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Abstract. This paper extends extends known results on the complexity
of word equations and equations in free groups in order to include the
presence of rational constraints, i.e., such that a possible solution has
to respect a specification given by a rational language. Our main result
states that the existential theory of equations with rational constraints
in free groups is PSPACE–complete.
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1 Introduction

In 1977 (resp. 1983) Makanin proved that the existential theory of equations in
free monoids (resp. free groups) is decidable by presenting algorithms which solve
the satisfiability problem for a single word equation (resp. group equation) with
constants [13,14,15]. These algorithms are very complex: For word equations the
running time was first estimated by several towers of exponentials and it took
more than 20 years to lower it down to the best known bound for Makanin’s
original algorithm, which is to date EXPSPACE [7]. For equations in free groups
Kościelski and Pacholski have shown that the scheme of Makanin is not primitive
recursive.

Recently Plandowski found a different approach to solve word equations and
showed that the satisfiability problem for word equations is in PSPACE, [18].
Roughly speaking, his method uses data compression (first introduced for word
equations in [19]) plus properties of factorization of words. Gutiérrez extended
this method to the case of free groups, [9]. Thus, a non-primitive recursive scheme
for solving equations in free groups was replaced by a polynomial space bounded
algorithm.

In this paper we extend the results [18,9] above in order to include the pres-
ence of rational constraints. Rational constraints mean that a possible solution
has to respect a specification which is given by a regular word language. Our main
result states that the existential theory of equations in free groups with rational
constraints is PSPACE–complete. The corresponding PSPACE–completeness for
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word equations with regular constraints has been announced by first Rytter, see
[18, Thm. 1] and [20].

The idea to consider regular constraints in the case of word equations is due
to Schulz [21]. The importance of this concept, pointed out firstly by Schulz, can
be exemplified by: the application of Schulz’ result to monadic simultaneous rigid
E-unification [6]; the use of regular constraints in [5] as a basic (an necessary) tool
when showing that Makanin’s result holds in free partially commutative monoids;
the proof, in a forthcoming paper of Diekert and Muscholl, of the decidability of
the existential theory of equations in graph groups (open problem stated in [5])
by using the present result; and the positive answer, by Diekert and Lohrey [4],
to the question (cf [16]) about the existential theory of equations in free products
of free and finite groups is decidable by relying on the general form of Theorem 2
below (we allow fixed points for the involution on Γ ).

Our paper deals with the existential theory. For free groups it is also known
that the positive theory without constraints is decidable, see [15]. Thus, one can
allow also universal quantifiers but no negations. Note that we cannot expect
that the positive theory of equations with rational constraints in free groups
be decidable, since we can code the word case (with regular constraints) which
is known to be undecidable. On the other hand, a negation leads to a positive
constraint of a very restricted type, so it is a interesting question under which
type of constraints the positive theory remains decidable.

Our proof of Theorem 1 is in the first step a reduction to the satisfiability
problem of a single equation with regular constraints in a free monoid with
involution. In order to avoid an exponential blow-up, we do not use a reduction as
in [15], but a much simpler one. In particular, we can handle negations simply by
a positive rational constraints. In the second step we show that the satisfiability
problem of a single equation with regular constraints in a free monoid with
involution is still in PSPACE. We extend the method of [18,9] such that it copes
with the involution and with rational constraints. There seems to be no direct
reduction to the word case or to the case of free groups without constraints. So
we cannot use these results as black boxes. Because there is not enough space to
present the whole proof in this extended abstract, we focus on those parts where
there is a substantial difference to the case without constraints. In particular,
we develop the notion of maximal free interval, a concept which can be used
even when there are no constraints, but when one is interested in other solutions
rather than the one of minimal length. The missing proofs can be found in [10]
which is available on the web.1

2 Equations with Rational Constraints in Free Groups

Rational Languages, Equations. Let Σ be a finite alphabet and let Σ = { a |
a ∈ Σ }. We use the convention that a = a. Define Γ = Σ ∪Σ. Hence : Γ → Γ
is an involution which is extended to Γ ∗ by a1 · · ·an = an · · · a1 for n ≥ 0 and
ai ∈ Γ . We usually will write just Γ instead of (Γ, ). A word w ∈ Γ ∗ is freely
reduced , if it contains no factor of the form aa with a ∈ Γ .
1 In http://inf.informatik.uni-stuttgart.de/ifi/ti/veroeffentlichungen/psfiles is the file
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The elements of the free group F (Σ) are represented by freely reduced words
in Γ ∗. We read a as a−1 in F (Σ). There is a canonical homomorphismˆ: Γ ∗ →
F (Σ), which eliminates all factors of the form aa from a word.

The class of rational languages in F (Σ) is inductively defined as follows:
Every finite subset of F (Σ) is rational. If P1, P2 ⊆ F (Σ) are rational, then
P1 ∪P2, P1 ·P2, and P ∗

1 are rational. Hence, P ⊆ F (Σ) is rational if and only if
P = {ŵ : w ∈ P ′} for some regular language P ′ ⊆ Γ ∗. It is well-known that the
family of rational group languages is an effective Boolean algebra, in particular,
it is closed under complementation [1]. (See also [2, Sect. III. 2].)

In the following Ω denotes a finite set of variables (or unknowns) and we let
: Ω → Ω be an involution without fixed points. An equation with rational con-

straints in free groups is an equation W = 1 in free groups plus constraints on
the variables of the type X ∈ P , for P a rational language. The existential frag-
ment of these equations is the set of closed formulas of the form ∃X1 . . . ∃XnB,
where Xi ∈ Ω and B is a Boolean combination of atomic formulas which are
either of the form (W = 1) or (Xi ∈ P ), where W ∈ (Γ ∪ Ω)∗ and P ⊆ F (Σ) is
a rational language. The existential theory of equations with rational constraints
in free groups is the set of such formulas which are valid in the free group F (Σ).

Theorem 1. The existential theory of equations with rational constraints in free
groups is PSPACE–complete.

Proof (Sketch). The PSPACE–hardness follows easily from [12] and is not dis-
cussed further. The proof for the inclusion in PSPACE is a reduction to the
corresponding problem over free monoids with involution. It goes as follows.

First, we may assume that the input is given by some propositional formula
which is in fact a conjunction of formulae of type W = 1, X ∈ P , X 6∈ P
with W ∈ (Γ ∪Ω)∗, X ∈ Ω, and P ⊆ F (Σ) rational.2 This is achieved by using
DeMorgan rules to push negations to the level of atomic formulas, then replacing
W 6= 1 by ∃X : WX = 1∧X 6∈ {1} (and pushing the quantifier to the out-most
level), and finally eliminating the disjunctions by replacing non-deterministically
every subformula of type A ∨ B by either A or B.

It is not difficult to see that we may also assume that |W | = 3 (use the
equivalence of x1 . . . xn = 1 and ∃Y : x1x2Y = 1 ∧ Y x3 · · ·xn = 1).

Finally, we switch to the existential theory of equations with regular con-
straints in free monoids with involution. The key point of the translation here is
the fact that rational languages P are in essence regular word languages over Γ
such that P ⊆ N , where N ⊆ Γ ∗ is the regular set of all freely reduced words.
The language N is accepted by a deterministic finite automaton with |Γ | + 1
states. Then a positive constraint has just the interpretation over words and for
a negative constraint we replace X 6∈ P by X 6∈ P ∧ X ∈ N . Details are left to
the reader.

As for the formulas xyz = 1, note that they have a solution if and only if they
have a solution in freely reduced words. Then we can replace each subformulae
xyz = 1 by the conjunction ∃P∃Q∃R : x = PQ∧y = QR∧z = R P using simple
arguments.
2 The reason for keeping X 6∈ P instead of X ∈ P̃ where P̃ = F (Σ) \ P is that

complementation may involve an exponential blow-up of the state space.



The Existential Theory of Equations with Rational Constraints 173

Using a standard procedure to replace a conjunction of word equations by a
single word equation we may assume that our input is given by a single equation
L = R with L, R ∈ (Γ ∪ Ω)+ and by two lists (Xj ∈ Pj , 1 ≤ j ≤ m) and
(Xj 6∈ Pj , m < j ≤ k) where each Pj ⊆ Γ ∗ is specified by some non-deterministic
automaton Aj = (Qj , Γ, δj , Ij , Fj).

The question is whether the input is satisfiable, i.e. whether there is a so-
lution. At this point, Boolean matrices are a better representation than fi-
nite automata. Let Q be the disjoint union of the state spaces Qj, assume
Q = {1, . . . , n}. Let δ =

⋃
j δj , then δ ⊆ Q × Γ × Q and with each a ∈ Γ

we can associate a Boolean matrix g(a) ∈ B
n×n such that g(a)i,j is the truth

value of “(i, a, j) ∈ δ′′.
Since our monoids need an involution, we will work with 2n × 2n-Boolean

matrices. Henceforth M denotes the following monoid with involution,

M = {
(

A 0
0 B

)
| A, B ∈ B

n×n }

where
(

A 0
0 B

)
=

(
BT 0
0 AT

)
and where the operator T means transposition.

We define a homomorphism h : Γ ∗ → M by h(a) =
(

g(a) 0
0 g(a)T

)
for a ∈ Γ ,

where the mapping g : Γ → B
n×n is defined as above. The homomorphism h can

be computed in polynomial time and it respects the involution. Now, for each
regular language Pj we compute vectors Ij , Fj ∈ B

2n such that for all w ∈ Γ ∗ we
have the equivalence: w ∈ Pj ⇔ IT

j h(w)Fj = 1. Having done these computations
we make a non-deterministic guess ρ(X) ∈ M for each variable X ∈ Ω. We verify
ρ(X) = ρ(X) for all X ∈ Ω and whenever there is a constraint of type X ∈ Pj

(resp. X 6∈ Pj) then we verify IT
j ρ(X)Fj = 1 (resp. IT

j ρ(X)Fj = 0).
Let us make a formal definition. Let d, n ∈ N. We consider an equation of

the length d over some Γ and Ω with constraints in M being specified by a list
E containing the following items:
– The alphabet (Γ, ) with involution.
– A mapping h : Γ → M such that h(a) = h(a) for all a ∈ Γ .
– The alphabet (Ω, ) with involution without fixed points.
– A mapping ρ : Ω → M such that ρ(X) = ρ(X) for all X ∈ Ω.
– The equation L = R where L, R ∈ (Γ ∪ Ω)+ and |LR| = d.

If no confusion arise, we will denote this list simply by

E = (Γ, Ω, h, ρ, L, R).

A solution is a mapping σ : Ω → Γ ∗ (being extended to a homomor-
phism σ : (Γ ∪ Ω)∗ → Γ ∗ by leaving the letters from Γ invariant) such that
the following three conditions are satisfied: σ(L) = σ(R), σ(X) = σ(X), and
hσ(X) = ρ(X) for all X ∈ Ω. We refer to the list E as an equation with con-
straints (in M). By the reduction above, Theorem 1 is a consequence of:

Theorem 2. The following problem can be solved in PSPACE.
INPUT: An equation E0 = (Γ0, Ω0, h0, ρ0, L0, R0).
QUESTION: Is there a solution σ : Ω → Γ ∗?
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3 Equations with Regular Constraints over Free Monoids
with Involution

During the procedure which solves Theorem 2 one has to consider various other
equations with constraints in M . Following Plandowski we will use data com-
pression for words in (Γ ∪ Ω)∗ in terms of exponential expressions.
Exponential Expressions. Exponential expressions (their evaluation and their
size) are inductively defined as follows:

– Every word w ∈ Γ ∗ denotes an exponential expression. The evaluation
eval(w) is equal to w, its size ‖w‖ is equal to the length |w|.

– If e, e′ are exponential expressions, so is ee′, the evaluation is the concate-
nation, eval(ee′) = eval(e)eval(e′), and ‖ee′‖ = ‖e‖ + ‖e′‖.

– If e be an exponential expression and k ∈ N, then (e)k is an exponential
expression, and eval((e)k) = (eval(e))k and ‖(e)k‖ = log(k) + ‖e‖.

It is not difficult to show that the length of eval(e) is at most exponential in
the size of e. Moreover, let u ∈ Γ ∗ be a factor of a word w ∈ Γ ∗ which can be
represented by some exponential expression of size p. Then we find an exponential
expression of size at most 2p2 that represents the factor u.

We say that an exponential expression e is admissible, if its size ‖e‖ is
bounded by some fixed polynomial in the input size of the equation E0. Let
E = (Γ, Ω, h, ρ, L, R) and eL, eR be exponential expressions with eval(eL) = L
and eval(eR) = R. We say that Ee = (Γ, Ω, h, ρ, eL, eR) is admissible, if eLeR is
admissible, |Γ \ Γ0| ≤ ‖eLeR‖ + 2d, Ω ⊆ Ω0, and h(a) = h0(a) for a ∈ Γ ∩ Γ0.
We say that Ee represents the equation E. For two admissible equations with
constraints E and E′ we write E ≡ E′, if E and E′ represent the same object.

Because of regular constraints, we have to formalize carefully the basic op-
erations over these equations in order to move from one equation to another.
Base Changes. Let E′ = (Γ ′, Ω, h′, ρ, L′, R′) be an equation. A mapping β :
Γ ′ → Γ ∗ is a base change if both β(a) = β(a) and h′(a) = hβ(a) for all a ∈
Γ ′. The new equation is β∗(E′) = (Γ, Ω, h, ρ, β(L), β(R)). We say that β is
admissible if |Γ ∪ Γ ′| has polynomial size and if for each a ∈ Γ ′, β(a) has an
admissible exponential representation.

If β : Γ ′ → Γ ∗ is an admissible base change and if L′ = R′ is given by a pair
of admissible exponential expressions, then we can represent β∗(E′) by some
admissible equation with constraints which is computable in polynomial time.

Lemma 1. Let E′ be an equation with constraints in M and β : Γ ′ → Γ ∗ be a
base change. If σ′ : Ω → Γ ′∗ is a solution of E′, then σ = βσ′ : Ω → Γ ∗ is a
solution of β∗(E′).

Projections. Let Γ ⊆ Γ ′ be alphabets with involution. A projection is a ho-
momorphism π : Γ ′∗ → Γ ∗ preserving the involution and leaving Γ fixed. If
h : Γ → M is given, then a projection π defines also h′ : Γ ′ → M by h′ = hπ.

For an equation E = (Γ, h, Ω, ρ, L, R) we define π∗(E) = (Γ ′, hπ, Ω, ρ, L, R).
Note that every projection π : Γ ′∗ → Γ ∗ defines also a base change π∗ such that
π∗π∗(E) = E.
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Lemma 2. Let Γ ⊆ Γ ′ be as above and let E = (Γ, Ω, h, ρ, L, R) and E′ =
(Γ ′, Ω, h′, ρ, L, R). Then there is a projection π : Γ ′∗ → Γ ∗ such that π∗(E) =
E′, if and only if both h′(Γ ′) ⊆ h(Γ ∗) and a = a implies h′(a) ∈ h({w ∈ Γ ∗ |
w = w}) for all a ∈ Γ ′. Moreover, if σ′ is a solution of E′, then we effectively
find a solution σ for E with |σ(L)| ≤ 2|M ||σ′(L)|.

Lemma 2 says that in order to test whether there exists a projection π :
Γ ′∗ → Γ ∗ such that π∗(E) = E′, we need only space to store some Boolean
matrices of B

2n×2n, we do not need an explicit description of π : Γ ′∗ → Γ ∗
itself. Only if n becomes a substantial part of the input size, then we might need
the full power of PSPACE (PSPACE–hardness of the satisfiability problem).

Shifts. Let Ω′ ⊆ Ω be a subset of the variables which is closed under involution,
and let ρ′ : Ω′ → M with ρ′(x) = ρ′(x) (we do not require that ρ′ is the
restriction of ρ). A shift is a mapping δ : Ω → Γ ∗Ω′Γ ∗ ∪ Γ ∗ such that the
following conditions are satisfied:

i) δ(X) ∈ Γ ∗XΓ ∗ for all X ∈ Ω′,
ii) δ(X) ∈ Γ ∗ for all X ∈ Ω \ Ω′,
iii) δ(X) = δ(X) for all X ∈ Ω.

The mapping δ is extended to a homomorphism δ : (Γ ∪ Ω)∗ → (Γ ∪ Ω′)∗ by
leaving the elements of Γ invariant. For and equation E = (Γ, h, Ω, ρ, L, R),
we define the equation δ∗(E) = (Γ, Ω′, h, ρ′, δ(L), δ(R)) where ρ′ is such that
ρ(X) = h(u)ρ′(X)h(v) for δ(X) = uXv, and ρ(X) = h(w) for δ(X) = w ∈ Γ ∗.
We say that δ∗(E) is a shift of E.

Lemma 3. In the notation of above, let E′ = δ∗(E) for some shift δ : Ω →
Γ ∗ΩΓ ∗ ∪ Γ ∗. If σ′ : Ω′ → Γ ∗ is a solution of E′, then σ = σ′δ : Ω → Γ ∗ is a
solution of E. Moreover, we have σ(L) = σ′(L′).

Lemma 4. The following problem can be solved in PSPACE.

INPUT: Two equations with constraints E and E′.
QUESTION: Is there some shift δ : Ω → Γ ∗ΩΓ ∗∪Γ ∗ such that δ∗(E) ≡ E′?

Moreover, if δ∗(E) ≡ E′, then we have δ(X) = eval(eu)Xeval(ev) for all
X ∈ Ω′ and for suitable admissible exponential expressions eu, ev. Similarly,
δ(X) = eval(ew) for all X ∈ Ω \ Ω′.

Remark 1. We can think of a shift δ : Ω → Γ ∗Ω′Γ ∗ ∪ Γ ∗ as a partial solution
in the following sense. Assume we have an idea about σ(X) for some X ∈ Ω.
Then we might guess σ(X) entirely. In this case we can define δ(X) = σ(X)
and we have X 6∈ Ω′. For some other X we might guess only some prefix u and
some suffix v of σ(X). Then we define δ(X) = uXv and we have to guess some
ρ′(X) ∈ M such that ρ(x) : h(u)ρ′(X)h(v). If our guess was correct, then such
ρ′(X) must exist. We have partially specified the solution and we continue this
process by replacing the equation L = R by the new equation δ(L) = δ(R).
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4 The Search Graph and Plandowski’s Algorithm

The nodes of the search graph are admissible equations with constraints in M .
Let E, E′ be two nodes. We define an arc E → E′, if there are a projection π,
a shift δ, and an admissible base change β such that δ∗(π∗(E)) ≡ β∗(E′).

Lemma 5. The following problem can be decided in PSPACE.
INPUT: Admissible equations with constraints E and E′.
QUESTION: Is there an arc E → E′ in the search graph?

Proof. (Sketch) We first guess some alphabet (Γ ′′, ) of polynomial size together
with h′′ : Γ ′′ → M . Then we guess some admissible base change β : Γ ′ → Γ ′′∗
such that h′ = h′′β and we compute β∗(E′) in polynomial time. Next we check
using Remark 1 and Lemma 4 that there is projection π : Γ ′′ → Γ and that
there is a shift δ : Ω → Γ ′′∗Ω′Γ ′′∗ ∪ Γ ′′∗ such that δ∗(π∗(E)) ≡ β∗(E′). ut

Plandowski’s algorithm works on E0 = (Γ0, Ω0, h0, ρ0, L0, R0) as follows:

1. E := E0

2. while Ω 6= ∅ do
Guess an admissible equation E′ with constraints in M .
Verify that E → E′ is an arc in the search graph.
E := E′

3. return ”eval(eL) = eval(eR)”

By Lemmata 1, 2, and 3, if E → E′ is an arc in the search graph and E′ is
solvable, then E is solvable, too. Thus, if the algorithm returns true, then E0

is solvable. The proof of Theorem 2 is therefore reduced to the statement that
if E0 is solvable, then the search graph contains a path to some node without
variables and the exponential expressions defining the equation evaluate to the
same word (called a terminal node).

Remark 2. If E → E′ is due to some π : Γ ′′∗ → Γ ∗, δ : Ω → Γ ′′∗Ω′Γ ′′∗ ∪ Γ ′′∗,
and β : Γ ′∗ → Γ ′′∗, then a solution σ′ : Ω′ → Γ ′∗ of E′ yields the solution
σ = π(βσ′)δ. Hence we may assume that the length of a solution has increased
by at most an exponential factor. Since we are going to perform the search in
a graph of at most exponential size, we get automatically a doubly exponential
upper bound for the length of a minimal solution by backwards computation
on such a path. This is still the best known upper bound (although an singly
exponential bound is conjectured), see [17].

5 The Search Graph Contains a Path to a Terminal Node

This section is a proof of the existence of a path to a solvable solution in the
Search Graph. The technique used is a generalization of the one used in [18] for
word equations, in [9] for free group equations, and in [3] for word equations with
regular constraints. Due to lack of space in this extended abstract we focus only
on some few points where the technique differs substantially from those papers.
For the other parts we will just refer the reader to the papers above.
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The Exponent of Periodicity. Let w ∈ Γ ∗ be a word. The exponent of
periodicity exp(w) is defined as the supremum of the α ∈ N such that w = upαv
for suitable u, v, p ∈ Γ ∗ and p 6= 1. It is clear that exp(w) > 0 if w is not empty.
For an equation E = (Γ, Ω, h, ρ, L, R) the exponent of periodicity, denoted by
exp(E), is defined as

exp(E) = inf{{ exp(σ(L)) | σ is a solution of E } ∪ {∞} }.
The well-known result from word equations [11] transfers to the situation here:
in order to prove Theorem 2 we may assume that E0 is solvable and exp(E0) ∈
2O(d+n log n). The case of word equations with regular constraints in done in [3]
and for monoids with involution in [8]. A combinations of these methods give
what we need here. The detailed proof has been given in [10].
Free Intervals. The following development will be fully justified at the end of
the subsection and has to do with handling the constraints. Without constraints,
free intervals of length more than one do not appear in a minimal solutions,
making this notion unnecessary. This is not true in the presence of constraints.
Free intervals handle this case and moreover, tell us that the bounds on the
exponent of periodicity are the only restriction we need on solutions.

Given a word w ∈ Γ ∗, let {0, . . . , |w|} be the set of its positions . An interval
on these positions is a formal object denoted [α, β] with 0 ≤ α, β ≤ |w|, and
[α, β] = [β, α]. For w = a1 · · ·am, we define w[α, β] = aα+1 · · · aβ if α < β,
w[α, β] = aα+1 · · · aβ if α > β, and the empty word if α = β. Observe that these
notations are consistent so that w[α, β] = w[α, β].

Let σ0 be a solution of L = R, where L0 = x1 · · ·xg and R0 = xg+1 · · ·xd

and xi ∈ (Γ0 ∪ Ω0). Then we have w0 = σ0(L0) = σ0(R0). Denote m0 = |w0|.
For each i ∈ {1, . . . , d} we define positions l(i) and r(i) as follows:

l(i) = |σ0(x1 · · ·xi−1)|mod m0 ∈ {0, . . . , m0 − 1},
r(i) = |σ0(xi+1 · · ·xd)|mod m0 ∈ {1, . . . , m0}.

In particular, we have l(1) = l(g + 1) = 0 and r(g) = r(d) = m0. The set of
l and r positions is called the set of cuts . There are at most d cuts which cut
the word w0 in at most d − 1 factors. We say that [α, β] contains a cut γ if
min{α, β} < γ < max{α, β}.

For convenience we henceforth assume 2 ≤ g < d < m0 whenever necessary
and make the assumption that σ0(xi) 6= 1 for all 1 ≤ i ≤ d (e.g. a guess in some
preprocessing).

We have σ0(xi) = w0[l(i), r(i)] and σ0(xi) = w0[r(i), l(i)] for 1 ≤ i ≤ d. By
our assumption, the interval [l(i), r(i)] is positive.

Let us consider i, j ∈ 1, . . . , d and xi = xj or xi = xj . For 0 ≤ µ, ν ≤ r(i)−l(i),
we define a relation ∼ among intervals as follows:

[l(i) + µ, l(i) + ν] ∼ [l(j) + µ, l(j) + ν], if xi = xj ,

[l(i) + µ, l(i) + ν] ∼ [r(j) − µ, r(j) − ν], if xi = xj .

Note that ∼ is a symmetric relation and [α, β] ∼ [α′, β′] implies both [β, α] ∼
[β′, α′] and w0[α, β] = w0[α′, β′]. By ≈ we denote the equivalence relation ob-
tained by the reflexive and transitive closure of ∼.



178 Volker Diekert, Claudio Gutiérrez, and Christian Hagenah

An interval [α, β] is called free if none of its ≈-equivalent intervals contains
a cut. Clearly, the set of free intervals is closed under involution and whenever
|β − α| ≤ 1 then [α, β] is free. It is also closed under taking subintervals:

Lemma 6. Let [α, β] be a free interval and min{α, β} ≤ µ, ν ≤ max{α, β}.
Then the interval [µ, ν] is also free.

If [α, β] (assume α < β) is not free, then by definition there is some interval
[α′, β′] ≈ [α, β] which contains a cut γ′. The propagation of that cut to [α, β],
that is the position γ such that γ − α = |γ′ − α′| is called an implicit cut of
[α, β].

The following observation will be used throughout: If we have α ≤ µ < γ <
ν ≤ β and γ is an implicit cut of [α, β], then γ is also an implicit cut of [µ, ν].
(The converse is not necessarily true.)

Lemma 7. Let 0 ≤ α ≤ α′ < β ≤ β′ ≤ m0 be such that [α, β] and [α′, β′] are
free intervals. Then the interval [α, β′] is free, too.

A free interval [α, β] is called maximal free if no free interval properly contains
it, i.e., if α′ ≤ min{α, β} ≤ max{α, β} ≤ β′ and [α′, β′] free, then and β′ − α′ =
|β−α|. So Lemma 7 states a key point that maximal free intervals do not overlap.

Lemma 8. Let [α, β] be a maximal free interval. Then there are intervals [γ, δ]
and [γ′, δ′] such that [α, β] ≈ [γ, δ] ≈ [γ′, δ′] and γ and δ′ are cuts.

Proposition 1. Let Γ be the set of words w ∈ Γ ∗
0 such that there is a maximal

free interval [α, β] with w = w0[α, β]. Then Γ is a subset of Γ+
0 of size at most

2d − 2. The set Γ is closed under involution.

Proof. Let [α, β] be maximal free. Then |β − α| ≥ 1 and [β, α] is maximal free,
too. Hence Γ ⊆ Γ+

0 and Γ is closed under involution. By Lemma 8 we may
assume that α is a cut. Say α < β. Then α 6= m0 and there is no other maximal
free interval [α, β′] with α < β′ because of Lemma 7. Hence there are at most
d − 1 such intervals [α, β]. Symmetrically, there are at most d − 1 maximal free
intervals [α, β] where β < α and α is a cut. ut

Why Free Intervals Are Needed. For a moment let us put ∆ = Γ0∪Γ where
Γ is the set defined in Proposition 1. Observe that ∆ ⊆ Γ+

0 , and so it defines
a natural projection π : Γ ∗

0 → ∆ and a mapping h′ : Γ ∗
0 → M by h′ = h0π.

(Note that here we need the fact that there is no overlapping among maximal
intervals.) Consider the equation with constraints π∗(E0). There is an arc from
E0 to π∗(E0) since we may always allow the base change to be the identity and
the shift to be an inclusion.

The reason to switch from Γ0 to ∆ is that, due to the constraints, the word
w0 may have long free intervals. Over ∆ this can be avoided. Formally, we replace
w0 by a solution w′

0 where w′
0 ∈ Γ ∗, whose definition is based on a factorization

of w0 in maximal free intervals. Recall that there is a unique sequence 0 = α0 <
α1 < · · · < αk = m0 such that [αi−1, αi] are maximal free intervals and

w0 = w0[α0, αi] · · ·w0[αk − 1, αk].
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Moreover, all cuts occur as some αp, so we can think of the factors w0[αi−1, αi]
as letters in Γ . Because all constants which appear in L0, R0 are elements of Γ ,
the equation L0 = R0 appears identical in π∗(E0).

So, replacing w0 by the word w′
0 ∈ Γ ∗, we can define σ : Ω → Γ ∗ such

that both σ(L0) = σ(R0) = w′
0 and ρ0 = h′

0σ, that is, σ is a solution of π∗(E).
Clearly we have w0 = π(w′

0) and exp(w′
0) ≤ exp(w0). The crucial point is that

w′
0 has no long free intervals anymore. (With respect to w′

0 and Γ ′
0, all maximal

free intervals have length exactly one.)
We can assume that Plandowski’s algorithm follows in a first step exactly

the arc from E0 to π∗(E0). Phrased in a different way, we may assume that
E0 = π∗(E0), hence Γ is a subset Γ0.

Moreover, the inclusion β : Γ → Γ ∗
0 defines an admissible base change.

Consider E′
0 = β∗(π∗(E0)). Then we have E′

0 = (Γ, Ω0, h, ρ0, L0, R0) where h is
the restriction of h0 : Γ0 → M . The search graph contains an arc from E0 to E′

0

and E′
0 has a solution σ with σ(L0) = w′

0 with exp(w′
0) ≤ exp(w0).

In summary, in order to save notations we may assume for simplicity that
E0 = E′

0 and w0 = w′
0. We can make the following assumptions:

L0 = x1 · · ·xg and g ≥ 2,

R0 = xg+1 · · ·xd and d > g,

Γ0 = Γ and |Γ | ≤ 2d − 2,

|Ω0| ≤ 2d,

M ⊆ B
2n×2n.

All variables X occur in L0R0L0R0. There is a solution σ : Ω0 → Γ such that
w0 = σ(L0) = σ(R0) with σ(Xi) 6= 1 for 1 ≤ i ≤ d and ρ0 = hσ = h0σ. We have
|w0| = m0 and exp(w0) ∈ 2O(d+n log n). All maximal free intervals have length
exactly one, i.e., every positive interval [α, β] with β−α > 1 contains an implicit
cut.
The `-Factorization. For each integer `, 1 ≤ ` ≤ m0, we define the set of critical
words C` as the closure under involution of set of all words w0[γ− `, γ + `] where
γ is a cut with ` ≤ γ ≤ m0 − `.

A triple (u, w, v) ∈ ({1} ∪ Γ `) × Γ+ × ({1} ∪ Γ `) is called a block if, first,
first, up to a possible prefix or suffix no other factor of the word uwv is a critical
word, second, u 6= 1 if and only if a prefix of uwv of length 2` belongs to C`,
and third, v 6= 1 if and only if a suffix of uwv of length 2` belongs to C`. The set
of blocks is denoted by B` and can be viewed (as a possibly infinite) alphabet
with involution defined by (u, w, v) = (v, w, u).

We can define a homomorphism π` : B∗
` → Γ ∗ by π`(u, w, v) = w ∈ Γ+ being

extended to a projection π` : (B` ∪ Γ )∗ → Γ ∗ by leaving Γ invariant. We define
h` : (B` ∪ Γ ) → M by h` = hπ`. In the following we shall consider finite subsets
Γ` ⊆ B` ∪ Γ which are closed under involution. Then by π` : Γ ∗

` → Γ ∗ and
h` : Γ ∗

` → M we understand the restrictions of the respective homomorphisms.
For every non-empty word w ∈ Γ+ we define its `-factorization as:

F`(w) = (u1, w1, v1) · · · (uk, wk, vk) ∈ B+
` (1)

where w = w1 · · ·wk and for 1 ≤ i ≤ k the following conditions are satisfied:
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– vi is a prefix of wi+1 · · ·wk and vi = 1 if and only if i = k.
– ui is a suffix of w1 · · ·wi−1 and ui = 1 if and only if i = 1.

Note that the `-factorization of a word w is unique. For a factorization (1), we
define head`(w) = w1, body`(w) = w2 · · ·wk−1 and tail`(w) = wk. Similarly
for Head`(w) = (u1, w1, v1), Body`(w) = (u2, w2, v2) · · · (uk−1, wk−1, vk−1), and
Tail`(w) = (uk, wk, vk). For k ≥ 2 (in particular, if body`(w) 6= 1) we have

F`(w) = Head`(w)Body`(w)Tail`(w) and w = head`(w)body`(w)tail`(w).

Moreover, u2 is a suffix of w1 and vk−1 is a prefix of wk.
Assume body`(w) 6= 1 and let u, v ∈ Γ ∗ be any words. Then we can view w in

the context uwv and Body`(w) appears as a proper factor in the `-factorization
of uwv. More precisely, let F`(uwv) = (u1, w1, v1) · · · (uk, wk, vk). Then there are
unique 1 ≤ p < q ≤ k such that:

F`(uwv) = (u1, w1, v1) · · · (up, wp, vp)Body`(w)(uq , wq, vq) · · · (uk, wk, vk)
w1 · · ·wp = u head`(w) and wq · · ·wk = tail`(w)v

Finally, we note that the above definitions are compatible with the involution.
We have F`(w) = F`(w), Head`(w) = Tail`(w), and Body`(w) = Body`(w).
The `-Transformation. Recall that E0 = (Γ, Ω0, h, ρ0, x1 · · ·xg, xg+1 · · ·xd)
is our equation with constraints. We start with the `-factorization of w0 =
σ(x1 · · ·xg) = σ(xg+1 · · ·xd). Let

F`(w0) = (u1, w1, v1) · · · (uk, wk, vk).

A sequence S = (up, wp, vp) · · · (uq, wq, vq) with 1 ≤ p ≤ q ≤ k is called
an `-factor . We say that S is a cover of a positive interval [α, β], if both
|w1 · · ·wp−1| ≤ α and |wq+1 · · ·wk| ≤ m0−β. Thus, w0[α, β] becomes a factor of
wp · · ·wq. It is called a minimal cover if neither (up+1, wp+1, vp+1) · · · (uq, wq, vq)
nor (up, wp, vp) · · · (uq−1, wq−1, vq−1) is a cover of [α, β]. The minimal cover exists
and it is unique.

We let Ω` = {X ∈ Ω0 | body`(σ(X)) 6= 1 }, and we are going to define a
new left-hand side L` ∈ (B` ∪ Ω`)∗ and a new right-hand side R` ∈ (B` ∪ Ω`)∗.
For L` we consider those 1 ≤ i ≤ g where body`(σ(xi)) 6= 1. Note that this
implies xi ∈ Ω` since ` ≥ 1 and then the body of a constant is always empty.
Recall the definition of l(i) and r(i), and define α = l(i) + |head`(σ(xi))| and
β = r(i) − |tail`(σ(xi))|. Then we have w0[α, β] = body`(σ(xi)). Next consider
the `-factor Si = (up, wp, vp) · · · (uq, wq, vq) which is the minimal cover of [α, β].
Then we have 1 < p ≤ q < k and wp · · ·wq = w0[α, β] = body`(σ(xi)). The
definition of Si depends only on xi, but not on the choice of the index i.

We replace the `-factor Si in F`(w0) by the variable xi. Having done this for
all 1 ≤ i ≤ g with body`(σ(xi)) 6= 1 we obtain the left-hand side L` ∈ (B` ∪Ω`)∗
of the `-transformation E`. For R` we proceed analogously by replacing those
`-factors Si where body`(σ(xi)) 6= 1 and g + 1 ≤ i ≤ d.

For E` we cannot use the alphabet B`, because it might be too large or
even infinite. Therefore we let Γ ′

` be the smallest subset of B` which is closed
under involution and which satisfies L`R` ∈ (Γ ′

` ∪ Ω`)∗. We let Γ` = Γ ′
` ∪ Γ .
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The projection π` : Γ ∗
` → Γ ∗ and the mapping h` : Γ` → M are defined by the

restriction of π` : B` → Γ ∗, π`(u, w, v) = w and h`(u, w, v) = h(w) ∈ M and by
π`(a) = a and h`(a) = h(a) for a ∈ Γ .

Finally, we define the mapping ρ` : Ω` → M by ρ`(X) = h(body`(σ(X))).
This yields the definition of the `-transformation: E` = (Γ`, Ω`, h`, ρ`, L`, R`).
The `-Transformation E` Is Admissible. The proof of the following proposi-
tion uses standard techniques like those in [18] and [9] and it is therefore omitted.

Proposition 2. There is a polynomial of degree four such that each E` is ad-
missible for all ` ≥ 1.

At this stage we know that all `-transformations are admissible. Thus, the
equations E1, . . . , Em0 are nodes of the search graph. What is left to prove is that
the search graph contains arcs E0 → E1 and E` → E`+1 for 1 ≤ ` < `′ ≤ 2`. This
involves again the concept of base change, projection, and shift. But the presence
of constraints does not interfere very much anymore.t Thus, the technical details
are similar to those of Plandowski’s paper [18] as generalized in [9].
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