) =
runs(TT), whereas |TT |Hk(TT) ≥ 2|T |Hk(T) as shown in Section 2.3). However, the
difference between the number of runs and the number of phrases in an LZ77 parsing
[ZL77] may be a multiplicative factor as high as Θ(

√
n).5 For these reasons, the

RLCSA seems to be an intermediate solution between LZ77 and empirical-entropy-
based indexes.

2.14.2 Indexes based on sparse suffix arrays

In this section we present two indexes [KU96b, KU96a] by Kärkkäinen and Ukko-
nen. Although these are not self-indexes, they set the ground for several self-indexes
proposed later.

• First, they choose some indexing positions of the text. These can be evenly
spaced points [KU96b] or the points defined by a Lempel-Ziv parsing [KU96a].

• The suffixes starting at those points are indexed in a suffix trie, and the reversed
prefixes in another trie.

• The index in principle only allows one to find occurrences crossing an indexing
point.

• To find a pattern P of length m, they partition it in all m+ 1 combinations of
prefix and suffix.

5Veli Mäkinen, personal communication

31

2.14 Self-Indexes Chapter 2 Basic Concepts

• For each partition, they search for the suffix in the suffix trie and for the prefix
of the pattern in the reverse prefix trie.

• The previous searches define a 2-dimensional range in a grid that relates each
indexed text prefix (in lexicographic order) with the text suffix that follows (in
lexicographic order). That is, related prefixes and suffixes are consecutive in
the text.

• A data structure supporting 2-dimensional range queries [Cha88], finds all pairs
of related suffixes and prefixes, finding in this way the actual occurrences.

• Additionally, using a Lempel-Ziv parsing they are able to find all the occurrences
of the pattern. The occurrences are either found in the grid by the process
described above (primary occurrences), or by considering the copies detected
by the parsing (secondary occurrences), for which an additional method tracking
the copies finds the remaining occurrences.

All following indexes can be thought as heirs of this general idea, which was
improved by replacing or adding additional compact data structures to decrease the
space usage. In most cases, the parsing was restricted only to LZ78 (Section 2.14.3),
since it simplifies the index, and in others to text grammars (SLPs, Section 2.14.4).
In the following two subsections we list the results obtained in those cases. This
thesis can also be thought as a heir of this fundamental scheme: For the first time
compact data structures supporting the LZ77 parsing have been developed in this
thesis, which show better performance on repetitive texts.

2.14.3 LZ78-based Self-Indexes

In this section we present the space and running times of two indexes based on LZ78.
Although they offer decent upper bounds and competitive performance on typical
texts, experiments [SVMN08] have demonstrated that LZ78 is too weak to profit from
highly repetitive texts. There are other such self-indexes [FM05], not implemented
as far as we know.

Arroyuelo et al.’s LZ-Index

Navarro’s LZ-Index [Nav04] is the first self-index based on the LZ78 parsing us-
ing O(nHk(T)) bits of space (it is also the first implemented in practice). It uses
4n′ log n′(1 + o(1)) bits and takes O(m3 log σ+ (m+ occ) log n′) time to locate the occ

32

2.14 Self-Indexes Chapter 2 Basic Concepts

occurrences of a pattern of length m, where σ is the size of the alphabet, and n′ is
the number of phrases of the parsing.

Arroyuelo et al. later improved the time and space of the index, achieving
(2 + ε)n′ log n′(1 + o(1)) bits and O(m2 + (m + occ) log n′) locate time [ANS10], or
(3 + ε)n′ log n′(1 + o(1)) bits and O((m+ occ) log n′) locate time [AN07].

Russo and Oliveira’s ILZI

Russo and Oliveira present a self-index based on the so-called maximal parsing, called
ILZI [RO08].

Definition 2.38 ([RO08]). Given a suffix trie T (of a set of strings), the T -maximal
parsing of string T is the sequence of nodes v1, . . . , vf such that T = v1 . . . vf and, for
every j, vj is the largest prefix of vj . . . vf that is a node of T .

First, they compute the LZ78 parsing of T rev, and then generate a suffix tree T78

over the set of the reverse phrases. Next they build the maximal parsing of T using
T78. This parsing improves the compression of LZ78, as shown by the following
lemma.

Lemma 2.39 ([RO08]). If the number of phrases of the LZ78 parsing of T is n′ then
the T78-maximal parsing of T has at most n′ phrases.

Their index uses at most 5n′ log n′(1+o(1)) bits and takes O((m+occ) log n′) time
to locate the occ occurrences of a pattern of length m (n′ is the number of blocks of
the maximal parsing).

2.14.4 Straight Line Programs (SLPs)

Claude and Navarro [CN09] proposed a self-index based on straight-line programs
(SLPs). SLPs are grammars in which the rules are either Xi → α ∈ Σ or Xi →
XlXr, for l, r < i. The LZ78 [ZL78] parsing may produce an output exponentially
larger than the smallest SLP. However, the LZ77 [ZL77] parsing outperforms the
smallest SLP [CLL+05]. On the other hand producing the smallest SLP is an NP-
complete problem [Ryt03, CLL+05]. However, Rytter [Ryt03] has shown how to
generate in linear time a grammar using O(` log `) rules and height O(log `), where
` is the size of the LZ77 parsing. Again, SLPs are intermediate between LZ77 and
other methods.

33

2.14 Self-Indexes Chapter 2 Basic Concepts

The index [CN09] uses n′ log n+O(n′ log n′) bits of space, where n′ is the number
of rules of the grammar. It solves extract(l, r) in O((r− l+ h) log n′) time and locate
in O((m(m+ h) + h · occ) log n′) time, where h is the height of the derivation tree of
the grammar and m the length of the pattern.

Claude et al. [CFMPN10] evaluated a practical implementation using the grammar
produced by Re-Pair [LM00]. The results are competitive with the RLCSA only for
extremely repetitive texts and short patterns.

34

Chapter 3

A Repetitive Corpus Testbed

In this chapter we present a corpus of repetitive texts. These texts are categorized
according to the source they come from into the following: Artificial Texts, Pseudo-
Real Texts and Real Texts. The main goal of this collection is to serve as a standard
testbed for benchmarking algorithms oriented to repetitive texts. The corpus can be
downloaded from http://pizzachili.dcc.uchile.cl/repcorpus.html.

3.1 Artificial Texts

This subset is composed of highly repetitive texts that do not come from any real-life
source, but are artificially generated through some mathematical definition and have
interesting combinatorial properties.

3.1.1 Fibonacci Sequence (Fn)

This sequence is defined by the recurrence

F1 = 0

F2 = 1

Fn = Fn−1Fn−2 (3.1)

The length of the string Fn is the Fibonacci number fn and the sequence is a sturmian
word [Lot02], which means it has i+ 1 different substrings (factors) of length i.

35

http://pizzachili.dcc.uchile.cl/repcorpus.html

3.1 Artificial Texts Chapter 3 A Repetitive Corpus Testbed

3.1.2 Thue-Morse Sequence (Tn)

This sequence [AS99] is defined by the recurrence

T1 = 0

Tn = Tn−1Tn−1 (3.2)

where F̄ is the bitwise negation operator (i.e., all 0 get converted to 1 and all 1 to
0). Because of the construction scheme of this sequence, there are many substrings
of the form XX, for any string X. However, there are no overlapping squares, i.e.,
substrings of the form 0X0X0 or 1X1X1. Furthermore, this sequence is strongly
cube-free, i.e., there are no substrings of the form XXx, where x is the first character
of the string X. Another interesting property of this string is that it is recurrent.
That is, given any finite substring w of length n, there is some length nw (often much
longer than n) such that w is contained in every substring of length nw. The length
of these strings is |Tn| = 2n.

3.1.3 Run-Rich String Sequence (Rn)

A measure of string complexity, related to the regularities of the text and strongly
related to the LZ77 parsing [KK99], is the number of runs.

Definition 3.1. A period of string T [1, n] is a positive integer p holding that ∀ 1 ≤
i ≤ n − p, T [i] = T [i + p]. A string is said to be periodic if its minimum period p is
such that p ≤ n/2.

Definition 3.2 ([Mai89]). The substring T [i, j] is a run in a string T iff T [i, j] is
periodic and T [i, j] is not extendable to the right (j = n or T [j + 1] 6= T [j − p+ 1])
or left (i = 1 or T [i− 1] 6= T [i+ p− 1]).

The higher the number of runs in a string, the more regularities it has.

It has been shown that the maximum number of runs in a string is greater than
0.944n [MKI+08] and lower than 1.029n [CIT08]. Franek et al. [FSS03] show a
constructive and simple way to obtain strings with many runs; the n-th of those
strings is denoted Rn. The ratio of the runs of their strings to the length approaches
3/(1 +

√
5) = 0.92705

36

3.2 Pseudo-Real Texts Chapter 3 A Repetitive Corpus Testbed

3.2 Pseudo-Real Texts

Here we present a set of texts that were generated by artificially adding repetitiveness
to real texts, thus we call them pseudo-real texts.

To generate the texts, we took a prefix of 1MiB of all texts of Pizza&Chili Corpus1,
we mutated them, and we concatenated all of them in the order they were generated.
Our mutations take a random character position and change it to a random character
different from the original one.

We used two different schemes for the mutations. The first one, denoted by a
‘1’, generates different mutations of the first text. The second, denoted by a ‘2’,
mutates the last text generated. The second scheme resembles the changes obtained
through time in a software project or the versions of a document, while the first
scheme produces changes analogous to the ones found in a collection of related DNA
sequences.

The mutation rate, i.e., percentage of mutated characters, was set to 0.1%, 0.01%
and 0.001%.

The base texts (all from the Pizza&Chili corpus) we mutated were the following:

• Sources: This file is formed by C/Java source code obtained by concatenating all
the .c, .h, .C and .java files of the linux-2.6.11.6 and gcc-4.0.0 distributions.

• Pitches: This file is a sequence of midi pitch values (bytes in 0-127, plus a few
extra special values) obtained from a myriad of MIDI files freely available on
Internet.

• Proteins: This file is a sequence of newline-separated protein sequences obtained
from the Swissprot database.

• DNA: This file is a sequence of newline-separated gene DNA sequences obtained
from files 01hgp10 to 21hgp10, plus 0xhgp10 and 0yhgp10, from Gutenberg
Project.

• English: This file is the concatenation of English text files selected from etext02

to etext05 collections of Gutenberg Project.

• XML: This file is an XML that provides bibliographic information on major
computer science journals and proceedings and it was obtained from http:

//dblp.uni-trier.de.

1http://pizzachili.dcc.uchile.cl

37

http://dblp.uni-trier.de
http://dblp.uni-trier.de
http://pizzachili.dcc.uchile.cl

3.3 Real Texts Chapter 3 A Repetitive Corpus Testbed

3.3 Real Texts

This subset is composed of texts coming from real repetitive sources. These sources
are DNA, Wikipedia Articles, Source Code, and Documents.

For the case of DNA we concatenated the texts in random order. For the others,
we concatenated the texts according to the date they were created, from oldest to
newest.

3.3.1 DNA

Our DNA texts come from different sources.

• The Saccharomyces Genome Resequencing Project2 provides two text collec-
tions: para, which contains 36 sequences of Saccharomyces Paradoxus and cere,
which contains 37 sequences of Saccharomyces Cerevisiae.

• From the National Center for Biotechnology Information (NCBI)3 we collected
some DNA sequences of the same bacteria. The species we collected are Es-
cherichia Coli (23), Salmonella Enterica (15), Staphylococcus Aureus (14), Strep-
tococcus Pyogenes (13), Streptococcus Pneumoniae (11) and Clostridium Bo-
tulium (10). We wrote in parentheses the total number of sequences of each
collection. We chose these species as they were the only ones with 10 or more
different sequences.

• A collection composed of 78,041 sequences of Haemophilus Influenzae4, also
coming from the NCBI.

Remark 3.3. Although there are four bases {A, C, G, T}, DNA sequences may have
alphabets of size up to 16 = 24 because some characters denote an unknown choice
among the four bases. The most common character used is N, which denotes a totally
unknown symbol.

2http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
3http://www.ncbi.nlm.nih.gov
4ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz

38

http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
http://www.ncbi.nlm.nih.gov
ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

3.3.2 Wikipedia Articles

We downloaded all versions of three Wikipedia articles, Albert Einstein, Alan Turing
and Nobel Prize. We downloaded them in English (denoted en) and German (denoted
de). We chose these languages as they are among the most widely used on Internet
and their alphabet may be represented using standard 1-byte encodings. The versions
for all documents are up to January 12, 2010, except for the English article of Albert
Einstein, which was downloaded only up to November 10, 2006 because of the massive
number of versions it has.

3.3.3 Source Code

We collected all versions 5.x of the Coreutils5 package and removed all binary files,
making a total of 9 versions. We also collected all 1.0.x and 1.1.x versions of the
Linux Kernel6, making a total of 36 versions.

3.3.4 Documents

We took all pdf files of CIA World Leaders7 from January 2003 to December 2009,
and converted them to text (using software pdftotext).

3.4 Statistics

To understand the characteristics of the texts present in the Repetitive Corpus, we
provide below some statistics about them. The statistics presented are the following:

• Alphabet Size: We give the alphabet size and the inverse probability of match-
ing (IPM), which is the inverse of the probability that two characters chosen at
random match. IPM is a measure of the effective alphabet size. On a uniformly
distributed text, it is precisely the alphabet size.

• Compression Ratio: Since we are dealing with compressed indexes it is use-
ful to have an idea of the compressibility of the texts using general-purpose

5ftp://mirrors.kernel.org/gnu/coreutils
6ftp://ftp.kernel.org/pub/linux/kernel
7https://www.cia.gov/library/publications/world-leaders-1

39

ftp://mirrors.kernel.org/gnu/coreutils
ftp://ftp.kernel.org/pub/linux/kernel
https://www.cia.gov/library/publications/world-leaders-1

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

compressors. The following compressors are used: gzip8 gives an idea of com-
pressibility via dictionaries (an LZ77 parsing with limited window size); bzip29

gives an idea of block-sorting compressibility (using the BWT transform, Sec-
tion 2.12); ppmdi10 gives an idea of partial-match-based compressors (related
to the k-th order entropy, Section 2.3); p7zip11 gives an idea of LZ77 compres-
sion with virtually unlimited window; and Re-Pair12 [LM00] gives an idea of
grammar-based compression. All compressors were run with the highest com-
pression options.

• Empirical Entropy: Here we give the empirical entropy Hk of the text with
k ranging from 0 to 8, measured as compression ratio. We also show, in paren-
theses, the complexity function of T [Lot02] (or the number of contexts) which
count how many different substrings of a given size does T have. This is exactly
our C(T, k) of Lemma 2.12. This measure has the following properties:

C(T, 1) = σ

C(T, n+m) ≤ C(T, n)C(T,m)

The lower this measure, the more repetitive the text is. For example, if C(T, n) =
1∀n, then T = cm for some character c. When P (C, n) = n + 1 the sequence
is said to be Sturmian (the Fibonacci sequence is an example of a Sturmian
string).

Remark 3.4. The compression ratios are given as the percentage of the compressed
file size over the uncompressed file size, assuming the original file uses one byte per
character. This means that 25% compression can be achieved over a DNA sequence
having an alphabet {A,C,G,T} by simply using 2 bits per symbol. As seen from the
real-life examples given, these four symbols are usually predominant, so it is not hard
to get very close to 25% on general DNA sequences as well.

3.4.1 Artificial Texts

Tables 3.1-3.3 give the statistics of artificial texts.

8http://www.gzip.org
9http://www.bzip.org

10http://pizzachili.dcc.uchile.cl/utils/ppmdi.tar.gz
11http://www.7-zip.org
12http://www.cbrc.jp/~rwan/en/restore.html

40

http://www.gzip.org
http://www.bzip.org
http://pizzachili.dcc.uchile.cl/utils/ppmdi.tar.gz
http://www.7-zip.org
http://www.cbrc.jp/~rwan/en/restore.html

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

File Size Σ IPM
F41 256MiB 2 1.894
T29 256MiB 2 2.000
R13 207MiB 2 2.000

Table 3.1: Alphabet statistics for Artificial Collection

File p7zip bzip2 gzip ppmdi Re-pair
F41 0.17624% 0.00572% 0.46875% 1.87500% 0.00002%
T29 0.35896% 0.01259% 0.54688% 2.18750% 0.00004%
R13 0.17172% 0.01227% 0.53140% 2.12560% 0.00009%

Table 3.2: Compression statistics for Artificial Collection

File H0 H1 H2 H3 H4 H5 H6 H7 H8

F41
11.99% 7.41% 4.58% 4.58% 2.83% 2.83% 2.83% 1.75% 1.75%

(1) (2) (3) (4) (5) (6) (7) (8) (9)

T29
12.50% 11.48% 8.34% 8.34% 4.16% 4.16% 4.16% 2.09% 2.09%

(1) (2) (4) (6) (10) (12) (16) (20) (22)

R13
12.50% 9.85% 8.51% 6.55% 2.56% 2.33% 2.33% 2.33% 2.33%

(1) (2) (4) (6) (8) (10) (12) (14) (16)

Table 3.3: Empirical entropy statistics for Artificial Collection

41

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

3.4.2 Pseudo-Real Texts

Tables 3.4-3.9 give the statistics of pseudo-real texts.

File Size Σ IPM
Xml 0.001%1 100MiB 89 27.84
Xml 0.01%1 100MiB 89 27.84
Xml 0.1%1 100MiB 89 27.84
DNA 0.001%1 100MiB 5 3.98
DNA 0.01%1 100MiB 5 3.98
DNA 0.1%1 100MiB 5 3.98
English 0.001%1 100MiB 106 15.65
English 0.01%1 100MiB 106 15.65
English 0.1%1 100MiB 106 15.65
Pitches 0.001%1 100MiB 73 33.07
Pitches 0.01%1 100MiB 73 33.07
Pitches 0.1%1 100MiB 73 33.07
Proteins 0.001%1 100MiB 21 16.90
Proteins 0.01%1 100MiB 21 16.90
Proteins 0.1%1 100MiB 21 16.90
Sources 0.001%1 100MiB 98 28.86
Sources 0.01%1 100MiB 98 28.86
Sources 0.1%1 100MiB 98 28.86

Table 3.4: Alphabet statistics for Pseudo-Real Collection (Scheme 1)

File Size Σ IPM
Xml 0.001%2 100MiB 89 27.84
Xml 0.01%2 100MiB 89 27.84
Xml 0.1%2 100MiB 89 27.86
DNA 0.001%2 100MiB 5 3.98
DNA 0.01%2 100MiB 5 3.98
DNA 0.1%2 100MiB 5 3.98
English 0.001%2 100MiB 106 15.65
English 0.01%2 100MiB 106 15.66
English 0.1%2 100MiB 106 15.74
Pitches 0.001%2 100MiB 73 33.07
Pitches 0.01%2 100MiB 73 33.07
Pitches 0.1%2 100MiB 73 33.10
Proteins 0.001%2 100MiB 21 16.90
Proteins 0.01%2 100MiB 21 16.90
Proteins 0.1%2 100MiB 21 16.92
Sources 0.001%2 100MiB 98 28.86
Sources 0.01%2 100MiB 98 28.86
Sources 0.1%2 100MiB 98 28.92

Table 3.5: Alphabet statistics for Pseudo-Real Collection (Scheme 2)

42

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

File p7zip bzip2 gzip ppmdi Re-Pair
Xml 0.001%1 0.15% 11.00% 18.00% 3.50% 0.19%
Xml 0.01%1 0.18% 12.00% 18.00% 3.60% 0.46%
Xml 0.1%1 0.46% 12.00% 18.00% 4.10% 2.00%
DNA 0.001%1 0.27% 27.00% 28.00% 11.00% 0.34%
DNA 0.01%1 0.29% 27.00% 28.00% 11.00% 0.58%
DNA 0.1%1 0.51% 27.00% 28.00% 12.00% 2.50%
English 0.001%1 0.31% 28.00% 37.00% 22.00% 0.39%
English 0.01%1 0.35% 28.00% 37.00% 22.00% 0.65%
English 0.1%1 0.59% 28.00% 37.00% 22.00% 2.70%
Pitches 0.001%1 0.47% 54.00% 52.00% 47.00% 0.69%
Pitches 0.01%1 0.50% 54.00% 52.00% 47.00% 0.95%
Pitches 0.1%1 0.75% 54.00% 52.00% 48.00% 3.20%
Proteins 0.001%1 0.32% 41.00% 39.00% 31.00% 0.42%
Proteins 0.01%1 0.35% 41.00% 39.00% 31.00% 0.68%
Proteins 0.1%1 0.59% 41.00% 39.00% 32.00% 2.70%
Sources 0.001%1 0.20% 19.00% 25.00% 12.00% 0.28%
Sources 0.01%1 0.23% 19.00% 25.00% 12.00% 0.56%
Sources 0.1%1 0.50% 20.00% 25.00% 13.00% 2.60%

Table 3.6: Compression statistics for Pseudo-Real Collection (Scheme 1)

File p7zip bzip2 gzip ppmdi Re-Pair
Xml 0.001%2 0.15% 12.00% 18.00% 3.50% 0.18%
Xml 0.01%2 0.18% 14.00% 19.00% 4.40% 0.39%
Xml 0.1%2 0.39% 25.00% 29.00% 17.00% 2.20%
DNA 0.001%2 0.26% 27.00% 28.00% 11.00% 0.33%
DNA 0.01%2 0.29% 27.00% 28.00% 11.00% 0.52%
DNA 0.1%2 0.46% 27.00% 28.00% 13.00% 2.20%
English 0.001%2 0.31% 28.00% 37.00% 22.00% 0.38%
English 0.01%2 0.34% 29.00% 37.00% 23.00% 0.59%
English 0.1%2 0.55% 38.00% 43.00% 31.00% 2.50%
Pitches 0.001%2 0.46% 54.00% 52.00% 47.00% 0.68%
Pitches 0.01%2 0.49% 54.00% 53.00% 48.00% 0.89%
Pitches 0.1%2 0.71% 59.00% 57.00% 52.00% 2.80%
Proteins 0.001%2 0.31% 41.00% 39.00% 32.00% 0.41%
Proteins 0.01%2 0.34% 42.00% 40.00% 33.00% 0.62%
Proteins 0.1%2 0.54% 47.00% 46.00% 40.00% 2.50%
Sources 0.001%2 0.20% 20.00% 25.00% 13.00% 0.27%
Sources 0.01%2 0.23% 21.00% 26.00% 14.00% 0.49%
Sources 0.1%2 0.44% 34.00% 35.00% 26.00% 2.50%

Table 3.7: Compression statistics for Pseudo-Real Collection (Scheme 2)

43

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

File H0 H1 H2 H3 H4 H5 H6 H7 H8

Xml 65.25% 38.63% 21.00% 12.50% 8.13% 6.00% 5.25% 4.75% 4.13%
0.001%1 (1) (89) (3325) (20560) (56120) (98084) (134897) (168846) (200451)
Xml 65.25% 38.63% 21.00% 12.50% 8.13% 6.00% 5.25% 4.75% 4.13%
0.01%1 (1) (89) (4135) (30975) (79379) (131811) (177924) (220923) (261651)
Xml 65.25% 38.75% 21.25% 12.75% 8.25% 6.13% 5.38% 4.88% 4.25%
0.1%1 (1) (89) (5251) (67479) (196554) (326296) (440199) (550570) (661284)
DNA 25.00% 24.25% 24.13% 24.00% 24.00% 23.75% 23.50% 22.88% 21.25%
0.001%1 (1) (5) (18) (67) (260) (1029) (4102) (16349) (62437)
DNA 25.00% 24.25% 24.13% 24.00% 24.00% 23.75% 23.50% 22.88% 21.25%
0.01%1 (1) (5) (18) (67) (260) (1029) (4102) (16368) (63204)
DNA 25.00% 24.25% 24.13% 24.00% 24.00% 23.75% 23.50% 22.88% 21.38%
0.1%1 (1) (5) (19) (70) (264) (1034) (4109) (16399) (65168)
English 57.25% 45.13% 34.75% 25.88% 19.88% 15.88% 12.50% 9.63% 7.25%
0.001%1 (1) (106) (2659) (18352) (63299) (145194) (256838) (379514) (501400)
English 57.25% 45.13% 34.75% 25.88% 19.88% 15.88% 12.50% 9.63% 7.25%
0.01%1 (1) (106) (3243) (24063) (82896) (180401) (305292) (439387) (572056)
English 57.25% 45.25% 34.88% 26.13% 20.13% 16.00% 12.50% 9.75% 7.25%
0.1%1 (1) (106) (4491) (46116) (190765) (439130) (715127) (983435) (1237512)
Pitches 66.13% 61.00% 53.50% 37.13% 16.38% 6.25% 2.88% 1.38% 0.75%
0.001%1 (1) (73) (3549) (73664) (376958) (642406) (767028) (833456) (871970)
Pitches 66.13% 61.00% 53.50% 37.25% 16.38% 6.25% 2.88% 1.38% 0.75%
0.01%1 (1) (73) (3581) (76900) (399435) (684445) (821533) (898126) (946219)
Pitches 66.13% 61.13% 53.63% 37.38% 16.63% 6.38% 2.88% 1.50% 0.88%
0.1%1 (1) (73) (3733) (95838) (598394) (1096014) (1363610) (1543086) (1687166)
Proteins 52.25% 52.13% 51.63% 47.50% 25.13% 4.63% 0.75% 0.25% 0.25%
0.001%1 (1) (21) (422) (8045) (128975) (463357) (572530) (589356) (595906)
Proteins 52.25% 52.13% 51.63% 47.50% 25.13% 4.63% 0.75% 0.25% 0.25%
0.01%1 (1) (21) (422) (8045) (131064) (494845) (626269) (654067) (670075)
Proteins 52.25% 52.13% 51.63% 47.50% 25.50% 4.88% 0.88% 0.38% 0.38%
0.1%1 (1) (21) (425) (8076) (143879) (768510) (1150595) (1293347) (1403589)
Sources 68.75% 46.88% 30.00% 19.63% 14.38% 11.00% 8.38% 6.88% 5.75%
0.001%1 (1) (98) (4557) (29667) (75316) (130527) (194105) (259413) (320468)
Sources 68.75% 46.88% 30.00% 19.63% 14.38% 11.00% 8.50% 6.88% 5.75%
0.01%1 (1) (98) (5621) (42303) (102977) (170525) (244755) (320237) (391260)
Sources 68.75% 47.00% 30.25% 19.88% 14.63% 11.13% 8.50% 7.00% 5.88%
0.1%1 (1) (98) (7359) (104679) (299799) (498046) (687941) (872189) (1049051)

Table 3.8: Empirical entropy statistics for Pseudo-Real Collection (Scheme 1)

44

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

File H0 H1 H2 H3 H4 H5 H6 H7 H8

Xml 65.25% 38.63% 21.13% 12.63% 8.13% 6.00% 5.25% 4.75% 4.13%
0.001%2 (1) (89) (3325) (20560) (56120) (98084) (134897) (168846) (200451)
Xml 65.25% 39.38% 22.00% 13.25% 8.63% 6.50% 5.63% 5.13% 4.50%
0.01%2 (1) (89) (4135) (31042) (79630) (132163) (178388) (221499) (262329)
Xml 65.25% 44.00% 28.75% 18.50% 12.25% 9.25% 8.00% 7.13% 6.25%
0.1%2 (1) (89) (5255) (72227) (226418) (378994) (513539) (645141) (777226)
DNA 25.00% 24.25% 24.13% 24.00% 24.00% 23.75% 23.50% 22.88% 21.25%
0.001%2 (1) (5) (18) (67) (260) (1029) (4102) (16349) (62436)
DNA 25.00% 24.25% 24.13% 24.13% 24.00% 23.88% 23.50% 23.00% 21.38%
0.01%2 (1) (5) (18) (67) (260) (1029) (4102) (16369) (63242)
DNA 25.00% 24.50% 24.38% 24.25% 24.25% 24.13% 23.88% 23.50% 22.38%
0.1%2 (1) (5) (19) (70) (264) (1034) (4109) (16400) (65387)
English 57.25% 45.13% 34.75% 26.00% 20.00% 15.88% 12.50% 9.63% 7.13%
0.001%2 (1) (106) (2659) (18353) (63300) (145195) (256838) (379514) (501400)
English 57.25% 45.50% 35.38% 26.50% 20.25% 15.88% 12.38% 9.50% 7.13%
0.01%2 (1) (106) (3243) (24079) (83037) (180592) (305458) (439539) (572186)
English 57.38% 47.75% 39.50% 31.13% 23.00% 16.63% 12.13% 8.88% 6.38%
0.1%2 (1) (106) (4482) (47357) (202366) (466838) (749065) (1015587) (1265447)
Pitches 66.13% 61.13% 53.63% 37.25% 16.38% 6.25% 2.88% 1.38% 0.75%
0.001%2 (1) (73) (3549) (73664) (376958) (642406) (767028) (833456) (871970)
Pitches 66.13% 61.13% 53.88% 37.50% 16.50% 6.38% 2.88% 1.38% 0.88%
0.01%2 (1) (73) (3581) (76917) (399546) (684518) (821589) (898152) (946228)
Pitches 66.13% 62.00% 55.88% 40.25% 17.38% 6.50% 3.13% 1.88% 1.38%
0.1%2 (1) (73) (3742) (96359) (606175) (1103560) (1367417) (1545154) (1688526)
Proteins 52.25% 52.13% 51.63% 47.50% 25.25% 4.63% 0.75% 0.25% 0.25%
0.001%2 (1) (21) (422) (8045) (128975) (463357) (572529) (589356) (595906)
Proteins 52.25% 52.13% 51.63% 47.63% 25.75% 5.00% 0.88% 0.50% 0.38%
0.01%2 (1) (21) (422) (8045) (131079) (494846) (626306) (654107) (670114)
Proteins 52.25% 52.13% 51.75% 48.75% 30.13% 7.63% 2.13% 1.50% 1.38%
0.1%2 (1) (21) (426) (8072) (143924) (771311) (1154106) (1297080) (1407901)
Sources 68.75% 47.00% 30.00% 19.75% 14.38% 11.00% 8.50% 6.88% 5.75%
0.001%2 (1) (98) (4557) (29667) (75316) (130527) (194105) (259413) (320468)
Sources 68.75% 47.50% 30.75% 20.13% 14.63% 11.13% 8.63% 7.00% 5.88%
0.01%2 (1) (98) (5615) (42337) (103082) (170646) (244874) (320346) (391369)
Sources 68.75% 51.25% 36.63% 24.38% 16.75% 12.13% 9.13% 7.25% 6.00%
0.1%2 (1) (98) (7372) (108997) (319310) (525914) (718657) (904022) (1080824)

Table 3.9: Empirical entropy statistics for Pseudo-Real Collection (Scheme 2)

45

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

3.4.3 Real Texts

Tables 3.10-3.12 give the statistics of real texts.

File Size Σ IPM
Cere 440MiB 5 4.301
Para 410MiB 5 4.096
Clostridium Botulium 34MiB 4 3.356
Escherichia Coli 108MiB 15 4.000
Salmonella Enterica 66MiB 9 3.993
Staphylococcus Aureus 38MiB 5 3.579
Streptococcus Pneumoniae 23MiB 8 3.836
Streptococcus Pyogenes 24MIB 10 3.800
Influenza 148MiB 15 3.845
Coreutils 196MiB 236 19.553
Kernel 247MiB 160 23.078
Einstein (en) 446MiB 139 19.501
Einstein (de) 89MiB 117 19.264
Nobel (en) 85MiB 126 20.070
Nobel (de) 31MiB 118 17.786
Turing (en) 7.7MiB 103 21.096
Turing (de) 85MiB 100 19.719
World Leaders 45MiB 89 3.855

Table 3.10: Alphabet statistics for Real Collection

File p7zip bzip2 gzip ppmdi Re-Pair
Cere 1.14% 2.50% 26.36% 24.09% 1.86%
Para 1.46% 26.34% 27.07% 24.88% 2.80%
Clostridium Botulium 8.53% 25.88% 26.47% 24.12% 20.00%
Escherichia Coli 4.72% 26.85% 28.70% 25.93% 9.63%
Salmonella Enterica 5.61% 27.27% 28.79% 25.76% 12.42%
Staphylococcus Aureus 2.89% 26.32% 28.95% 25.00% 5.26%
Streptococcus Pneumoniae 4.78% 26.52% 27.39% 24.78% 9.57%
Streptococcus Pyogenes 5.00% 26.25% 27.08% 25.00% 9.58%
Influenza 1.35% 6.62% 7.43% 3.78% 3.31%
coreutils 1.94% 16.33% 24.49% 12.76% 2.55%
kernel 0.81% 21.86% 27.13% 18.62% 1.13%
einstein.en 0.07% 5.38% 35.20% 1.61% 0.10%
einstein.de 0.11% 4.38% 31.46% 1.35% 0.16%
nobel.en 0.13% 2.94% 18.82% 1.76% 0.20%
nobel.de 0.18% 3.55% 27.74% 1.68% 0.30%
turing.en 1.09% 36.36% 285.71% 15.58% 1.71%
turing.de 0.03% 0.18% 0.10% 0.11% 0.05%
world leaders 1.29% 7.11% 17.78% 3.56% 1.78%

Table 3.11: Compression statistics for Real Collection

46

3.4 Statistics Chapter 3 A Repetitive Corpus Testbed

File H0 H1 H2 H3 H4 H5 H6 H7 H8

Cere
27.38% 22.63% 22.63% 22.50% 22.50% 22.50% 22.50% 22.38% 22.25%

(1) (5) (25) (125) (610) (2515) (8697) (28080) (88624)

Para
26.50% 23.50% 23.38% 23.38% 23.38% 23.38% 23.25% 23.25% 23.13%

(1) (5) (25) (125) (625) (3125) (14725) (51542) (139149)
Clostridium 23.25% 23.00% 22.88% 22.75% 22.75% 22.75% 22.63% 22.50% 22.25%
Botulium (1) (4) (16) (64) (256) (1024) (4096) (16383) (65118)
Escherichia 25.00% 24.75% 24.50% 24.38% 24.25% 24.25% 24.13% 24.13% 23.88%
Coli (1) (15) (145) (779) (2715) (7436) (15641) (32561) (85363)
Salmonella 25.00% 24.75% 24.50% 24.38% 24.25% 24.13% 24.13% 24.00% 23.75%
Enterica (1) (9) (35) (97) (299) (1077) (4159) (16457) (65618)
Staphylococcus 23.88% 23.75% 23.75% 23.63% 23.63% 23.63% 23.50% 23.25% 22.75%
Aureus (1) (5) (18) (67) (260) (1029) (4102) (16391) (65282)
Streptococcus 24.63% 24.38% 24.38% 24.25% 24.13% 24.13% 24.00% 23.75% 23.13%
Pneumoniae (1) (8) (31) (133) (574) (2183) (6928) (21093) (71592)
Streptococcus 24.50% 24.38% 24.25% 24.13% 24.13% 24.13% 24.00% 23.88% 23.25%
Pyogenes (1) (10) (50) (174) (456) (1291) (4418) (16758) (65919)

Influenza
24.63% 24.13% 24.13% 24.00% 23.88% 23.50% 22.00% 18.63% 13.25%

(1) (15) (125) (583) (2329) (7978) (21316) (44748) (101559)

coreutils
68.38% 51.25% 35.88% 23.88% 17.00% 12.88% 10.13% 8.00% 6.50%

(1) (236) (18500) (169716) (606527) (1335553) (2258650) (3258896) (4247313)

kernel
67.25% 50.50% 36.63% 25.75% 19.25% 15.13% 12.13% 9.63% 7.75%

(1) (160) (7122) (90396) (351918) (773818) (1305616) (1912604) (2553008)

einstein.en
62.00% 46.38% 33.38% 21.13% 13.25% 9.00% 6.50% 4.75% 3.50%

(1) (139) (4546) (28685) (77333) (142559) (211506) (276343) (335151)

einstein.de
63.00% 44.88% 32.63% 20.88% 13.25% 9.00% 6.13% 4.38% 3.13%

(1) (117) (3278) (16765) (39010) (64884) (89914) (112043) (130473)

nobel.en
62.63% 44.63% 30.50% 18.25% 11.50% 8.13% 6.00% 4.50% 3.38%

(1) (126) (3566) (18079) (42334) (69855) (95644) (119260) (140401)

nobel.de
61.13% 43.25% 31.13% 19.63% 12.50% 8.63% 6.00% 4.13% 3.00%

(1) (118) (2726) (12959) (30756) (49695) (66108) (80467) (92184)

turing.en
63.25% 45.75% 32.00% 19.13% 11.50% 7.63% 5.38% 3.88% 2.88%

(1) (103) (2794) (14091) (33498) (55489) (75611) (93402) (108636)

turing.de
62.38% 43.25% 29.25% 16.75% 9.50% 6.00% 3.88% 2.63% 2.00%

(1) (100) (1806) (7268) (15407) (23070) (29038) (33714) (37335)
world 43.38% 24.38% 17.25% 11.63% 7.63% 5.13% 4.00% 3.50% 3.13%
leaders (1) (89) (2526) (23924) (106573) (246566) (374668) (468701) (547040)

Table 3.12: Empirical entropy statistics for Real Collection

47

3.5 Discussion Chapter 3 A Repetitive Corpus Testbed

3.5 Discussion

It can be seen in the tables presented above that only p7zip and Re-Pair capture
the repetitiveness of the texts, achieving a compression ratio at least one order of
magnitude better than bzip2, gzip or ppmdi. It can also be noted in Tables 3.6
and 3.7 that p7zip is more robust to capture the repetitiveness than Re-Pair, as
with mutation ratios of 0.1% p7zip compresses 5 times better than Re-Pair. Table
3.11 also shows that Re-Pair fails to capture some repetitions, as for all DNA texts
except para and cere the compression of p7zip is two times better than that of Re-
Pair. Tables 3.6 and 3.8 also show that the compression ratio of bzip2, gzip and
ppmdi does not change significantly when increasing the repetitiveness of the text
(decreasing mutation ratio). However, Tables 3.7 and 3.9 show that when decreasing
the mutation ratio from 0.1% to 0.01% the gain in compression is greater than 10%,
but when decreasing the mutation to 0.001% the compression ratio does not improve
as much. It can also be seen that the compression ratios of bzip2 and gzip are close
to the H2-H3, whereas, curiously, ppmdi compression ratios are not well predicted by
any Hk. Notice that, since artificial texts are extremely compressible, small constant
overheads (usually irrelevant) may produce significant differences in the size of the
compressed file.

48

Chapter 4

LZ-End: A New Lempel-Ziv
Parsing

In this chapter we explain some properties of the LZ77 parsing (see Section 2.13)
and present a variant that has the advantage of faster text extraction. The results
presented in this chapter were published in the 20th Data Compression Conference
(DCC) [KN10].

4.1 LZ77 on Repetitive Texts

An interesting property of the LZ77 parsing is that it captures the repetitions of the
text. Text repetitions, as well as single-character edits on a text, alter the number
of phrases of the parsing very little. This explains why LZ77 is so strong on highly
repetitive collections.

Lemma 4.1. Given the texts T , T ′ and the characters a , b; the following statements
hold

HLZ77(TT) = HLZ77(T) + 1 (4.1)

HLZ77(TT$) ≤ HLZ77(T$) + 1 (4.2)

HLZ77(TT ′) ≤ HLZ77(TaT ′) + 1 (4.3)

HLZ77(TaT ′) ≤ HLZ77(TT ′) + 1 (4.4)

HLZ77(TaT ′) ≤ HLZ77(TbT ′) + 1 (4.5)

where HLZ77(T) is the number of phrases of the LZ77 parsing.

49

4.2 LZ-End Chapter 4 LZ-End: A New Lempel-Ziv Parsing

Proof. Assume the last phrase of the LZ77 parsing of T$ is $ and that HLZ77(T$) =
n′ . That means the first n′ − 1 phrases cover the text T . Now, if we have the text
TT$, we have that the first n′−1 phrases are the same as for the parsing of T and the
last phrase would be T$, hence inequality for Equation (4.2) holds. Now, assume

the last phrase of the parsing is A$ for some A 6= ε. Therefore the n′-th phrase

of the parsing of TT would be AB for some B such that 1 ≤ |B| < |T |, thus this
phrase does not completely cover TT . An additional phrase covers the remaining
portion of the text, thus equality holds for Equation (4.2). The proof of Equation
(4.1) is similar to the second part of Equation (4.2).

Now consider Equation (4.3). Let Z[p] = XY the last phrase covering T , where
X is a suffix of T and Y is a prefix of T ′. When adding the new character in the
middle, in the worst case the phrase gets converted to Xa (this is the phrase that
may increase the total number of phrases). Then the following phrase will cover at
least the prefix Y , and each successive phrase will cover at least the next phrase of
the original parsing. Hence, the number of phrases is at most one more than the
original number of phrases. The proofs for Equations (4.4) and (4.5) are similar to
the one above.

The LZ78 parsing [ZL78] described in Section 2.14.3 is not that powerful. On

T = an it produces n′ =
√
n

2
+ O(1) phrases, and this increases to n′ =

√
2n
2

+ O(1)
on TT . LZ77, instead, produces n′ = log2(n) +O(1) phrases on T and just one more
phrase on TT .

4.2 LZ-End

In this section we introduce a new LZ-like parsing. Its main characteristic is a faster
random text extraction, while its compression is close to that of LZ77.

Definition 4.2. The LZ-End parsing of text T [1, n] is a sequence Z[1, n′] of phrases
such that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have already processed
T [1, i−1] producing the sequence Z[1, p−1]. Then, we find the longest prefix T [i, i′−1]
of T [i, n] that is a suffix of Z[1] . . . Z[q] for some q < p, set Z[p] = T [i, i′] and continue
with i = i′ + 1.

Example 4.3. Let T = ‘alabar a la alabarda$’; the LZ-End parsing is as follows:

a l ab ar a la a labard a$

50

4.2 LZ-End Chapter 4 LZ-End: A New Lempel-Ziv Parsing

In this example, when generating the seventh phrase we cannot copy two characters
as in Example 2.31, because ‘la’ does not end in a previous end of phrase. However,
‘l’ does end in an end of phrase, hence we generate the phrase ‘la’. Notice that the
number of phrases increased from 9 to 10 with respect to the original LZ77 scheme.

The LZ-End parsing is similar to the one proposed by Fiala and Green [FG89],
in that theirs restricts where the sources start, while ours restricts where the sources
end. This is the key feature that will allow us extract arbitrary phrases in constant
time per extracted symbol and, as shown in Section 4.2.2.

4.2.1 Encoding

The output of an LZ77 compressor is, essentially, the sequence of triplets z(p) =
(j, `, c), such that the source of Z[p] = T [i, i′] is T [j, j+`−1], ` = i′− i, and c = T [i′].
This format allows fast decompression of T , but not decompressing an individual
phrase Z[p] in reasonable time (one must basically decompress the whole text).

The LZ-End parsing, although potentially generates more phrases than LZ77,
permits a shorter encoding of each, of the form z(p) = (q, `, c), such that the source of
Z[p] = T [i, i′] is a suffix of Z[1] . . . Z[q], and the rest is as above. This representation
is shorter because it stores the phrase identifier rather than a text position. We
introduce a more sophisticated encoding that will, in addition, allow us to extract
individual phrases in constant time per extracted symbol.

• char[1, n′] (using n′dlog σe bits) encodes the trailing characters (c above).

• source[1, n′] (using n′dlog n′e bits) encodes the phrase identifier where the source
ends (q above).

• B[1, n] (using n′ log n
n′

+O(n′ + n log logn
logn

) bits in compressed form [RRR02], see

Section 2.5) marks the ending positions of the phrases in T .

Thus we have z(p) = (q, l, c) = (source[p], select1(B, p + 1) − select1(B, p) −
1, char[p]). We can also know in constant time that phrase p ends at select1(B, source[p])
and that it starts ` positions before. Finally, we can know that the text position i
belongs to phrase Z[rank1(B, i− 1) + 1].

51

4.2 LZ-End Chapter 4 LZ-End: A New Lempel-Ziv Parsing

Extract(start, len)

1 if len > 0 then
2 end← start+ len− 1
3 p← rank1(B, end)
4 if B[end] = 1 then
5 Extract(start, len− 1)
6 output char[p]
7 else
8 pos← select1(B, p) + 1
9 if start < pos then

10 Extract(start, pos− start)
11 len← end− pos+ 1
12 start← pos
13 Extract(select1(B, source[p+ 1])− select1(B, p+ 1) + start+ 1, len)

Figure 4.1: LZ-End extraction algorithm for T [start, start+ len− 1].

4.2.2 Extraction Algorithm

The algorithm to extract an arbitrary substring in LZ-End is given in Figure 4.1. The
extraction works from right to left. First we compute the last phrase p intersecting
the substring. If the last character is stored explicitly, i.e., it is an end of phrase (see
Line 4), we output char[p] and recursively extract the remaining substring (line 5).
Otherwise we split the substring into two parts. The right one is the intersection of
the rightmost phrase covering the substring and the substring itself, and is extracted
recursively by going to the source of that phrase (line 10). The left part is also
extracted recursively (line 13).

While the algorithm works for extracting any substring, we can prove it takes
constant time per extracted symbol when the substring ends at a phrase.

Theorem 4.4. Function Extract outputs a text substring T [start, end] ending at a
phrase in time O(end− start+ 1).

Proof. If T [start, end] ends at a phrase, then B[end] = 1. We proceed by induction on
len = end−start+1. The case len ≤ 1 is trivial by inspection. Otherwise, we output
T [end] at line 6 after a recursive call on the same phrase and length len−1. This time
we go to line 8. The current phrase (now p+1) starts at pos. If start < pos, we carry
out a recursive call at line 10 to handle the segment T [start, pos−1]. As this segment
ends at the end of phrase p, induction shows that this takes time O(pos− start+ 1).

52

4.2 LZ-End Chapter 4 LZ-End: A New Lempel-Ziv Parsing

Now the segment T [max(start, pos), end] is contained in Z[p + 1] and it finishes one
symbol before the phrase ends. Thus a copy of it finishes where Z[source[p+ 1]] ends,
so induction applies also to the recursive call at line 13, which extracts the remaining
string from the source instead of from Z[p + 1], also in constant time per extracted
symbol.

We have shown that the algorithm extracts any substring by starting from the
end of a phrase. Thus, extracting an arbitrary substring may be more expensive than
an end-of-phrase aligned one.

Definition 4.5. Let T = Z[1]Z[2] . . . Z[n′] be a LZ-parsing of T [1, n]. Then the
height of the parsing is defined as H = max1≤i≤nC[i], where C is defined as follows.
Let Z[i] = T [a, b] be a phrase which source is T [c, d], then

C[k] = C[(k − a) + c] + 1, ∀a ≤ k < b

C[b] = 1

Array C counts how many times a character was transitively copied from its
original source. This is also the extraction cost of that character. Hence, the value
H is the worst-case bound for extracting a single character in the LZ parse.

Lemma 4.6. In an LZ-End parsing it holds that H is smaller than the longest phrase,
i.e., H ≤ max1≤p≤n′ |Z[p]|.

Proof. We will prove by induction that ∀1 ≤ i < n, C[i] ≤ C[i + 1] + 1. From this
inequality the lemma follows. For all positions ip where a phrase p ends, it holds
by definition that C[ip] = 1. Thus, for all positions i in the phrase p, we have
C[i] ≤ C[ip] + ip − i ≤ |Z[p]|.

The first phrase of any LZ-End parsing is T [0], and the second is either T [1] or
T [1]T [2]. In the first case, we have C[1]C[2] = 1, 1, in the latter C[1]C[2]C[3] = 1, 2, 1.
In both cases the property holds. Now, suppose the inequality is valid up to position ip
where the phrase Z[p] ends. Let ip+1 be the position where the phrase Z[p+1] = T [a, b]
ends (so a = ip + 1 and b = ip+1) and T [c, d] its source. For all ip + 1 ≤ i < ip+1,
C[i] = C[(i−a)+c]+1, and since d ≤ ip, the inequality holds by inductive hypothesis
for ip + 1 ≤ i ≤ ip+1 − 2. By definition of the LZ-End parsing the source of a phrase
ends in a previous end of phrase, hence C[ip+1−1] = C[d]+1 = 2 ≤ 1+1 = C[ip+1]+1.
For position ip+1 (end of phrase) the inequality trivially holds as it has by definition
the least possible value.

53

4.3 Compression Performance Chapter 4 LZ-End: A New Lempel-Ziv Parsing

The above lemma does not hold for LZ77. Moreover, the LZ-End parsing yields
a better extraction complexity.

Lemma 4.7. Extracting a substring of length ` from an LZ-End parsing takes time
O(`+H).

Proof. Theorem 4.4 already shows that the cost to extract a substring ending at a
phrase boundary is constant per extracted symbol. The only piece of the code in
Figure 4.1 that does not amortize in this sense is line 13, where we recursively unroll
the last phrase, removing the last character each time, until hitting the end of the
substring to extract. By definition of H, this line cannot be executed more than H
times. So the total time is O(`+H).

Remark 4.8. On a text coming from an ergodic Markov source of entropy h, the
expected value of the longest phrase is O(logn

h
). However, as we are dealing with

highly repetitive texts this expected length does not hold.

Remark 4.9. Algorithm Extract (Figure 4.1) also works on parsing LZ77, but in
this case the best theoretical bound we can prove for extracting a substring of length
` is O(`H) . However, the results in Section 4.5.3 suggest that on average it may be
much better.

4.3 Compression Performance

We study now the compression performance of LZ-End, first with respect to the
empirical k-th order entropy and then on repetitive texts.

4.3.1 Coarse Optimality

We prove that LZ-End is coarsely optimal. The main tool is the following lemma.

Lemma 4.10. All the phrases generated by an LZ-End parse are different.

Proof. Assume by contradiction Z[p] = Z[p′] for some p < p′. When Z[p′] was
generated, we could have taken Z[p] as the source, yielding phrase Z[p′]c, longer than
Z[p′]. This is clearly a valid source as Z[p] is a suffix of Z[1] . . . Z[p]. So this is not
an LZ-End parse.

54

4.3 Compression Performance Chapter 4 LZ-End: A New Lempel-Ziv Parsing

Lemma 4.11 ([LZ76]). Any parsing of T [1, n] into n′ distinct phrases satisfies n′ =

O
(

n
logσ n

)
, where σ is the alphabet size of T .

Lemma 4.12 ([KM99]). For any text T [1, n] parsed into n′ different phrases, it holds
n′ log n′ ≤ nHk(T) + n′ log n

n′
+ Θ(n′(1 + k log σ)), for any k.

Lemma 4.13. For any text T [1, n] parsed into n′ different phrases, using LZ77 or
LZ-End, it holds n′ log n ≤ nHk(T) + o(n log σ) for any k = o(logσ n).

Proof. Arroyuelo and Navarro [AN] prove that the property holds for any LZ parsing
for which Lemmas 4.11 and 4.12 hold. In particular it holds for LZ77 and for our
proposal, the LZ-End.

Theorem 4.14. The LZ-End compression is coarsely optimal.

Proof. The proof is based on the one by Kosaraju and Manzini [KM99] for LZ77.
Here we consider in addition our particular encoding (the result holds for triplets
(q, `, c) as well). The size of the parsing in bits is

LZ-End(T) = n′dlog σe+ n′dlog n′e+ n′ log
n

n′
+O

(
n′ +

n log log n

log n

)
= n′ log n+O

(
n′ log σ +

n log log n

log n

)
.

Thus from Lemmas 4.10 and 4.12 we have

LZ-End(T) ≤ nHk(T) + 2n′ log
n

n′
+O

(
n′(k + 1) log σ +

n log log n

log n

)
.

Now, by means of Lemma 4.11 and since n′ log n
n′

is increasing in n′, we get

LZ-End(T) ≤ nHk(T) +O

(
n log σ log log n

log n

)
+O

(
n(k + 1) log2 σ

log n
+
n log log n

log n

)
= nHk(T) +O

(
n log σ(log log n+ (k + 1) log σ)

log n

)
.

Thus, diving by n and taking k and σ as constants, we get that the compression ratio
is

ρ(T) ≤ Hk(T) +O

(
n log log n

log n

)
.

55

4.3 Compression Performance Chapter 4 LZ-End: A New Lempel-Ziv Parsing

4.3.2 Performance on Repetitive Texts

We have not found a worst-case bound for the competitiveness of LZ-End compared to
LZ77. However, we show, on the negative side, a sequence that produces almost twice
the number of phrases when parsed with LZ-End, so LZ-End is at best 2-competitive
with LZ77. On the positive side, we show that LZ-End satisfies some of the properties
of Lemma 4.1.

Example 4.15. Let T = 112 · 113 · 214 · 325 · 436 · 547 · . . . · (σ − 2)(σ − 3)σ. The
length of the text is n = 3(σ − 1). The LZ parsings are:

LZ77 1 12 113 214 325 436 547 . . . (σ − 2)(σ − 3)σ

LZ-End 1 12 11 3 21 4 32 5 43 6 54 7 . . . (σ − 2)(σ − 3) σ

The size of LZ77 is n′ = σ and the size of LZ-End is n′ = 2(σ − 1).

For LZ-End we can only prove the following lemma regarding the concatenation
of texts.

Lemma 4.16. Given a text T , the following statements hold

HLZ−End(TT) ≤ HLZ−End(T) + 2 (4.6)

HLZ−End(TT$) ≤ HLZ−End(T$) + 1 (4.7)

where HLZ−End(T) is the number of phrases of the LZ-End parsing.

Proof. Assume HLZ−End(T$) = n′ and that the last phrase of the LZ-End parsing of

T$ is $. That means the first n′ − 1 phrases cover the text T . Now, if we have
the text TT$, we have that the first n′ − 1 phrases are the same as for the parsing
of T and the last phrase would be T$ (since T ends at the end of the (n′ − 1)-th
phrase), hence inequality for Equation (4.7) holds (actually it holds HLZ−End(TT$) =

HLZ−End(T$)). Now, assume the last phrase of the parsing is A$ for some A 6= ε,
and that the prefix of T in the n′ − 1 first phrases is xX, where x is a character.
Therefore the n′-th phrase of the parsing of TT would be at least Ax . Then

the (n′ + 1)-th phrase will be XA$, thus equality holds for Equation (4.7). The
situation is analogous if the n′-th phrase extends beyond Ax. For Equation (4.6)
consider that T is parsed into n′ − 1 phrases covering the prefix xX and the last
phrase is aAb (where x, a and b are characters and A 6= ε is a string). Then, the

(n′+ 1)-th phrase of TT is at least xXa , and thus, the (n′+ 2)-th phrase is Ab .

Because there must exist a phrase ending in A for phrase aAb to exist. If, instead,

the n′-th phrase is just a , then the (n′ + 1)-th phrase is xXa = T .

56

4.4 Construction Algorithm Chapter 4 LZ-End: A New Lempel-Ziv Parsing

1 F ← {〈−1, n+ 1〉}
2 i← 1, p← 1
3 while i ≤ n do
4 [sp, ep]← [1, n]
5 j ← 0, `← j
6 while i+ j ≤ n do
7 [sp, ep]← BWS(sp, ep, T [i+ j])
8 mpos← arg maxsp≤k≤epA[k]
9 if A[mpos] ≤ n+ 1− i then

10 break
11 j ← j + 1
12 〈q, fpos〉 ← Successor(F , sp)
13 if fpos ≤ ep then
14 `← j
15 Insert(F , 〈p,A−1[n+ 1− (i+ `)]〉)
16 output (q, `, T [i+ `])
17 i← i+ `+ 1, p← p+ 1

Figure 4.2: LZ-End construction algorithm. F stores pairs 〈phrase identifier, suffix
array position〉 and answers successor queries on the text position. BWS(sp, ep, c)
was defined in Section 2.12.

4.4 Construction Algorithm

We present an algorithm to compute the parsing LZ-End, inspired by the algo-
rithm CSP2 by Chen et al. [CPS08]. We compute the range of all text prefixes ending
with a pattern P , rather than suffixes starting with P [FG89].

We first build the suffix array (Section 2.11) A[1, n] of the reverse text, T rev =
T [n− 1] . . . T [2]T [1]$, so that T rev[A[i], n] is the lexicographically i-th smallest suffix
of T rev. We also build its inverse permutation: A−1[j] is the lexicographic rank of
T rev[j, n]. Finally, we build the Burrows-Wheeler Transform (BWT) (Section 2.12)
of T rev, T bwt[i] = T rev[A[i]− 1] (or T rev[n] if A[i] = 1).

On top of the BWT we will apply backward search (Section 2.12) to find out
whether there are occurrences of a T [i, i′ − 1] (Definitions 2.30 and 4.2).

Since, for LZ-End, the phrases must in addition finish at a previous phrase end,
we maintain a dynamic set F where we add the ending positions of the successive
phrases we create, mapped to A. That is, once we create phrase Z[p] = T [i, i′], we

57

4.4 Construction Algorithm Chapter 4 LZ-End: A New Lempel-Ziv Parsing

10 16 21 9 15 13 19 6 3 11 17 2 7 4 20 8 14 12 18 5 1

21 12 9 14 20 8 13 16 4 1 10 18 6 17 5 2 11 19 7 15 3

{5,18,14,20,4,2}

alabar_a_la_alabarda$
1 2 4 6 7 9

141 1615 2110 19131232 6 7 84 5 11 18 20179

Figure 4.3: Example of LZ-End construction algorithm

insert A−1[n+ 1− i′] into F .

Backward search over T rev adapts very well to our purpose. By considering the
patterns P = (T [i, i′ − 1])rev for consecutive values of i′, we are searching backwards
for P in T rev, and thus finding the ending positions of T [i, i′ − 1] in T , by carrying
out one further BWS step for each new i′ value. Thus we can use F naturally.

As we advance i′ in T [i, i′−1], we test whether A[sp, ep] contains some occurrence
finishing before i in T , that is, starting after n + 1 − i in T rev. If it does not, then
we stop looking for larger i′ values as there are no matches preceding T [i]. For this,
we precompute a Range Maximum Query (RMQ) data structure [FH07] on A, which
answers queries mpos = arg maxsp≤k≤epA[k]. Then if A[mpos] is not large enough,
we stop.

In addition, we must know if i′ finishes at some phrase end, i.e., if F contains
some value in [sp, ep]. A successor query on F finds the smallest value fpos ≥ sp in
F . If fpos ≤ ep, then it represents a suitable LZ-End source for T [i, i′]. Otherwise,
as the condition could hold again for a later [sp, ep] range, we do not stop but recall
the last j = i′ where it was valid. Once we stop because no matches ending before
T [i] exist, we insert phrase Z[p] = T [i, j] and continue from i = j + 1. This may
retraverse some text since we had processed up to i′ ≥ j. We call N ≥ n the total
number of text symbols processed.

The algorithm is depicted in Figure 4.2.

Example 4.17. Figure 4.3 shows the structures used during the parsing of the string
‘alabar a la alabarda$’. The array A corresponds to the suffix array of the re-
versed text and A−1 to its inverse permutation. The figure shows the parsing up to
the 6th phrase and the values inserted in the dictionary F . The values inserted in
F are A−1[len − i], where i is the ending position of a phrase and len the length of
the text. For example, the second phrase ends in position 2, thus the value inserted
corresponds to A−1[21− 2] = 18.

58

4.4 Construction Algorithm Chapter 4 LZ-End: A New Lempel-Ziv Parsing

Now we continue the process to generate the next phrase. First, using BWS
we find the interval of A that represents the suffixes (of the reverse text) starting
with ‘l’, obtaining the range [17, 18] (right gray zone). Then we look in F for the
successor of 17, obtaining the value 18, which is still in the range. Hence, we have
found a valid source. Afterward, we continue with the next character. Again, with
BWS we find the interval of A representing the suffixes (of the reverse text) starting
with ‘al’ (left gray zone), which are the prefixes of the text ending with ‘la’. This
gives us the range [11, 13]. We look for the successor of 11 in F , which is 14. Since
this value is outside the interval, there are no valid sources. We continue this process
until there are no more possible sources. Finally, we get that the only valid source is
‘l’, generating the new phrase ‘la’.

In theory the construction algorithm can work within bit space (1) nHk(T
rev) +

o(n log σ) = nHk(T) + o(n log σ) (since nHk(T) = nHk(T
rev) +O(log n) [FM05, The-

orem A.3]) for building the BWT incrementally [GN08]; plus (2) 2n+o(n) bits for the
RMQ structure [FH07]; plus (3) O(n′ log n) bits for a successor data structure. After
building the BWT incrementally in time O(n log nd log σ

log logn
e) [GN08], we can make it

static, so that it supports access to the successive characters of T in time O(d log σ
log logn

e),
as well to A and A−1 in time O(log1+ε n) for any constant ε > 0 [FMMN07]. The
RMQ structure is built in O(n) time and within the same final space, and answers
queries in constant time. The successor data structure could be a simple balanced
search tree, with leaves holding Θ(log n) elements, so that the access time is O(log n)
and the space is n′ log n(1 + o(1)) [Mun86]. Thus, using Lemmas 4.11 and 4.12, the
overall construction space is 2n(Hk(T) + 1) + o(n log σ) bits, for any k = o(logσ n).
The time is dominated by the BWT construction, O(n log nd log σ

log logn
e), plus the N

accesses to A, O(N log1+ε n). If, instead, we use O(n log n) bits of space, we can
build and store explicitly A and A−1 in O(n) time [KS03]. The overall time becomes
O(Nd log σ

log logn
e).

Note that a simplification of our construction algorithm, disregarding F (and
thus N = n) builds the LZ77 parsing using just n(Hk(T) + 2) + o(n log σ) bits and
O(n log n(logε n+o(log σ))) time, which is less than the best existing solutions [OS08,
CPS08].

In practice our implementation of the algorithm works within byte space (1) n
as we maintain T explicitly; plus (2) 2.02n for our implementation of BWT (fol-
lowing Navarro’s “large” FM-index implementation [Nav09], where L is maintained
explicitly); plus (3) 4n for A, which is explicitly maintained; plus (4) 0.7n for Fis-
cher’s implementation of RMQ [FH07]; plus (5) n for A−1, using a sampling-based
implementation of inverse permutations [MRRR03] (Section 2.7); plus (6) 12n′ for a

59

4.5 Experimental Results Chapter 4 LZ-End: A New Lempel-Ziv Parsing

balanced binary tree implementing the successor structure. This adds up to less than
10n bytes in practice. A is built in time O(n log n) in practice; other construction
times are O(n). After this, the time of the algorithm is O(N log n′) = O(N log n).

As we see soon, N is usually (but not always) only slightly larger than n; we now
prove it is limited by the phrase lengths.

Lemma 4.18. The amount of text retraversed at any step is < |Z[p]| for some p.

Proof. Say the last valid match T [i, j − 1] was with suffix Z[1] . . . Z[p − 1] for some
p, thereafter we worked until T [i, i′ − 1] without finding any other valid match, and
then formed the phrase (with source p− 1). Then we will retraverse T [j + 1, i′ − 1],
which must be shorter than Z[p] since otherwise Z[1] . . . Z[p] would have been a valid
match.

Remark 4.19. On ergodic sources with entropy h, N = O(n
h

log n), but as explained
this is not a realistic model on repetitive texts.

4.5 Experimental Results

We implemented two different LZ-End encoding schemes. The first is as explained in
Section 4.2.1. In the second (LZ-End2) we store the starting position of the source,
select1(B, source[p]), rather than the identifier of the source, source[p]. This in theory
raises the nHk(T) term in the space to 2nHk(T) (and noticeably in practice, as seen
soon), yet we save one select operation at extraction time (line 13 in Figure 4.1),
which has a significant impact in performance. In both implementations, bitmap B
is represented by δ-encoding the consecutive phrase lengths (Section 2.5.2). Recall
that, in a δ-encoded bitmap, select1(B, p) and select1(B, p+1) cost O(1) after solving
p← rank1(B, end), thus LZ-End2 does no select operations for extracting.

We compare our compressors with LZ77 and LZ78 implemented by ourselves.
LZ77 triples are encoded in the same way as LZ-End2. We include the best performing
compressors of Chapter 3, p7zip and Re-Pair. Compared to p7zip, LZ77 differs in
the final encoding of the triples, which p7zip does better. This is orthogonal to the
parsing issue we focus on in this thesis. We also implemented LZB [Ban09], which
limits the distance dist at which the phrases can be from their original (not transitive)
sources, so one can decompress any window by starting from that distance behind;
and LZ-Cost, a novel proposal where we limit the number of times any text character
can be copied (i.e., its C[·] value in Definition 4.5), thus directly limiting the maximum
cost per character extraction. We have found no efficient parsing algorithm for LZB

60

4.5 Experimental Results Chapter 4 LZ-End: A New Lempel-Ziv Parsing

and LZ-Cost, thus we test them on small texts only. We also implemented LZ-Begin,
the “symmetric” variant of LZ-End, which also allows random phrase extraction in
constant time per extracted symbol. LZ-Begin forces the source of a phrase to start
where some previous phrase starts, just like Fiala and Green [FG89], yet phrases have
a leading rather than a trailing character. Although the parsing is much simpler, the
compression ratio is noticeably worse than that of LZ-End, as we will see in Section
4.5.1.

We used the texts of the Canterbury corpus (http://corpus.canterbury.ac.
nz), the 50MB texts from the Pizza&Chili corpus (http://pizzachili.dcc.uchile.
cl), and highly repetitive texts from the previous chapter. We use a 3.0 GHz Core 2
Duo processor with 4GB of main memory, running Linux 2.6.24 and g++ (gcc version
4.2.4) compiler with -O3 optimization.

4.5.1 Compression Ratio

Table 4.1 gives compression ratios for the different collections and parsers. Figure
4.4 shows the same results graphically for one representative text of each collection.
For LZ-End we omit the sampling for bitmap B, as it can be reconstructed on the
fly at loading time. LZ-End is usually 5% worse than LZ77, and at most 10% over it
on general texts and 20% on the highly repetitive collections, where the compression
ratios are nevertheless excellent. LZ78 is from 20% better to 25% worse than LZ-End
on typical texts, but it is orders of magnitude worse on highly repetitive collections.
With parameter log(n)/2, LZ-Cost is usually close to LZ77, yet sometimes it is much
worse, and it is never better than LZ-End except by negligible margins. LZB is not
competitive at all. Finally, LZ-Begin is about 30% worse than LZ77 on typical texts,
and up to 40 times worse for repetitive texts. This is because not all phrases of the
parsing are unique (Lemma 4.20). This property was the key to prove the coarse
optimality of the LZ parsings.

Lemma 4.20. Not all the phrases generated by an LZ-Begin parsing are different.

Proof. We prove this lemma by showing a counter-example. Let T = AxyAyAz,
where x, y, z are distinct characters and A is a string. Suppose we have parsed up to
Ax, then the next phrase will be yA, and the following phrase will also be yA.

The above results show that LZ-End achieves very competitive compression ratios,
even in the challenging case of highly repetitive sequences, where LZ77 excells.

61

http://corpus.canterbury.ac.nz
http://corpus.canterbury.ac.nz
http://pizzachili.dcc.uchile.cl
http://pizzachili.dcc.uchile.cl

4.5 Experimental Results Chapter 4 LZ-End: A New Lempel-Ziv Parsing

LZ77 LZ78 LZ-End LZ-Cost LZB LZ-Begin Re-Pair

Canterbury Size(KiB)
alice29.txt 148.52 47.17% 49.91% 49.32% 48.51% 61.75% 59.02% 72.29%
asyoulik.txt 122.25 51.71% 52.95% 53.51% 52.41% 66.42% 62.34% 81.52%
cp.html 24.03 43.61% 53.60% 45.53% 46.27% 66.26% 56.93% 78.65%
fields.c 10.89 39.21% 54.73% 41.69% 44.44% 61.32% 60.61% 65.19%
grammar.lsp 3.63 48.48% 57.85% 50.41% 56.30 % 67.02% 67.14% 85.60%
lcet10.txt 416.75 42.62% 46.83% 44.65% 43.44% 56.72% 54.21% 57.47%
plrabn12.txt 470.57 50.21% 49.34% 52.06% 50.83% 63.55% 59.15% 74.32%
xargs.1 4.13 57.87% 65.38% 59.56% 59.45% 86.37% 73.14% 107.33%
aaa.txt 97.66 0.055% 0.51% 0.045% 1.56% 0.95% 0.040% 0.045%
alphabet.txt 97.66 0.110% 4.31% 0.105% 0.23% 1.15% 0.100% 0.081%
random.txt 97.66 107.39% 90.10% 105.43% 107.40% 121.11% 106.9% 219.24%
E.coli 4529.97 34.13% 27.70% 34.72% - - 35.99% 57.63%
bible.txt 3952.53 34.18% 36.27% 36.44% - - 43.98% 41.81%
world192.txt 2415.43 29.04% 38.52% 30.99% - - 41.52% 38.29%
pi.txt 976.56 55.73% 47.13% 55.99% - - 57.36% 108.08%

LZ77 LZ78 LZ-End LZ-Begin Re-Pair
Pizza Chili Size(MiB)
Sources 50 28.50% 41.14% 31.00% 41.95% 31.07%
Pitches 50 44.50% 59.30% 45.78% 57.22% 59.90%
Proteins 50 47.80% 53.20% 47.84% 54.95% 71.29%
DNA 50 31.88% 28.12% 32.76% 34.28% 45.90%
English 50 31.12% 41.80% 31.12% 38.54% 30.50%
XML 50 17.00% 21.24% 17.64% 25.49% 18.50%

LZ77 LZ78 LZ-End LZ-Begin Re-Pair
Repetitive Size(MiB)
Wikipedia Einstein 357.40 9.97×10−2% 9.29% 1.01×10−1% 4.27% 1.04×10−1%
World Leaders 40.65 1.73% 15.89% 1.93% 7.97% 1.89%
Rich String 11 48.80 3.20×10−4% 0.82% 4.18×10−4% 0.01% 3.75×10−4%
Fibonacci 42 255.50 7.32×10−5% 0.40% 5.32×10−5% 6.07×10−5% 2.13×10−5%
Para 409.38 2.09% 25.49% 2.48% 7.29% 2.74%
Cere 439.92 1.48% 25.33% 1.74% 6.15% 1.86%
Coreutils 195.77 3.18% 27.57% 3.35% 7.33% 2.54%
Kernel 246.01 1.35% 30.02% 1.43% 3.43% 1.10%

Table 4.1: Compression ratio of different parsings, in percentage of compressed over
original size. We use parameter cost = (log n)/2 for LZ-Cost and dist = n/5 for LZB.

62

4.5 Experimental Results Chapter 4 LZ-End: A New Lempel-Ziv Parsing

 0

 10

 20

 30

 40

 50

 60

 70

 80

 plrabn12.txt DNA Para

R
at

io
 o

f o
rig

in
al

 te
xt

Compression of different Compressors

LZ77
LZ78

LZ-End
LZ-Begin

Re-Pair
LZ-Cost

LZB

Figure 4.4: Compression ratio for different compressors

Consistently with Chapter 3, Re-Pair results show that grammar-based compres-
sion is a relevant alternative. Yet, we note that it is only competitive on highly
repetitive sequences, where most of the compressed data is in the dictionary. This
implementation applies sophisticated compression to the dictionary, which we do not
apply on our compressors. Those sophisticated dictionary compression techniques
prevent direct access to the grammar rules, essential for extracting substrings.

4.5.2 Parsing Time

Figure 4.5 shows parsing times on two files for LZ77 (implemented following CSP2
[CPS08]), LZ-End with the algorithm of Section 4.4, and p7zip. We show sepa-
rately the time of the suffix array construction algorithm we use, libdivsufsort

(http://code.google.com/p/libdivsufsort), common to LZ77 and LZ-End.

Our LZ77 construction time is competitive with the state of the art (p7zip), thus
the excess of LZ-End is due to the more complex parsing. Least squares fitting
for the nanoseconds/char yields 10.4 log n + O(1/n) (LZ77) and 82.3 log n + O(1/n)
(LZ-End) for Einstein text, and 32.6 log n+O(1/n) (LZ77) and 127.9 log n+O(1/n)
(LZ-End) for XML. The correlation coefficient is always over 0.999, which suggests
that N = O(n) and our parsing takes O(n log n) time in practice. Indeed, across
all of our collections, the ratio N/n stays between 1.05 and 1.37, except on aaa.txt

and alphabet.txt, where it is 10–14 (which suggests that N = ω(n) in the worst
case). Figure 4.6 shows the total text traversed by LZ-End parsing algorithm for two
different texts.

The LZ-End parsing time breaks down as follows. For XML: BWS 36%, RMQ

63

4.5 Experimental Results Chapter 4 LZ-End: A New Lempel-Ziv Parsing

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 19 20 21 22 23 24 25 26 27 28

tim
e(

µs
)/

n

log(n)

PizzaChili XML File (size=282MiB)

LZ77
LZ-End

P7Zip
SA

 0

 0.5

 1

 1.5

 2

 2.5

 19 20 21 22 23 24 25 26 27 28

tim
e(

µs
)/

n

log(n)

Wikipedia Einstein (size=357MiB)

LZ77
LZ-End

P7Zip
SA

Figure 4.5: Parsing times for XML and Wikipedia Einstein, in microseconds per
character.

 1.18
 1.2

 1.22
 1.24
 1.26
 1.28
 1.3

 1.32
 1.34
 1.36
 1.38

 0 1 2 3 4 5 6 7 8

to
ta

l w
or

k/
le

ng
th

log(size (MB))

Total text traversal of LZ-End

XML
Wikipedia

Figure 4.6: Total text traversed during LZ-End construction algorithm.

19%, tree operations 33%, SA construction 6% and inverse SA lookups 6%. For
Einstein: BWS 56%, RMQ 19%, tree operations 17%, and SA construction 8% (the
inverse SA lookups take negligible time).

4.5.3 Text Extraction Speed

Figure 4.7 shows the extraction speed of arbitrary substrings of increasing length. The
three parsings (LZ77, LZ-End and LZ-End2) are parameterized to use approximately
the same space, 550KiB for Wikipedia Einstein and 64MiB for XML. This is achieved
by adjusting the sample step s of the δ-encoded bitmaps (Section 2.5.2). It can be
seen that (1) the time per character stabilizes after some extracted length, as expected
from Lemma 4.7, (2) LZ-End variants extract faster than LZ77, especially on very

64

4.5 Experimental Results Chapter 4 LZ-End: A New Lempel-Ziv Parsing

repetitive collections, and (3) LZ-End2 is faster than LZ-End, even if the latter invests
its better compression in a denser sampling. Least squares fitting for the extraction
time of a substring of length m are given in Table 4.2.

Pizza&Chili XML
Scheme Model
LZ77 4.44 + 0.33m
LZ-End 7.40 + 0.36m
LZ-End2 6.41 + 0.27m

Wikipedia Einstein
Scheme Model
LZ77 19.09 + 0.38m
LZ-End 5.75 + 0.19m
LZ-End2 5.64 + 0.19m

Table 4.2: Least squares fitting for extraction time. All correlation coefficients are
always over 0.999.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(extraction length)

PizzaChili XML File (size=282MiB)

LZ77
LZEnd

LZEnd2

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(extraction length)

Wikipedia Einstein (size=357MiB)

LZ77
LZEnd

LZEnd2

Figure 4.7: Extraction speed vs extracted length, for XML and Wikipedia Einstein.

We now set the extraction length to 1,000 and measure the extraction speed per
character, as a function of the space used by the data and the sampling. Here we use
bitmap B and its sampling for the other formats as well. LZB and LZ-Cost have also
their own space/time trade-off parameter; we tried several combinations and chose
the points dominating the others. Figure 4.8 shows the results for small and large
files.

It can be seen that LZB is not competitive, whereas LZ-Cost follows LZ77 closely
(while offering a worst-case guarantee). The LZ-End variants dominate all the trade-
off except when LZ77/LZ-Cost are able of using less space. On repetitive collections,
LZ-End2 is more than 2.5 times faster than LZ77 at extraction.

65

4.5 Experimental Results Chapter 4 LZ-End: A New Lempel-Ziv Parsing

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 60 70 80 90 100

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

Canterbury plrabn12.txt (size=471KiB)

LZ77
LZEnd

LZEnd2
LZCost

LZB
LZ78

 0

 5

 10

 15

 20

 25

 30

 0 0.02 0.04 0.06 0.08 0.1

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

Fibonacci Sequence (size=502KiB)

LZ77
LZEnd

LZEnd2
LZCost

LZB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 15 20 25 30 35 40 45 50

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

PizzaChili XML File (size=282MiB)

LZ77
LZEnd

LZEnd2
LZ78

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.1 0.15 0.2 0.25 0.3 0.35

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

Compression Ratio

Wikipedia Einstein (size=357MiB)

LZ77
LZEnd

LZEnd2

Figure 4.8: Extraction speed vs parsing and sampling size, on different texts.

66

Chapter 5

An LZ77-Based Self-Index

In this chapter we describe a self-index based on the LZ77 parsing. It builds on the
ideas of the original LZ-based index proposed by Kärkkäinen and Ukkonen [KU96a,
Kär99] and the ideas presented by Navarro for reducing its space usage [Nav08]. Our
index will be mostly independent of the type of Lempel-Ziv parsing used, and we
will combine it with LZ77 and LZ-End. We use compact data structures to achieve
the minimum possible space. These structures also allow one to convert the original
index into a self-index, so that we do not need the text anymore.

As we will show, the index includes all the structures needed to randomly extract
any substring from the text, introduced in the previous chapter. The worst-case
time to extract a substring of length ` is O(`H) for LZ77 and O(` + H) for LZ-End
(see Section 4.2.2). Additionally, the proposed index only supports count queries by
performing a full locate, and exists queries by essentially locating one occurrence. For
these reasons, in the following we focus only on locate queries.

5.1 Basic Definitions

Assume we have a text T of length n, which is partitioned into n′ phrases using
a LZ77-like compressor (see Chapter 4). Let P [1,m] be a search pattern. We will
call primary occurrences of P those covering more than one phrase; special primary
occurrences those ending at the end of a phrase and being completely covered by the
phrase; and secondary occurrences those occurrences completely covered by a phrase
and not ending at an end of phrase.

67

5.2 Primary Occurrences Chapter 5 An LZ77-Based Self-Index

Example 5.1.
1 1 1 1 1 1 1 1 1 1 2 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

a l ab ar a la alabard a$

In this example the occurrence of ‘lab’ starting at position 2 (red color) is primary
as it spans two phrases. The second occurrence, starting at position 14 (blue color)
is secondary. The occurrence of ‘rd’ starting at position 18 (green color) is special
primary.

We need to distinguish between these three types of occurrences, as we will find
first the primary occurrences (including the special ones), which will be then used
to recursively find the secondary ones (which, in turn, will be used to find further
secondary occurrences).

5.2 Primary Occurrences

By definition, a primary occurrence covers at least two phrases. Thus, each primary
occurrence can be seen as P = LR, where the left side L is a suffix of a phrase and
the right side R is the concatenation of zero or more consecutive phrases plus a prefix
of the next phrase. For this reason, to find this type of occurrences we partition the
pattern in two (in every possible way). Then, we search for the occurrences of the
left part of the pattern in the suffixes of the phrases and for the right part in the
prefixes of the suffixes of the text starting at beginning of phrases. Then, we need
to find which pairs of left and right occurrences actually represent an occurrence of
pattern P :

1. Partition the pattern P [1,m] into P [1, i] and P [i+ 1,m] for each 1 ≤ i < m.

2. Search for the right part P [i + 1,m] in the prefixes of the suffixes of the text
starting at phrases.

3. Search for the left part P [1, i] in suffixes of phrases.

4. Connect both results, generating all primary occurrences.

5.2.1 Right Part of the Pattern

To find the right side P [i+ 1,m] of the pattern we use a suffix trie (recall Sections
2.9 and 2.14.2) that indexes all suffixes of T starting at the beginning of a phrase. In

68

5.2 Primary Occurrences Chapter 5 An LZ77-Based Self-Index

the leaves of the tree we store the identifier (id) of the phrases. Conceptually, these
form an array id that stores the phrase ids in lexicographic order (i.e., the leaves of
the suffix trie). As we see later, we do not need to store id explicitly.

1 2 3 4 5 6 7 8 9

a l ab ar a la alabard a$

(((())((((())))(())))(()))dfuds
chars

id

a

Figure 5.1: The suffix trie for the string ‘alabar a la alabarda$’. The dark node
is the note at which we stop searching for the pattern ‘la’, and the gray leaves
represent the phrases that start with that pattern.

We will represent the suffix trie as a labeled tree using DFUDS (Section 2.8). To
search for a pattern we descend through the tree using labeled child (recall Section
2.8), and then discard as many characters of the pattern as the skip of the branch
indicates. We continue this process either until we reach a leaf, the pattern is com-
pletely consumed, or we cannot descend anymore. Our answer will be an interval of
the array of ids, representing all phrases starting with the pattern P [i + 1,m]. In
case we consume the pattern in an internal node, we need to go to the leftmost and
rightmost leaves in order to obtain the interval, which is computed using leaf rank
and represents the start and end positions in the array of the ids.

Example 5.2. Suppose we are looking for the right pattern ‘la’. Figure 5.1 shows
in dark the node at which we stop searching for the pattern, and in gray the phrases
that start with that pattern. The answer is the range [8, 9] (i.e., the lexicographical
order of the phrases).

69

5.2 Primary Occurrences Chapter 5 An LZ77-Based Self-Index

Remark 5.3. Recall from Section 2.9 that in a PATRICIA tree, after searching for
the positions we need to check if they are actually a match, as some characters are
not checked because of the skips. In the example presented above, the answer would
have been the same if we were searching for any right pattern of the form lx, where
x is a character distinct from a. We use a different method here, which is explained
in Section 5.2.3.

We do not explicitly store the skips in our theoretical proposal, as they can be
computed from the tree and the text. Given a node in the trie, if we go to the leftmost
and rightmost leaves, we can extract the corresponding suffixes until computing how
many characters they share. This value will be the sum of all the skips from the
root to the given node. However, we already know they share S characters, where
S is the sum of all skips from the root to the previous node (i.e., the parent node).
Therefore, to compute the skip, we extract the suffixes of both leaves skipping the
first S characters. The amount of symbols shared by both extracted strings will be
the skip. Extracting a skip of length s will take at most O(sH) time both for LZ77
and for LZ-End, since the extraction is from left to right and we have to extract one
character at a time until they differ. Thus, the total time for extracting the skips as
we descend is O(mH).

5.2.2 Left Part of the Pattern

To find the left part P [1, i] of the pattern we have a trie (actually a PATRICIA trie,
Section 2.9) that indexes all the reversed phrases, stored as a compact labeled tree
(Section 2.8). Thus to find the left part of the pattern in the text we need to search
for (P [1, i])rev in this trie. The array that stores the leaves of the trie is called rev id
and is stored explicitly.

The search process and the considerations for this tree are exactly the same as
the ones for Section 5.2.1. The only difference with the suffix trie is that the
computation of the skips is faster now. Our text extraction algorithm works from
right to left and since the text is reversed our algorithm outputs the characters in
the correct order. Thus, extracting a skip of length s takes O(sH) time for LZ77 and
O(s+H) time for LZ-End. However, in the worst case the total time would still be
O(mH) as all skips may be of length 1.

Example 5.4. Suppose we are looking for the left pattern ‘a’. Figure 5.2 shows in
gray the node at which we stop searching for the pattern. In this case we end up in
a leaf, so that is the only phrase that ends with the given pattern. The answer is the
range [4, 4].

70

5.2 Primary Occurrences Chapter 5 An LZ77-Based Self-Index

5,6,7,1,3,8,2,4rev_id

dfuds

chars

((()(()()))()()()()())

_alabdlr

((((((()(())(())))))))

_ a b d l r

l

$

$

a

Figure 5.2: The reverse trie for the string ‘alabar a la alabarda$’. The gray leaf
is the node at which we stop searching for the pattern ‘a’.

5.2.3 Connecting Both Parts

In the previous steps we found two intervals, one in the id array and the other in
the rev id array. These intervals represent the sets of phrases where the matches of
the right side of the pattern start (id array interval) and the phrases ending with
the left side of the pattern (rev id array interval). Actual occurrences of the pattern
are composed of consecutive phrases. Hence, to find the occurrences of the pattern,
we need to find which ids in the right interval are consecutive to those rev ids in
the left interval. For doing so we use a range structure (see Section 2.6.1) that
connects the consecutive phrases in both trees. Figure 5.3 shows the range data
structure connecting both trees for our example string and below the sequence that
is represented with the wavelet tree.

This structure is built from a permutation π on [1, . . . , n′]. This permutation is
just an array containing for each id (column) the corresponding rev id (row). In
other words, the permutation holds that id[i] = 1 + rev id[π(i)]. For our example the
permutation array would be {8,6,1,7,0,3,5,2,4} (note that we count from left to
right and from bottom to top, and that we assume that rev id[0] = 0).

Example 5.5. Suppose we are looking for the pattern ‘ala’. The possible partitions
are (a, la) and (al, a). Figure 5.3 shows in gray the ranges obtained when searching
for the left and right part of partition (a, la). Then we look for all points inside those
ranges, obtaining the only primary occurrence that starts at phrase 1. The same
procedure is carried out for the other partition.

71

5.2 Primary Occurrences Chapter 5 An LZ77-Based Self-Index

8 6 1 7 0 3 5 2 4

Figure 5.3: The range structure for the string ‘alabar a la alabarda$’. The gray
circle marks the only primary occurrence of the pattern ‘ala’, and the gray nodes
show the ranges defined by the left and right part of the pattern.

Remark 5.6. The range structure allows us to compute id[i], just storing the rev id
array. Say we want to compute id[i]. We extract the value S[i] from the wavelet
tree, giving us the row p where the corresponding reverse id is. Then we compute
id[i] = 1 + rev id[p].

Example 5.7. Say we want to compute id[6] (i.e., the phrase id of the 6th lexico-
graphical smallest phrase). We extract from the wavelet tree the 6th symbol, getting
the value 3. This value is the lexicographical order of the reversed 5th phrase. Com-
puting rev id[3] = 7, we know that the 5th phrase is phrase number 7. Hence, the
6th phrase is phrase number 8 (i.e., id[6] = 8).

At this stage we also have to validate that the answers returned by the search
query are actual occurrences, as the PATRICIA tries by themselves do not guarantee
the pattern found is actually a match (see Remark 5.3). For the first occurrence

72

5.2 Primary Occurrences Chapter 5 An LZ77-Based Self-Index

reported by the range data structure we extract the substring of length m starting at
the reported position and check if it matches the pattern. If so we can ensure that all
the other reported occurrences match the pattern as well, otherwise no occurrence is
a match. This process works because all occurrences reported by both tries share all
characters, thus all occurrences reported by the range query share all characters. We
check the validity of the occurrences here as the range check is cheaper than extracting
text and we want to extract text only when a candidate to complete occurrence is
found.

This structure adds O(log n′) time to the search phase, and O(log n′) time per
primary occurrence found.

Note that we are able to answer exists queries with the structures explained so
far. If the number of occurrences reported by the range search is greater than one,
then we check if one of those queries is an actual match. If there is a match, then the
pattern is present in the text.

5.2.4 Special Primary Occurrences

The special primary occurrences could be found using the same steps explained above
for primary occurrences, taking the left part of the pattern as the pattern itself and
the right side of the pattern as the empty string ε. However, we do know that looking
for ε in the suffix trie will return the complete tree, thus making the search in the
range structure unnecessary. For this reason we call this type of occurrence special
primary, as we search for them slightly differently from the primary ones. For these
occurrences we just need to search for P rev in the reverse trie.

Since the search P rev in the reverse trie gives us a range in the rev id array, we
decided to store it explicitly instead of the id array. Furthermore, the result of the
range search gives us positions in the rev id array.

5.2.5 Converting Phrase Ids to Text Positions

From the range structure we obtain the phrase id where an occurrence lies. Then we
need to convert it to a real text position. For doing so, we use a bitmap that marks
the ends of phrases. This bitmap is the same B used in Chapter 4 for extracting
text. Figure 5.4 shows the bitmap for the example string. The bitmap is below the
parsing.

73

5.2 Primary Occurrences Chapter 5 An LZ77-Based Self-Index

Figure 5.4: The bitmap B of phrases for the string ‘alabar a la alabarda’

The conversion between phrase ids and text positions takes constant time as fol-
lows:

• phrase(pos) = 1 + rank1(B, pos− 1): it gives the phrase id containing any text
position pos.

• first pos(id) = select1(B, id − 1) + 1: position of the first character of phrase
id.

• last pos(id) = select1(B, id): position of the trailing character of phrase id.

Recall from Section 4.2.1 that this bitmap also allows us to compute the length
of the phrase as length(id) = select1(B, id+ 1)− select1(B, id).

5.2.6 Implementation Considerations

Here we explain some considerations we made when implementing our index.

• Skips: as the average value for the skips is usually very low and computing them
from the text phrases is slow in practice, we considered storing the skips, for
one or for both tries, using the Directly Addressable Codes (Section 2.4.1). Note
that in this case we never access array id nor rev id during the trie traversal,
they are only accessed when checking and reporting the occurrences.

• Binary Search: instead of storing the trie we can do a binary search over the
ids (rev ids) of the suffix trie (reverse trie). For the suffix trie, we do not
have explicitly the array of ids, but as shown in Remark 5.6 we can retrieve
them using the range structure and the rev ids array. This alternative modifies
the complexity of searching for a prefix/suffix of P to O(mH log n′) for LZ77 or
O((m+H) log n′) for LZ-End (actually, since we extract the phrases right-to-left,
binary search on the reverse trie costs O(m log n′) for LZ-End). Additionally,
we could store explicitly the array of ids, instead of accessing them through the
rev ids. Although this alternative increases the space usage of the index and
does not improve the complexity, it gives an interesting trade-off in practice.

74

5.3 Secondary Occurrences Chapter 5 An LZ77-Based Self-Index

5.3 Secondary Occurrences

Secondary occurrences are found from the primary occurrences and, recursively, from
other previously discovered secondary occurrences.

5.3.1 Basic Idea

The idea to find the secondary occurrences is to locate all sources (of the LZ parsing)
covering the occurrence and then mapping their corresponding phrases to real text
positions. To do this we use another bitmap, called bitmap of sources BS. The
bitmap is built by first writing in unary the amount of empty sources (ε) and then
for each position of the text writing in unary how many sources start at that position.
In this way each 1 corresponds to a source and a 0 represents the position where
the sources (1s) immediately preceding it start. Figure 5.5 shows the sources and
the corresponding phrases they generate (except the empty sources), and below the
resulting bitmap. Since there are 3 empty sources the bitmap starts with 1110, then
are 5 sources starting at position 1, hence 111110 follows, then just one source starting
at position 2, adding 10, and finally one 0 for each remaining position.

Additionally, we need a permutation PS connecting the 1s in the bitmap B of
phrases (recall Section 5.2.5) to the 1s in the bitmap BS of sources. The sources
starting at a given position are sorted by increasing length, thus the last 1 before a
0 marks the longest source starting at that position. An example is given in Figure
5.6. This permutation replaces the array source of Section 4.2.1

Figure 5.5: Marking sources on bitmap BS

For each occurrence found, we find the position pos of the 0 corresponding to its
starting position in the bitmap of sources. Then we consider all the 1s to the left

75

5.3 Secondary Occurrences Chapter 5 An LZ77-Based Self-Index

0 10 0

1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1

0 0 0 0 0depths

sources

phrases

permutation

Figure 5.6: Permutation connecting bitmap of phrases B (bottom) and bitmap of
sources BS (top)

of pos. We convert each source to its target phrase, compute its length and see if
the source covers the occurrence. If so, we report it as a secondary occurrence and
recursively generate all secondary occurrences from this new occurrence. In case the
source does not cover the occurrence, we stop the process and continue processing
the remaining occurrences. The algorithm is depicted in Figure 5.7.

secondaryOcc(start, len)

1 pos← select0(BS, start+ 1)
2 source id← pos− start− 1
3 while source id > 0 do
4 phrase id← P−1

S (source id)
5 source start← select1(BS, source id)− source id
6 if source start+ len(phrase id) ≥ start+ len then
7 occ pos← first pos(source id) + start− source start
8 report occ pos
9 secondaryOcc(occ pos, len)

10 else
11 return
12 source id← source id− 1

Figure 5.7: Searching for secondary occurrences from T [start, start+len] (preliminary
version)

Example 5.8. Consider the only primary occurrence of the pattern ‘la’ starting
at position 2. We find the third 0 in the bitmap of sources at position 12. Then we
consider all ones starting from position 11 to the left. The first 1 at position 11 maps
to a phrase of length 2 that covers the occurrence, hence we report an occurrence at
position 10. The second 1 maps to a phrase of length 6 that also covers the occurrence,
thus we report another occurrence at position 15. The third 1 maps to a phrase of
length 1, hence it does not cover the occurrence and we stop. We proceed recursively
for the secondary occurrences found at position 10 and 15.

76

5.3 Secondary Occurrences Chapter 5 An LZ77-Based Self-Index

Remark 5.9. The method explained above is just introductory, as it does not work
for general LZ77-like parsings. It only works for parsings in which no source strictly
contains another source. Is it easy to see that if a source S2 is strictly covered by
another S1 some secondary occurrences are lost. Let M be a match of the pattern
sought and let M be between the rightmost positions of S2 and S1. Then, as S2 is the
first source to the left of M , we test if it covers M , stopping the process. However,
S1 does cover M and produces a secondary occurrence, which was not detected by
the algorithm presented above.

Example 5.10. Let us start with the primary occurrence of the pattern ‘ba’ starting
at position 4. The first source to the left is ‘la’, at position 2 and of length 2,
which does not cover the pattern. Hence, the algorithm explained above would stop,
reporting no secondary occurrences. However, to the left of this source is the source
‘alabar’ that does cover the pattern and generates the secondary occurrence starting
at position 16.

5.3.2 Complete Solution

Kärkkäinen in his thesis [Kär99] proposes a method for converting the LZ77 parsing
into one in which no source contains another. However, we decided not to use it as
it increases excessively the number of phrases. Recall that our index will use space
proportional to the number of phrases of the parsing, thus any increase in the number
of phrases affects directly the final size of the index.

Another proposal of Kärkkäinen is to separate the sources by levels, so that within
a level no source strictly contains another, and then apply the method explained in
Section 5.3.1 within each level.

Definition 5.11. The depth of a source is defined as

depth(s) =

{
0 cover(s) = ∅
1 + maxs′∈cover(s) depth(s′) otherwise

,

where cover(s) is the set of all sources containing the source s. Let S1, S2 be two
sources starting at p1, p2 and of lengths l1, l2. S1 is said to cover S2 if p1 < p2 and
p1 + l1 ≥ p2 + l2. Note that, by definition, sources starting at the same position are
not covered by each other. However, sources ending at the same position may cover
each other. For s = ε we define depth(ε) = 0.

Figure 5.8 shows the additional array storing the depths of each source. The four
sources ‘a’ and the source ‘alabar’ have depth equal to 0 as all of them start at the
same position. Source ‘la’ has depth 1, as it is contained by the source ‘alabar’.

77

5.3 Secondary Occurrences Chapter 5 An LZ77-Based Self-Index

0 10 0

1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1

0 0 0 0 0depths

sources

phrases

permutation

Figure 5.8: The depth of the sources for the string ‘alabar a la alabarda$’

The process now is similar to the idea presented earlier; however, now when we
find a source not covering the occurrence we look for its depth d and then consider
to the left only sources with depth d′ < d, as those at depth ≥ d are guaranteed
not to contain the occurrence. This process works because in each level it holds that
sources to the left will end earlier than the current source, because of the definition
of depth. Moreover, sources at higher depths to the left will also end earlier as they
are contained in a source of the current depth to the left.

Now the total running time to find all occ secondary occurrences given a seed
occurrence is Ω(1

ε
occ ·L) and O(1

ε
occ ·L+D), where ε is the parameter for computing

the inverse permutation P−1
S (Section 2.7), L is the time to find the next element to

the left with depth less than a given value (an operation we consider next), and D
is the maximum depth. The additional O(D) cost is because in the worst case after
finding the last occurrence we will be in a source of depth D, then move to a source of
depth D− 1, that does not yield an occurrence, and so on up to a source of depth 1.

5.3.3 Prev-Less Data Structure

As explained above, we need to be able to, given a position pos in an array U and a
value v, find the rightmost position p preceding pos for which it holds U [p] ≤ v. We
will call this query prevLess(U, p, v).

To solve this query we will encode U (i.e., the array of depths of Section 5.3.2)
using a wavelet tree (Section 2.6) supporting this additional operation. The algorithm
descends according to the bits of value v. If the value v gets mapped to a 0 we
recursively search in the left subtree. If the value v gets mapped to a 1 we recursively
search in the right subtree. In this case, as the answer could be at the left side, we
look for the rightmost 0 preceding pos in the bitmap of the wavelet tree node. Finding
this 0 takes constant time using rank and select. Finally, we return the maximum of
the value returned by the right subtree and the rightmost zero.

The pseudocode of the algorithm is presented in Figure 5.9. The algorithm re-

78

5.4 Query Time Chapter 5 An LZ77-Based Self-Index

ceives as parameters a wavelet tree tree, a position pos, and a value v, and returns
prevLess(array(tree), pos, v), where array(tree) are the values represented by the
wavelet tree. The bitmap of the wavelet tree is denoted tree.B. Function toBit
returns to which side the value goes, and its output depends on the level.

prevLess(tree, pos, v)

1 //toBit depends on the level
2 if toBit(v, tree) = 0 then
3 lpos← prevLess(tree.left, rank0(tree.B, pos), v)
4 return select0(tree.B, lpos)
5 else
6 //rightmost zero
7 rm0← select0(tree.B, rank0(tree.B, pos))
8 lpos← prevLess(tree.right, rank1(tree.B, pos), v)
9 return max{rm0, select1(tree.B, lpos)}

Figure 5.9: PrevLess algorithm

As the algorithm just performs constant-time operations at each level, its total
running time is L = O(logD).

If, we label each source with its depth, and label the changes to the next text
position with a D + 1, , we can get rid of the original bitmap of sources. Since the
wavelet tree also supports rank and select queries we have the same functionality as
the bitmap of sources, yet with the ability to answer prevLess queries. However, as in
practice the bitmap of sources is very sparse, we preferred to use a δ-encoded bitmap
to represent it and the wavelet tree for the depths.

Using this operation we can now modify algorithm secondaryOcc of Figure 5.7.
We keep track of the maximum depth d for which there may be sources covering the
occurrence. When a source does not cover the occurrence, we update the value of
d. Using the operation prevLess, we move to the next candidate source. The final
algorithm is presented in Figure 5.10.

5.4 Query Time

Combining all the steps gives us the total running time to find the occurrences.

• Primary Occurrences: the total time is O(m(Findsstm + Findrevm + log n′ +

79

5.4 Query Time Chapter 5 An LZ77-Based Self-Index

secondaryOcc(start, len)

1 pos← select0(BS, start+ 1)
2 source id← pos− start− 1
3 //D is the maximum depth
4 d← D
5 while source id > 0 do
6 phrase id← P−1

S (source id)
7 source start← select1(BS, source id)− source id
8 if source start+ len(phrase id) ≥ start+ len then
9 occ pos← first pos(source id) + start− source start

10 report occ pos
11 secondaryOcc(occ pos, len)
12 else
13 d← depth[source id]− 1
14 if d < 0 then
15 return
16 source id← prevLess(depth tree, source id, d)

Figure 5.10: Searching for secondary occurrences from T [start, start+ len]

Extractm) + occ1 log n′), where Findsstm is the time to search for a subpattern
of length m in the suffix trie, Findrevm is the time to search for a subpat-
tern of length m in the reverse trie, and occ1 is the number of primary oc-
currences. Thus the time to count the occurrences in the range structure is
O(log n′), the total time to locate the primary occurrences in the range struc-
ture is O(occ1 log n′), and Extractm is the time to extract m characters to
verify the PATRICIA searches. Extractm, as said in Section 4.2.2, depends
on the parsing and is O(mH) for LZ77 and O(m+H) for LZ-End in the worst
case. As our experiments show later (Section 6.1), in practice the difference is
not as drastic: LZ77 is about 3 times (for most texts) slower for long substrings
and not much slower for short substrings.

The Find times depend on the structures used:

– Tries: O(Findsstm) = O(Findrevm) = O(m+Skips) = O(m+mH) = O(mH)
(as the time to compute all skips is O(mExtract1) in the worst case).

– Tries+Skips: O(Findsstm) = O(Findrevm) = O(m + Skips) = O(m) (as the
skips are stored).

– Binary Search: O(Findsstm) = O(log n′ · Extractm) if we store the ar-

80

5.5 Construction Chapter 5 An LZ77-Based Self-Index

ray of ids explicitly, otherwise the time is O(Findsstm) = O(log n′(log n′ +
Extractm)). O(Findrevm) = O(log n′ · Extractm) on LZ77, and O(m log n′)
on LZ-End (as the extraction takes constant time per extracted symbol in
this case). Here we save the verification of PATRICIA trees but this has
no effect on the total complexity.

With this the total time using tries is O(m2H +m log n′+ occ1 log n′), indepen-
dent of the parsing. When adding skips the time drops toO(m2+mH+m log n′+
occ1 log n′) on LZ-End. When using, instead, binary searching, the time is
O(m(m + H) log n′ + occ1 log n′) for LZ-End and O(m2H log n′ + occ1 log n′)
for LZ77 if we store the id array explicitly, otherwise the time increases to
O(m(log n′+m+H) log n′+occ1 log n′) for LZ-End andO(m(log n′+mH) log n′+
occ1 log n′) for LZ77.

• Secondary Occurrences: the total time is O(1
ε
occ(logD + D)), where D

is the maximum depth and ε is the parameter for the representation of the
permutation (Section 2.7). Recall from Sections 5.3.1 and 5.3.2 that the time
to find the secondary occurrences from a seed is O(1

ε
occ logD + D). However

in this case we are recursively locating the secondary occurrences from all the
occurrences found, and in a worst case we could pay O(D) for each occurrence,
not finding new ones.

Taking ε = 1
logn′

gives us a total time similar to the one given for the primary
occurrences, except that occ1 log n′ changes to occ ·D log n′.

To solve exists queries, we basically search for the first primary occurrence. Hence
the total time is as given for the primary occurrences replacing occ1 = 0 (the details
can be seen in Table 5.1).

5.5 Construction

In this section we explain the construction algorithm of the proposed index. We
propose a practical construction algorithm, with bounded space usage and decent
times. (See table 5.2 for a reminder of the definitions of the variables.)

1. Alphabet mapping: as we work with standard texts that represent each
symbol using 1 byte, we map the byte values to effective alphabet positions and
vice versa.

81

5.5 Construction Chapter 5 An LZ77-Based Self-Index

2. LZ parsing: For LZ77 we use the algorithm CPS2 of Chen et al. [CPS08] and
for LZ-End we use the algorithm described in Section 4.4. At this stage we
generate three different files containing the trailing characters, the lengths of
the sources, and the starting positions of the sources. Using suffix trees (Sec-
tion 2.10), the LZ77 parsing can be computed in O(n) time using O(n) words of
space, and the LZ-End parsing inO(N) time using the same space. Additionally,
the LZ77 parsing can be computed theoretically in O(n log n(logε n+ o(log σ)))
time using n(Hk(T) + 2) + o(n log σ) bits and the LZ-End parsing in time
O(log n(N logε n + n o(log σ))) using n(Hk(T) + 2) + n′ log n + o(n log σ) bits
(Section 4.4). The practical algorithms take total time O(n log n) for LZ77 and
O(N log n) for LZ-End (recall Section 4.4). The space usage is around 5.7n
bytes for LZ77 and 9n bytes for LZ-End, and this is the peak space usage for
the self-index construction. In the index we only store explicitly the trailing
characters using n′ log σ bits.

3. Bitmap of phrases: this bitmap is easily computed from the array containing
the lengths of the sources in time O(n′). It uses n′ log n

n′
+ O(n′ + n log logn

logn
)

bits (Section 2.5). In practice we use δ-encoded bitmaps, using n′ log n
n′

+

O(n′ log log n + n′ logn′

s
) bits, where s is the sampling step. All query times

are then multiplied by s+ log n′

s
. For the analysis we will assume s = log n′.

4. Suffix trie and reverse trie: for constructing these trees, we decided to
insert all indexed substrings in a PATRICIA trie. This is O(n) time for the
reverse trie, but it could be quadratic for the suffix trie (there are complex
O(n)-time algorithms for building suffix tries [IT06]). In practice this does not
happen and the running time is good, as the number of phrases n′ generated
by the parsing is relatively small. Of course we insert and store pointers to the
text in the trie, rather than the whole strings. From the PATRICIA trie, we can
extract the sorted ids, the skips and the DFUDS representation of the tree in
time O(n′). Each tree will have at most 2n′ nodes, hence they require 4n′+o(n′)
bits (Section 2.8) for the topology of the tree, plus 2n′ label characters encoded
using 2n′ log σ bits. Additionally, the rev ids are stored using n′ log n′ bits.

5. Range structure: to build the range structure we need a permutation from
the ids of the suffix tries to the ids of the reverse trie. This is done in O(n′)
time, inverting the permutation of the ids and then traversing the rev ids and
assigning each to the corresponding id. Then, the range structure is built start-
ing from the permutation in time O(n′ log n′). It uses n′ log n′ +O(n′ log log n′)
bits (Section 2.6.1).

6. Sources depths: for computing the secondary occurrences related structures

82

5.5 Construction Chapter 5 An LZ77-Based Self-Index

we need to first compute the depth of each source. First we sort all sources
by increasing starting position, breaking ties by decreasing length. Doing this
we know that all parents of a source are to its left. We keep track of the
rightmost source of depth d for each possible depth. Then for each source we
binary search the rightmost sources and find the deepest source d that covers
the current phrase. Afterward, we set the current source as the rightmost source
of depth d+ 1. The running time of the algorithm is O(n′ log n′).

7. Prev-Less Depth Structure: this structure is constructed in O(n′ logD)
time as it is just a wavelet tree It uses n′ logD + O(n′ log logD) bits (Section
5.3.3).

8. Source-Phrase Permutation: it takes O(n′) time starting from the ids of
the sorted sources. It is stored using (1 + ε)n′ log n′ + O(n′) bits (Section 2.7),
and as we set ε = 1

logn′
, the total space is n′ log n′ +O(n′) bits.

9. Bitmap of Sources: it takes O(n′) time to build from the starting positions
of the sorted sources. It uses n′ log n

n′
+ O(n′ + n log logn

logn
) bits (Section 2.5). In

practice we use δ-encoded bitmaps, so the same considerations as for the bitmap
of phrases apply.

Adding up the space of all structures we get that the index requires 2n′ log n +
n′ log n′ + n′ logD + O(n′ log σ + n log logn

logn
) bits of space, which in our practical im-

plementation is 2n′ log n+ n′ log n′ + n′ logD +O(n′ log σ + n′ log log n) bits plus the
skips we store. Note that in the case of binary searching we do not use tries, yet the
asymptotic space complexity is not reduced.

Note that our practical index space is fully proportional to n′, depending on n
only logarithmically.

For the construction time and space of the index we have given practical figures.
We give now two trade-offs for the theoretical upper bounds. The first, Theory1,
uses the least possible construction time, and the second, Theory2, the least possible
construction space.

• Theory1: The space gets dominated by the O(n log n) bits needed to build
the parsing. All construction times are O(n′ log n′), except the parsing and
creating the PATRICIA trees. Hence, the index is built in time O(n+n′ log n′)
(O(N + n′ log n′) for LZ-End) using O(n log n) bits.

• Theory2: In Section 4.4 we showed that the LZ77 parsing can be computed in
O(n log n(logε n+o(log σ))) time using O(nHk(T))+o(n log σ) bits and the LZ-

83

5.5 Construction Chapter 5 An LZ77-Based Self-Index

End parsing in time O(log n(N logε n + n o(log σ))) using the same space. All
data structures (except PATRICIA trees) are constructed as explained above,
each structure requiring at most O(n′ log n) = O(nHk(T)) + o(n log σ) (recall
Lemma 4.13) and O(n′ log n′) time. In the following we show that we can build
the PATRICIA trees in time O(n′ log1+ε n) using O(nHk(T) + o(n log σ)) bits.
The idea is similar to that presented by Claude and Navarro [CN10] enhanced
with some ideas from Russo et al. [RNO08]

1) First we build the FM-index [FM05] of T in O(n log n log σ
log logn

) time within

nHk(T) + o(n log σ) bits of space. 2) Then, we build the Fully-Compressed Suf-
fix Tree (FCST) [RNO08], that supports all tree operations in O(log1+ε n) time.
For building the FCST, we simulate a traversal of the suffix tree starting from
the root using Weiner links [Wei73], which are simulated using the LF map-
ping (see Section 2.12) over the FM-Index. During the traversal we mark all
nodes that are at depth multiple of δ in the implicit tree defined by the Weiner
links, where δ is the space/time trade-off parameter of the FCST (which takes
o(n log σ) bits of space for δ = log1+ε n). These nodes are stored in a simple
array using o(n log σ) bits with all the information required by the FCST con-
struction algorithm. The running time of this process is O(n log σ

log logn
) and the

space is o(n log σ) bits. 3) We use a dynamic balanced tree to mark some of
the nodes of the FCST; these will be the nodes of our PATRICIA tree. For
each phrase starting position we convert it using A−1 to an FM-Index position,
and then selectLeaf (which gives the i-th leaf) converts it to a position in the
FCST. We mark in the balanced tree the preorder of the FCST node, as well as
the phrase id. Then, we traverse the balanced tree from left to right computing
LCA(xi, xi+1) (where xi is the current node and xi+1 is the node to the right,
and LCA is their lowest common ancestor in the FCST) and inserting the value
in the tree. To build the PATRICIA tree, we traverse the balanced tree again
from left to right, creating the PATRICIA nodes, generating the parentheses
representation and the labels of the edges. Using the operation letter of the
FCST (which gives any letter of the path leading to a node) we retrieve the
label. Using the FCST we determine the topology of the tree (we keep the
current PATRICIA path in a stack; add closing parentheses and pop the stack
until the top of the stack is an ancestor of the new node; and then we add the
opening parenthesis for the current node and push it to the stack). This step
runs in O(n′ log1+ε n) time and within O(n′ log n) = O(nHk(T)) + o(n log σ)
(recall Lemma 4.13) bits of space.

Hence, the total time is O(n log n log σ
log logn

+ n′ log1+ε n) and the total space is

84

5.6 Summary Chapter 5 An LZ77-Based Self-Index

O(nHk(T)) + o(n log σ). The process for constructing the reverse trie is almost
the same, but now we do not consider the whole suffixes, because they are lim-
ited by the phrase length. Given A−1(pos), we use the operation LAQS(d) of
the FCST (which retrieves the ancestor with string depth d) to find which node
we need to mark.

As the time for constructing the PATRICIA trees gets dominated by the pars-
ing algorithm the total space required is O(nHk(T)) + o(n log σ) and the total
running time is O(n log n(logε n + o(log σ))) for LZ77 and O(log n(N logε n +
n o(log σ))) for LZ-End.

5.6 Summary

We have presented a self-index that given a text of length n, parsed into n′ different
phrases by a Lempel-Ziv like parsing, uses space proportional to that of the com-
pressed text, i.e., O(n′ log n) + o(n) bits. Table 5.1 summarizes the space and time
of the operations over the index and Table 5.2 summarizes all the parameters of the
index. In practice, due to our sparse bitmap representation, the o(n) bits disappear
from the space but the times of extract, exists and locate are multiplied by O(log n′).

85

5.6 Summary Chapter 5 An LZ77-Based Self-Index

Tries Binary Search

Construction Time Theory1: O(n + n′ log n′) for LZ77 and O(N + n′ log n′) for
LZ-End
Theory2: O(n log n(logε n + o(log σ))) for LZ77 and
O(log n(N logε n+ n o(log σ))) for LZ-End
Practice: O(n log n) for LZ77, O(N log n) for LZ-End.

Construction Space Theory1: O(n log n) bits
Theory2: O(nHk(T)) + o(n log σ)
Practice: LZ77 ≈ 6n bytes, LZ-End ≈ 9n bytes

Index Space Theory: 2n′ log n+n′ log n′+n′ logD+O(n′ log σ+ n log logn
logn) bits

Practice: 2n′ log n+ n′ log n′ + n′ logD +O(n′ log σ + n′ log logn)
bits

Extract Time LZ77: O(mH) , LZ-End: O(m+H)

Exists Time O(m2H +m log n′)
With skips and LZ-
End: O(m2 + mH +
m log n)

Using n′ log n′ additional bits: LZ77:
O(m2H log n′), LZ-End: O(m(m+H) log n′).
Otherwise: LZ77: O(m(log n′ + mH) log n′),
LZ-End: O(m(log n′ +m+H) log n′)

Locate Time O(m2H + m log n′ +
occ ·D log n′)
With skips and
LZ-End: O(m2 +
mH +m log n′+ occ ·
D log n′)

Using n′ log n′ additional bits: LZ77:
O(m2H log n′ + occ · D log n′), LZ-End:
O(m(m+H) log n′ + occ ·D log n′).
Otherwise: LZ77: O(m(log n′+mH) log n′+
occ · D log n′), LZ-End: O(m(log n′ + m +
H) log n′ + occ ·D log n′)

Table 5.1: Summary table of LZ77-Index. Adding skips requires at most 4n′ log n
more bits, but far less in practice. In practice times are multiplied by O(log n′).

Parameter Description Defined in

σ size of the alphabet Section 2.1

n length of the text Section 2.1

n′ length of the LZ parsing Definitions 2.30 and 4.2

m length of the pattern Section 2.2

s sampling step of δ-encoded bitmap Section 2.5.2

ε parameter of the permutation Section 2.7

D maximum depth of the sources Section 5.3.2

H height of the LZ parsing Definition 4.5

N total text retraversed in the LZ-End parsing Section 4.4

Table 5.2: Summary table of parameters of LZ77-Index

86

Chapter 6

Experimental Evaluation

6.1 Experimental Setup

In our tests we compared the proposed index against RLCSA [NM07]. We did not test
the SLP Index [CN09] because we could not make it run consistently in our collec-
tions, yet some comparison results can be inferred from their experimental evaluation
[CFMPN10], as we do in Section 6.2.

We used in our experiments the LZ77 and the LZ-End parsings. For the LZ indexes
we used the following variants (defined in Section 5.2.6), ordered by decreasing space
requirement. In all variants we stored the skips of the trees using DAC (Section 2.4.1),
because not using them lead to results worse than using binary search (our slowest
variant).

1. Suffix trie and reverse trie (original proposal).

2. Binary search on ids with the explicit ids and reverse trie.

3. Binary search on reverse ids and suffix trie.

4. Binary search on ids with explicit ids and binary search on reverse ids.

5. Binary search on ids with implicit ids and binary search on reverse ids.

Recall from Section 5.2.6 that the array of the ids is not stored in the index, only
the array of reverse ids. Thus, if we want to binary search over ids we have two
alternatives: (1) spend n′ log n′ additional bits to store explicitly the array of ids, or

87

6.1 Experimental Setup Chapter 6 Experimental Evaluation

(2) using Remark 5.6 to access the array implicitly by paying O(log n′) access time.
The index variants with explicit ids refer to the alternative (1) and the ones with
implicit ids refer to alternative (2). The alternative using the suffix trie do not need
to access the id array, but rather the reverse ids array, which is always maintained in
explicit form

Remark 6.1. The reader may note that the results concerning the alternative

• Binary search on ids with implicit ids and reverse trie

is not present. We omit the empirical results of this alternative as the compression
ratio is about the same obtained using alternative number 3 and the performance of
locate is noticeably worse. Remember that accessing the implicit array of ids takes
time O(log n′).

The parameters used for the data structure are as follows: s = 16 for the δ-codes
bitmap (Section 2.5.2), ε = 1/32 for the permutation (Section 2.7) and sampling step
b = 20 for the bitmaps of González et al. (Section 2.5.1). We used these parameter
values as they are the typical ones used in experimentation, and additionally with
these values our indexes achieve a good space/time trade-off.

For RLCSA we used sampling with steps 512, 256, 128 and 64. The index was
built using a buffer of 100MiB.

All our experiments were conducted on a machine with two Intel Xeon CPU
running at 2.00GHz with 16GiB main memory. The operating system is Ubuntu
8.04.4 LTS with Kernel 2.6.24-27-server. The compiler used was g++ (gcc version
4.2.4) executed with the -O3 optimization flag.

We present the results obtained for the following texts (the results of only one text
from each collection are presented in this section, the remaining results are presented
in Appendix A):

• Artificial: F41, R13, T29.

• Pseudo-Real: DNA 0.1% (Scheme 1), Proteins 0.1% (Scheme 1), English 0.1%
(Scheme 2), Sources 0.1% (Scheme 2).

• Real: Para, Cere, Influenza, Escherichia Coli, Coreutils, Kernel, Einstein (en),
Einstein (de), World Leaders.

88

6.1 Experimental Setup Chapter 6 Experimental Evaluation

We restricted the experiments to the texts listed above since many of the texts
produced similar results during preliminary experiments. For DNA and Wiki do-
mains, we chose the largest texts. For the case of pseudo-real texts we kept the DNA,
Proteins, English and Sources texts, as these kind of texts naturally form repetitive
collections.

Two types of experiments were carried out. One, labeled “results (1)” in Figures
6.2-6.7 and A.1-A.26 , considers the time of the operations as a function of the pattern
length |P |. The second, labeled “results (2)” in Figures 6.2-6.7 and A.1-A.26 , shows
the space/time trade-off of the operations. Although we do not show a space/time
tuning for LZ77/LZ-End index, the plots of figures labeled “results (2)” show a line
formed by 5 points. These refer to the variants 1-5 described above. The results are
presented and discussed in Section 6.1. The experiments conducted are the following:

• Construction time and space: we present the build time for each index as
well as the peak memory usage. Results are given in Figure 6.1.

• Compression Ratio: we present the compression ratio for different self-indexes.
We show alternatives 1 and 5 of our indexes, which are respectively the largest
and smallest variants. For RLCSA we show the space achieved with a sampling
step of 512, and without the samples, which is the lowest space reachable by
that index. For the LZ78-index [ANS06] (Section 2.14.3) we used ε = 1

128
as the

sampling step of the permutation. Additionally, we show the compression ratio
of ILZI [RO08] (Section 2.14.3). The results are shown in Table 6.1, where we
also include p7zip as a baseline.

• Structures Space: we present the space usage of the different data structures
used in our indexes. The results are given in Tables 6.4 and 6.5 as percentage
of the size of the index.

• Parsing Statistics: we present the value of D and H, which affect the perfor-
mance of our indexes. The results are displayed in Tables 6.2 and 6.3.

• Extraction speed: we extracted 10,000 substrings of length 2i, i ∈ {0, . . . , 12}.
We show only one line for the LZ77 and the LZ-End index, as all the variants
have the same extraction speed. See the top-left plots of Figures 6.2-6.7 labeled
“results (1)”, which are representative of all the results (the rest are in Appendix
A, in Figures A.1-A.26). We also show the space/time trade-off of the indexes
for extracting a pattern of length 212. Extraction times per character stabilize
at this length. See the top-left plot of Figures 6.2-6.7 and A.1-A.26 labeled
“results (2)”.

89

6.1 Experimental Setup Chapter 6 Experimental Evaluation

• Search time: we located 1,000 patterns of length 10, 15, and 20. We limited
the number of occurrences reported to 30,000. See plots 2-4 in reading order
of Figures 6.2-6.7 and A.1-A.26 labeled “results (2)”. We also located patterns
of increasing length from 5 to 40. In this case we only show the results for
alternative 1 (original proposal) and 5 (minimum space) of both LZ77 and LZ-
End. See top-right plot of Figures 6.2-6.7 and A.1-A.26 labeled “results (1)”.

• Locate time: we located 1,000 patterns of length 2 and 4. This test highlights
the time needed to find the occurrences in our indexes, as it dominates the
time for traversing the tries. We limited the number of occurrences reported to
100,000. See plots 5-6 of Figures 6.2-6.7 and A.1-A.26 labeled “results (2)”.

• Exists Time: we generated 20,000 patterns of lengths 5, 10, 20, 40 and 80; half
of them were present in the text and the other half were a random concatenation
of symbols of the text. For RLCSA we check the existence using a count query.
For this reason, we only show one line for RLCSA, as count time is independent
of the sampling size. The exists query of the LZ77 index is basically a search
of a primary occurrence, and thus it illustrates the time for traversing the tries.
We only show the results for alternative 1 (original proposal) of both LZ77 and
LZ-End, since the other alternatives are orders of magnitude slower for this.
See left-bottom plot of Figures 6.2-6.7 and A.1-A.26 labeled “results (1)” for
existing patterns and right-bottom plot for non-existing patterns. We also show
the space/time trade-off of these two queries for patterns of length 20, see plots
7-8 of Figures 6.2-6.7 and A.1-A.26 labeled “results (2)”.

90

6.1 Experimental Setup Chapter 6 Experimental Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

F
41

R
13

T
29

D
N

A
 0

.1
%

2

P
ro

te
in

s
0.

1%
2

E
ng

lis
h

0.
1%

1

S
ou

rc
es

 0
.1

%
1

P
ar

a

C
er

e

In
flu

en
za

E
sc

he
ric

hi
a

C
ol

i

C
or

eu
til

s

K
er

ne
l

E
in

st
ei

n
(e

n)

E
in

st
ei

n
(d

e)

W
or

ld
 le

ad
er

s

T
im

e
(s

/M
iB

)

Index Construction Time

RLCSA
LZ77

LZEnd

 0

 2

 4

 6

 8

 10

 12

F
41

R
13

T
29

D
N

A
 0

.1
%

2

P
ro

te
in

s
0.

1%
2

E
ng

lis
h

0.
1%

1

S
ou

rc
es

 0
.1

%
1

P
ar

a

C
er

e

In
flu

en
za

E
sc

he
ric

hi
a

C
ol

i

C
or

eu
til

s

K
er

ne
l

E
in

st
ei

n
(e

n)

E
in

st
ei

n
(d

e)

W
or

ld
 le

ad
er

s

R
at

io
 o

f o
rig

in
al

 te
xt

Index Construction Space

RLCSA
LZ77

LZEnd

LZ77 Index LZ-End Index RLCSA
File Time Space Time Space Time Space
F41 0.70 5.80 2.55 8.05 3.85 9.63
R13 0.54 4.69 2.46 6.52 2.88 7.85
T29 1.12 7.21 4.08 10.00 6.11 11.83

DNA 0.1% 2 0.73 5.80 3.37 8.16 1.70 10.18
Proteins 0.1% 2 0.70 5.80 3.34 8.18 1.48 10.18
English 0.1% 1 0.51 5.80 3.74 8.24 1.68 10.18
Sources 0.1% 1 0.45 5.80 3.38 8.23 1.59 10.18

Para 1.00 5.82 4.55 8.31 2.12 9.48
Cere 1.01 5.83 4.22 8.25 2.21 9.48
Influenza 0.79 5.80 4.12 8.29 1.44 9.90
Escherichia Coli 1.54 5.77 4.64 8.79 1.61 10.11
Coreutils 0.65 5.81 3.77 8.36 1.88 9.74
Kernel 0.50 5.79 3.56 8.17 2.19 9.61
Einstein (en) 0.47 5.83 3.30 8.10 2.71 9.48
Einstein (de) 0.37 5.76 2.77 8.02 1.87 9.18
World leaders 0.42 5.76 2.83 8.17 1.30 9.20

Figure 6.1: Construction time and space for the indexes. Times are in seconds per
MiB and spaces are the ratio between construction space and text space.

91

6.1 Experimental Setup Chapter 6 Experimental Evaluation

Text LZ78 ILZI RLCSA RLCSA512 LZ775 LZ771 LZ-End5 LZ-End1 p7zip

F41 2.43 0.59 4.73E-4 0.96 3.28E-4 6.04E-4 3.75E-4 5.75E-3 0.18
R13 3.68 0.59 7.47E-4 0.94 4.15E-4 7.36E-4 6.72E-4 1.10E-3 0.36
T29 4.18 0.76 6.03E-4 0.52 3.80E-4 6.93E-4 5.95E-4 1.02E-3 0.17

DNA 0.1% 2 83.28 60.55 4.25 4.73 2.12 3.47 4.21 6.19 0.51
Proteins 0.1% 2 82.94 71.67 3.80 4.30 2.37 3.69 4.69 6.71 0.59
English 0.1% 1 90.71 69.42 4.52 5.00 2.49 3.91 7.32 10.62 0.55
Sources 0.1% 1 82.82 58.40 3.77 4.25 2.10 3.31 6.83 10.13 0.44

Para 82.04 72.99 9.86 10.83 5.36 8.45 9.20 13.38 1.46
Cere 79.37 66.93 7.60 8.57 3.74 5.94 6.16 8.96 1.14
Influenza 46.88 36.19 3.84 4.77 4.55 7.49 9.20 13.89 1.35
Escherichia Coli 88.36 83.69 24.71 25.62 18.82 29.71 30.36 43.58 4.72
Coreutils 81.36 58.38 6.53 7.46 7.89 12.47 11.89 17.47 1.94
Kernel 85.94 60.19 3.78 4.71 3.31 5.26 5.12 7.50 0.81
Einstein (en) 33.26 13.28 0.23 1.20 0.18 0.30 0.32 0.48 0.07
Einstein (de) 48.99 21.61 0.48 1.39 0.32 0.54 0.59 0.89 0.11
World leaders 49.74 35.08 3.32 4.20 3.85 6.27 6.44 9.63 1.29

Table 6.1: Compression ratio (given in percentage of original file size) of different
self-indexes. In bold are highlighted those LZ-based indexes outperforming the best
compression achievable by RLCSA.

LZ77 Index LZ-End Index
Text Mean D Mean D

F41 0.00 0 0.10 1
R13 0.35 2 1.47 4
T29 0.51 2 1.58 3

DNA 0.1% 2 13.45 27 11.43 26
Proteins 0.1% 2 14.77 38 12.25 43
English 0.1% 1 1.65 15 2.81 23
Sources 0.1% 1 1.55 16 2.65 34

Para 2.76 24 3.31 21
Cere 3.53 37 4.32 21
Influenza 2.00 33 1.58 24
Escherichia Coli 2.15 13 2.40 15
Coreutils 2.51 32 2.29 40
Kernel 2.57 28 3.05 41
Einstein (en) 2.53 14 2.62 22
Einstein (de) 2.86 13 3.27 16
World leaders 2.81 46 2.63 29

Table 6.2: D value (i.e., maximum depth) and mean depth for the LZ indexes

92

6.1 Experimental Setup Chapter 6 Experimental Evaluation

LZ77 Index LZ-End Index
Text Mean H Mean H

F41 26.56 39 24.56 36
R13 19.54 27 21.7 45
T29 14.41 22 13.53 27
DNA 0.1% 2 6.63 26 5.81 25
Proteins 0.1% 2 4.77 19 4.86 22
English 0.1% 1 30.36 96 9.67 43
Sources 0.1% 1 31.06 98 10.08 64
Para 9.38 31 8.39 259
Cere 9.25 34 8.66 257
Influenza 11.93 46 11.65 80
Escherichia Coli 7.95 28 6.86 28
Coreutils 9.03 39 11.21 175
Kernel 12.36 51 9.45 46
Einstein (en) 176.28 1003 23.66 118
Einstein (de) 73.01 507 15.72 61
World leaders 11.31 41 14.77 103

Table 6.3: H value (i.e., maximum extraction cost) and mean extraction cost for the
LZ indexes

T
ra

il
in

g
ch

a
ra

ct
er

s

B S
u

ffi
x

tr
ie

S
u

ffi
x

tr
ie

sk
ip

s

R
ev

er
se

tr
ie

R
ev

er
se

tr
ie

sk
ip

s

r
ev

id
s

R
a
n

g
e

D
ep

th

P
S

B
S

F41 0.03 0.35 47.00 0.76 47.00 0.74 0.08 1.93 0.51 0.54 0.32
R13 0.03 0.34 46.87 0.72 46.86 0.67 0.08 1.92 0.94 0.53 0.31
T29 0.04 0.46 46.63 0.79 46.62 0.80 0.11 1.91 0.94 0.57 0.41

DNA 0.1% 2 1.98 10.45 13.69 7.14 13.36 6.52 11.86 12.51 3.51 12.93 6.04
Proteins 0.1% 2 3.48 9.69 12.94 6.94 12.09 5.64 12.51 13.19 4.10 13.64 5.78
English 0.1% 1 4.50 9.59 13.15 5.99 13.40 5.59 11.56 12.19 2.76 12.60 8.67
Sources 0.1% 1 4.36 9.92 13.42 5.94 13.43 5.36 11.22 11.84 3.09 12.23 9.18

Para 1.90 8.52 12.53 6.81 12.23 6.43 13.28 13.95 3.32 14.36 6.65
Cere 1.87 8.60 12.72 6.85 12.42 6.45 13.06 13.72 3.55 14.12 6.64
Influenza 2.34 9.35 13.08 7.82 12.71 7.26 11.70 12.30 3.46 12.68 7.31
Escherichia Coli 2.56 8.20 12.66 6.65 12.40 6.38 13.43 14.11 2.68 14.52 6.42
Coreutils 4.92 7.50 13.23 5.99 13.21 5.62 12.91 13.57 3.47 13.96 5.62
Kernel 5.09 7.47 13.41 6.01 13.25 5.72 12.71 13.37 3.37 13.78 5.82
Einstein (en) 5.19 8.23 15.06 6.59 14.45 5.95 11.02 11.70 2.88 12.06 6.86
Einstein (de) 4.55 7.93 16.80 6.42 17.52 5.78 9.75 10.55 3.08 10.77 6.78
World leaders 4.47 8.28 13.57 6.83 13.98 6.16 11.49 12.13 4.08 12.52 6.49

Table 6.4: Detailed space of LZ77 index structures. Values are in percentage of the
total size.

93

6.1 Experimental Setup Chapter 6 Experimental Evaluation

T
ra

il
in

g
ch

a
ra

ct
er

s

B S
u

ffi
x

tr
ie

S
u

ffi
x

tr
ie

sk
ip

s

R
ev

er
se

tr
ie

R
ev

er
se

tr
ie

sk
ip

s

r
ev

id
s

R
a
n

g
e

D
ep

th

P
S

B
S

F41 0.03 0.51 47.13 0.47 47.12 0.46 0.08 1.94 0.51 0.54 0.48
R13 0.05 0.82 45.70 0.78 45.70 0.78 0.15 2.24 1.75 0.61 0.74
T29 0.06 1.02 45.55 1.05 45.54 0.84 0.20 2.22 1.33 0.65 0.83

DNA 0.1% 2 1.70 15.01 11.25 6.12 10.66 5.67 10.78 11.35 2.99 11.71 12.75
Proteins 0.1% 2 2.91 14.38 10.70 5.62 10.17 5.20 11.07 11.65 3.55 12.03 12.71
English 0.1% 1 3.90 14.23 11.58 5.43 10.73 4.67 10.58 11.13 2.78 11.49 13.48
Sources 0.1% 1 3.76 13.93 12.55 5.33 11.53 4.48 10.22 10.75 3.10 11.10 13.24

Para 1.63 13.66 11.10 5.69 10.48 5.28 11.93 12.53 2.67 12.88 12.16
Cere 1.66 14.13 10.99 5.89 10.31 5.48 11.60 12.18 2.71 12.54 12.52
Influenza 2.09 13.99 11.41 6.54 11.03 6.28 10.44 10.97 2.75 11.32 13.18
Escherichia Coli 2.21 13.61 10.69 5.65 10.05 5.24 12.16 12.77 2.33 13.12 12.18
Coreutils 4.26 12.63 11.70 5.10 11.53 4.81 11.18 11.75 3.17 12.09 11.78
Kernel 4.40 12.84 11.63 5.11 11.42 4.85 11.01 11.57 3.30 11.93 11.92
Einstein (en) 4.47 13.82 12.73 5.69 12.10 5.05 9.49 10.05 2.92 10.38 13.28
Einstein (de) 3.94 13.69 14.00 5.60 13.38 4.92 8.99 9.65 2.80 9.89 13.11
World leaders 3.90 13.77 11.77 5.65 12.12 5.33 10.02 10.57 3.02 10.93 12.91

Table 6.5: Detailed space of LZ-End index structures. Values are in percentage of
the total size.

94

6.1 Experimental Setup Chapter 6 Experimental Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
T29

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time
T29

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.0001

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found
T29

RLCSA
LZ771

LZ-End1

 0.0001

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found
T29

RLCSA
LZ771

LZ-End1

Figure 6.2: T29 results (1). Note the logscales.

95

6.1 Experimental Setup Chapter 6 Experimental Evaluation

 0

 50

 100

 150

 200

 250

 300

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(µ

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
T29

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
T29

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
T29

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
T29

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
T29

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
T29

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
T29

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1 10

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
T29

RLCSA
LZ77

LZ-End

Figure 6.3: T29 results (2). Note the logscales.

96

6.1 Experimental Setup Chapter 6 Experimental Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
DNA 0.1%

1

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

DNA 0.1%
1

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

DNA 0.1%
1

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

DNA 0.1%
1

RLCSA
LZ771

LZ-End1

Figure 6.4: DNA 0.1% 1 results (1). Note the logscales.

97

6.1 Experimental Setup Chapter 6 Experimental Evaluation

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

 0.001

 0.01

 0.1

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
DNA 0.1%

1

RLCSA
LZ77

LZ-End

Figure 6.5: DNA 0.1% 1 results (2). Note the logscales.

98

6.1 Experimental Setup Chapter 6 Experimental Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Kernel

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Kernel

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Kernel

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Kernel

RLCSA
LZ771

LZ-End1

Figure 6.6: Kernel results (1). Note the logscales.

99

6.1 Experimental Setup Chapter 6 Experimental Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Kernel

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Kernel

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Kernel

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Kernel

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Kernel

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Kernel

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Kernel

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Kernel

RLCSA
LZ77

LZ-End

Figure 6.7: Kernel results (2). Note the logscales.

100

6.2 Analysis of the Results Chapter 6 Experimental Evaluation

6.2 Analysis of the Results

It can be seen from the results presented above that our indexes are competitive with
RLCSA and in most cases they show better space/time trade-offs.

Figure 6.1 shows that our indexes are built more efficiently than RLCSA. The
space needed to build the LZ77 index is about 60% of that of RLCSA, and for the case
of the LZ-End index the space is about 85% of that of RLCSA. The construction time
for LZ77 is about 35% of that of RLCSA, yet for LZ-End it is about 185% of that of
RLCSA (i.e., slower). Our space occupancy during construction is a great advantage
against RLCSA as it allows us to build the index for larger texts using the same
resources. We could reduce construction space further by sacrificing construction
time, recall Section 4.4.

The compression ratio of our indexes is usually superior to that of RLCSA (see
Table 6.1). When considering the lower bound of RLCSA, which only supports count
and exists queries, our smallest index compresses better than RLCSA for all except
texts influenza, coreutils and World Leaders. When considering RLCSA with a sam-
pling step equal to 512, our compression is better for all except text coreutils. From
now on we compare our indexes with the RLCSA with sampling step 512. The com-
pression difference is more noticeable for artificial texts, where our compression is
100-1000 times better than RLCSA. For DNA collections Para and Cere our best
compression space (always achieved with LZ77) is about 45% of RLCSA’s, yet it
raises to 70-80% for Influenza and Escherichia Coli. The space is also 80% on World
Leaders. On kernel our space is 60% of RLCSA, but they are almost the same on
Coreutils. On Wikipedia articles our space is 20-30% of that of RLCSA. LZ-End
needs more space that LZ77, losing to RLCSA in Influenza, Escherichia Coli, Core-
utils and World Leaders. For texts of pseudo-real collections the compression ratio
of LZ77 is about 60% of that of RLCSA, and even the alternative using more space
has better compression ratios than RLCSA. It can also be seen in Figures 6.2-6.7 and
A.1-A.26 labeled “results (2)” that in most cases the space/time trade-off is in favor
of LZ77/LZ-End. Our LZ77 indexes use 2.63-7.52 times the space of p7zip and our
LZ-End indexes use 4.57-23.03 times the space, depending on the type of text and
the number of structures we use (e.g., tries). Finally, the compression ratios of LZ78-
based indexes are not competitive at all (note that ILZI’s maximal parsing performs
better than LZ78).

We expected to improve the compression of RLCSA for highly repetitive texts,
since LZ77 is more powerful to detect repetitions (see Lemma 4.1 and Section 2.14.1).
For artificial texts, the most repetitive ones, this situation is even more clear. For
such texts, most of the space of the RLCSA corresponds to the space to represent the

101

6.2 Analysis of the Results Chapter 6 Experimental Evaluation

samplings, which is difficult to compress [MNSV10].

Tables 6.2 and 6.3 show that D is generally moderate (below 42), and that the
greatest extraction cost is also moderate (at most 257 steps in LZ-End and at most
98 steps in LZ77 except for the texts of Wikipedia). When taking into account the
mean values of the depth and extraction cost, the values decrease noticeably, being
the average extraction cost below 25 steps for LZ-End and below 32 steps for LZ77
(except for the texts of Wikipedia).

Tables 6.4 and 6.5 show that the suffix trie and the reverse trie use more space
than the rest of the data structures. Then we see that the range structure, the reverse
ids and the permutation use roughly the same space (they require n′ log n′+o(n′ log n′)
bits). For LZ-End we see that the space needed to represent both bitmaps increases
noticeably, being even higher to that of the range structure, or the permutation.
Finally, we see that the skips only use 11-13% and the wavelet tree of depths uses
2-4% of the total space. Additionally, for the artificial texts, we see that more than
90% of the space is used to represent the suffix trie and the reverse trie. This is
because our implementation of DFUDS stores a boosting table of constant size 1kiB,
and for these texts the number of phrases n′ is less than 100, being the space of
the table considerably larger than the space of the remaining data structures. We
also note that our implementation stores the labels of the tree using 1 byte for each
symbol.

The extract time of LZ-End index is better than RLCSA in all texts, being at least
twice as fast, and up to 10 times faster for short passages. The LZ77 index extracts
substrings of length up to 50 faster than RLCSA. When taking into account the
space/time trade-offs (top-left plot of Figures 6.2-6.7 and A.1-A.26 labeled “results
(2)”) we see that our indexes improve RLCSA both in extraction time and space,
dominating the curve defined by RLCSA, excepting the texts where LZ-End loses in
space, in which case no one dominates. The extraction space/time trade-off is better
than that of RLCSA, because since RLCSA cannot compress the sampling, it has to
use a sparse sampling to be competitive in space.

The performance of locate queries is related to the pattern length. This is because
in our indexes the locating cost is quadratic on the pattern length (yet, this is in the
worst case; in practice many searches are abandoned earlier). It can be seen in plots
2-6 of Figures 6.2-6.7 and A.1-A.26 labeled “results (2)” that for patterns of length
2 or 4 all of our indexes are significantly faster than RLCSA. This is because our
indexes are much faster to locate each occurrence, as this is the cost that dominates
for short patterns. However, when we increase the length of the patterns, the increase
in cost is noticeable for the alternatives using binary search, which are those using

102

6.2 Analysis of the Results Chapter 6 Experimental Evaluation

least space. However, the alternative number 1, using tries, shows a time basically
independent of |P | (except somewhat in DNA 0.1%1 and Escherichia Coli). This is
also seen in the top-right plot of Figures 6.2-6.7 and A.1-A.26 labeled “results (1)”
. RLCSA time is almost insensitive to |P |, thus in several cases it becomes faster
for longer patterns (which also have fewer occurrences, for reporting which RLCSA
is slower).

By analyzing the performance results of SLPs [CFMPN10] it is clear that the
compression ratio of SLPs (at least when using Re-Pair to create the grammar) is
worse than that of RLCSA. For the case of DNA (Para, Cere and Influenza) the
compression ratio is more than twice that of the LZ77 indexes. Furthermore, the
locate time of SLPs is only comparable to RLCSA for small patterns (|P | ≤ 6), in
which case our indexes show a space/time trade-off much better than that of RLCSA.

Finally, we have that exists queries are solved consistently faster by RLCSA than
by our indexes. Looking at plots 3 and 4 of Figures 6.2-6.7 and A.1-A.26 labeled
“results (1)” we notice that our larger variants are comparable to RLCSA, although
always slower, in the case of patterns present in the text. The difference widens in
the case of non-existent patterns, as RLCSA improves more sharply. Moreover, in
our indexes the time increases with the length, opposite to RLCSA where the time
is practically constant when the pattern does not exist. In plots 7 and 8 of Figures
6.2-6.7 and A.1-A.26 labeled “results (2)” one can see the trade-off of exists queries.
They show that binary search is not an alternative if we are interested in this type
of queries. For the case of patterns present in the text, binary searching the queries
takes about 10 times more, and for patterns not present in the text about 10-1000
times more, than the time needed using tries.

103

Chapter 7

Conclusions

We have presented a new full-text self-index based on the Lempel-Ziv parsing. This
index is especially well suited for applications in which the text is highly repetitive and
the user is interested in finding patterns in the text (locate) and accessing arbitrary
substrings of the text (extract). Our indexes provide a much better space/time trade-
off than the previous ones for these operations.

The compression ratio of our indexes is more than 10 times better than previous
indexes based on LZ78, which are shown to be inappropriate for very repetitive texts.
Additionally, the compression ratio of our smallest index is, for almost all texts (13
out of 16)1, better than the lower bound achievable using RLCSA [SVMN08], the best
previous self-index for these texts. When compared to the smallest practical RLCSA,
the compression of our index is better for all except one text, usually by a factor of 2
at least. Compared to pure LZ77 compression, our index takes usually 3-6 times the
space achieved by p7zip.

We also introduced a new LZ-parsing called LZ-End, which is close to LZ77 in
compression ratio and gives faster access to text substrings. The extraction speed
when using LZ-End is always better than that of RLCSA, and the extraction speed
of our LZ77-based index is also superior for small substrings. Our indexes are always
better for locating the occurrences of short patterns (of length up to 10), and the
results are mixed for longer ones. This is because our locating time is quadratic and
depends also in the extraction speed, which shows different behaviors according to
the text.

1We could not devise any characteristic that explains why the compression ratio of RLCSA for
those texts is superior to our indexes.

104

Chapter 7 Conclusions

The only operation for which RLCSA is consistently better than our indexes is
for answering if a pattern is present in the text (exists), the difference being even
more notorious for the case of non-existent patterns. Similarly, our indexes cannot
count the number of occurrences without locating them all, whereas the RLCSA can
do this very fast. Nevertheless, it has been argued [AN10] that these two queries are
used in much more specific applications serving as a basis for complex tasks such as
approximate pattern matching or text categorization, while extracting and locating
are the most important for general applications.

An interesting goal for future research would be to reduce the m2 factor of the
locate query time to just m. This improvement would make our index even more
attractive. This has been achieved for other LZ-based indexes [AN07, RO08], yet
these have been built on LZ parsings that are too weak for very repetitive texts.

Another line of research would be to design new LZ-like compression schemes
allowing fast decompression of random substrings of the LZ parsing. Note that our
only trade-off related to extraction speed is the use of LZ-End instead of LZ77, and
still LZ-End takes constant time per extracted symbol only in certain cases. In a
recent work, Kuruppu et al. [KPZ10] use a single document as the dictionary for
the LZ77 algorithm, storing that source document in plain form. This method is
a heuristic and works fairly well enough only when the documents of the collection
are not successive versions, as in collections of DNA. However, even the compression
achieved for DNA collections (para and cere) is almost the same than the compression
we achieved using our best LZ77 variant, yet we have a self-index and they are only
able to extract text, although their extraction times are more than 100 times faster
than ours. Nevertheless, this method is orthogonal to our index proposal and we
could build our self-index on top of their compression scheme.

Another important line of research is to devise an LZ parsing algorithm that uses
space proportional to that of the final compressed text. Currently, to build the LZ77
parsing one needs about six times the space of the original text. Although this space
is lower than that of RLCSA, is still too much to handle very large text collections.
Alternatively, a parsing algorithm working in secondary storage would also be useful
to handle very large collections. We are aware that this is a more than challenging
task, as the parsing process is strongly related with dynamic self-indexes for repetitive
texts. That is, if we have a dynamic self-index (or at least an index able to insert
strings at the end) we can easily produce the LZ parsing of the text. Hence, studying
how we can build a dynamic LZ-based index is a natural research direction.

It would be also interesting to study if counting could be answered more effi-
ciently, and if more meaningful operations like approximate pattern matching could

105

Chapter 7 Conclusions

be implemented, or if some operations of the suffix tree could be simulated on the
index.

Another interesting research goal is to decrease the space factor, both in theory
and in practice. Compared to a pure LZ77 compressor, the factor is 4 in theory
and 3-6 in practice, as mentioned. Such a reduction has been achieved for Arroyuelo
and Navarro’s LZ-index, reducing the factor from 4 [Nav04] to (2 + ε) [ANS06] (see
Section 2.14.3). This was possible because there was some redundancy between the
components of the index. We could also reduce the factor by coding the bitmaps
of the wavelet tree of depths in compressed form [RRR02] (see Section 2.5), since
most depths are very low in practice and only some are high. However, the space
improvement would not be too impressive, since the space of wavelet tree of depths
is just 2-4% of the index size.

We have also presented a text corpus oriented to repetitive texts. The main goal
of this corpus is to become a reference set in experimentation with this kind of texts.
The corpus is publicly available at http://pizzachili.dcc.uchile.cl/repcorpus.
html.

Finally, our implementation has been left public in the site http://pizzachili.

dcc.uchile.cl/indexes/LZ77-index, to promote its use in real-world and research
applications and to serve as a baseline for future developments in repetitive text
indexing.

106

http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/indexes/LZ77-index
http://pizzachili.dcc.uchile.cl/indexes/LZ77-index

Bibliography

[ACNS10] Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko
Sadakane. Succinct trees in practice. In Proc. 11th Workshop on Algo-
rithm Engineering and Experiments (ALENEX), pages 84–97. SIAM
Press, 2010.

[AN] Diego Arroyuelo and Gonzalo Navarro. Space-efficient construction of
Lempel-Ziv compressed text indexes. Manuscript.

[AN07] Diego Arroyuelo and Gonzalo Navarro. Smaller and faster Lempel-
Ziv indices. In Proc. 18th International Workshop on Combinatorial
Algorithms (IWOCA), pages 11–20. College Publications, UK, 2007.

[AN10] Diego Arroyuelo and Gonzalo Navarro. Practical approaches to reduce
the space requirement of Lempel-Ziv-based compressed text indices.
ACM Journal of Experimental Algorithmics (ACM JEA), 2010. To
appear.

[ANS06] Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. Reducing
the space requirement of LZ-index. In Proc. 17th Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 4009, pages 319–
330, 2006.

[ANS10] Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. Stronger
Lempel-Ziv based compressed text indexing. Algorithmica, 2010. To
appear.

[AS99] Jean-Paul Allouche and Jeffrey Shallit. The ubiquitous Prouhet-Thue-
Morse sequence. In Proc. 1st International Conference on Sequences
and their Applications (SETA), pages 1–16. Springer-Verlag, 1999.

[B+08] David R. Bentley et al. Accurate whole human genome sequencing
using reversible terminator chemistry. Nature, 456(7218):53–59, 2008.

107

BIBLIOGRAPHY BIBLIOGRAPHY

[Ban09] Mohammad Banikazemi. LZB: Data compression with bounded refer-
ences. In Proc. 19th Data Compression Conference (DCC), page 436.
IEEE Computer Society, 2009. Poster.

[BDM+05] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman,
Venkatesh Raman, and S. Srinivasa Rao. Representing trees of higher
degree. Algorithmica, 43(4):275–292, 2005.

[BLN09] Nieves Brisaboa, Susana Ladra, and Gonzalo Navarro. Directly ad-
dressable variable-length codes. In Proc. 16th International Sympo-
sium on String Processing and Information Retrieval (SPIRE), LNCS
5721, pages 122–130. Springer, 2009.

[BM77] Robert S. Boyer and J. Strother Moore. A fast string searching algo-
rithm. Communications of the ACM, 20(10):762–772, 1977.

[BW94] Michael Burrows and David Wheeler. A block sorting lossless data
compression algorithm. Technical Report 124, Digital Equipment Cor-
poration, 1994.

[CFMPN10] Francisco Claude, Antonio Fariña, Miguel Mart́ınez-Prieto, and Gon-
zalo Navarro. Compressed q-gram indexing for highly repetitive bio-
logical sequences. In Proc. 10th IEEE Conference on Bioinformatics
and Bioengineering (BIBE), pages 86–91. IEEE Press, 2010.

[Cha88] Bernard Chazelle. Functional approach to data structures and its use in
multidimensional searching. SIAM Journal on Computing, 17(3):427–
462, 1988.

[CIT08] Maxime Crochemore, Lucian Ilie, and Liviu Tinta. Towards a solution
to the ”runs” conjecture. In Proc. 19th Annual Symposium on Com-
binatorial Pattern Matching (CPM), pages 290–302. Springer-Verlag,
2008.

[Cla96] David Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
1996.

[CLL+05] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prab-
hakaran, Amit Sahai, and Abhi Shelat. The smallest grammar problem.
IEEE Transactions on Information Theory, 51(7):2554–2576, 2005.

[CN09] Francisco Claude and Gonzalo Navarro. Self-indexed text compression
using straight-line programs. In Proc. 34th International Symposium

108

BIBLIOGRAPHY BIBLIOGRAPHY

on Mathematical Foundations of Computer Science (MFCS), LNCS
5734, pages 235–246. Springer, 2009.

[CN10] Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based
compression. Fundamenta Informaticae, 2010. to appear.

[CPS08] Gang Chen, Simon J. Puglisi, and William F. Smyth. Lempel-Ziv fac-
torization using less time & space. Mathematics in Computer Science,
1(4):605–623, June 2008.

[FG89] Edward R. Fiala and Daniel H. Greene. Data compression with finite
windows. Communications of the ACM, 32(4):490–505, 1989.

[FH07] Johannes Fischer and Volker Heun. A New Succinct Representation
of RMQ-Information and Improvements in the Enhanced Suffix Array.
In Proc. 1st International Symposium on Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies (ESCAPE), volume 4614
of LNCS 4614, pages 459–470. Springer-Verlag, 2007.

[FM05] Paolo Ferragina and Giovanni Manzini. Indexing compressed text.
Journal of the ACM, 52(4):552–581, 2005.

[FMMN07] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo
Navarro. Compressed representations of sequences and full-text in-
dexes. ACM Transactions on Algorithms (TALG), 3(2):article 20, 2007.

[FSS03] Frantisek Franek, R.J. Simpson, and William F. Smyth. The maxi-
mum number of runs in a string. In Proc. Australian Workshop on
Combinatorial Algorithms (AWOCA), pages 26–35, 2003.

[GBYS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New
indices for text: Pat trees and pat arrays. In Information Retrieval:
Data Structures & Algorithms, pages 66–82. Prentice Hall, 1992.

[GGMN05] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo
Navarro. Practical implementation of rank and select queries. In
Poster Proc. Volume of 4th Workshop on Efficient and Experimental
Algorithms (WEA), pages 27–38. CTI Press and Ellinika Grammata,
2005.

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order
entropy-compressed text indexes. In Proc. 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 841–850. SIAM
Press, 2003.

109

BIBLIOGRAPHY BIBLIOGRAPHY

[GN08] Rodrigo González and Gonzalo Navarro. Rank/select on dynamic com-
pressed sequences and applications. Theoretical Computer Science,
410:4414–4422, 2008.

[GV05] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and string matching.
SIAM Journal of Computing, 35(2):378–407, 2005.

[Ham86] Richard Wesley Hamming. Coding and Information Theory. Prentice-
Hall, 1986.

[IT06] Shunsuke Inenaga and Masayuki Takeda. On-line linear-time construc-
tion of word suffix trees. In Proc. 17th Annual Symposium on Combi-
natorial Pattern Matching (CPM), pages 60–71. Springer-Verlag, 2006.

[Jac89] Guy Jacobson. Space-efficient static trees and graphs. In Annual IEEE
Symposium on Foundations of Computer Science, pages 549–554. IEEE
Computer Society, 1989.

[Kär99] Juha Kärkkäinen. Repetition-Based Text Indexes. PhD thesis, Depart-
ment of Computer Science, Univeristy of Helsinki, Finland, November
1999.

[KK99] Roman Kolpakov and Gregory Kucherov. On maximal repetitions in
words. Journal of Discrete Algorithms, 1:159–186, 1999.

[KM99] S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy
strings with Lempel-Ziv algorithms. SIAM Journal on Computing,
29(3):893–911, 1999.

[KMP77] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pat-
tern matching in strings. SIAM Journal of Computing, 6(2):323–350,
1977.

[KN10] Sebastian Kreft and Gonzalo Navarro. LZ77-like compression with fast
random access. In Proc. 20th Data Compression Conference (DCC),
pages 239–248, 2010.

[KPZ10] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative
Lempel-Ziv compression of genomes for large-scale storage and re-
trieval. In Proc. 17th International Symposium on String Processing
and Information Retrieval (SPIRE), pages 201–206, 2010.

110

BIBLIOGRAPHY BIBLIOGRAPHY

[KS03] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array
construction. In Proc. 30th International Colloquium on Automata,
Languages and Programming (ICALP), LNCS 2719, pages 943–955,
2003.

[KU96a] Juha Kärkkäinen and Esko Ukkonen. Lempel-Ziv parsing and
sublinear-size index structures for string matching. In Proc. 3rd South
American Workshop on String Processing (WSP), pages 141–155. Car-
leton University Press, 1996.

[KU96b] Juha Kärkkäinen and Esko Ukkonen. Sparse suffix trees. In Proc.
2nd Annual International Conference on Computing and Combina-
torics (COCOON), pages 219–230. Springer-Verlag, 1996.

[LM00] N. Jesper Larsson and Alistair Moffat. Off-line dictionary-based com-
pression. Proc. IEEE, 88(11):1722–1732, 2000.

[Lot02] M. Lothaire. Algebraic Combinatorics on Words. Cambridge Univer-
sity Press, 2002.

[LZ76] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences.
IEEE Transactions on Information Theory, 22(1):75–81, 1976.

[Mai89] Michael G. Main. Detecting leftmost maximal periodicities. Discrete
Applied Mathematics, 25(1-2):145–153, 1989.

[Man01] Giovanni Manzini. An analysis of the Burrows-Wheeler transform.
Journal of the ACM, 48(3):407–430, 2001.

[McC76] Edward M. McCreight. A space-economical suffix tree construction
algorithm. Journal of the ACM, 32(2):262–272, 1976.

[MKI+08] Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai,
and Ayumi Shinohara. New lower bounds for the maximum number of
runs in a string. In Proc. Prague Stringology Conference (PSC), pages
140–145, 2008.

[MM93] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[MN07] Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and
extended. Theoretical Computer Science, 387(3):332–347, 2007. Special
issue on “The Burrows-Wheeler Transform and its Applications”.

111

BIBLIOGRAPHY BIBLIOGRAPHY

[MNSV10] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Stor-
age and retrieval of highly repetitive sequence collections. Journal of
Computational Biology, 17(3):281–308, 2010.

[Mor68] Donald R. Morrison. Patricia-practical algorithm to retrieve informa-
tion coded in alphanumeric. Journal of the ACM, 15(4):514–534, 1968.

[MR01] J. Ian Munro and Venkatesh Raman. Succinct representation of bal-
anced parentheses and static trees. SIAM Journal on Computing,
31(3):762–776, 2001.

[MRRR03] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa
Rao. Succinct representations of permutations. In Proc. 30th In-
ternational Colloquium on Automata, Languages and Computation
(ICALP), LNCS 2719, pages 345–356. Springer, 2003.

[Mun86] J. Ian Munro. An implicit data structure supporting insertion, deletion,
and search in O(log n) time. Journal of Computer System Sciences,
33(1):66–74, 1986.

[Nav04] Gonzalo Navarro. Indexing text using the Ziv-Lempel trie. Journal of
Discrete Algorithms, 2(1):87–114, 2004.

[Nav08] Gonzalo Navarro. Indexing LZ77: The next step in self-indexing.
Keynote talk at Third Workshop on Compression, Text, and Algo-
rithms, 2008.

[Nav09] Gonzalo Navarro. Implementing the LZ-index: Theory versus practice.
ACM Journal of Experimental Algorithmics (JEA), 13:article 2, 2009.

[NM07] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes.
ACM Computing Surveys, 39(1):article 2, 2007.

[OS07] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-
compressed rank/select dictionary. In Proc. 9th Workshop on Algo-
rithm Engineering and Experiments (ALENEX). SIAM Press, 2007.

[OS08] Daisuke Okanohara and Kunihiko Sadakane. An online algorithm
for finding the longest previous factors. In Proc. 16th Annual Eu-
ropean Symposium on Algorithms (ESA), pages 696–707. Springer-
Verlag, 2008.

112

BIBLIOGRAPHY BIBLIOGRAPHY

[PST07] Simon J. Puglisi, William F. Smyth, and Andrew H. Turpin. A taxon-
omy of suffix array construction algorithms. ACM Computing Surveys,
39(2):4, 2007.

[PWZ92] Eli Plotnik, Marcelo Weinberger, and Jacob Ziv. Upper bounds on
the probability of sequences emitted by finite-state sources and on the
redundancy of the Lempel-Ziv algorithm. IEEE Transactions on In-
formation Theory, 38(1):66–72, 1992.

[RNO08] Lúıs M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully-
compressed suffix trees. In Proc. 8th Latin American Symposium on
Theoretical Informatics (LATIN), LNCS 4957, pages 362–373, 2008.

[RO08] Lúıs M. S. Russo and Arlindo L. Oliveira. A compressed self-index
using a Ziv-Lempel dictionary. Journal of Information Retrieval,
5(3):501–513, 2008. Special issue SPIRE 2006.

[RRR02] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
indexable dictionaries with applications to encoding k-ary trees and
multisets. In Proc. 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 233–242. SIAM Press, 2002.

[Ryt03] Wojciech Rytter. Application of lempel–ziv factorization to the approx-
imation of grammar-based compression. Theoretical Computer Science,
302(1-3):211–222, 2003.

[Sad03] Kunihiko Sadakane. New text indexing functionalities of the com-
pressed suffix arrays. Journal of Algorithms, 48(2):294 – 313, 2003.

[SS82] James A. Storer and Thomas G. Szymanski. Data compression via
textual substitution. Journal of the ACM, 29(4):928–951, 1982.

[SVMN08] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-
length compressed indexes are superior for highly repetitive sequence
collections. In Proc. 15th International Symposium on String Process-
ing and Information Retrieval (SPIRE), LNCS 5280, pages 164–175.
Springer, 2008.

[Ukk95] Esko Ukkonen. Constructing suffix trees on-line in linear time. Algo-
rithmica, 14(3):249–260, 1995.

[Wei73] Peter Weiner. Linear pattern matching algorithms. In Proc. 14th An-
nual Symposium on Switching and Automata Theory, pages 1–11, 1973.

113

BIBLIOGRAPHY BIBLIOGRAPHY

[Wel84] Terry A. Welch. A Technique for High-Performance Data Compression.
Computer, 17(6):8–19, 1984.

[Wil91] Ross N. Williams. An extremely fast ziv-lempel data compression al-
gorithm. In Data Compression Conference, pages 362–371, 1991.

[WZ99] Hugh E. Williams and Justin Zobel. Compressing integers for fast file
access. Computer Journal, 42(3):193–201, 1999.

[ZdMNBY00] Nivio Ziviani, Edleno Silva de Moura, Gonzalo Navarro, and Ricardo
Baeza-Yates. Compression: A key for next-generation text retrieval
systems. IEEE Computer, 33(11):37–44, 2000.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequen-
tial data compression. IEEE Transactions on Information Theory,
23(3):337–343, 1977.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of individual sequences
via variable-rate coding. IEEE Transactions on Information Theory,
24(5):530–536, 1978.

114

Appendix A

Experimental Results

In this appendix we present the results of the experiments described in Section 6.1
for the remaining texts.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
F41

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time
F41

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.0001

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found
F41

RLCSA
LZ771

LZ-End1

 0.0001

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found
F41

RLCSA
LZ771

LZ-End1

Figure A.1: F41 results (1). Note the logscales.

115

Appendix A Experimental Results

 0

 50

 100

 150

 200

 250

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(µ

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
F41

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
F41

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
F41

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
F41

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
F41

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
F41

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
F41

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
F41

RLCSA
LZ77

LZ-End

Figure A.2: F41 results (2). Note the logscales.

116

Appendix A Experimental Results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
R13

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time
R13

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.0001

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found
R13

RLCSA
LZ771

LZ-End1

 0.0001

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found
R13

RLCSA
LZ771

LZ-End1

Figure A.3: R13 results (1). Note the logscales.

117

Appendix A Experimental Results

 0

 50

 100

 150

 200

 250

 300

 350

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(µ

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
R13

RLCSA
LZ77

LZ-End

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
R13

RLCSA
LZ77

LZ-End

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
R13

RLCSA
LZ77

LZ-End

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
R13

RLCSA
LZ77

LZ-End

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
R13

RLCSA
LZ77

LZ-End

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
R13

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
R13

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
R13

RLCSA
LZ77

LZ-End

Figure A.4: R13 results (2). Note the logscales.

118

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Proteins 0.1%

1

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Proteins 0.1%
1

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Proteins 0.1%
1

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Proteins 0.1%
1

RLCSA
LZ771

LZ-End1

Figure A.5: Proteins 0.1% 1 results (1). Note the logscales.

119

Appendix A Experimental Results

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Proteins 0.1%

1

RLCSA
LZ77

LZ-End

Figure A.6: Proteins 0.1% 1 results (2). Note the logscales.

120

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
English 0.1%

2

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time
English 0.1%

2

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found
English 0.1%

2

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found
English 0.1%

2

RLCSA
LZ771

LZ-End1

Figure A.7: English 0.1% 2 results (1). Note the logscales.

121

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
English 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
English 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
English 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
English 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
English 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
English 0.1%

2

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
English 0.1%

2

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
English 0.1%

2

RLCSA
LZ77

LZ-End

Figure A.8: English 0.1% 2 results (2). Note the logscales.

122

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Sources 0.1%

2

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Sources 0.1%
2

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Sources 0.1%
2

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Sources 0.1%
2

RLCSA
LZ771

LZ-End1

Figure A.9: Sources 0.1% 2 results (1). Note the logscales.

123

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Sources 0.1%

2

RLCSA
LZ77

LZ-End

Figure A.10: Sources 0.1% 2 results (2). Note the logscales.

124

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Para

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Para

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Para

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Para

RLCSA
LZ771

LZ-End1

Figure A.11: Para results (1). Note the logscales.

125

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Para

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Para

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Para

RLCSA
LZ77

LZ-End

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Para

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Para

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Para

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Para

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Para

RLCSA
LZ77

LZ-End

Figure A.12: Para results (2). Note the logscales.

126

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Cere

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Cere

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Cere

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Cere

RLCSA
LZ771

LZ-End1

Figure A.13: Cere results (1). Note the logscales.

127

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Cere

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Cere

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Cere

RLCSA
LZ77

LZ-End

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Cere

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Cere

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Cere

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Cere

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Cere

RLCSA
LZ77

LZ-End

Figure A.14: Cere results (2). Note the logscales.

128

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Influenza

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Influenza

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Influenza

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Influenza

RLCSA
LZ771

LZ-End1

Figure A.15: Influenza results (1). Note the logscales.

129

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Influenza

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Influenza

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Influenza

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Influenza

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Influenza

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Influenza

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Influenza

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Influenza

RLCSA
LZ77

LZ-End

Figure A.16: Influenza results (2). Note the logscales.

130

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Escherichia Coli

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Escherichia Coli

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Escherichia Coli

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Escherichia Coli

RLCSA
LZ771

LZ-End1

Figure A.17: Escherichia Coli results (1). Note the logscales.

131

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Escherichia Coli

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Escherichia Coli

RLCSA
LZ77

LZ-End

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Escherichia Coli

RLCSA
LZ77

LZ-End

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Escherichia Coli

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Escherichia Coli

RLCSA
LZ77

LZ-End

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Escherichia Coli

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Escherichia Coli

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30 35 40 45

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Escherichia Coli

RLCSA
LZ77

LZ-End

Figure A.18: Escherichia Coli results (2). Note the logscales.

132

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Coreutils

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

Coreutils

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

Coreutils

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

Coreutils

RLCSA
LZ771

LZ-End1

Figure A.19: Coreutils results (1). Note the logscales.

133

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Coreutils

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Coreutils

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Coreutils

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Coreutils

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Coreutils

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Coreutils

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Coreutils

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Coreutils

RLCSA
LZ77

LZ-End

Figure A.20: Coreutils results (2). Note the logscales.

134

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Einstein (en)

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time
Einstein (en)

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found
Einstein (en)

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found
Einstein (en)

RLCSA
LZ771

LZ-End1

Figure A.21: Einstein (en) results (1). Note the logscales.

135

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.1 1 10 100

T
im

e
(µ

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Einstein (en)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Einstein (en)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Einstein (en)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Einstein (en)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Einstein (en)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Einstein (en)

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Einstein (en)

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Einstein (en)

RLCSA
LZ77

LZ-End

Figure A.22: Einstein (en) results (2). Note the logscales.

136

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
Einstein (de)

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time
Einstein (de)

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found
Einstein (de)

RLCSA
LZ771

LZ-End1

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found
Einstein (de)

RLCSA
LZ771

LZ-End1

Figure A.23: Einstein (de) results (1). Note the logscales.

137

Appendix A Experimental Results

 0

 200

 400

 600

 800

 1000

 0.1 1 10 100

T
im

e
(µ

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
Einstein (de)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
Einstein (de)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
Einstein (de)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Einstein (de)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
Einstein (de)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.1 1 10 100

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
Einstein (de)

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
Einstein (de)

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1 1 10 100

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
Einstein (de)

RLCSA
LZ77

LZ-End

Figure A.24: Einstein (de) results (2). Note the logscales.

138

Appendix A Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

log(Snippet Length)

Extraction Speed
World Leaders

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

T
im

e
(m

s/
oc

cs
)

Pattern Length

Locate Time

World Leaders

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ771
LZ775

LZ-End1
LZ-End5

 0.001

 0.01

 0.1

 1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns Found

World Leaders

RLCSA
LZ771

LZ-End1

 0.001

 0.01

 0.1

 0 1 2 3 4

T
im

e
(m

s/
pa

tte
rn

)

log(Pattern Length/5)

Exist Time for Patterns not Found

World Leaders

RLCSA
LZ771

LZ-End1

Figure A.25: World Leaders results (1). Note the logscales.

139

Appendix A Experimental Results

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
ch

ar
)

Compression Ratio

Extract Time (|P|=2
12

)
World Leaders

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=10)
World Leaders

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=15)
World Leaders

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
World Leaders

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=2)
World Leaders

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=4)
World Leaders

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns Found (|P|=20)
World Leaders

RLCSA
LZ77

LZ-End

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

T
im

e
(m

s/
pa

tte
rn

)

Compression Ratio

Exist Time for Patterns not Found (|P|=20)
World Leaders

RLCSA
LZ77

LZ-End

Figure A.26: World Leaders results (2). Note the logscales.

140

	Introduction
	Contributions of the Thesis
	Outline of the Thesis

	Basic Concepts
	Strings
	Search Problems
	Entropy
	Encodings
	Directly Addressable Codes

	Bitmaps
	Practical Dense Bitmaps
	Practical Sparse Bitmaps

	Wavelet Trees
	Range Search

	Permutations
	Tree Representations
	Tries
	Suffix Trees
	Suffix Arrays
	Backward Search
	Lempel-Ziv Parsings and Repetitions
	Self-Indexes
	Run-Length Compressed Suffix Arrays (RLCSAs)
	Indexes based on sparse suffix arrays
	LZ78-based Self-Indexes
	Straight Line Programs (SLPs)

	A Repetitive Corpus Testbed
	Artificial Texts
	Fibonacci Sequence
	Thue-Morse Sequence
	Run-Rich String Sequence

	Pseudo-Real Texts
	Real Texts
	DNA
	Wikipedia Articles
	Source Code
	Documents

	Statistics
	Artificial Texts
	Pseudo-Real Texts
	Real Texts

	Discussion

	LZ-End: A New Lempel-Ziv Parsing
	LZ77 on Repetitive Texts
	LZ-End
	Encoding
	Extraction Algorithm

	Compression Performance
	Coarse Optimality
	Performance on Repetitive Texts

	Construction Algorithm
	Experimental Results
	Compression Ratio
	Parsing Time
	Text Extraction Speed

	An LZ77-Based Self-Index
	Basic Definitions
	Primary Occurrences
	Right Part of the Pattern
	Left Part of the Pattern
	Connecting Both Parts
	Special Primary Occurrences
	Converting Phrase Ids to Text Positions
	Implementation Considerations

	Secondary Occurrences
	Basic Idea
	Complete Solution
	Prev-Less Data Structure

	Query Time
	Construction
	Summary

	Experimental Evaluation
	Experimental Setup
	Analysis of the Results

	Conclusions
	Bibliography
	Appendix Experimental Results

