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Abstract. The exponent of periodicity is a key parameter used in all
currently known algorithms for solving word equations. A lower bound
for it is 2c|E|, where |E| is the length of the equation E. We prove that
in fixed dimension, i.e., when the variables belong to a fixed set V , the
exponent of periodicity can be bound by a polynomial p(|E|) of degree
no more than thrice the size of the set V .

1. Introduction

Traditional analysis of the complexity of solvability of word equations
has been done by considering the length of (number of symbols occurring
in) the word equation as parameter. Studies using finer parameters, like the
number of variables, number of occurrence of variables, have been done for
particular cases (one variable [6], two variables [5], each variable occurring
no more than twice [2], total number of occurrences of variables fixed [3]). It
has been conjectured that satisfiability of word equations in fixed dimension
is tractable, very much like the case of integer programming, word matching,
disjoint paths, etc.

The exponent of periodicity of a word equation E is a key parameter used
in all currently known algorithms for solving word equations (see e.g. [3],
[7]) and as Koscielski and Pacholski showed in [4], a lower bound for it is

20.29|E|, where |E| is the number of symbols occurring in E.
We prove in this paper that the exponent of periodicity of word equations

E in fixed dimension (i.e., with variables in a fixed set V ) is bounded by a
polynomial p(|E|) of degree no more 3|V |, where |V | is the size of the set V .

The proof goes as follows: first, a system of linear diophantine equations
Σ(E;S) is associated to each solvable word equation E and minimal solu-
tion S, with the property that minimal solutions of Σ(E;S) correspond to
minimal exponent of periodicity of the solution S (an idea going back to
Bulitko [1]). Then we transform the system to get another one with bet-
ter parameters and similar bounds on their solutions. Finally, we use some
standard bounds on minimal solutions of linear diophantine equations.

2. Preliminaries and Definitions

Given two alphabets, C of constants and V of variables, a word equation
E is a pair of words U, V (usually written U = V ) in the alphabet C ∪ V.
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A solution of E is a map V −→ C∗ such that the word S(U) obtained by
replacing each variable x occurring in U by S(x) is equal to S(V ).

The exponent of periodicity of a word W is the maximum number n such
that it can be written W = UV nZ, for words U, V, Z with V not empty.
The exponent of periodicity of a solution S of a word equation E : U = V is
the exponent of periodicity of S(U).

Definition 1. Let W be any word, and P a primitive word (i.e. P cannot
we written as P = V n for every word V and integer n ≥ 2). A P -stable
sequence for W is a sequence of words W0, . . . ,Wn such that

(1) W = W0P
k1 · · ·P knWn,

and:

(1) P 2 is not a subword of Wi for i = 0, . . . , n.
(2) Wi 6= P for 0 < i < n.
(3) P is a suffix of Wi for i < n.
(4) P is a prefix of Wi for 0 < i ≤ n.

The right hand side of (1) is called a P -stable presentation of W .

It is not difficult to prove that a word W has a unique P -presentation (cf.
Lemma 2.8 in [4]). The n of such a P -stable presentation of W is called the
P -order of W .

To the P -stable presentation of the word W in (1) is associated the pa-
rameterized word

W [λ1, . . . , λn] = W0P
λ1W1P

λ2 · · ·P λnWn,

where λ1, . . . , λn represent non-negative integer variables. We will call λ1

and λn boundary parameters, and λ2, . . . , λn−1 internal.

3. A system of linear diophantine equations (LDE) associated
to the word equation E

Consider the word equation E : U = V , with U = U0 · · ·Uu and V =
V0 · · ·Vv, a solution S(U) = S(V ), and a fixed primitive word P . We have
on one hand the parameterized word associated with the P -stable decom-
position of S(U),

(2) S(U)[L1, . . . , Ln] = U0P
L1U1P

L2 · · ·PLuUu,

which, by the way, is the same as that of S(V ).
On the other hand, we get another parameterization of S(U) by using

S(U) = S(U0) · · ·S(Uu) and the parameterized words associated to each
S(Uj), namely S(Uj) = Uj0P

αj1 · · ·PαjujUjuj ,

(3) S(U0)[α01, . . . , α0u0 ]S(U1)[α11, . . . , α1u1 ] · · ·S(Uu)[αu1, . . . , αuuu ]

= S(U)[α01, . . . , α0u0 , α11, . . . , α1u1 , . . . , αu1, . . . , αuuu ].

When S(Uj) has P -order 0 we assume that the corresponding set of param-
eters αj1, . . . , αjuj does not appear.
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How do the parameters of the expressions (2) and (3) relate?

Lemma 1. Each Lj correspond exactly to one of the following cases:

(4) Ll = αij ,

or

(5) Ll = αpup + c(p, j1) + αj11 + c(j1, j2) + · · ·+ αjm1 + c(jm, q) + αq1,

where p < j1 < · · · < jm < q and:

(1) αpup is the last parameter of S(Up).
(2) αq1 is the first parameter of S(Uq).
(3) For i = 1, . . . ,m, the words S(Uji) have P -order 1.
(4) c(i, j) is given by the equation

P c(i,j) = UiuiU(i+1)0 · · ·U(j−1)0Uj0

where S(Ui+1), . . . , S(Uj−1) are of P -order 0.
(5) The parameters αpup or αq1 (or both) could not appear. If αpup does

not appear, then S(Up) is of P -order 0 and c(p, j1) is given by the
equation

P c(p,j1) = WsU(p+1)0 · · ·U(j1−1)0Uj10,

where Ws is a proper suffix of S(Up) and S(Up+1), . . . , S(Uj1−1) are
of P -order 0. A symmetric analysis holds if αq1 does not appear.

Proof. For each Lj there are only two possible cases:
(i) The occurrence of PLj fits completely inside one S(Ui). In this case,

from the definition of P -stability, obviously we will have an equation like
(4).

(ii) The occurrence of PLj covers several adjacent words S(Uj). Suppose
that S(Up)S(Up+1) · · ·S(Uq) is the smallest set of consecutive words S(Uj)
which cover PLj Also recall that the P -stable presentation of S(Uj) is given
by:

S(Uj) = Uj0P
αj1 · · ·PαjujUjuj .

From here the conditions 1 and 2 follow immediately.
For 3, 4 and 5 observe that because for each p < j < q, S(Uj) is a subword

of PLj (our choice of minimality of the sequence) all such S(Uj) are of P -
order either 0 or 1. By grouping adjacent S(Uj) of P -order 0 and using the
definition of P -stability we get the decomposition of (5). �

Observe that a similar analysis (which we will skip) holds for the P -stable
presentation of S(V ),

(6) V0P
L′
1V1P

L′
2 · · ·PL′

vVv.

Lemma 2. The coefficients of L in (5) are bounded as follows:

(1) m ≤ q − p ≤ |E|.
(2)

∑
c(i, j) ≤ 2|E|.
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Proof. Item 1 follows directly from the definitions of m and of p, q in the
proof of Lemma 1.

Item 2 is a consequence of conditions 4 and 5 of Lemma 1 and the fact
that each S(Uk) of P -order 0 cannot have PP as subword. So

∑
c(i, j) is

no bigger than twice the number of symbols in E. �

3.1. The associated system of LDE. From the above data we will build
the system Σ(E;S) of LDE associated to the solvable word equation E, a
minimal solution S, and a primitive word P as follows:

(1) Observe that for every symbol Ui and Vj denoting the same variable
x, S(Ui) (resp. S(Vj)) is the same word (so, same P -stable represen-
tation). Hence we can use the same set of variables, say λx1 , . . . , λ

x
nx

for each of these occurrences.
(2) Because S is a solution, S(U) = S(V ). So it follows that u = v and

we get the following set of LDE:

(7) L1 = L′1, · · · , Lu = L′v.

(3) The final system Σ(E;S) of LDE is got by replacing the Lj by the
corresponding right hand side of (4) or (5), and similarly for the L′j .

For a system Σ of LDE and solutions u = (u1, . . . , un) and v = (v1, . . . , vn)
of it, define u ≤ v if ui ≤ vi for each i = 1, . . . , n. A solution u of Σ is minimal
if there are no other solutions v with v < u.

Lemma 3. Every solution in non-negative integers to Σ(E;S) gives a so-
lution to the word equation E. Moreover, the exponents associated to the
P -stable presentation of S(U) = S(V ) give a minimal solution to Σ(E;S).

Proof. The first statement is clear. For the second, suppose it is not minimal.
Then there is a smaller solution to Σ(E;S). The replacement of this smaller
solution into the parameterized words where they came from gives a smaller
solution to the word equation E, in contradiction with the choice of S. �

We are looking for good bounds on the size of exponent of periodicity of a
minimal solution of a word equation. From the above lemma, this translates
into looking for good bounds for the size of a minimal solution to L(E;S).

4. Getting better parameters for Σ(E;S)

We will modify the system Σ(E;S) to get a system of LDE with good
parameters. From here on, by solution of a system of LDE we will always
mean non-negative integer solution. We need some definitions first.

For a system Σ of LDE, define the size of a solution u = (u1, . . . , un) as
||u|| =

∑
i |ui|, and

||Σ|| = max{||u|| : u is a minimal solution of Σ }.
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The number ||Σ|| is a uniform bound on the size of all minimal solutions.
That it is well defined follows from the fact that the set of minimal (non-
negative) solutions of a system of LDE is a finite set (a finitely generated
sub-monoid of Nn in the case of homogeneous systems of LDE).

There are three types of equations L = L′ in Σ(E;S), depending on if L
and L′ are of the form (4) or (5):

(1) Both of type (4). The equation is λ = λ′.
(2) One of each type (w.l.o.g. suppose L = λ). The equation is then of

the form λ = L′, with L′ of type (5).
(3) Both of type (5).

First, observe that the equations in 1 define certain equivalence classes
Ei of variables, two variables λ, λ′ being in the same class if λ = λ′ is an
equation in 1. Pick one representative of each class, and define Σ1 as those
equations in Σ(E;S) of the form 2 and 3 after replacing all the variables of
each class Ei by its corresponding representative. Observe that

(8) ||Σ(E;S)|| = ||Σ1||,
and Σ1 does not have equations of type 1.

Second, define Σ2 as follows: For each λ, list all equations of type 2 of
Σ1, namely λ = Li1 , . . . , λ = Liq , and replace them by Li1 = Li2 , Li1 =
Li3 , . . . , Li1 = Liq . So Σ2 has only equations of type 3, i.e., of the form
L = L′, where L and L′ are of the form (5). As for the parameters of Σ2 we
have:

Lemma 4. Let the system Σ2 be AX = B. Then it holds:

(1) Σ2 has no more than 2|V | variables.
(2) |bj | ≤ 2|E|+ 4.
(3) |aij | ≤ 4|E|.
(4) ||Σ1|| ≤ (|E|+ 2)||Σ2||+ 2|E|.

Proof. 1. First note that if Ui is a symbol of constant in the word equation
E, then S(Ui) is of P -order 0, hence generates no variables for Σ(E;S)
(hence for Σ2). Similar analysis hold for symbols Vj . We can conclude that
the only variables that count are those arising from symbols of variables in
E. Because Σ2 has only equations of the form L = L′ with L,L′ as in (5),
it is enough to analyze (5). For each such L, there occur only boundary
variables (one final, αpup , and one initial, αq1) and variables arising from
S(Uj) of P -order 1. Hence the total number of variables is no bigger than
twice the number of S(Uj) (or S(Vj)) of P -order ≥ 2 (for the initial and
final boundary variables) plus the number of S(Uj) (or S(Vj)) of P -order 1.
It is easy to see than 2|V | is a good bound.

2 and 3. For each L as in (5), group all constant coefficients and identical
variables in it. Then the constant coefficients are no bigger than

∑
c(i, j),

and a variable cannot occur more than m + 2 times, hence the factors of
the variables cannot be bigger than m + 2. In the equation L = L′, these
bounds will at most be doubled. Then use Lemma 2.
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4. As for the size of the minimal solutions, observe that each solution s
of Σ2 can be extended to one of Σ1 by using the equations λ = Lij for the
variables of Σ1 not in Σ2. Hence it holds ||Σ1|| ≤ (m+ 2)||Σ2||+

∑
c(i, j).

From here, the bounds follow using Lemma 2. �

The next lemma shows that there is a system of LDE equivalent to Σ2

whose rank is no more than its number of variables.

Lemma 5. Let Σ be a system of linear diophantine equations with M equa-
tions and N variables, and suppose that Σ has a non-negative solution. Then
there is a subsystem Σ′ ⊆ Σ with no more than N equations such that s is
a solution of Σ iff s is a solution of Σ′.

Proof. Let Σ be AX = B with A = (aij) and M × N matrix, and B =
(b1, . . . , bM ), and consider the tuples Ai = (ai1, . . . , aiN ) as vectors in QN .
There are at most N linearly independent, w.l.o.g. suppose A1, . . . , AN . Let
A′ the matrix with these rows, B′ = (b1, . . . , bN ) and let Σ′ be A′X = B′.

Because Σ is solvable there is S0 with AS0 = B. Hence, for every Ak with
k > N , it holds Ak =

∑
βkiAi for certain βki, so

bk = AkS0 = (
∑

βkiAi)S0 =
∑

βki(AiS0) =
∑

βkibi.

Now, obviously every solution of Σ is a solution of Σ′. Conversely, let S =
(s1, . . . , sN ) be a solution of Σ′ and k > N . Then

AkS = (
∑

βkiAi)S =
∑

βki(AiS) =
∑

βkibi = bk.

Hence AS = B, so S is a solution of Σ. �

5. Bounds for minimal solutions of Σ(E;S)

We will use the following theorem which bounds uniformly the minimal
solutions of homogeneous LDE.

Theorem 1 (Pottier, [8]). Let Σ : AX = 0 be a system of homogeneous
linear diophantine equations. Then

||Σ|| ≤ (1 + ||A||1,∞)rankA,

where ||A||1,∞ = supi{
∑

j |aij |}.

A similar result holds for non-homogeneous system of linear diophantine
equations. In fact, from the above theorem we get:

Corollary 1. Let AX = B be a system of non-homogeneous linear diophan-
tine equations. Then

1 + ||Σ|| ≤ (1 + ||C||1,∞)rankC ,

where C is the matrix whose rows are (ai1, ai2, . . . , ain,−bi).
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Proof. We can assume that B 6= (0, . . . , 0)t. Consider the homogeneous
system CX ′ = 0, where X ′ = (x1, . . . , xn, z). We only need to prove that if
(s1, . . . , sn) is a minimal solution of AX = B, then s = (s1, . . . , sn, 1) is a
minimal solution of CX ′ = 0.

Suppose that this is not the case. Then there must be a solution s′ < s of
CX ′ = 0 of the form s′ = (s′1, . . . , s

′
n, 1) with s′i ≤ si for all i and s′j < sj for

some j (a key point is that the last component cannot be zero). But then
(s′1, . . . , s

′
n) is a solution of AX = B, in contradiction with the minimality

of s. �

Finally we can present the main result of the paper:

Theorem 2. The minimal solutions of Σ(E;S) are uniformly bounded as
follows:

||Σ(E;S)|| ≤ (8|V ||E|)2|V |+1 + smaller terms

Proof. The texts in parenthesis refer to what result was used.

||Σ(E;S)|| = ||Σ1|| (Eq. 8)

≤ (|E|+ 2)||Σ2||+ 2|E| (Lem 4)

≤ (|E|+ 2)((1 + ||C||1,∞)rankC − 1) + 2|E| (Cor 1)

≤ (|E|+ 2)((1 + 8|V ||E|)2|V | − 1) + 2|E| (Lem 4, 5)

�

Corollary 2. The exponent of periodicity of a minimal solution of a word
equation E is bounded by a polynomial p(|E|) of degree no bigger than 2|V |+
1, where |V | is the number of different variables in E.
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