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Abstract. We consider equational theories of binary relations, in a lan-
guage expressing composition, converse, and lattice operations. We treat
the equations valid in the standard model of sets and also define a hier-
archy of equational axiomatisations stratifying the standard theory. By
working directly with a presentation of relation-expressions as graphs we
are able to define a notion of reduction which is confluent and strongly
normalising, in sharp contrast to traditional treatments based on first-
order terms. As consequences we obtain unique normal forms, decidabil-
ity of the decision problem for equality for each theory. In particular we
show a non-deterministic polynomial-time upper bound for the complex-
ity of the decision problems.

1 Introduction

The theory of binary relations is a fundamental conceptual and methodological
tool in computer science. The formal study of relations was central to early
investigations of logic and the foundations of mathematics [11, 20, 24, 25, 26]
and has more recently found application in program specification and derivation,
[2, 6, 4, 18] denotational and axiomatic semantics of programs, [8, 10, 22, 19]
and hardware design and verification [7, 16].

The collection of binary relations on a set has rich algebraic structure: it
forms a monoid under composition, each relation has a converse, and it forms a
Boolean algebra under the usual set-theoretic operations. In fact the equational
theory in this language is undecidable, since it is possible to encode set theory
[26]. Here we eliminate complementation as an operation, and investigate the set
ER of equations between relation-expressions valid when interpreted over sets,
as well as certain equational axiomatic theories naturally derived from ER.

Now, the most popular framework for foundations and for implementations
of theorem provers, proof-checkers, and programming languages remains the λ-
calculus. It seems reasonable to say that this is due at least in part to the fact
that the equational theory of λ-terms admits a computational treatment which
is well-behaved: ‘b-reduction is confluent, and terminating in typed calculi, so
that the notion of normal form is central to the theory.

To our knowledge, no analogous notion of normal form for terms in ER is
known. In fact the calculus of relations has a reputation for being complex.
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Bertrand Russell (quoted in [21]) viewed the classical results of Peirce and
Schröder on relational calculus as being “difficult and complicated to so great
a degree as to doubt their utility.” And in their recent monograph [4, page 81]
Bird and de Moor observe that “the calculus of relations has gained a good deal
of notoriety for the apparently enormous number of operators and laws one has
to memorise in order to do proofs effectively.”

But in this paper we suggest that a rather attractive syntactic/computational
treatment of the theory of relations is indeed available, at least for the fragment
of the theory not including complementation.

The essential novelty derives from the idea of taking certain graphs as the
representation of relations. These graphs, called here “diagrams,” arise very nat-
urally and have been used since Peirce by researchers in the relation community
(e.g. Tarski, Lyndon, Jónsson, Maddux, etc.); recent formalisations appear in
[12, 1, 7]. What we do here is to take graphs seriously as a notation alternative
to first-order terms, i.e., to treat diagrams as first-class syntactic entities, and
specifically as candidates for rewriting.

One can see diagram rewriting as an instance of a standard technique in
automated deduction. It is well-known that certain equations inhibit classical
term-rewriting techniques — the typical examples are associativity and commu-
tativity — and that a useful response can be to pass to computing modulo these
equations. In Table 1 we exhibit a set ED of equations such that diagrams are
the natural data structure for representing terms modulo ED.

Summary of Results

It is not hard to see that in the absence of complementation equality between
relation-expressions can be reduced to equality between expressions not involving
union, essentially because union distributes over the other operations. So we
ultimately restrict attention to the complement- and union-free fragment of the
full signature (see Definition 1). It is known [1, 12] that the set of equations true
in set-relation algebras in this signature is decidable.

We clarify the relationship between terms and diagrams by showing that the
algebra of diagrams is precisely the free algebra for the set ED of equations
between terms. It is rather surprising that a finite set of equations accounts
for precisely the identifications between terms induced by compiling them into
diagrams.

Freyd and Scedrov [12] isolated the theory of allegories, a finitely axioma-
tisable subtheory of the theory of relations which corresponds to a certain
geometrically-motivated restricted class of morphisms between diagrams. We re-
fine this by constructing a proper hierarchy of equational theories, beginning with
the theory of allegories, which stratifies the equational theory of set-relations.

Our main result is a computational treatment of diagrams via a notion of
reduction. Actually each of the equational theories in the hierarchy induces its
own reduction relation; but we prove uniformly that each reduction satisfies
strong normalisation and Church-Rosser properties. Therefore each theory enjoys
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unique (diagram-) normal forms and decidability. In fact the decision problem
for each theory is in NP , non-deterministic polynomial time.

We feel that the existence of computable unique normal forms is our most
striking result. The virtue of treating diagrams as syntax is highlighted by the
observation that ER is not finitely axiomatisable [15], so no finite term rewriting
system can even claim to correctly present the theory, much less be a convergent
presentation.

In light of the characterisation of the set of diagrams as the free algebra for
the set ED of equations, these results can be seen — if one insists — as results
about rewriting of terms modulo ED. But for us the diagram presentation is the
primary one and is ultimately the closest to our intuition.

Related Work

The case for using a calculus of relations as a framework for concepts and meth-
ods in mathematics and computer science is compellingly made by Freyd and
Scedrov in [12]. They define allegories as certain categories; the structures mod-
eled in this paper are in that sense one-object allegories. One may view this as
the distinction between typed and untyped calculi.

Bird and de Moor’s book [4] is an extended presentation of the application
of relational calculus to program specification and derivation, building explicitly
on the theory of allegories. There, terms in relation calculus are not programs
per se, but the authors do raise the question of how one might execute relation-
expressions [4, page 110]. As noted there, a promising proposal is made by Lipton
and Chapman in [18], where a notion of rewriting terms using the allegory axioms
is presented. It should be very interesting to explore the relationship between
the Lipton-Chapman model and the one presented here.

Brown and Hutton [7] apply relational methods to the problems of designing
and verifying hardware circuits. They observe that people naturally reason in-
formally about pictures of circuits and seek to provide formal basis, again based
on allegories, for such reasoning; their vehicle is the relational language RUBY
used to design hardware circuits. To our knowledge they do not claim decidabil-
ity or normal forms for the theory they implement. An implementation of their
method is distributed at [16].

Two other investigations of graphical relation-calculi are the work of Kahl
[17] and that of Curtis and Lowe [9].

The general topic of diagrammatic reasoning has been attracting interest in
several areas lately (see for example [3]). The present research might be viewed
as a case-study in reasoning with diagrams in the general sense.

Further indication of the range of current investigations into relations and
relation-calculi may be found in, for example, the books [23] or [5] or the pro-
ceedings of the roughly annual RelMiCS conferences.

2 Preliminaries



98 Dan Dougherty and Claudio Gutiérrez

Definition 1. The signature Σ is composed of the binary operations intersection
∩ and composition ; (usually written as concatenation), two unary operations
converse ( )◦ and domain dom, and a constant 1.

When we exhibit terms, the composition is to be interpreted in “diagram-
matic order” so that xy means “x first then y. The operation dom has a natural
interpretation as the domain of a relation, and under this interpretation it is
definable from the other operations as dom x = 1 ∩ xx◦. The inclusion of dom
in the signature is non-traditional, but there is a very good technical reason for
its inclusion, made clear in the remark following Theorem 2.

The standard models are sets and binary relations; the following definition
is from [1].

Definition 2. A (subpositive) set relation algebra is an algebra of the form
〈A,∩, ; , ( )◦, dom, 1〉 where A is a set of binary relations on some base set closed
under the operations, which have the standard relational meaning (1 being the
identity relation).

By R we will denote the class of algebras isomorphic to set relation algebras
and by ER the set of equations valid in R.

Definition 3. A undirected graph g is a pair (Vg , Eg) of sets (vertices and
edges) together with a map Eg −→ [Vg]2, where the elements of [Vg]2 are the
2-element multisets from V . Such a graph is connected if there is a path between
any two vertices. An undirected graph h is a minor of g if h can be obtained from
a subgraph g′ of g by a sequence of contractions of vertices of g′.

The notion of directed graph is obtained by replacing [V ]2 by V × V in the
definition above; note that any directed graph g obviously has an undirected graph
underlying it. A directed graph g is labelled by a set X if there is a function
l(g) : Eg −→ X. We will be interested in this paper in directed labelled graphs
g with a distinguished start vertex sg and a distinguished finish vertex fg. We
allow these to be the same vertex.

For the sake of brevity the term graph will always mean: directed, labelled
graph with distinguished start and finish vertices, whose underlying undirected
graph is connected.

Let G denote the set of such graphs. Strictly speaking the set G depends on
the particular set of labels chosen, but this set will never change in the course of
our work, so we suppress mention of the label-set in the notation. We do assume
that the set of labels is infinite.

A morphism ϕ between graphs g and h is a pair of functions ϕV : Vg −→ Vh

and ϕE : Eg −→ Eh which

– preserves edges and direction, i.e., for all v, w ∈ Vg, if e is an edge in g
between v and w, then ϕE(e) is an edge in h between ϕV (v) and ϕV (w),

– preserves labels, i.e., for all e ∈ Eg, l(e) = l(ϕE(e)), and
– preserves start and finish vertices, i.e., ϕV (sg) = sh and ϕV (fg) = fh.

If it is clear from context, we will simply write ϕ instead of ϕV or ϕE .
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Fig. 1. The distinguished graphs 1, 2a, and 2−1
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Fig. 2. Operations on graphs

2.1 Diagrams for Binary Relations

Here we introduce the central notion of diagram for a relational term. The set of
diagrams supports an algebraic structure reflecting that of relations themselves,
and a categorical structure in which morphisms between diagrams correspond
to equations between relational terms valid in all set relation algebras. This
material is standard and provides a foundation for our work in the rest of the
paper.

There are some distinguished graphs in G. The graph with only one vertex
which is at the same time the start and finish, and no edges, will be denoted by
1. The graph with edge labelled a from the start vertex to the (distinct) finish
vertex is denoted 2a; the graph obtained by reversing the sense of the edge is
2a−1 . (See Figure 1.)

Definition 4. Let g, g1, g2 be graphs in G. We define the following operations
in G (see Figure 2 for a graphical presentation.)

1. The parallel composition, g1‖g2, is the graph obtained by (1) identifying the
start vertices of the graphs g1, g2 (this is the new start), and (2) identifying
the finish vertices of the graphs g1, g2 (the new finish).

2. The sequential composition, g1|g2, is the graph obtained by identifying the
finish of g1 with the start of g2, and defining the new start to be sg1 and the
new finish to be fg2 .
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diamond ringdiamond

s f
s,f

Fig. 3. Some graphs not in D. Note the vertices s, f in each case.

3. The converse of g, denoted by g−1, is obtained from g by interchanging its
start and finish. It is important to note that neither labels nor direction of
edges changes.

4. The branching of g, denoted by br(g), is the graph obtained from g by re-
defining its finish to be the same as the start.

Not every graph in G can be built using these operations. Figure 3 gives two
examples (the edges in these pictures can be directed at will). Further significance
of these graphs is given in Theorem 5.

Definition 5. Let D denote the the set of graphs generated by 1, the 2a, and
the operations of branching and sequential and parallel composition.

The set D is a Σ-algebra in a natural way; Theorem 2 below says more. D
will play a key role in the normalisation process and has interesting properties
in its own right.

Let TΣ(X) be the set of first-order terms over Σ with the labels X as vari-
ables. Then there is a surjective homomorphism

TΣ(X) −→ D, t 7→ gt

defined recursively by g1 = 1, ga = 2a for a ∈ X, gt1;t2 = gt1 | gt2 , gt1∩t2 =
gt1‖ gt2, gt◦ = (gt)−1, and gdom t = br(gt).

We can see the power of diagrams in the following important representation
theorem. Recall that R denotes the class of algebras isomorphic to subpositive
set relation algebras.

Theorem 1 ((Freyd-Scedrov, Andreka-Bredikhin)). Let r, t be terms in
the signature Σ. Then the equation r = t is valid in R if and only if there are
morphisms gr −→ gt and gt −→ gr.

Proof. The relationship between graphs in D and set relation algebras goes as
follows. For an algebra A with base A and relations RA

1 , . . . , RA
n of A define the

graph gA,R̄ to have the set of vertices A and an edge (a, b) with label j for each
(a, b) ∈ RA

j . Observe that gA,R̄ is not necessarily in D. By an induction on terms
it can be proved that for each term t in TΣ(R1, . . . , Rn) and elements a, b ∈ A
it holds (a, b) ∈ tA[R̄] if and only if there is a G-morphism gt −→ gA,R̄ which
takes s to a and f to b.

The statement of the theorems follows now easily. ///
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The strength of Theorem 1 is to reduce equational reasoning in binary rela-
tions to reasoning about graph theoretical morphisms. In particular since dia-
grams are finite one can check whether or not there are morphisms between two
given ones, so we have a decision procedure for equality (in ER).

This result can be improved in at least two directions from a computational
point of view:

– Refine the morphisms in order to stratify the equations, hence possibly get-
ting better computational tools for interesting fragments.

– Investigate rewrite systems and normal forms in this new representation.

We pursue these directions in the following two sections. In fact the devel-
opments are independent of one another, so that the reader interested primarily
in diagram-rewriting can on a first reading proceed directly to Section 4.

3 Terms and Equations as Diagrams and Morphisms

Theorem 1 shows that morphisms between diagrams reflect equations valid in
the theory of binary relations. Unfortunately it puts all these valid equations
in one sack. Experience shows that certain equations appear more often than
others in practice and are in some sense are more fundamental. Our program in
this section is to classify equations by their operational meaning.

3.1 Equational Characterisation of D

x1 = x
x(yz) = (xy)z
x ∩ y = y ∩ x

x ∩ (y ∩ z) = (x ∩ y) ∩ z
x◦◦ = x

(xy)◦ = y◦x◦

(x ∩ y)◦ = x◦ ∩ y◦

1◦ = 1
1 ∩ 1 = 1

(1 ∩ x)(1 ∩ y) = (1 ∩ x ∩ y)
x ∩ y(1 ∩ z) = (x ∩ y)(1 ∩ z)
1 ∩ x(y ∩ z) = 1 ∩ (x ∩ y◦)z

dom1 = 1
(dom x)◦ = domx

dom((x ∩ y)z) = 1 ∩ x(dom z)y◦

dom((dom x)y) = (dom x) ∩ (dom y)

Table 1. The equations ED.

To start with, the class D itself embodies certain equations in the sense that
each graph in D can come from several different terms. It is interesting that
these identifications can be axiomatised by a finite set of equations, ED, shown
in Table 1. The equations in the left column capture the essential properties of
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Fig. 4. Graphs representing some terms in the equations in Table 1. The ones in
the left correspond to the last three equations about 1∩x. The ones on the right
to the last two equations about dom. Observe that in each of these equations
the left- and right- hand side terms are represented by the same graph.

the operators (associativity, commutativity, and the involutive laws for converse),
those in the upper right hand deal with identifications among terms of the form
1 ∩ x, and the rest take care of the identification of terms which contain the
operator dom. All of these equations are trivially valid in D: their left- and
right-hand sides compile to the same diagram.

Theorem 2. D is the free algebra over the set of labels for the set of equations
ED.

Proof. For the non-trivial direction we have to show that if r, t are not provably
equal under ED, then gr 6= gt. This is done by proving that ED can be completed
by a finite number of equations into a confluent and terminating rewrite system
modulo the equations for associativity of composition, AC of intersection and
1∩ x(y ∩ z) = 1 ∩ (x ∩ y◦)z. A complete proof is in [14]. ///

3.2 Equations Capturing Morphisms

Freyd and Scedrov in [12] made the observation (without proof) that D-mor-
phisms which collapse at most two vertices at a time correspond to a simple
and natural equational theory, an abstract theory of relations, the theory of
allegories. Motivated by this idea we introduce a proper hierarchy of equational
theories, stratifying ER in terms of complexity of the morphisms acting on the
data, each of which has a geometric as well as algebraic aspect.

Definition 6. Let ϕ : g1 −→ g2 be an arrow in D. We call ϕ an n-arrow if
|Vg1 | ≤ |V ϕ(g1)| + n.
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x ∩ x = x
x(y ∩ z) = x(y ∩ z) ∩ xy

xy ∩ z = (x ∩ zy◦)y ∩ z.

Table 2. The operational equations

x
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x
s f

s
x

y

z f z

x

x
s f

x y

z

x

y

z

z
s s ff

y

y

Fig. 5. The graph representations of the equations in Table 2.

Note that in general the composition of n-arrows is not an n-arrow. This
motivates the following definition.

Definition 7. Let n ≥ 0 be a natural number.

1. The category Dn is the category whose objects are the graphs in D, and whose
arrows are finite compositions of n-arrows in D.

2. The theory En
R is the set of equations r = t between Σ-terms such that

gr −→ gt and gt −→ gr in Dn.

We have the following chain of inclusions of categories: D0 ⊆ D1 ⊆ · · · ⊆ D.
It can be shown that if n ≥ 1 then En

R is closed under deduction. So we have a
hierarchy of equational theories E0

R ⊆ E1
R ⊆ · · · ⊆ ⋃

i Ei
R.

Theorem 1 can now be rephrased as ER =
⋃

i Ei
R.

The equational theory of allegories is presented by the axioms in the left
column of Table 1 plus the ones shown in Table 2. These last three equations
correspond (in the sense of Theorem 1) to 1-arrows over graphs in D, as can
be checked from the graphical representation in Figure 5. The next theorem
formalises the converse statement i.e., that they are sufficient to axiomatise the
equations obtained from 1-arrows.

Theorem 3. E1
R is exactly the equational theory of allegories.

Proof. The proof is delicate and we do not present it here; a complete proof can
be found in [14]. ///
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Theorem 4. For each n ≥ 2 it holds E2n−1
R ⊂ E2n

R (the inclusion is proper).

Proof. An adaptation of the technique in [12, 2.158] showing that ER is not
finitely axiomatisable. ///

Unfortunately we do not know yet know much more about each of the steps
in the hierarchy. But we conjecture that E1

R = E2
R = E3

R. We also conjecture
that for every n ≥ 2, the equational theory En

R is finitely axiomatisable. We do
not know the answer to the question: “is E2n

R = E2n+1
R for n ≥ 1?”

4 Normalisation

This section presents a very general combinatorial lemma concerning the set
of functions over finite structures viewed as an abstract reduction system. It is
most conveniently presented using the language of categories, but no more than
rudimentary category theory is required for the presentation. The material in
this section is condensed from [13].

In this section juxtaposition denotes composition of arrows in a category, and
is to be read in the standard way, so that fg means “g first.” We use A ∼= B to
indicate that A and B are isomorphic.

Definition 8. Let C be any category, and A, B objects of C. Define the relation
� between objects of C as follows:

A � B if and only if there are arrows A −→ B and B −→ A.

Clearly � is an equivalence relation. Our goal is to find simple conditions
which make the relationship � decidable.

The following notion is motivated by the observation that a (set-theoretic)
function f between sets A and B can be seen as an map onto its image f(A)
followed by the inclusion of f(A) into B.

Definition 9. An arrow m is mono if whenever ma = mb then a = b. An arrow
e is epi if whenever ae = be then a = b.

An arrow A
f−→ B has an epi-mono factorisation if there exist arrows e epi

and m mono such that f = me. A category C has epi-mono factorisation if every
arrow in A has such a factorisation.

Definition 10. An object A is hom-finite if the set Hom(A, A) of maps from
A to A is finite. A category C is hom-finite if each object of C is hom-finite.

Of course any concrete category of sets of finite objects will be hom-finite.
In particular, the categories G, D and Dn for each n are each hom-finite.

Lemma 1. Suppose that A is hom-finite. If m : A −→ A is a monomorphism,
then m is an isomorphism. Also, If there are monomorphisms m1 : A −→ B and
m2 : B −→ A, then A and B are isomorphic.
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Proof. For the first assertion: consider the monomorphisms m, m2, · · · : A −→ A.
Because A is hom-finite, there are integers i < j such that mi = mj . Now, using
the fact that m is mono, 1A = mk for k = j − i. Thus m is a monomorphism
with a right inverse; this implies that m is an isomorphism.

For the second claim: we have that m2m1 : A −→ A is mono, hence, by the
first part it is an isomorphism. Hence there exists f with m2m1f = 1A. Thus m2

is a monomorphism with a right inverse; this implies that it is an isomorphism.
///

Definition 11. Let A, B be objects in a category C. Define A =⇒ B if and only
if B is both (the target of) a quotient- and (the source of) a sub-object of A; that
is, there is an epimorphism e and a monomorphism m such that

A
e−→ B

m−→ A.

We also require that e not be an isomorphism.
By ∗=⇒ we will denote the reflexive-transitive closure of =⇒, where reflexivity

is defined up to isomorphism. Thus A
∗=⇒ B means either A ∼= B or there is a

finite sequence A =⇒ C1 =⇒ · · · =⇒ Cn =⇒ B.

Lemma 2. If A is hom-finite then there are no infinite =⇒-reductions out of
A.

Proof. For sake of contradiction suppose there were such a sequence. For each i
we have maps Ai

ei−→ Ai+1
mi−→ Ai, and so we may define ai = m1 · · ·miei · · ·e1 :

A→A. Since A is hom-finite there are i < j with ai = aj . Cancelling the monos
on the left and the epis on the right, we have 1A = mi+1 · · ·mjej · · ·ei+1. This
implies that ei+1 is iso, a contradiction. ///

Observe that A
∗⇐⇒ B implies that A � B. The converse need not be true

in general, but the next result provides a strong converse in certain categories.

Proposition 1. Suppose C is a hom-finite category with epi-mono factorisation.
Then if A � B, then there exists C such that A

∗=⇒ C
∗⇐= B.

Proof. The proof is by Noetherian induction over =⇒, out of the multiset {A, B}.
We are given A

f−→ B
g−→ A. If both f and g are mono then by Lemma 1 A

and B are isomorphic and we may take C to be A. Otherwise, by symmetry we
may suppose f is not mono without loss of generality. Factor the arrow gf as
epi-mono, obtaining: A e−→→ X

m
↪→ A. Now, e is not mono, otherwise gf would be,

contradicting the assumption that f is not mono. In particular e is not iso, and
so A =⇒ X. Since X � B we may apply the induction hypothesis to {X, B},
obtaining C with A =⇒ X

∗=⇒ C
∗⇐= B as desired. ///
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The previous results imply that the relation =⇒ is a terminating and con-
fluent abstract reduction system capturing the equivalence relation �:

Corollary 1 ((Normal Forms for �)). Suppose C is a hom-finite category
with epi-mono factorisation.

If A � B, then there is a C, unique up to isomorphism, such that A
∗=⇒ C

and B
∗=⇒ C and C is =⇒-irreducible.

Proof. By Lemma 2 we may let C and C ′ be any =⇒-irreducible objects such
that A

∗=⇒ C and B
∗=⇒ C ′ respectively. Then C � C ′. But Proposition 1 and

the irreducibility of C and C ′ imply that C and C ′ are isomorphic. ///

Observe that in the preceding Corollary we have A � C and B � C. Also
note that by taking B to be A we may conclude that for each A there is a C,
unique up to isomorphism such that A

∗=⇒ C and C is =⇒-irreducible. We refer
to such a C as a“=⇒-normal form for A”.

5 Normal Forms for Diagrams

We want to apply the results of the previous section to the categories D and
Dn. The following facts about D and each Dn are easy to check: (i) a map is
epi if and only if it is surjective on vertices and on edges, and (ii) a map is an
isomorphism if it is bijective on vertices and on edges. The next result is deeper;
a proof can be found in [14].

Theorem 5. Let g ∈ G. Then g is in D if and only if the underlying undirected
graph of g does not have diamond and diamond ring (see Figure 3) as minors.

In particular, the set of graphs D is closed under the formation of subgraphs,
i.e., if g ∈ D and h is a connected subgraph containing sg and fg then h ∈ D.

Observe that the categories Dn have the same objects as D so the above
theorem applies immediately to the Dn. Theorem 5 is crucial in verifying that
Dn supports the techniques of the previous section.

Proposition 2. The categories D and each Dn are hom-finite and has epi-mono
factorisation.

Proof. The first assertion is easy to see. For the second, let ϕ : g1 −→ g2 be an
arrow in Dn. Then the graph ϕ(g1) is a subgraph of g2 ∈ D, hence by Theorem 5

it is also in D. So we have g1
ϕ′
−→ ϕ(g1)

i−→ g2, where ϕ′ and i are epi and mono
respectively. ///
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Fig. 6. A graph in D (top) and possible reductions. Observe that the reduction of
the graphs in the middle to a common graph (bottom) depends on the existence
of the operator br (dom).

Remark. It is precisely here that we see the benefit of our extended signature.
The class of diagrams built over the traditional signature — without dom —
does not have epi-mono factorisation, due to the fact that it is not closed under
subgraphs. Figure 6 shows this by example.

We can now present our main results.

Theorem 6. Let C be either D or one of the Dn.
If g � h then there is a k, unique up to isomorphism, such that g =⇒ k and

h =⇒ k and k is =⇒-irreducible.
For each graph g, there is a graph nf(g) such that nf(g) is =⇒-irreducible

and such that for any h, g � h in C if and only if nf(g) ∼= nf(h). The graph
nf(g) is unique up to isomorphism.

Proof. This is an immediate consequence of Corollary 1 and Proposition 2. ///

It is important to note that the notions � and =⇒ in the previous Theorem
are taken relative to the category (D or Dn) one has chosen to work in.

Theorem 7. For D and for each Dn the relation � is decidable in non-deter-
ministic polynomial time. Each theory En

R is decidable in non-deterministic poly-
nomial time.
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Proof. Decidability follows from the previous results and the fact that =⇒ is
computable. To get the NP upper bound we examine the complexity of reduction
to normal form. If A =⇒ A′ then the sum of the number of vertices and edges
of A must exceed that of A′, since epimorphisms are surjections and bijections
are isomorphisms (and we know the map from A to A′ is not an isomorphism
by definition). So any reduction of a diagram A to normal form takes a number
of steps bounded by the size of A. So to test whether A � B we can generate
sequences of morphisms reducing each of A and B — not necessarily to normal
form — and test that the results are isomorphic. The latter test is of course itself
in NP .

The second assertion follows immediately from the definition of En
R. ///

6 Conclusion

We have examined the equational theory ER of binary relations over sets and
a family En

R of approximations to this theory. The theory E1
R is Freyd and

Scedrov’s theory of allegories. By working with a natural notion of diagram for
a relation-expression we have defined a notion of reduction of a diagram which
yields an analysis of the theories above. A surprisingly important aspect was the
inclusion of a “domain” operator in the signature: the corresponding operation
is definable in terms of the traditional operations, but the class of diagrams for
the enriched signature has better closure properties.

Since each notion of reduction of diagrams is terminating and confluent, we
may compute unique normal forms for each of the theories. Each theory is there-
fore decidable and in fact normal forms can be computed in non-deterministic
polynomial time.

The decidability of En
R is reminiscent of the decidability of ER, but has been

more difficult to establish. This is because although equality in ER is witnessed
by any pair of graph morphisms between diagrams, equality in En

R is witnessed
by a sequence of restricted morphisms. The length of this sequence could be
bounded only after our work relating � and =⇒.
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[23] G. W. Schmidt and T. Ströhlein. Relations and Graphs: Discrete Mathematics

for Computer Scientists. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1993.
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