
An Extension of SPARQL for RDFS

Marcelo Arenas1, Claudio Gutierrez2, and Jorge Pérez1

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

Abstract. RDF Schema (RDFS) extends RDF with a schema vocabu-
lary with a predefined semantics. Evaluating queries which involve this
vocabulary is challenging, and there is not yet consensus in the Seman-
tic Web community on how to define a query language for RDFS. In
this paper, we introduce a language for querying RDFS data. This lan-
guage is obtained by extending SPARQL with nested regular expressions
that allow to navigate through an RDF graph with RDFS vocabulary.
This language is expressive enough to answer SPARQL queries involving
RDFS vocabulary, by directly traversing the input graph.

1 Introduction

The Resource Description Framework (RDF) [16, 6, 14] is a data model for rep-
resenting information about World Wide Web resources. The RDF specification
includes a set of reserved IRIs, the RDFS vocabulary (called RDF Schema), that
has a predefined semantics. This vocabulary is designed to describe special rela-
tionships between resources like typing and inheritance of classes and properties,
among others features [6].

Jointly with the RDF release in 1998 as Recommendation of the W3C, the
natural problem of querying RDF data was raised. Since then, several designs
and implementations of RDF query languages have been proposed (see Haase et
al. [12] and Furche et al. [9] for detailed comparisons of RDF query languages).
In 2004, the RDF Data Access Working Group, part of the Semantic Web Ac-
tivity, released a first public working draft of a query language for RDF, called
SPARQL [21]. Since then, SPARQL has been rapidly adopted as the standard
to query Semantic Web data. In January 2008, SPARQL became a W3C Rec-
ommendation.

The specification of SPARQL is targeted to RDF data, not including RDFS
vocabulary. The reasons to follow this approach are diverse, including: (1) the
lack of a standard definition of a semantics for queries under the presence of
vocabulary and, hence, the lack of consensus about it; (2) the computational
complexity challenges of querying in the presence of a vocabulary with a prede-
fined semantics; and (3) practical considerations about real-life RDF data spread
on the Web. These reasons explain also why most of the groups working on the
definition of RDF query languages have focused in querying plain RDF data.

Nevertheless, there are several proposals to address the problem of querying
RDFS data. Current practical approaches taking into account the predefined

semantics of the RDFS vocabulary (e.g. Harris and Gibbins [11], Broekstra et
al. [7] in Sesame), roughly implement the following procedure. Given a query Q
over an RDF data source G with RDFS vocabulary, the closure of G is computed
first, that is, all the implicit information contained in G is made explicit by
adding to G all the statements that are logical consequences of G. Then the query
Q is evaluated over this extended data source. The theoretical formalization of
such an approach was studied by Gutierrez et al. [10].

From a practical point of view, the above approach has several drawbacks.
First, it is known that the size of the closure of a graph G is of quadratic order in
the worst case, making the computation and storage of the closure too expensive
for web-scale applications. Second, once the closure has been computed, all the
queries are evaluated over a data source which can be much larger than the
original one. This can be particularly inefficient for queries that must scan a
large part of the input data. Third, the approach is not goal-oriented. Although
in practice most queries will use just a small fragment of the RDFS vocabulary
and would need only to scan a small part of the initial data, all the vocabulary
and the data is considered when computing the closure.

Let us present a simple scenario that exemplifies the benefits of a goal-
oriented approach. Consider an RDF data source G and a query Q that asks
whether a resource A is a sub-class of a resource B. In its abstract syntax,
RDF statements are modeled as a subject-predicate-object structure of the form
(s, p, o), called an RDF triple. Furthermore, the keyword rdfs:subClassOf is used
in RDFS to denote the sub-class relation between resources. Thus, answering Q
amounts to check whether the triple (A, rdfs:subClassOf, B) is a logical conse-
quence of G. The predefined semantics of RDFS states that rdfs:subClassOf
is a transitive relation among resources. Then to answer Q, a goal-oriented
approach should not compute the closure of the entire input graph G (which
could be of quadratic order in the size of G), but instead it should just verify
whether there exist resources R1, R2, . . . Rn such that A = R1, B = Rn, and
(Ri, rdfs:subClassOf, Ri+1) is a triple in G for i = 1, . . . , n− 1. That is, we can
answer Q by checking the existence of an rdfs:subClassOf-path from A to B in
G, which takes linear time in the size of G [18].

It was shown by Muñoz el al. [18] that testing whether an RDFS triple is
implied by an RDFS data source G can be done without computing the closure
of G. The idea is that the RDFS deductive rules allow to determine if a triple is
implied by G by essentially checking the existence of paths over G, very much
like our simple example above. The good news is that these paths can be spec-
ified by using regular expressions plus some additional features. For example,
to check whether (A, rdfs:subClassOf, B) belongs to the closure of a graph G,
we already saw that it is enough to check whether there is a path from A to
B in G where each edge has label rdfs:subClassOf. This observation motivates
the use of extended triple patterns of the form (A, rdfs:subClassOf+, B), where
rdfs:subClassOf+ is the regular expression denoting paths of length at least 1
and where each edge has label rdfs:subClassOf. Thus, one can readily see that a

language for navigating RDFS data would be useful for obtaining the answer of
queries considering the predefined semantics of the RDFS vocabulary.

Driven by this motivation, in this paper we introduce a language that extends
SPARQL with navigational capabilities. The resulting language turns out to
be expressive enough to capture the deductive rules of RDFS. Thus, we can
obtain the RDFS evaluation of an important fragment of SPARQL by navigating
directly the input RDFS data source, without computing the closure.

This idea can be developed at several levels. We first consider a navigational
language that includes regular expressions and takes advantage of the special
features of RDF. Paths defined by regular expressions has been widely used
in graph databases [17, 3], and recently, have been also proposed in the RDF
context [1, 4, 2, 15, 5]. We show that although paths defined in terms of regular
expressions are useful, regular expressions alone are not enough to obtain the
RDFS evaluation of some queries by simply navigating RDF data. Thus, we
enrich regular expressions by borrowing the notion of branching from XPath [8],
to obtain what we call nested regular expressions. Nested regular expressions
are enough for our purposes and, furthermore, they provide an interesting extra
expressive power to define complex path queries over RDF data with RDFS
vocabulary.

Organization of the paper. In Section 2, we present a summary of the basics of
RDF, RDFS, and SPARQL, based on Muñoz et al. [18] and Pérez et al. [20].
Section 3 is the core part of the paper, and introduces our proposal for a nav-
igational language for RDF. We first discuss the related work on navigating
RDF in Section 3.1. In Section 3.2, we introduce a first language for navigating
RDF graphs based on regular expressions, and we discuss why regular expres-
sions alone are not enough for our purposes. Section 3.3 presents the language
of nested regular expressions, and shows how these expressions can be used to
obtain the RDFS evaluation of SPARQL patterns. In Section 3.4, we give some
examples of the extra expressive power of nested regular expressions, showing the
usefulness of the language to extract complex path relations from RDF graphs.
Finally, Section 4 presents some conclusions.

2 RDFS and SPARQL

In this section, we present the algebraic formalization of the core fragment of
SPARQL over RDF graphs introduced in [20], and then we extend this formaliza-
tion to RDFS graphs. But before doing that, we introduce some notions related
to RDF and the core fragment of RDFS.

2.1 The RDF data model

RDF is a graph data format for representing information in the Web. An RDF
statement is a subject-predicate-object structure, called an RDF triple, intended
to describe resources and properties of those resources. For the sake of simplicity,

we assume that RDF data is composed only by elements from an infinite set U
of IRIs3. More formally, an RDF triple is a tuple (s, p, o) ∈ U × U × U , where
s is the subject, p the predicate and o the object. An RDF graph (or RDF data
source) is a finite set of RDF triples.

lives in

works in

Everton

company

ChileSorace

plays in

sp

range

Barcelona

soccer team

type

soccer player

Ronaldinho

person

sc

sc

type

dom

dom range

sportsman

Fig. 1. An RDF graph storing information about soccer players.

Figure 1 shows an RDF graph that stores information about soccer players.

In this figure, a triple (s, p, o) is depicted as an arc s
p
−→ o, that is, s and o are

represented as nodes and p is represented as an arc label. For example, (Sorace,
lives in, Chile) is a triple in the RDF graph in Figure 1. Notice that, an RDF
graph is not a standard labeled graph as its set of labels may have a nonempty
intersection with its set of nodes. For instance, consider triples (Ronaldinho,
plays in, Barcelona) and (plays in, sp, works in) in the RDF graph in Figure 1.
In this example, plays in is the predicate of the first triple and the subject of
the second one, and thus, acts simultaneously as a node and an edge label.

The RDF specification includes a set of reserved IRIs (reserved elements from
U) with predefined semantics, the RDFS vocabulary (RDF Schema [6]). This
set of reserved words is designed to deal with inheritance of classes and proper-
ties, as well as typing, among other features [6]. In this paper, we consider the
subset of the RDFS vocabulary composed by the special IRIs rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:range, rdfs:domain and rdf:type, which are denoted by
sc, sp, range, dom and type, respectively. The RDF graph in Figure 1 uses these

3 In this paper, we do not consider anonymous resources called blank nodes in the
RDF data model, that is, our study focus on ground RDF graphs. We neither make
a special distinction between IRIs and Literals.

keywords to relate resources. For instance, the graph contains triple (sportsman,
sc, person), thus stating that sportsman is a sub-class of person.

The fragment of RDFS consisting of the keywords sc, sp, range, dom and
type was considered in [18]. In that paper, the authors provide a formal seman-
tics for it, and also show it to be well-behaved as the remaining RDFS vocabulary
does not interfere with the semantics of this fragment. This together with some
other results from [18] provide strong theoretical and practical evidence for the
importance of this fragment. In this paper, we consider the keywords sc, sp,
range, dom and type, and we use the semantics for them from [18], instead of
using the full RDFS semantics (these two were shown to be equivalent in [18]).

For the sake of simplicity, we do not include here the model theoretical se-
mantics for RDFS from [18], and we only present the system of rules from [18]
that was proved to be equivalent to the model theoretical semantics (that is,
was proved to be sound and complete for the inference problem for RDFS in the
presence of sc, sp, range, dom and type). Table 1 shows the inference system
for the fragment of RDFS considered in this paper. Next we formalize the notion
of deduction for this system of inference rules. In every rule, letters A, B, C, X ,
and Y, stand for variables to be replaced by actual terms. More formally, an
instantiation of a rule is a replacement of the variables occurring in the triples
of the rule by elements of U . An application of a rule to a graph G is defined
as follows. Given a rule r, if there is an instantiation R

R′
of r such that R ⊆ G,

then the graph G′ = G∪R′ is the result of an application of r to G. Finally, the
closure of an RDF graph G, denoted by cl(G), is defined as the graph obtained
from G by successively applying the rules in Table 1 until the graph does not
change.

1. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C)

(b) (A,sp,B) (X ,A,Y)
(X ,B,Y)

2. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C)

(b) (A,sc,B) (X ,type,A)
(X ,type,B)

3. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B)

(b) (A,range,B) (X ,A,Y)
(Y,type,B)

Table 1.

Example 1. Consider the RDF graph in Figure 1. By applying the rule (1b) to
(Ronaldinho, plays in, Barcelona) and (plays in, sp, works in), we obtain that
(Ronaldinho, works in, Barcelona) is in the closure of the graph. Moreover, by
applying the rule (3b) to this last triple and (works in, range, company), we
obtain that (Barcelona, type, company) is also in the closure of the graph.
Figure 2 shows the complete closure of the RDF graph in Figure 1. The solid

lines in Figure 2 represent the triples in the original graph, and the dashed lines
the additional triples in the closure. ⊓⊔

sc works in

Chile Everton

company

Sorace

plays in

sp

range

Barcelona

soccer team

type

type

type

type

sportsman

soccer player

Ronaldinho

person

sc

sc

type

type

type

type

type

type

dom

dom

lives in

range

Fig. 2. The closure of the RDF graph in Figure 1.

In [18], it was shown that if the number of triples in G is n, then the closure
cl(G) could have, in the worst case, Ω(n2) triples.

2.2 SPARQL

SPARQL is essentially a graph-matching query language. A SPARQL query
is of the form H ← B. The body B of the query, is a complex RDF graph
pattern expression that may include RDF triples with variables, conjunctions,
disjunctions, optional parts and constraints over the values of the variables. The
head H of the query, is an expression that indicates how to construct the answer
to the query. The evaluation of a query Q against an RDF graph G is done in
two steps: the body of Q is matched against G to obtain a set of bindings for
the variables in the body, and then using the information on the head of Q,
these bindings are processed applying classical relational operators (projection,
distinct, etc.) to produce the answer to the query. This answer can have different
forms, e.g. a yes/no answer, a table of values, or a new RDF graph. In this
paper, we concentrate on the body of SPARQL queries, i.e. in the graph pattern
matching facility.

Assume the existence of an infinite set V of variables disjoint from U . A
SPARQL graph pattern is defined recursively as follows [20]:

1. A tuple from (U ∪V)×(U ∪V)×(U ∪V) is a graph pattern (a triple pattern).
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2),

(P1 OPT P2), and (P1 UNION P2) are graph patterns.
3. If P is a graph pattern and R is a SPARQL built-in condition, then the

expression (P FILTER R) is a graph pattern.

A SPARQL built-in condition is a Boolean combination of terms constructed by
using the equality (=) among elements in U ∪ V and constant, and the unary
predicate bound(·) over variables.

To define the semantics of SPARQL graph patterns, we need to introduce
some terminology. A mapping µ from V to U is a partial function µ : V → U .
Slightly abusing notation, for a triple pattern t we denote by µ(t) the triple
obtained by replacing the variables in t according to µ. The domain of µ, denoted
by dom(µ), is the subset of V where µ is defined. Two mappings µ1 and µ2 are
compatible if for every x ∈ dom(µ1)∩dom(µ2), it is the case that µ1(x) = µ2(x),
i.e. when µ1 ∪ µ2 is also a mapping. Intuitively, µ1 and µ2 are compatibles if
µ1 can be extended with µ2 to obtain a new mapping, and vice versa. Note that
two mappings with disjoint domains are always compatible, and that the empty
mapping µ∅ (i.e. the mapping with empty domain) is compatible with any other
mapping.

Let Ω1 and Ω2 be sets of mappings. We define the join of, the union of and
the difference between Ω1 and Ω2 as:

Ω1 ⋊⋉ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible mappings},

Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatible}.

Based on the previous operators, we define the left outer-join as:

Ω1 Ω2 = (Ω1 ⋊⋉ Ω2) ∪ (Ω1 r Ω2).

Intuitively, Ω1 ⋊⋉ Ω2 is the set of mappings that result from extending map-
pings in Ω1 with their compatible mappings in Ω2, and Ω1 r Ω2 is the set of
mappings in Ω1 that cannot be extended with any mapping in Ω2. The operation
Ω1 ∪ Ω2 is the usual set theoretical union. A mapping µ is in Ω1 Ω2 if it is
the extension of a mapping of Ω1 with a compatible mapping of Ω2, or if it be-
longs to Ω1 and cannot be extended with any mapping of Ω2. These operations
resemble relational algebra operations over sets of mappings (partial functions).

We are ready to define the semantics of graph pattern expressions as a func-
tion that takes a pattern expression and returns a set of mappings. The eval-

uation of a graph pattern over an RDF graph G, denoted by J · KG, is defined
recursively as follows:

– JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G} , where var(t) is the set of
variables occurring in t.

– J(P1 AND P2)KG = JP1KG ⋊⋉ JP2KG .
– J(P1 UNION P2)KG = JP1KG ∪ JP2KG.

– J(P1 OPT P2)KG = JP1KG JP2KG.

The idea behind the OPT operator is to allow for optional matching of pat-
terns. Consider pattern expression (P1 OPT P2) and let µ1 be a mapping in
JP1KG. If there exists a mapping µ2 ∈ JP2KG such that µ1 and µ2 are compati-
ble, then µ1∪µ2 belongs to J(P1 OPT P2)KG. But if no such a mapping µ2 exists,
then µ1 belongs to J(P1 OPT P2)KG. Thus, operator OPT allows information to
be added to a mapping µ if the information is available, instead of just rejecting
µ whenever some part of the pattern does not match.

The semantics of FILTER expressions goes as follows. Given a mapping µ
and a built-in condition R, we say that µ satisfies R, denoted by µ |= R, if:

– R is bound(?X) and ?X ∈ dom(µ);
– R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;
– R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y);
– R is (¬R1), R1 is a built-in condition, and it is not the case that µ |= R1;
– R is (R1 ∨R2), R1 and R2 are built-in conditions, and µ |= R1 or µ |= R2;
– R is (R1 ∧R2), R1 and R2 are built-in conditions, µ |= R1 and µ |= R2.

Then J(P FILTER R)KG = {µ ∈ JP KG | µ |= R}, that is, J(P FILTER R)KG is
the set of mappings in JP KG that satisfy R.

It was shown in [20], among other algebraic properties, that AND and UNION
are associative and commutative, thus permitting us to avoid parenthesis when
writing sequences of either AND operators or UNION operators.

In the rest of the paper, we usually represent sets of mappings as tables where
each row represents a mapping in the set. We label every row with the name
of a mapping, and every column with the name of a variable. If a mapping is
not defined for some variable, then we simply leave empty the corresponding
position. For instance, the table:

?X ?Y ?Z ?V ?W
µ1 : a b
µ2 : c d
µ3 : e

represents the set Ω = {µ1, µ2, µ3}, where

– dom(µ1) = {?X, ?Y }, µ1(?X) = a and µ1(?Y) = b;
– dom(µ2) = {?Y, ?W}, µ2(?Y) = c and µ2(?W) = d;
– dom(µ3) = {?Z} and µ3(?Z) = e.

We sometimes write {{?X → a, ?Y → b}, {?Y → c, ?W → d}, {?Z → e}} for
the above set of mappings.

Example 2. Let G be the RDF graph shown in Figure 1, and consider SPARQL
graph pattern P1 = ((?X, plays in, ?T) AND (?X , lives in, ?C)). Intuitively, P1

retrieves the list of soccer players in G, including the teams where they play in
and the countries where they live in. Thus, we have:

JP1KG =
?X ?T ?C

Sorace Everton Chile

Notice that in this case we have not obtained any information about Ronaldinho,
since in the graph there is not data about the country where Ronaldinho lives
in. Consider now the pattern P2 = ((?X, plays in, ?T) OPT (?X , lives in, ?C)).
Intuitively, P2 retrieves the list of soccer players in G, including the teams where
they play in and the countries where they live in. But, as opposed to P1, pattern
P2 does not fail if the information about the country where a soccer player lives
in is missing. In this case, we have:

JP2KG =

?X ?T ?C
Sorace Everton Chile

Ronaldinho Barcelona

⊓⊔

2.3 The semantics of SPARQL over RDFS

SPARQL follows a subgraph-matching approach, and thus, a SPARQL query
treats RDFS vocabulary without considering its predefined semantics. For in-
stance, let G be the RDF graph shown in Figure 1, and consider the graph
pattern P = (?X , works in, ?C). Note that, although the triples (Ronaldinho,
works in, Barcelona) and (Sorace, works in, Everton) can be deduced from G,
we obtain the empty set as the result of evaluating P over G (that is, JP KG = ∅)
as there is no triple in G with works in in the predicate position.

We are interested in defining the semantics of SPARQL over RDFS, that is,
taking into account not only the explicit RDF triples of a graph G, but also the
triples that can be derived from G according to the semantics of RDFS. The
most direct way of defining such a semantics is by considering not the original
graph but its closure. The following definition formalizes this notion.

Definition 1 (RDFS evaluation). Given a SPARQL graph pattern P , the

RDFS evaluation of P over G, denoted by JP Krdfs
G , is defined as the set of map-

pings JP Kcl(G), that is, as the evaluation of P over the closure of G.

Example 3. Let G be the RDF graph shown in Figure 1, and consider the graph
pattern expression:

P = ((?X, type, person) AND (?X, lives in, Chile) AND (?X, works in, ?C)),

intended to retrieve the list of people in G (resources of type person) that lives in
Chile, and the companies where they work in. The evaluation of P over G results
in the empty set, since both J(?X, type, person)KG and J(?X, works in, ?C)KG

are empty. On the other hand, the RDFS evaluation of P over G contains the
following tuples:

JP Krdfs
G = JP Kcl(G) =

?X ?C
Sorace Everton

⊓⊔

It should be noticed that in Definition 1, we do not provide a procedure for
evaluating SPARQL over RDFS. In fact, as we have mentioned before, a direct
implementation of this definition leads to an inefficient procedure for evaluating
SPARQL queries, as it requires a pre-calculation of the closure of the input
graph.

3 Navigational RDF languages

Our main goal is to define a query language that allows to obtain the RDFS
evaluation of a pattern directly from an RDF graph, without computing the
entire closure of the graph. We have provided some evidence that a language for
navigating RDF graphs could be useful in achieving our goal. In this section, we
define such a language for navigating RDF graphs, providing a formal syntax and
semantics. Our language uses, as usual for graph query languages [17, 3], regular
expressions to define paths on graph structures, but taking advantage of the
special features of RDF graphs. More precisely, we start by introducing in Section
3.2 a language that extends SPARQL with regular expressions. Although regular
expressions capture in some cases the semantics of RDFS, we show in Section
3.2 that regular expressions alone are not enough to obtain the RDFS evaluation
of some queries. Thus, we show in Section 3.3 how to extend regular expressions
by borrowing the notion of branching from XPath [8], and we explain why this
enriched language is enough for our purposes. Finally, we show in Section 3.4
that the enriched language provides some other interesting features that give
extra expressiveness to the language, and that deserve further investigation. But
before doing all this, we briefly review in Section 3.1 some of the related work
on navigating RDF.

3.1 Related work

The idea of having a language to navigate through an RDF graph is not new.
In fact, several languages have been proposed in the literature [1, 4, 2, 15, 5].
Nevertheless, none of these languages is motivated by the necessity to evaluate
queries over RDFS, and none of them is comparable in expressiveness with the
language proposed in this paper. Kochut et al. [15] propose a language called
SPARQLeR as an extension of SPARQL. This language allows to extract se-
mantic associations between RDF resources by considering paths in the input
graph. SPARQLeR works with path variables intended to represent a sequence
of resources in a path between two nodes in the input graph. A SPARQLeR
query can also put restrictions over those paths by checking whether they con-
form to a regular expression. With the same motivation of extracting semantic
associations from RDF graphs, Anyanwu et al. [5] propose a language called
SPARQ2L. SPARQ2L extends SPARQL by allowing path variables and path
constraints. For example, some SPARQ2L constraints are based on the presence
(or absence) of some nodes or edges, the length of the retrieved paths, and on
some structural properties of these paths. In [5], the authors also investigate the

implementation of a query evaluation mechanism for SPARQ2L with emphasis
in some secondary memory issues.

The language PSPARQL was proposed by Alkhateeb et al. in [2]. PSPARQL
is an extension of SPARQL obtained by allowing regular expressions in the pred-
icate position of triple patterns. Thus, this language can be used to obtain pair
of nodes that are connected by a path whose labeling conforms to a regular
expression. PSPARQL also allows variables inside regular expressions, thus per-
mitting to retrieve data along the traversed paths. In [2], the authors propose a
formal semantics for PSPARQL, and also study some theoretical aspects of this
language such as the complexity of query evaluation. VERSA [19] and RxPath
[22] are proposals motivated by XPath with emphasis on some implementation
issues.

3.2 Navigating RDF through regular expressions

Navigating graphs is done usually by using an operator next, which allows to
move from one node to an adjacent one in a graph. In our setting, we have RDF
“graphs”, which are sets of triples, not classical graphs [13]. In particular, instead
of classical edges (pair of nodes), we have directed triples of nodes (hyperedges).
Hence, a language for navigating RDF graphs should be able to deal with this
type of objects. The language introduced in this paper deals with this problem
by using three different navigation axes, which are shown in Figure 3 (together
with their inverses).

edge-1

b aa

p p

b

edge node

next next-1

node-1

Fig. 3. Forward and backward axes for an RDF triple (a, p, b).

A navigation axis allows moving one step forward (or backward) in an RDF
graph. Thus, a sequence of these axes defines a path in an RDF graph, and one
can use classical regular expressions over these axes to define a set of paths that
can be used in a query. More precisely, the following grammar defines the regular
expressions in our language:

exp := axis | axis::a (a ∈ U) | exp/exp | exp|exp | exp∗ (1)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. The additional
axis self is not used to navigate, but instead to test the label of a specific node
in a path. We call regular path expressions to expressions generated by (1).

Before introducing the formal semantics of regular path expressions, we give
some intuition about how these expressions are evaluated in an RDF graph. The
most natural navigation axis is next::a, with a an arbitrary element from U .
Given an RDF graph G, the expression next::a is interpreted as the a-neighbor

relation in G, that is, the pairs of nodes (x, y) such that (x, a, y) ∈ G. Given that
in the RDF data model a node can also be the label of an edge, the language
allows to navigate from a node to one of its leaving edges by using the edge axis.
More formally, the interpretation of edge::a is the pairs of nodes (x, y) such that
(x, y, a) ∈ G. We formally define the evaluation of a regular path expression p in
a graph G as a binary relation JpKG, denoting the pairs of nodes (x, y) such that
y is reachable from x in G by following a path whose labels are in the language
defined by p. The formal semantics of the language is shown in Table 2. In this
table, G is an RDF graph, a ∈ U , voc(G) is the set of all the elements from U
that are mentioned in G, and exp, exp1, exp2 are regular path expressions.

JselfKG = {(x, x) | x ∈ voc(G)}
Jself::aKG = {(a, a)}

JnextKG = {(x, y) | there exists z s.t. (x, z, y) ∈ G}
Jnext::aKG = {(x, y) | (x, a, y) ∈ G}

JedgeKG = {(x, y) | there exists z s.t. (x, y, z) ∈ G}
Jedge::aKG = {(x, y) | (x, y, a) ∈ G}

JnodeKG = {(x, y) | there exists z s.t. (z, x, y) ∈ G}
Jnode::aKG = {(x, y) | (a, x, y) ∈ G}

Jaxis-1KG = {(x, y) | (y, x) ∈ JaxisKG} with axis ∈ {next, node, edge}
Jaxis-1::aKG = {(x, y) | (y, x) ∈ Jaxis::aKG} with axis ∈ {next, node, edge}

Jexp1/exp2KG = {(x, y) | there exists z s.t. (x, z) ∈ Jexp1KG and (z, y) ∈ Jexp2KG}
Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪ Jexp/exp/expKG ∪ · · ·

Table 2. Formal semantics of regular path expressions.

Example 4. Consider an RDF graph G storing information about transportation
services between cities. A triple (C1, tc, C2) in the graph indicates that there is
a direct way of traveling from C1 to C2 by using the transportation company tc.

If we assume that G does not mention any of the RDFS keywords, then the
expression:

(next::KoreanAir)+ | (next::AirFrance)+

defines the pairs of cities (C1, C2) in G such that there is a way of flying from
C1 to C2 in either KoreanAir or AirFrance. Moreover, by using axis self, we

can test for a stop in a specific city. For example, the expression:

(next::KoreanAir)+/self::Paris/(next::KoreanAir)+

defines the pairs of cities (C1, C2) such that there is a way of flying from C1 to
C2 with KoreanAir with a stop in Paris. ⊓⊔

Once regular path expressions have been defined, the natural next step is to
extend the syntax of SPARQL to allow them in triple patterns. A regular path

triple is a tuple of the form t = (x, exp, y), where x, y ∈ U∪V and exp is a regular
path expression. Then the evaluation of a regular path triple t = (?X, exp, ?Y)
over an RDF graph G is defined as the following set of mappings:

JtKG = {µ | dom(µ) = {?X, ?Y } and (µ(?X), µ(?Y)) ∈ JexpKG}.

Similarly, the evaluation of a regular path triple t = (?X, exp, a) over an RDF
graph G, where a ∈ U , is defined as {µ | dom(µ) = {?X} and (µ(?X), a) ∈
JexpKG}, and likewise for (a, exp, ?X) and (a, exp, b) with b ∈ U .

We call regular SPARQL (or just rSPARQL) to SPARQL extended with
regular path triples. The semantics of rSPARQL patterns is defined recursively
as in Section 2, but considering the special semantics of regular path triples. The
following example shows that rSPARQL is useful to represent RDFS deductions.

Example 5. Let G be the RDF graph in Figure 1, and assume that we want to
obtain the type information of Ronaldinho. This information can be obtained
by computing the RDFS evaluation of the pattern (Ronaldinho, type, ?C). By
simply inspecting the closure of G in Figure 2, we obtain that:

J(Ronaldinho, type, ?C)Krdfs
G =

?C
soccer player
sportsman

person

However, if we directly evaluate this pattern over G we obtain a single mapping:

J(Ronaldinho, type, ?C)KG =
?C

soccer player

Consider now the rSPARQL pattern:

P = (Ronaldinho, next::type/(next::sc)∗, ?C).

The regular path expression next::type/(next::sc)∗ is intended to obtain the
pairs of nodes such that, there is a path between them that has type as its
first label followed by zero or more labels sc. When evaluating this expres-
sion in G, we obtain the set of pairs {(Ronaldinho, soccer player), (Ronaldinho,

sportsman), (Ronaldinho, person), (Barcelona, soccer team)}. Thus, the evalua-
tion of P results in the set of mappings:

JP KG =

?C
soccer player
sportsman

person

In this case, pattern P is enough to obtain the type information of Ronaldinho
in G according to the RDFS semantics, that is,

J(Ronaldinho, type, ?C)Krdfs
G = J(Ronaldinho, next::type/(next::sc)∗, ?C)KG.

Although the expression next::type/(next::sc)∗ is enough to obtain the type
information for Ronaldinho in G, it cannot be used in general to obtain the type
information of a resource. For instance, in the same graph, assume that we want
to obtain the type information of Everton. In this case, if we evaluate the pattern
(Everton, next::type/(next::sc)∗, ?C) over G, we obtain the empty set. Consider
now the rSPARQL pattern

Q = (Everton, node-1/(next::sp)∗/next::range, ?C).

With the expression node-1/(next::sp)∗/next::range, we follow a path that first
navigates from a node to one of its incoming edges by using node-1, and then
continues with zero or more sp edges and a final range edge. The evaluation
of this expression in G results in the set {(Everton, soccer team), (Everton,
company), (Barcelona, soccer team), (Barcelona, company)}. Thus, the evalua-
tion of Q in G is the set of mappings:

JQKG =
?C

soccer team
company

By looking at the closure of G in Figure 2, we see that pattern Q obtains exactly
the type information of Everton in G, that is, J(Everton, type, ?C)Krdfs

G = JQKG.
⊓⊔

The previous example shows the benefits of having regular path expressions
to obtain the RDFS evaluation of a pattern P over an RDF graph G just by
navigating G. We are interested in whether this can be done in general for every
SPARQL pattern. More formally, we are interested in the following problem:

Given a SPARQL pattern P , is there an rSPARQL pattern Q such that
for every RDF graph G, it holds that

JP Krdfs
G = JQKG?

Unfortunately, the answer to this question is negative for some SPARQL
patterns. Let us show this failure with an example. Assume that we want to

obtain the RDFS evaluation of pattern P = (?X, works in, ?Y) in an RDF graph
G. This can be done by first finding all the properties p that are sub-properties
of works in, and then finding all the resources a and b such that (a, p, b) is a
triple in G. A way to answer P by navigating the graph would be to find the
pairs of nodes (a, b) such that there is a path from a to b that: (1) goes from a
to one of its leaving edges, then (2) follows a sequence of zero or more sp edges
until it reaches a works in edge, and finally (3) returns to the initial edge and
moves forward to b. If such a path exists, then it is clear that (a, works in, b)
can be deduced from the graph. The following is a natural attempt to obtain
the described path with a regular path expression:

edge/(next::sp)∗/self::works in/(next-1::sp)∗/node.

The problem with the above expression is that, when the path returns from
works in, no information about the path used to reach works in has been stored.
Thus, there is no way to know what was the initial edge. In fact, if we evaluate
the pattern Q = (?X, edge/(next::sp)∗/self::works in/(next-1::sp)∗/node, ?Y)
over the graph G in Figure 1, we obtain the set of mappings:

JQKG =

?X ?Y
Ronaldinho Barcelona
Ronaldinho Everton

Sorace Barcelona
Sorace Everton

By simply inspecting the closure of G in Figure 2, we obtain that:

JP Krdfs
G =

?X ?Y
Ronaldinho Barcelona

Sorace Everton

and, thus, we have that Q is not the right representation of P according to the
RDFS semantics, since JP Krdfs

G 6= JQKG.
In general, it can be shown that there is no rSPARQL triple pattern Q such

that for every RDF graph G, it holds that J(?X, works in, ?Y)Krdfs
G = JQKG. It

is worth mentioning that this failure persists for a general rSPARQL pattern Q,
that is, if Q is allowed to use all the expressive power of SPARQL patterns (it can
use operators AND, UNION, OPT and FILTER) plus regular path expressions
in triple patterns.

3.3 Navigating RDF through nested regular expressions

We have seen that regular path expressions are not enough to obtain the RDFS
evaluation of a graph pattern. In this section, we introduce a language that
extends regular path expressions with a nesting operator. Nested expressions
can be used to test for the existence of certain paths starting at any axis of a

regular path expression. We will see that this feature is crucial in obtaining the
RDFS evaluation of SPARQL patterns by directly traversing RDF graphs.

The syntax of nested regular expressions is defined by the following grammar:

exp := axis | axis::a (a ∈ U) | axis::[exp] | exp/exp | exp|exp | exp∗ (2)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}.
The nesting construction [exp] is used to check for the existence of a path

defined by expression exp. For instance, when evaluating nested expression
next::[exp] in a graph G, we retrieve the pair of nodes (x, y) such that there
exists z with (x, z, y) ∈ G, and such that there is a path in G that follows
expression exp starting in z. The formal semantics of nested regular path ex-
pressions is shown in Table 3. The semantics for the navigation axes of the form
‘axis’ and ‘axis::a’, as well as the concatenation, disjunction, and star closure of
expressions, is defined as for the case of regular path expressions (see Table 2).

Jself::[exp]KG = {(x, x) | x ∈ voc(G) and there exists z s.t. (x, z) ∈ JexpKG}
Jnext::[exp]KG = {(x, y) | there exist z, w s.t. (x, z, y) ∈ G and (z, w) ∈ JexpKG}
Jedge::[exp]KG = {(x, y) | there exist z, w s.t. (x, y, z) ∈ G and (z, w) ∈ JexpKG}
Jnode::[exp]KG = {(x, y) | there exist z, w s.t. (z, x, y) ∈ G and (z, w) ∈ JexpKG}

Jaxis-1::[exp]KG = {(x, y) | (y, x) ∈ Jaxis::[exp]KG} with axis ∈ {next, node, edge}

Table 3. Formal semantics of nested regular path expressions.

Example 6. Consider an RDF graph G storing information about transporta-
tion services between cities. As in Example 4, a triple (C1, tc, C2) in the graph
indicates that there is a direct way of traveling from C1 to C2 by using the
transportation company tc. Then the nested expression:

(next::KoreanAir)+/self::[(next::AirFrance)∗/self::Paris]/(next::KoreanAir)+,

defines the pairs of cities (C1, C2) such that, there is a way of flying from C1

to C2 with KoreanAir with a stop in a city C3 from which one can fly to Paris
with AirFrance. Notice that self::[(next::AirFrance)∗/self::Paris] is used to
test for the existence of a flight (that can have some stops) from C3 to Paris
with AirFrance. ⊓⊔

Recall that rSPARQL was defined as the extension of SPARQL with regular
path expressions in the predicate position of triple patterns. Similarly, nested

SPARQL (or just nSPARQL) is defined as the extension of SPARQL with nested
regular expressions in the predicate position of triple patterns. The following
example shows the benefits of using nSPARQL when trying to obtain the RDFS
evaluation of a pattern by directly traversing an RDF graph.

Example 7. Consider the SPARQL pattern P = (?X, works in, ?Y). We have
seen that it is not possible to obtain the RDFS evaluation of P with an rSPARQL
pattern. Consider now the nested regular expression:

next::[(next::sp)∗/self::works in]. (3)

It defines the pairs (a, b) of resources in an RDF graph G such that, there exist
a triple (a, x, b) and a path from x to works in in G where every edge has label
sp. The expression (next::sp)∗/self::works in is used to simulate the inference
process in RDFS; it retrieves all the nodes that are sub-properties of works in.
Thus, expression (3) is exactly what we need to obtain the RDFS evaluation
of pattern P . In fact, if G is the RDF graph in Figure 1 and Q the nSPARQL
pattern:

Q = (?X, next::[(next::sp)∗/self::works in], ?Y),

then we obtain

JQKG =
?X ?Y

Ronaldinho Barcelona
Sorace Everton

This is exactly the RDFS evaluation of P in G, that is, JP Krdfs
G = JQKG. ⊓⊔

It turns out that nested expressions are the necessary ingredient to obtain
the RDFS evaluation of SPARQL patterns by navigating RDF graphs. To show
that this holds, consider the following translation function from elements in U
to nested expressions:

trans(sc) = (next::sc)+

trans(sp) = (next::sp)+

trans(dom) = next::dom
trans(range) = next::range
trans(type) = (next::type/(next::sc)∗ |

edge/(next::sp)∗/next::dom/(next::sc)∗ |
node-1/(next::sp)∗/next::range/(next::sc)∗)

trans(p) = next::[(next::sp)∗/self::p] for p /∈ {sc, sp, range, dom, type}.

By using the results of [18], it can be shown that for every SPARQL triple
pattern of the form (x, a, y), where x, y ∈ U ∪ V and a ∈ U , it holds that:

J(x, a, y)Krdfs
G = J(x, trans(a), y)KG

for every RDF graph G. That is, given an RDF graph G and a triple pattern t not
containing a variable in the predicate position, it is possible to obtain the RDFS
evaluation of t over G by navigating G through a nested regular expression (and
without explicitly computing the closure of G).

Given that the syntax and semantics of SPARQL patterns are defined from
triple patterns, the previous property also holds for SPARQL patterns including
operators AND, OPT, UNION and FILTER. That is, if P is a SPARQL pattern

constructed by using triple patterns from the set (U ∪ V) × U × (U ∪ V), then
there is an nSPARQL pattern Q such that for every RDF graph G, it holds that
JP Krdfs

G = JQKG.
It should be noticed that, if variables are allowed in the predicate position

of triple patterns, in general there is no hope to obtain the RDFS evaluation
without computing the closure, since a triple pattern like (?X, ?Y, ?Z) can be
used to retrieve the entire closure of an RDF graph.

3.4 The extra expressive power of nested regular expressions

Nested regular expressions were designed to be expressive enough to capture the
semantics of RDFS. Beside this feature, nested regular expressions also provide
some other interesting features that give extra expressiveness to the language.
With nested regular expressions, one is allowed to define complex paths by using
concatenation, disjunction and star closure, over nested expressions. It is also
allowed to use various levels of nesting in expressions. Note that these features
are not needed in the translations presented in the previous section.

The following example shows that the extra expressiveness of nested regu-
lar expressions can be used to formulate interesting and natural queries, which
cannot be expressed by using regular path expressions.

sp

LondonCalaisParis Dover

sp sp sp

sp sp

TGV Seafrance NExpress

Dijon Hastings

train ferry bus

transport

Fig. 4. An RDF graph storing information about transportation services between cities.

Example 8. Consider the RDF graph with transportation information in Figure
4. As in the previous examples, if C1 and C2 are cities and (C1, tc, C2) is a triple
in the graph, then there is a direct way of traveling from C1 to C2 by using the
transportation company tc. For instance, (Paris, TGV, Calais) indicates that
TGV provides a transportation service from Paris to Calais. In the figure, we
also have extra information about the travel services. For example, TGV is a

sub-property of train and then, if (Paris, TGV, Calais) is in the graph, we can
infer that there is a train going from Paris to Calais.

If we want to know whether there is a way to travel from one city to another
(without taking into consideration the kind of transportation), we can use the
following expression:

(next::[(next::sp)∗/self::transport])+.

Assume now that we want to obtain the pairs (C1, C2) of cities such that there
is a way to travel from C1 to C2 with a stop in a city which is either London
or is connected by a bus service with London. First, notice that the following
nested expression checks whether there is a way to travel from C1 to C2 with a
stop in London:

(next::[(next::sp)∗/self::transport])+/self::London/

(next::[(next::sp)∗/self::transport])+. (4)

Thus, to obtain an expression for our initial query, we only need to replace
self::London in (4) by an expression that checks whether a city is either London
or is connected by a bus service with London. The following expression can be
used to test the latter condition:

(next::[(next::sp)∗/self::bus])∗/self::London. (5)

Hence, by replacing self::London by (5) in nested regular expression (4), we
obtain a nested regular expression for our initial query:

(next::[(next::sp)∗/self::transport])+/

self::[(next::[(next::sp)∗/self::bus])∗/self::London] /

(next::[(next::sp)∗/self::transport])+. (6)

Notice that the level of nesting of (6) is 2. If we evaluate (6) over the RDF graph
in Figure 4, we obtain the pair (Calais, Hastings) as a possible answer since there
is a way to travel from Calais to Hastings with a stop in Dover, from which there
is a bus service to London. ⊓⊔

4 Concluding remarks

The problem of answering queries over RDFS is challenging, due to the exis-
tence of a vocabulary with a predefined semantics. Current approaches for this
problem pre-compute the closure of RDF graphs. From a practical point of view,
these approaches have several drawbacks, among others that they are not goal-
oriented: although a query may need to scan a small part of the data, all the
data is considered when computing the closure of an RDF graph.

In this paper, we propose an alternative approach to the problem of answer-
ing RDFS queries. We present a navigational language constructed from nested

regular expressions, that can be used to obtain the answer to RDFS queries by
navigating the input graph (without pre-computing the closure). Besides captur-
ing the semantics of RDFS, nested regular expressions also provide some other
interesting features that give extra expressiveness to the language. We think
these features deserve further and deeper investigation.

Acknowledgments: The authors were supported by: Arenas – FONDECYT
grant 1070732; Gutierrez – FONDECYT grant 1070348; Pérez – CONICYT
Ph.D. Scholarship; Arenas, Gutierrez and Pérez – grant P04-067-F from the
Millennium Nucleus Center for Web Research.

References

1. F. Alkhateeb, J. Baget, J. Euzenat. Complex path queries for RDF. Poster paper
in ISWC 2005 .

2. F. Alkhateeb, J. Baget, J. Euzenat. RDF with regular expressions. Research Report
6191, INRIA (2007).

3. R. Angles, C. Gutierrez. Survey of graph database models. ACM Comput. Surv.,
40(1): 1–39 (2008).

4. K. Anyanwu, A. Maduko, A. Sheth. SemRank: ranking complex relationship search
results on the semantic web. In WWW 2005, pages 117–127.

5. K. Anyanwu, A. Maduko, A. Sheth. SPARQ2L: Towards Support for Subgraph
Extraction Queries in RDF Databases. To appear in WWW 2007.

6. D. Brickley, R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, February 2004. http://www.w3.org/TR/rdf-schema/

7. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In The Semantic Web - ISWC 2002

8. James Clark, Steve DeRose. XML Path Language (XPath). W3C Recommenda-
tion, November 1999. http://www.w3.org/TR/xpath

9. Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis and Georg Gott-
lob. RDF Querying: Language Constructs and Evaluation Methods Compared. In
Reasoning Web 2006, pages 1-52.

10. C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations of Semantic Web Databases.
In PODS 2004.

11. S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage. In Proceedings of the
1st International Workshop on Practical and Scalable Semantic Systems (PSSS’03),
Sanibel Island, Florida, pages 1–15, 2003.

12. P. Haase, J. Broekstra, A. Eberhart and R. Volz. A Comparison of RDF Query
Languages. In ISWC 2004, pages 502–517.

13. J. Hayes, C. Gutierrez. Bipartite Graphs as Intermediate Model for RDF. In ISWC
2004, pages 47–61.

14. P. Hayes. RDF Semantics. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-mt/

15. Krys Kochut, Maciej Janik. SPARQLeR: Extended Sparql for Semantic Association
Discovery. In ESWC 2007, pages 145–159.

16. F. Manola, E. Miller, B. McBride. RDF Primer, W3C Recommendation 10 Febru-
ary 2004. http://www.w3.org/TR/REC-rdf-syntax/

17. A. Mendelzon, P. Wood. Finding Regular Simple Paths in Graph Databases. In
SIAM J. Comput. 24(6): 1235–1258 (1995).

18. Sergio Muñoz, Jorge Pérez, Claudio Gutierrez. Minimal Deductive Systems for
RDF. In ESWC 2007, pages 53–67.

19. M. Olson, U. Ogbuji. The Versa Specification.
http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml.

20. Jorge Pérez, Marcelo Arenas, Claudio Gutierrez. Semantics and Complexity of
SPARQL. In ISWC 2006, pages 30–43.

21. E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C
Working Draft, March 2007. http://www.w3.org/TR/rdf-sparql-query/.

22. A. Souzis. RxPath Specification Proposal.
http://rx4rdf.liminalzone.org/RxPathSpec.

