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ABSTRACT 
We prove that the computational complexity of the problem 
of deciding if an equation in a free group has a solution is 
PSPACE. 
The problem was proved decidable in 1982 by Makanin, 
w h o s e  algorithm was proved later to be non primitive recur- 
sive: this was the best upper bound known for this problem. 
Our proof consists in reducing equations in free groups to 
equations in free semigroups with antiinvolution, and pre- 
senting an algorithm for deciding equations in free semi- 
groups with antiinvolution. 

1. INTRODUCTION 
Let E = {a l , . . . , a ,~}  be an alphabet. An equation in the 
free group G generated by E with unknowns x l , . . .  ,Xm is 
an equality of the form w(xl , .  • •, xm, a l , .  • •, a,~) = 1, where 
w is a word formed f romthe  letters x l , . . . , x , ~ , a l , . . . , a , ~  
and their inverses. A solution of such an equation is a 
list Vl, . . . ,Vm of words in ax, . . .  , a n , a ~ l , . . . , a ~  1 such that 
w ( v l , . . . , v , ~ , a l , . . . , a n )  = 1 in the group G. In this paper 
we prove that the problem of deciding if such an equation 
has a solution is in PSPACE. 
In the early 60's Markov, studying algorithmic problems of 
semigroups and groups, posed the following question: Is 
there an algorithm for solving arbitrary equations in free 
groups? (or in unification language: is the unification prob- 
lem for groups decidable?). This problem and the related 
one for free semigroups has lately attracted much attention 
from the theoretical computer science community, see for 
example [2], [8], [9], [3], [16], [17], [18]. Special particular 
cases were answered positively by Lyndon [12], Lorents [10], 
Kmelevskii [6], [7]. In 1982 Makanin [14] (corrections in [15]) 
presented an algorithm that solves the general case, still the 
only one known. Koscielski and Pacholski [9], by showing 
that 'contrary to the common belief' this algorithm is not 
primitive recursive, stated the current upper bound for this 
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problem. As for lower bounds, Durnev [2] showed a NP-haxd 
lower bound. On related algorithmic aspects of equations on 
free groups we can mention the work of Razborov [19] who 
presented an algorithm for generating all the solutions to 
a given group equation, and Durnev [2] which proves the 
undecidability of several related problems. 
Summarizing, the current complexity of the problem of sat- 
isfiability of equations in free groups is between NP-hard 
(see [2]) and PSPACE (this paper). 

Overview of  the paper 
In [4] we reduced the problem of satisfiability of equations 
in free groups to that of satisfiabitity of equations in a sim- 
pler theory, namely in free semigroups with antiinvolution 
(SGA), via a PSPACE translation. In this paper we prove 
that satisfiability of equations in free SGA is in PSPACE, 
hence giving a PSPACE upper bound for the case of free 
groups. The theory SGA is 'in between' that of semigroups 
and groups, and is defined by the equations x(yz) = (xy)z, 
(xy) -1 = y - i x - 1  and ( x - l )  -1 = x. A free SGA over the 
set E is the set of words over the alphabet EU{a  -1 : a E E} 
together with an operator ( )-1 which reverses a word and 
changes the exponent of the base letters. 
Makanin in [14] reduces satisfiability of equations in free 
groups to the satisfiability of a special kind of equations in 
free SGA, namely those whose solutions are non-contractible. 
A contractible word is, roughly speaking, one which does not 
contain any factor of the kind cc -1 or c - l c  for c constant. 
Then he applies to these special equations a methodology 
similar to that of his famous previous algorithm on word 
equations by defining generalized equations and the corre- 
ponding traaasformations. 
We followed a different path, whose schema can be summa- 
rized as follows: 

1. Reduce satisfiability of equations in groups to satisfia- 
bility of equations in SGA with non-contractible solu- 
tion. 
Claim 1: For each equation E in free groups we get a 
set of equations E~, . . .  , E ~  in SGA such that E has a 
solution iff one of the E~ has a non-contractible solu- 
tion. 

(This first step is the same as in Makanin [14]; from 
here on, the approaches differ completely.) 

2. Reduce satisfiability of equations in free SGA with 
non-contractible solutions to satisfiability of equations 
in free SGA (i.e. no restriction on the solutions). 
Claim 2: For each equation E' in free SGA there is 
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a set E ~ ' , . . . ,  E~' of equat ions in free S G A  such tha t  
E '  has a non-contract ible  solution iff one of E~' has a 
(ordinary) solution. 

3. Generalize the method  used in [18] for deciding sat- 
isfiability of word equations to a method  for deciding 
satisfiability of equations in free SGA. 
Claim: Satisfiability of equations in free SGA is in 
PSPACE.  

The size of the set of equations in Step 1 is exponent ia l ly  
bigger t han  the  size of E. Same for Step 2. The  good 
news is tha t  they can be generated non-determinis t ical ly  in 
polynomial  space. So we can conclude tha t  satisfiability of 
equat ions in free groups is in NPSPACE,  hence in PSPACE.  
As we said, Claim 1 is in Makanin ' s  paper  [14]. We proved 
Claim 2 in [4]. From these proofs it is straightforward to con- 
clude that  these sets can be generated non-determinis t ical ly  
in polynomial  space. For the sake of completeness, we will 
s tate the relevant theorems from these papers in the Ap- 
pendix.  

h is Ih(wl)l. By h(E) we denote the word h(wl)  (which is 
the same as h(w2)). 
The exponent  of periodicity of a word w is the maximal  
integer p such tha t  w = xyPz for x, y, z words and  y non-  
empty. By the exponent  of periodicity of a solution h we 
mean  the exponent  of periodicity of h(E).  The next  is an 
impor t an t  the'orem. 

THEOREM 1. Let E be an equation in free SGA. Then, 
the exponent of periodicity of a minimal solution of E is 
bounded by 20(IE[). 

PROOF• The  proof is a s traightforward generalization to 
SGA of the result  proved in [8] for words; a sketch of the 
proof can be found in [4]. []  

2.2 Sequences of words 
G i v e n  s e q u e n c e s  $1 = W l ,  . . . ,  W n ,  $ 2  : V l , .  • . ,  V m  o f  e l e -  

m e n t s  of E*, the composi t ion $1, $2 denotes the sequence 

W h a t  remains  is Claim 3, which is what  we essentially present  w l , . . . , w , ~ , v l , . . . , v m .  In  general, for Si sequences of E, 
in this paper.  This  generalization follows the seminal  Plandowski 's  we define induct ively $ 1 , . . . ,  S~ as the composi t ion of the 
paper [18], and  is a combinator ial  proof. The idea is to sequence $1 , . . . , S ,~ -1  with S,~. By S t we denote the  se- 

define a non-determinis t ic  t ransformat ion  > among equa- 
t ions which preserves satisfiability. The algori thm consists 
in generat ing non-determinis t ical ly  equat ions from the sim- 
ple (satisfiable) equat ion (c = c) for a constant  c. The  diffi- 
cult par t  is to prove tha t  this process can be done in poly- 
nomial  space. The reader familiar with [18] will recognize 
our indebtedness  to tha t  paper• 

2. PRELIMINARIES AND NOTATIONS 

quence S , . . . ,  S consisting of t repet i t ions of S. Also S -~ = 
W n  I , . . . ~ W l  I • 

Given a sequence S -- w l , . . . ,  w~, we will give special names  
to the following objects: conc(S) = w l . . . w , ~ ,  l ength(S)  = 
n; first(S) -- wl;  last(S)  = w~; ker(S) = w 2 , . . . , w , ~ - i  if 
length S > 2, otherwise ker(S) = e. If R is another  sequence, 
t hen  the substitution in S of wj by R is the composi t ion of 
the  sequences wt,  . . . , w j -  1, R, wj+l,  . . •, w,~. The sequence 
S is a refinement of R if conc(S) -- conc(R) and  there are 
indices i~ < . - .  < ik such tha t  

2.1 Equations in SGA 
A semigroup with anti-involution (SGA) is an algebra with a 
b inary  associative operat ion (wri t ten as concatenat ion)  and  
a unary  operat ion ( )-1 with the equat ional  axioms 

(xy)z  = x ( y z  ) (1) 
(xy) -1 ---- y - i x - 1  (2) 

- - 1 - - 1  x = x. (3) 

A free semigroup with ant i - involut ion is an init ial  algebra 
for this variety. It  is not  difficult to check tha t  for a given 
alphabet  A, the set of words over A to A -1 together with 
the operator ( ) -  1, which reverses a word (changing also the 
exponent  of the  letters), is a free algebra for SGA over A. 

2 .1 . I  Equa t ions  and  so lu t ions  
Let E and  V be two disjoint a lphabets  of constants  and  vari- 
ables respectively• Denote by E -1 -- {c -1 : c E E}. Simi- 
larly for V -1. An equation E in free SGA with cons tants  E 
and  variables V is a pair (wl, w2) of words over the a lphabet  
.4 = E U E -1 U V U Y -1.  The number  [E I = Iwll + [w21 is 
the length of the  equation.  These equat ions are also known 
as equations in a paired alphabet. 
A map h : V ~ (E tO E - l )  * can be uniquely  extended to 
a SGA-homomorphism h : A* ~ (E tO E -1)  by defining 
h(c) = c for c e E and h(u  -1)  = (h(u)) -1 for u C E tO V. 
We will use the  same symbol  h for the map  h and  the SGA- 
homomorphism /t. A solution h of the equat ion E is (the 
unique SGA-homomorphism defined by) a map  h : V ----+ 
EUE -1 such tha t  h(wl)  = h(w2). The length of the solut ion 

R = conc(wl , . . . ,  w,1), conc(w, l+ l , . . . ,  wi~),. •. 
• . . ,conc(wik+l  , • • . ,wn) .  

2.2.1 Exponential expressions 
Given a word w and  a positive integer t, we will denote  
the  sequence w , . . . , w  (t-t imes) by w t. If we extend the  
definit ion of sequence allowing these k ind of expressions 
we get what  is called an exponential expression. So we 
can codify sequences by exponential expressions in the ob- 
vious way. For example ab, ab, ab, ab, a, a, a, b can be codi- 
fied as (ab)4,a3,b, etc. The  height of an expression is de- 
fined recursively as follows: height(w) : 0 for a word w, 
height(S1, Sz) = max(height  $1, height $2) and  height(S t) = 
1 + height(S).  We will deal most  of the  t ime with sequences 
of height no bigger t h a n  1. The  size of an exponent ia l  
expression is d e f n e d  as follows: s(w) = 1 for a word w, 
s(S1, $2) = s(S1) + s(S2) and  s (S  t) = 1 + s(S).  
For our purposes what  will be impor t an t  are not  the part icu-  
lar words in a sequence, bu t  the pa t t e rn  of their occurrences. 
So we define two exponent ia l  expressions S, R to be isomor- 
phic if for the sequences they represent,  say w l , . . . ,  wm and  
v l , . . . ,  v~ respectively, it holds m = n and  there is a bijec- 
t ion ~ :  { w l , . . . , w , ~ }  ---+ {v l , . . . , v ,~}  such tha t  vi ---- ~o(wi) 
and  ~o(w -1)  = (~(w)) -1.  The following Lem m a  is due to 
Plandowski  [18]: 

LEMMA 1. The isomorphism of two exponential expres- 
sions of polynomial size can be checked in polynomial time. 
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2 . 3  F a c t s  f r o m  w o r d  c o m b i n a t o r i c s  
Given a word w, the  subword s tar t ing at posit ion i and 
ending at posit ion j is denoted  by w[i, j]; we will write w[i] 
for w[i, if. A period of w is a number  p such tha t  for all i, 
w[i] = w[i + p] whenever  both  sides are defined. 
The  following result  uses essentially a well known result  by 
Fine and Wil f  about  periodicity,  and appears  in [18]: 

LEMMA 2. Let i < j < k be three consecutive starting 
positions of occurrences of a word v in w.  I f  i + [v[ >_ k then 
k - j = j - i and k - j is a period of a word w[i, k + [v[ - 1 ] .  

The following is an easy result  on conjugate  words, see e.g. 
[11]: 

LEMMA 3. I f u : w  = WU2 then there are words v: ,v2 such 
that u: = v:v2 and u l w  = v i (v2vl )  TM for  some integer m.  

3 .  F A C T O R I Z A T I O N S  

DEFINITION 1. 

2. 

1. A factorizat ion F ( w )  of a word w is 
a sequence of non-emtpy words 

F ( w )  = w l , w e , . . . , w ,  (4) 

such that w = c o n c ( w : , . . . , w ~ ) .  

For positions 1 ~_ i , j  < ]w] of w,  we define the parti- 
tion F(w)[ i , j ] ,  the restr ict ion of the partition F ( w )  to 
w[i, j], as follows: 

F(w)[ i , j ]  = w[i ,p ,+l  - 1 ] , w , + : , . . .  , w f  , w ~ y + :  - 1,j] ,  

R e m a r k .  The  factorizat ion FD(w)  above factors w along 
the boundaries  marked by the 'middle '  of the  words in D, 
hence we need words of even length.  (In [18] the  beginning of 
the words signal the marks  for the  factorizat ion.)  Typical ly  
D will be a finite set of words of the  same even length closed 
under  converse, i.e., i f w  G D then  w -1 E D. 

LEMMA 4. Let D be a set of words of the same length 
2t. Let i < j < k be starting positions of three consecutive 
occurrences of a word v C D in w such that i +  2t ~ k. Then 

(FD(w)[i + t , j  + t -- 1]) ~ = (FD(w)[ j  + t, k + t - 1]) ~. 

PROOF. Along the  same lines as in [18]. By L e m m a  2, 
k - j = j - i a n d k - j i s a p e r i o d o f u = w [ i , k + 2 t - 1 ] .  
It  is enough to prove tha t  for 0 < p < j - i the  words of 
length 2t s tar t ing at positions i + t + p  and j + t + p  in w are 
identical. This  is t rue  because these two words are wholy 
contained in u and the dis tance between their  occurrences 
in u is equal to j -  i which is a period of u. [ ]  

LEMMA 5. Let D be a set of words of the same length 2t. 
Let i < k be occurrences of two words u, v E D in a word w.  
Assume that i + 2t >_ k. 
Then (FD(w)[i + t , k  + t -  1]) ~ can be represented by an 
exponential expression of  size O(]D[e).  

PROOF. Along the same lines as in [18]. [ ]  

The  key point  in L e m m a  5 is the  fact tha t  the  size of the  
expression does not depend on t, but  only on the  size of the 
set D. 

where pl < ""  < Pk are the starting positions of 
w: , . . . , w~ in the factorization (4), that is pj = [w: . . .  w j -  : [q- LEMMA 6. Let D be a set of words of the same length 2t. 

1, and s, f are the subindices such that p~ ~ i < ps+l 
and p f  < j ~_ py+~. 

We will be most ly  interested in the following kind of factor- 
izations: 

DEFINITION 2 (D-FACTORIZATION). Let D be a set of 
words of the same even length 2t > 0 and w any word. Let  
1 ~_ pl < • " < pk < Iwl be the set of starting positions of all 
the occurrences of words of D in w.  Let vj = w ~ j  , pj + 2 t -1]  
f o r j  = 1 , . . . , k .  

1. The D-factor izat ion of w is defined as: 

F ~ ( w )  = w[1,p,  + t  - 1], w[p: + t , p :  + t  - 1] , . . .  

. . . ,w[pk  + t ,  lwl]. (5) 

I f  no word of D occurs in w,  then we define FD (w) = 
W. 

2. For each j (1  < j < k), the pair of words v j , v j+:  de- 
termine the factor uj = w~vj + t ,p j+:  + t - 1] of (5). 
The triple (uj ,  vj ,  vj+: ) is called the extended factor of 
the factor u j .  

For the cases uo -- w[1,pl  + t - 1] and Uk = w~vk + 
t, [w[], the extended factor is defined as (no, $, v:) and 
(uk ,vk ,$ )  respectively, where $ is a new symbol. I f  
FD (w) = w then (w, $, $) is its extended factor. 

3. For a subsequence S of FD(w) ,  we will denote by (S) e 
the sequence of extended factors obtained f rom S by 
replacing each factor by its extended factor. 

1. I f  kerFD(w[i , j ] )  is empty, then ( (FDw)[i , j ] )  e can be 
represented by an exponential expression of size (9([D]2). 

2. I f k e r  FD(W[i, j])  is not empty, then 

((FD(W) )[i,j]) ~ = (RO e, (ker FD(w[ i , jD)  ~, (R2) e 

where R~ and R~ can be represented by exponential 
expressions of size at most  (.O(IDI2), and conc(R: )  = 
first(FD (w[i, j ] ))  and conc(R2) = las t (FD (w[i, j ])) .  

PROOF. The factorizat ion F D (w) of W and FD (w[i, i f )  of 
w[i, j] are based on occurrences of the  words of D in w and 
w[i, j], respectively. ( FD (w) )[i, j] differs from FD (w[i, j])  on 
possible occurrences of words from D Which ei ther  cover the 
positions i or j in w. Apply  then  L e m m a  5. []  

We will need also the following result  in the  case of words 
wi th  converse: 

LEMMA 7. Let D be a set of words of the same length 2t 
closed under converse, and w a word such that ker FD(w)  is 
not empty. Then i f  

(ker F~ (w)) ° = (wl,  v:: ,  vie),  • • . ,  (w~, ~.1, ~ )  

it holds 

(ker F D ( w - : ) ) e  = (w~:  -1 - :  , ~ , e ,  ~,:  ) , . .  •, (wi-:,  v 5  :, ~51). 

PROOF. Jus t  note  tha t  if there  is a word u in D and 
u -- w[p - t + 1,p + t], then u -1 is also in D and u -1 ---- 
w': f[v[  - p - t +  1 , ] v [ - p + t ] .  The  result  follows then  
immediately.  []  
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4. FACTORIZATIONS OF SOLUTIONS OF 
EQUATIONS 

From now on we axe going to fix a satisfiable equat ion E : 
(u, v) in free SGA and  a min imal  solution h of it. Denote 
IEI = lul + Ivl. A boundary of a word w is a pair (p,p + 1) 
of consecutives positions. By extension we define (0, 1) and  
([w[, Iw[ + 1) as the init ial  and  final boundaries  respectively. 
Note tha t  for each b o u n d a r y  (p,p + 1) of u (resp. v) there 
is a unique  ' image'  bounda ry  in h(u)  (resp. h(v)) ,  namely  
(q,q + 1), where q : Ih(u[1,p])l, which is called a cut of h. 
Because h(u)  = h(v)  there are no more t han  IEI cuts. 
The following proposi t ion about  cuts is a straightforward 
generalization for free SGA of the similar result  for words 
due to Ry t t e r  and  Plandowski  [16]. The proof can be found 
in [4]. 

PROPOSITION 1 (LEMMA 2 IN [4]). Assume  S is a min- 
imal (w.r.t .  length) solution of E .  Then 

1. For each subword w = h(E)[ i , j ]  with Iwl > 1, there is 
and occurrence of w or w -1 which contains a cut of 
h which is nei ther the initial nor the final boundary of 
that occurrence. 

2. For each letter c = h(E)[i] of  h (E) ,  there is an occur- 
rence of c or c -1 in E .  

We will need D-factorizat ions with a special set D as intro- 
duced in the next  definition. 

DEFINITION 3 (THE SET OF WORDS Dl) .  For each nat- 
ural number I > 1 define, f rom E and h, the set Dt of  words 
as follows: w E Dl i f  and only i f  either 

1. w = h ( u ) [ q -  l + 1,q + If for  some cut (q,q + 1) o f h .  

2. w is the converse of  a word in (1).  

These sets Dl (parameterized by 1 > 1) axe going to play a 
key role in what  follows. Observe tha t  IDll < 2[E]. 

N o t a t i o n .  Given a word w, if no confusion arises, we will 
write F~w for the factorization FD, (w). 
We will prove next  tha t  the factors in Fzh(u) have a small 
representat ion.  

LEMMA 8. Each factor  in Fth(u)  is of  the f o rm  

w l w P w 3  

where Iwl],lw2], Iw31 < 211E] a n d p  e 2 °(IEI). 

PROOF. The factorizat ion of Flh(u)  is de termined by oc- 
currences of words of Dl in h(u) .  Consider a factor w 
of Fib(u) ,  and  w.l.o.g suppose Iwl > 61n, and  let w = 
h(u)[i, j]. By definition of factorization, h(u)[i - l ,  i + l -  1] 
and  h ( u ) ~  - l + 1 , j  + I] are in Dz and  there are no other 
occurences of words of Dz in h(u)[i  - l, j + l]. 
By Proposi t ion 1, w or w -1 has an occurrence over a cut; 
w.l.o.g, suppose tha t  w occurs over a cut  in h(u) .  The cut  
divides w into w ' , w ' ,  and  Jw'J < I or ]w" I < I (otherwise 
h(u)[i + Iw'l - l, i + Iw'l +1 - 1] 6 Dz and  w would not  be a 
factor). 
Suppose Iw"l < I. Then  consider wl = w' and  by Proposi- 
t ion 1, w~ has an occurrence over a cut. The cut  divides w~ 

' " and Jw~ I < I or Iw~'l < I. into W 1 ~ W 1 : 

Continue on for 41E I + 1 steps. Because there are no more 
t han  ]El cuts  in h, there must  be two indices i0 < j0 <_ 
41E I + 1 such tha t  w~ o and  Wjo (or w~o 1 and  w~o ~) hit the 
same cut, say (q, q + 1) of h(u) ,  and  either IW~o I, IW~o t < l or 
Iw~'0 h Iw~'01 < I. Suppose w.l.o.g, tha t  Wio and  Wjo hit the 
same cut, and  Iw~0 [, Iw~01 < 1 (see Figure 1). We know tha t  

Wjo 
t_  . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

w j0 

I I 

I I I I I I I I I 

wi0 - _ b  

I- -V1 - I  

me cut (q,q+l) 

Figure 1: Visualizat ion of proof of Lem m a  8. 

Wio ~- VlWjoV2 and  Ivll < (jo - io)l and  also tha t  

v lwj0  = h[q + 1, q + 1 + Ivlw~0 If = W~oV'l 

for some Vl,V~. Then  by Lem m a  3, wjo = uo(vouo) p for 
certain p > 0, and  Ivouol = Ivll. The s t a t ement  of the 
l emma follows from the fact tha t  h is a min imal  solution, 
hence by Proposi t ion 1, p < 2 c]EI, and  so can be encoded 
by clE 1 bits. []  

LEMMA 9. Let w be a factor  of  F~+lh(u).  Then the fol- 
lowing hold: 

1. It is refined in Fzh(u) by a sequence of factors S and 
(S)  e can be represented by an exponential expression 
of size O(IEI3).  

2. Moreover, any two occurrences of  w in F,+lh(u)  which 
have the same extended factor  are refined in Flh(u)  by 
the same sequence of extended factors.  

P R o o f .  Par t  1. By Lem m a  8, w = wlw~w3 with Iwll < 
211E I and  p can be encoded by clE I bits. First ,  let us remark 
tha t  the proof of Lem m a  11 in [18] works for the general case 
]w I < (a lE I + b)l + c, where a, b, c are positive integers. We 
are going to use this case below. If Iw~l _< 21 then  Iwl <: 
(41E I + 2)l, and  proceed as in the proof of Lem m a  11 in [18]. 
Otherwise, let us write w2 P = vlv2v3 with IVll = Iv31 = 1; so 
W ~ W l V l V 2 V 3 W 2 .  

Because Iwlvl l  <_ 21Ell + 1 and  Ivaw31 < 21Ell + 1, we can 
apply Lem m a  11 in [18] to these pieces. As for v2, we can 

pl 
write v2 = z lw2 z2 with Izit < Iw21. The  key point  now 
is the observat ion tha t  the D~-factors of v3 are periodic: If 
cer tain word of Dl occurs in v3 de termining  a b o u n d a r y  in 
certain copy of w2, then  tha t  same word of Dl determines  a 
b o u n d a r y  in each copy we in v3 (thus the  choice of vl ,  v2). 

t 
Hence the extended factorization of the  middle  par t  w2 p is 
jus t  the  extended factorizat ion of any copy of w2 raised to 
the power p' .  Because p '  _< p < 2 clEI and  [W21 ~_< 21Ell, it 
follows tha t  can be represented in space C9(1EI3). 
For Pa r t  2, jus t  notice tha t  bo th  occurrences of w must  occur 
inside identical  contexts  w l w w 2  with Iwd = l + 1. []  
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5. FACTOR EQUATIONS 
It  will be convenient  to view free SGA equations as se- 
quences of words instead of words themselves. So for ex- 
ample, the equat ion (xay -1, abxx) can be thought  of as the 
pair of sequences (x, a, y - l ) ,  (a, b, x, x). A factor equation 
is a pair (U, V) of sequences of of elements of (E* U V). A 
solution is an assignment  h : l ;  ~ S,  where S is the set of 
sequences of elements of E* such that  the subs t i tu t ion  h(x) 
for the variables x occurring in U or V make both  sequences 
equal (i.e. both  sequences have same i- th  factors). Two 
factor equations (U~, 171) and  (U~, 172) are isomorphic if the 
sequence U~, = ,  V1 is isomorphic to 0"2,----, V~, where ' = '  is a 
new symbol. 
Notice tha t  a free SGA equat ion over E is na tura l ly  a factor 
equation over E: the sequences buil t  by t ransforming the 
pair of words into a pair of sequences (each symbol is t rans-  
formed into an element  of the sequence). In what  follows we 
will talk only of factor equations,  and identify a free SGA 
equation (via the above inclusion) with the corresponding 
factor equation. 
Let us recall some facts which will be useful in what  follows. 
E = (u, v) denotes a satisfiable free SGA equation,  and h a 
minimal  solution of it. Let us assume tha t  u = ul  • • • un and 
v = v ~ . . . V m ,  for ui ,vj  ~ E U V .  I f u k  is av a r i ab l e  or the 
inverse of a variable, say x, and  i < j are such that  h(u~) = 
h(u)[i, j], then from Lemma 6 we know tha t  if ker F~h(x) is 
not  empty, 

((Fth(u))[i,J]) ~ = (RI) e, (kerFth(x)) ~, (R2) ~ (6) 

where (R~) e, (Re) ~ can be represented by exponential  ex- 
pressions of size O(IDI2). In part icular ,  (kerF~h(x)) ~ is the 
same sequence for all occurrences of the variable x in E.  
Also, from Lemma 7 we know tha t  if h(x) and h(x -~) occur 
in Fth(u), 

(ker F~ h (x -~) )  e = ( ( k e r n  h(x)):~)  ~. (7) 

DEFINITION 4 (FACTOR EQUATIONS Et(h)). Let l > 1 
be an integer, and E and h as before. 

1. 

2. 

For each extended factor (w, vl,v2) in (Fth(u)) e de- 
fine a fresh constant c(~,~,~2). Also, if (w, vl,v~) ¢ 
(w -1,  v ;  a, v [  ~) and both occur both in (Fzh(u) ) ~, iden- 
tify the constants c(~_~,.~,~i_~ ) and c71t~,,~,,2J'" 

Let (w, vl, v2) be an extended factor in (Fth(u)) ~. De- 
fine the map ( )* as follows: 

3. 

w * ( a )  ( , v~ ,  v ~ )  = -~ if (~, v~, ~ )  C(w, vl ,~2 ) c(w,v~ ,v2 ) 
(~-~,v;~,~;~), 

(b) (w, vl, v2)" = c(w,.x,~2) otherwise. 

Define Ul as follows (the case for Vt is similar): con- 
sider the extended faetorization (Fzh(u)) ~. Note that 
for each symbol u~ of u which is a variable (say x)  and 
ker Fth(x) is not empty, (kerFlh(x) )  ~ occurs as a sub- 
sequence of (Fth(u)) e. Then Ul is built from (Fth(u)) ~ 
by replacing each such subsequence by the one-element 
sequence consisting of the corresponding variable x. 

. Define U[ from Ut by replacing each element (w, vl , v2 ) 
of U~ which is not a variable by (w, vl, v2)*. Similarly 
for Vt*. 

Then define E d h  ) as the pair (Ut*, Vt*). 
For I = 0 we make the convention that Uo = u l , . . . ,  un and 
17o = v l , . . .  ,v,~, i.e., Eo(h) is E. 

LEMMA 10. Same notations as before. For each integer 
l >_ 0 it holds: 

1. El(h) is satisfiable. 

2. El(h) can be represented by an exponential expression 
of size O(IEla) .  

PROOF. For Par t  1 consider the map  h'  defined for con- 
s tants  as h '(c)  = c, and  for variables as h ' (x)  : ((kerFlh(x))e) *, 
tha t  is (kerFth(x)) ~ with ( )* applied to each component .  
Observe that  ( (kerFlh(x))~)  * does not  depend on the oc- 
currence of the variable x. Also h ' (x)  = (h'(x-1))  -1 follows 
from (7) and the identification of some constants  in part  1 of 
Definit ion 4. Final ly  it is clear from the definition of El (h) 
that h ' ( U ~ ' )  = h ' ( V ~ * ) .  
For Par t  2 jus t  note  tha t  Ut consists of: (1) possibly all 
the constants  of u (no more t h a n  those of E) ,  a n d  (2) the 
extended factorization of each h(uj)  for uj variables, with 
(kerFlh(uj))  ~ replaced by one symbol  when it is not  empty. 
Then  use Equat ion  (6) and  Lemma 6 to conclude that  Ul can 
be represented by an exponent ial  expression of size O(IEla).  
Hence Ut*, Vz* have also a small  representat ion.  []  

DEFINITION 5 (NON-DETERM. TRANSFORMATION -----+). 
Let El ,  E2 be exponential expressions representing factor equa- 
tions. Then E1 -----+ E2 if and only if E2 is isomorphic to 
an equation obtained from E1 as follows 

1. Replace constants of E1 by exponential expressions of 
size O(IEI a) with exponents at most 2 clEI consistently, 
i.e., ira :=  exp~ then a -1 :=  (exp,)  -1. 

2. Suppose u is a variable and $1, $2 sequences. If all oc- 
currences of u (resp. u -1)  in E1 are in the context of 
subsequences of the form $1, u, $2 (resp. S ;  1 , u -1 , S~ I ) 
and they do not overlap, then replace all occurrences 
of S l ,u ,  S2 (resp. S21,u-l,Sll ) byu  (resp. u - l ) .  

3. Replace some occurrences of a subsequence S by a new 
variable y and S -1 by y-1 (for the same variables, the 
sequences replaced should be the same). 

LEMMA 11. Let E l ,E2  be exponential expressions repre- 
senting factor equations. If  E1 > E2 and E1 is satisfiable, 
then E2 is satisfiable. 

PROOF. Let hi be a solution of El .  For each constant  a, 
denote  by expa the expression which replaces a in Step 1 of 
the definition of - -+ .  This replacement  defines a morphism 
a with a (w -1) ---- (a(w)) -1 such tha t  a(a) = exp~ for each 
cons tant  a of E l .  
Denote  by S~, S~ the exponent ia l  expressions introduced in 
Step 2 of the definition of ~ for the variable x. Denote 
by PY the sequence of constants  which is replaced by a new 
variable y. Then  it is not  difficult to check tha t  

~ S ~ , a ( h l ( x ) ) , S  ~ i f x  in E1 and  E2 2 OCCURS 
h2(x) = [ P ~  if y does not  occur in E1 

is a solution of E2. Observe tha t  h2(x -1)  = (h2(x)) -1 be- 

cause (ah1(x)) -1 = a ( h l ( x - 1 ) )  and  p y - 1  = ( p u ) - i  []  
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PROPOSITION 2. For each integer I k O, it holds El+l (h) 
El(h). 

PROOF. For l = 0, it is easy to check that  El(h)  --+ 
Eo(h). 
For I k 1, by Lemma 9, (Flh(u)) ~ can be got from (Fl+lh(u)) e 
by replacing each extended factor of the sequence (Fl+l h(u)) ~ 
by a sequence of extended factors representable by an expo- 
nential expression of size O(]E]3), and moreover (Part  2 of 
the lemma) two factors with identical extended factors are 
replaced by the same sequence of extended factors. 
Now recall that  Ul+l differs from (Fz+lh(u)) ~ in that  for each 
occurrence of a variable x in E with kerl+l h(x) not empty, 
the corresponding occurrence of (kerl+l h(x)) ~ is replaced by 
x. Also recall that  if kerl h(x) is not empty, then (kerl h(x)) e 
is a subsequence S of (Flh(u)) e. Moreover, if addit ionally 
kerl+l h(x) is not empty, then (kerl h(x)) ~ = $1, (K) e, $2 
where K is a refinement of kerl+l h(x) and $1, $2 are some 
sequences of extended factors. 
From these facts, it is clear that  El+l(h) -----+ Ez(h) is got 
by doing the steps 1,2,3 (in tha t  order) in Definition 5. []  

R e m a r k .  Observe that  if E~ (resp. E~+I) is an expo- 
nential expression representing Et(h) (resp. El+l (h)) ,  then 
E~+I ~ E~. (Same replacements, sequences, etc. used in 
El+l(h) -----+ El(h) work here.) 

LEMMA 12. (a = a) ---+* E if and only if E is satisfiable. 

PROOF. If E = (u,v) is satisfiable, let h be a minimal 
solution. Then Eih(~)l(h) >* Eo(h) by Proposit ion 2, and 
observe tha t  Eih(,)l(h ) is isomorphic to (a = a) and Eo(h) 
is E. 
If E is not satisfiable,- then from Lemma 11 it follows that  
the equation (a = a), which is trivially satisfiable, cannot 
rewrite to E. []  

THEOREM 2. Satisfiability of equations in free SGA is in 
PSPA CE. 

PROOF. Consider the space M of exponential expressions 
of size O(IEI 3) representing factor equations. Consider (a = 
a) and apply nondeterministically ---+. That  the algorithm 
is correct follows from Lemma 12 and the fact that  the chain 
(a = a) ~* E can be done in M, which follows from 
Lemma 10, Par t  2, the remark above, and Lemma 1. [ ]  

6. SATISFIABILITY OF EQUATIONS IN 
FREE GROUPS 

As we mentioned in the introduction, the first step to de- 
cide satisfiability of equations in free groups is the following 
reduction: 

THEOREM 3 (THEOREM 9, [4]). For each equation E in 
a free group G with generators C there is a finite set Q of 
equations in a free semigroup with anti-involution G t with 
generators C U {cl,c2}, cl,c2 ~ C, such that the following 
hold: 

1. E is satisfiable in G if and only if one of the equations 
in Q is satisfiable in G'. 

2. There is c > 0 constant such that for each E' E Q, it 
holds IE'[ <_ clEI a. 

This theorem is proved in [4]. For the sake of completeness 
we will indicate the steps of the proof given in [4] using the 
Propositions in the Appendix. 

1. From E generate a finite list of system of equations in 
SGA with properties as in Proposition 4. 

2. From each of these systems, using Proposit ion 3 build 
a non-contractible equation in SGA. 

3. From each non-contractible equation got in (2), gener- 
ate a list of systems of equations in SGA with proper- 
ties as of Proposit ion 5. 

4. Again use Proposit ion 3 to obtain from each system in 
(3) and equivalent equation in SGA. 

R e m a r k .  The equations in the set Q can be generated 
non-deterministically in polynomial space. 
Finally the main result of this paper: 

THEOREM 4. Satisfiability of equations in free groups is 
in PSPACE. 

PROOF. The algorithm works as follows: From an equa- 
tion E generate non-deterministically an SGA-equation E '  
in the set Q (as in Theorem 3). Then use Theorem 2. []  

After Theorem 4, the current complexity of the problem of 
satisfiability of equations in free groups is between NP-hard  
(see [2]) and PSPACE (this paper).  

6.1 Comparison with other work 
The only published upper bound on the complexity of equa- 
tions in free groups is [9], which is non primitive recursive. 
The problem of equations in free SGA was s ta ted in [4], 
where the problem about  its decidability is asked. It seems 
tha t  nothing was known before about this problem. Diekert 
and Hagenah [1] have recently proved independently of us 
its decidability. The lower bound NP-hard  is proved in [4]. 
Theorem 2 gives a tight upper  bound. As for the method- 
ology in proving Theorem 2, Theorem 1 generalizes [8], and 
Lemmas 4, 5, 6, 8, 10, 9, 11, 12 and Prop. 2 have their 
counterparts  in [18]. 
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Appendix 
The first proposition is an old observation of Kmelevskii [5] 
for free semigroups which extends easily to free SGA: 

PROPOSITION 3 (PROPOSITION 4, [4]). For each system 
of equations E in free SGA with generators C, there is an 
equation E in free SGA with generators CUc, c ~ (CUC-1) ,  
such that 

1. S is a solution of E i f  and only i f  S is a solution of E. 

Z. [El _< 4[El. 

Moreover, i f  the equations in E are non-contractible, the E 
is non-contractible. 

PROPOSITION 4 (LEMMA 1.1 IN [14]). For any non con- 
tractible equation E in the free group G with generators C 
we can construct a finite list of systems of non-contractible 
equations in the free SGA G' with generators C El,  • • . ,  Ek 
such that the following conditions are satisfied: 

1. E has a non-contractible solution in G if  and only i l k  > 
0 and some system Ej has a non-contractible solution 
in G'. 

2. There is a constant c > 0 such that [Ei[ _< c[E[ 3 for 
each i = 1, . .  . ,k .  

3. k < 2 clef3 for some constant c > O. 

PROPOSITION 5 (PROPOSITION 3~ [4]). For each non con- 
tractible equation E there is a finite list of systems of equa- 
tions E l , . .  •, Ek such that the following conditions hold: 

1. E has a non-contractible solution i f  and only i f  some 
of the Ei has a solution. 

2. k _< 2 clEI2, for c > 0 a constant. 

3. There is a constant c > 0 such that for each i, [El[ _< 
gEl. 
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