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Abstract .  We present a further simplification of Makanin's algorithm, 
still the only known general procedure for solving string equations. We 
also give pseudo-code, a thorough analysis of its complexity, and com- 
plete proofs of correctness and termination. 

1 Introduction 

Checking if two strings are identical is a rather trivial problem. Theoretically it 
corresponds to solving an equation with both sides constant. For example, are 
these strings equal? 

ababababbbbabaaabbbba ~ ababababbbababaaabbbba 

Finding patterns in strings is slightly more complicated. This corresponds to 
solving equations in strings, one of whose sides is a constant , the text, and the 
other contains patterns (variables). For example, are there strings sl and s2 in 
the alphabet ~a, b} such that  when replacing x by sl and y by s2 in 

? 

xxabxby - abaabababaaabbababababa 

you get the same string on both sides? Equations of this kind are not difficult 
to solve. Indeed, many cases of this problem have very efficient algorithms and 
are the subject of the field of pattern matching (see [2]). 

Finding solutions to equations in strings in general (i.e. where both sides 
contain variables) is a surprisingly difficult problem. I Try to find a solution to 
this simple equation (or show it has none): 

xa by bybyx 
Partial solutions to this problem were known long ago: in the seventies Lentin [7], 
Plotkin [11] and Siekmann [12] gave semi-decision procedures (which give a so- 
lution if the equation has one, but if not, could run forever). In 1971, Hmelevskii 
[6] solved the problem for equations in three variables. 

1 The current bound on its time computational complexity is 0(2221~1 ) where ]E I is the 
length of the equation s Other anecdotal numbers: The paper in which Makanin pre- 
sented the algorithm for the first time has 70 pages; later simplified versions (Jaifar, 
Schulz) have more than 30 pages each. Also there have been at least two Ph.D. theses 
[1], [10], studying this algorithm, possible simplifications and implementations. 
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In 1977 Makanin [8] solved the problem in its complete generality giving us 
the first (and still the only known) algorithm to find solutions for arbitrary string 
equations. It was later extended by Jalfar [5] to give all possible solutions to an 
equation as well. In the meantime, there has been some work simplifying various 
aspects of the algorithm and even some implementations [10], [1], [14], [13]. 

The problem of solving equations in (equationally defined free) algebras is a 
well-established area in computer science called Unification, with a wide range 
of applications (see [3]). Solving equations in strings has potential applications 
in many areas e.g. string unification in PROLOG-3, extensions of string rewrite 
systems, unification in some theories with associative non-commutative oper- 
ators, which, due to the current state of the art of the problem, are still of 
no practical use. This highlights the importance of studying the only currently 
known general algorithm for solving string equations, its complexity and possible 
improvements. 

Makanin's original paper focused on proving that the question "Does the 
word equation C has a solution?" is decidable. He was not interested in ei- 
ther complexity or implementation. Afterwards P~cuchet, Abdulrab, JalIar and 
Schulz, among others, simplified some of the technicalities of the algorithm and 
its proof of correctness and termination, and started to approach the problem 
from a computational point of view. On the other hand, Jaffar, Ko~cielski and Pa- 
cholski started a systematic study of its complexity. In this paper, we present one 
more step towards its simplification which also gives better complexity bounds. 

First, we introduce a substantially simpler data type for the concept of gen- 
eralized equation which considerably simplifies the algorithm, making it more 
understandable and allowing shorter and simpler proofs of the correctness and 
termination of the algorithm (compare [5], [13]). 

Secondly, we introduce the associated Diophantine equations for an equation, 
which prune the search tree significantly, and by itself could possibly give another 
approach to solve string equations. 

Third, we give a thorough analysis of the complexity of the algorithm, ob- 
taining smaller bounds (although still in the same complexity class) than Jaffar's 
[5] (on which [13] and [9] are based). 

Last, but not least, we include complete proofs of correctness and termi- 
nation, and present for the first time pseudo-code ready to be implemented in 
any language. Finally let us say that our presentation owes much to Schulz [13], 
particularly in Sect. 4. We use the terms word and string interchangeably. 

2 W o r d  E q u a t i o n s :  b a s i c  c o n c e p t s  a n d  e x a m p l e s  

Definition 1. Let C = {a l , . . . , a r}  be a finite set of constants, and V = 
{Vl,V2,...} be an infinite set of variables. A word w over d U 1; is a (possi- 
bly empty) finite sequence of elements of C U 1;. The length of w, denoted Iwl, 
is the length of the sequence. The exponent o/ periodicity of a word w is the 
maximal number p such that w can be written as uvPz for some words u, v, z 
with v non-empty. 
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A word equation C is a pair (wl, w2) of words over C t9 P, usually written as 
Wl = w2. The number 161 = Iwl] + Iw2[ is the length of the equation 6. Note that  
in ~ only a finite number of variables occur, let us say X = ( x t , . . . , x n }  C_ l~. 
A unifier of s is a sequence U = (?-71,... ,On) of words over C U l) such that  
both sides of the equation become graphically identical when we replace all 
occurrences of xi by Ui, for each i = 1 , . . . ,  n. The exponent of periodicity of the 
unifier U is the maximal exponent of periodicity of the words Ui. 

It is very convenient to have a graphical idea of word equations. Consider the 
equation xaby = ybax. The variables x, y represent unknown words. Graphically, 

xaby will be represented as ~ J  where the length of the horizontal line 
in each case is unknown, except those of the constants which are always of unit 
length. The vertical lines will be called boundaries. In this representation, the 
equation has a solution if there is a way of consistently overlapping both sides 
of it such that  the words (represented by segments of horizontal lines) between 
boundaries are the same. In general, there may be many such overlappings. 
Below we show two possibilities among many others (we draw the variables in 
different levels in order to highlight the limits of each variable): 

y a 
b 

(a) (b) 

b 
a 

I I 

The next step is to replace equals by equals (elimination of variables) from left 
to right, e.g. in case (a) we can replace y = xa in the other occurrence of y. After 
this, we have to guess the order of some boundaries again, and so on. 

This example contains the basic idea at the heart of the algorithm: (i) guess 
an ordering of the boundaries, that is, which comes first, which second, and so 
on, for all the initial boundaries on both sides of the equation, and (ii) proceed 
from left to right replacing equals by equals. 

But this naive recipe has some problems: (1) the number of occurrences of 
some variables starts growing after replacement, (2) what to do in cases where 
there is no evident replacement (cf. example (b) above), and (3) you can go on 
forever (cf. the equation xa --" ax). That is why a more elaborate idea is needed. 

The starting point is to build, for each word equation, an arrangement like 
the above. It is convenient (to avoid problem 1) to work with an equivalent 
system of equations in which each variable occurs no more than twice. Note 
that this is always possible. Consider for example the equation bxyx = yaxz. 

It is equivalent to bxlyxl = yax2z and xl = x2. One possible arrangement of 
boundaries will look like 
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Y 3:2 
a 

Xl 
X2 

Z 

Z 

(1) 

Note that  Xl = x2 can be easily expressed in the same arrangement (see the 
last two columns). It also will be convenient to have exactly two copies of each 
variable in the arrangement (that is why we put one more copy of z on top of it 
in the last column). This presentation of a word equation is the starting point 
of Makanin's algorithm. 

3 G e n e r a l i z e d  E q u a t i o n s  

The main concept in Makanin's algorithm is that  of Generalized Equation, essen- 
tially a data-type that  codifies arrangements as those shown above. The version 
presented here differs somewhat from the classical ones [8], [5], [13], allowing a 
considerably simpler algorithm. 

Def in i t i on  2. A generalized equation GE consists of 

(1) Two finite sets C and X, the labels. 
(2) A finite linear ordered set (BD, ~_), the boundaries. 
(3) A finite set B S  of bases. A base bs has the form (t, ( e l , . . . ,  en)), where n >_ 2, 

t E C U X,  and EbB = ( e l , . . .  ,en) is a sequence of boundaries ordered by _~. 

subject to the following conditions: 2 

(C1) For each z E X, there are exactly two bases with label x, called duals, and 
(abusing notation) denoted by x and ~ respectively. Also, their respective 
boundary sequences Ez, E~ must have the same length. 

(C2) For each base bs with t E C, the boundary sequence Ebs has exactly two 
elements and they are consecutive in the order ~.  

Some definitions and conventions to ease the notation: A base bs = (t, Ebs) is 
called constant if t E C, and variable if t E X. The first element in EbB is called 
the left boundary of the base, denoted LEFT(bs), and the last, the right boundary, 
RIGHT(b8). 

2 The data above is intended to represent arrangements like 1. So we must impose 
some additional conditions. (C1) says that we have exactly two occurrences of each 
variable. The boundary sequences are to record known information about identical 
columns in these pairs of variables. Intuitively they are coding 'the word between 
column el and ej is equal to that between ~i and ~j'. (C2) says that constants have 
length 1. 
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Letters z, y, z will be used as meta variables for variable bases. Also let- 
ters i , j , . . ,  will denote boundaries. A pair (i , j)  of boundaries with i < j 
is called a column of GE. Columns (i, i) are called empty; columns (i, i + 1) 
are called indecomposable. The column of a base bs is defined as col(bs) ---- 
(LEFT(b8), RIGHT(b8)). A base is empty if its column is empty. A generalized 
equation is solved if all its variable bases are empty. 

Definit ion 3. A unifier of GE is a function U that  assigns to each indecom- 
posable column of GE a word over C tJ V (extend it by concatenation to all 
non-empty columns of GE) with the following properties: 

(1) For each constant base bs of label c, U(col(bs)) = c. 
(2) For every pair of dual variables x ,$ ,  and for every ej 6 Ex, U(el,ej) = 

U(~I, ~j) (recall el, t j  E E~). In particular U(col(x)) = U(col(~)). 

U is strict if U(i, i + 1) is non-empty for every i 6 BD. The index of U is the 
number [U(bl, bM)[, where bt is the first and bM the last element of BD. The 
exponent of periodicity of U is the maximal exponent of periodicity of the words 
U(col(x)), where x is a variable base. 

Definit ion 4. For a generalized equation GE, and c E C, the associated system 
o-f linear Diophantine equations, L(GE, c), is defined by: 

(1) A variable Zi for each indecomposable column (i, i + 1) of GE. 
(2) For each pair of dual variables bases (x, ( e l , . . . ,  en)) and ( x, (~1, . . . ,  e-n)) 

define (n - 1) equations, for j = 1 , . . .  ,n  - 1: 

(3) For each constant base (t, (i,i + 1)), define the equation Zi = 1 if t = c and 
Zi = O i f t # c .  

L e m m a  5. I.f GE has a unifier, then L(GE, c) is solvable for each c 6 E. 

Proof. Let U be a unifier of GE and c E C. Define Zi = [U(i,i + 1)[ - Dc 
where Dc is the number of occurrences of constants different from c in the word 
U(i, i + 1). Using the fact that  U is a unifier, it is easy to check that  this is a 
solution to L(GE, c). [3 

Checking solvability of systems of linear Diophantine systems is decidable, 
although expensive (NP-complete). A generalized equation GE whose system 
L(GE, c) is solvable for all c E C is called admissible. 

3.1 The  Translation from Word Equations to General ized Equations 

Given a word equation E, we can obtain (possibly) many generalized equations 
by a procedure like that  of Sect. 2: for each possible overlapping of both sides 
of ~, proceed as in examples in Sect. 2, and then check admissibility. The de- 
tailed description of the algorithm and the checking of the properties below is 
straightforward, so we will omit it. 
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L e m m a  6. There exists an algorithm GEN which for every word equation C 
outputs a finite set GEN(~) of generalized equations with the following properties: 

(1) E has a unifier with exponent of periodicity p if and only if some G E E  
GEN(E) has a strict unifier with exponent of periodicity p. 

(2) For each GE E GEN(E), every boundary is the right or left boundary of a 
base. Also, every boundary sequence contains exactly these two boundaries. 

(3) For G E E  GEN(/~), the number of bases o] GE does not exceed 21~ I. 
(4) Every G E E  GEN(E) is admissible. [] 

As an illustration let us show an element in GEN(bxyx = yaxz), the one corre- 
sponding to the arrangement (2) in Sect. 2. The corresponding generalized equa- 
tion is: C = {a,b}, 2r = {x l , x2 ,y , z } ,  B D  = (1 , . . . ,7}  and B S  = {(b,(1,2)), 
Ca, (3, 4)), (~gl, (2, 3)), (xl, (5, 7)), (y, (3, 5)), (y, (1, 3)), (x2, (4, 6)), (x2, (5, 7)), 

(6, 7)), (z, (6, 7))}. 

4 T h e  T r a n s f o r m a t i o n  A l g o r i t h m  

Now we know that every word equation C has a set of generalized equations 
GEN(s equivalent to it in the sense of Lemma 6. Hence the problem is reduced 
to work on generalized equations. 

Given a generalized equation, the basic idea of the algorithm--as was shown 
in Sect. 2--is the successive replacement of equal variables from left to right. The 
naive idea is to pick the leftmost and biggest variable (called the carrier) and 
transport all its columns to the position of its dual. Unfortunately sometimes not 
all its columns can be moved without losing essential information (see example 
(b) in Sect. 2). What is to be done? Answering this question is the motivation 
of the following two definitions. Let us fix throughout this section a non-solved 
generalized equation GE = (C, X,  BD,  BS) .  

Def in i t ion  7. The carrier of GE, denoted xc, is the non-empty variable base 
with smallest left boundary. If there is more than one, Xc is the one with largest 
right boundary. If there is still more than one, choose one among them randomly. 
We will denote lc = LEFT(Xc) and r c  - ~  RIGHT(:rc). 

The critical boundary of GE is defined as cr = min{LEFT(y) : rc E col(y)} if 
the set is non-empty, and cr = rc if not. 

Defini t ion 8. Let bs be base of GE, bs is not the carrier. Then 

(1) bs is superfluous if col(bs) = (i, i) -~ lc. 
(2) bs is transport if lc _~ LEFT(bs) -~ cr or col(bs) = (cr, cr). 
(3) bs is fixed if it is not superfluous and not transport. 

Note that all variable bases with LEFT(X) ~ Ic are empty by definition of the 
carrier. Also, each base except the carrier--is exactly one of these: superflu- 
ous, transport or fixed, depending on what region of the diagram below its left 
boundary is: 

b~superfluous [l~ranspor t Fflxed rc fixed [ bM 
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Let us illustrate these definitions with the examples in Sect. 2. In (a) the carrier 
is y, lc = 1, re = cr = 3. In (b) the carrier is x, le = 1, cr = 4 and re = 5. 

Now we know what bases should be moved: the transport bases. It is time to 
define where to move them. The next definition points to this problem. 

Nota t ion .  For each boundary le ~ i ~ re in BD,  let us introduce a new symbol 
i tr (which will indicate the place where the boundary i should go) and denote 
tr(E,)  = t r ( e l , . . . ,  en) _~ (err,. . . , e n )  . t r  

Defini t ion 9. A p r i n t o f G E  is a linear order _ on the set BDU{i  tr : i �9 I/c, re]} 
satisfying the following conditions: 

(1) ~ extends the order of B D  and j tr  _~ ktr for lc ___ j -~ k _ re. 
(2) tr(Ec) = Ec. (The structure of the carrier overlaps its dual.) 
(3) I fx  is transport, ~ fixed, then fffor some ei �9 Ex, e~ r = ~i, then tr(E,)  = E~. 

(The order ~ is consistent with the boundary sequence information.) 
(4) If (c, ( i , j ) )  is a constant base, then i , j  (and also i t r , j  tr if i , j  �9 [It, re]) are 

consecutive in the order _. (Constants are preserved.) 

Finally we are ready to present the heart of the Makanin's algorithm, the 
procedure TRANSPORT, which corresponds to the replacement of equals by equals 
from left to right. Once we have the classification of bases and a print (a guess 
about where each boundary to be transported will go), things are relatively 
straightforward: leave the fixed bases untouched and move all transport bases. 
All the intricacies of the algorithm will then rely on the carrier and its dual 
(lines 1-5 and 7-8). We need some notation to describe it: for a set of boundaries 
A, E ,  N A will denote the subsequence of Ez of the elements in A. Similarly, 
Ez U A is the super-sequence of Ex obtained by adding the elements of A in the 
corresponding order. Ec is a shorthand for Exo. Let ~ be a print of GE. 

TRANSPORT(GE, ~) 
1. if  cr -~ re then  
2. Ec ~- Ec N {i E B D  : cr "~ i} 
3. Ee +-" Ee N {i E B D  : er tr ~ i} 
4. else / ,  cr = rc 
5. Ec ~ tr(Ec) / ,  recall tr(Ec) =/~c 
6. for each transport base bs E B S  do 
7. Ec +-- Ec U {i : i E Ebs and cr -~ i} 
8. Ec ~- Ee U {i tr : i E Ebs and cr -~ i} 
9. Ebs +-- tr(Ebs) 
10. for each variable base x E B S  with col(z) = col(S) do 
11. Ez ~- (RIGHT(Z), RIGHT(Z)) 
12 E~ t -  E ,  
13. B S  +- {bs E B S  : cr _ LEFT(b8)} 
14. B D  ~- {i E B D  : i E Eb, and bs E B S }  
15. X ~ - - { x E X : ( x , E )  EBS}  
16. c , -  {c �9 c : (c, E) �9 BS}  
17. r e t u r n  (C, X, BD,  BS) .  
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Remarks .  First note that fixed bases are left untouched. Lines 1-5 process the 
carrier and its dual: I f  cr  -~ rc, then Xc,~c are shrunk. If cr = rc, Xc is trans- 
ported completely onto ~c. Lines 6-9 process transport bases: add new boundary 
equations to the carrier (lines 7-8) and give the new position (line 9). Lines 10-12 
optimize: once two duals overlap, they are not necessary anymore. Lines 13-16 
eliminate superfluous bases, boundaries, and labels respectively. 

An example will help. In the diagrams below, on the left there is a generalized 
equation G E  (suppose E~ : (2, 4, 5), Ey : (3, 5, 7) and Ez  : (LEFT(z), RIGHT(Z)) 
for all the other bases) and on the right TRANSPORT(GE, _)  for a print ~ with 
I tr : 5, 2 tr : 6, 3 tr : 7 and 5 tr : 8. Note that 4 tr introduces a new boundary. 

Zc Cc __ 
Xc 
Y 

3 4 15 [8 7 S i 2 3 4 4"  s 

The critical boundary of G E  is 3. Because 3 -~ 5 = rc, Xc and ~c are shrunk. 
Next, the transport bases u, ~ are moved to their new positions. Note that when 
moving ~ we lose information, e.g. that ~ and y have a common segment, column 
(3, 4). The algorithm keeps track of it by adding the boundary 4 to Ec and 4 tr 
to/~c, i,e. the new Ec = (3,4,5) and/~c = (6,4tr,8) (lines 7-8 in the code), and 
hence the segments continue to be equal through the 'boundary equation' which 
says that columns (3, 4) and (7, 4 tr) are the same. Observe that u produces no 
new boundary equation and the fixed bases ~, y remained untouched. Finally, 
we can delete the boundaries to the left of cr = 3 (line 14). 

The next lemma follows easily from the definitions and the code. 

L e m m a  10. TRANSPORT(GE, ~) is a generalized equation. [3 

Note that a generalized equation has only finitely many different prints. So 
the following procedure returns a finite set of generalized equations. 

TRANSF(GE) 
1. S ~ - 0  
2. P r i n t  ~- the set of all prints of G E  
3. for each print _ E P r i n t  do 
4. G E '  ~-  TRANSPORT(GE, __.) 
5. if  G E '  is admissible t h e n  
6. S +-- S t9 {GE'}  
7. r e t u r n  S 
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L e m m a  11. The following assertions hold: 

(1) I f  G E  has a strict unifier S with index I and exponent of periodicity p, then 
TRANSF(GE) has an element G E  ~ which has a strict unifier S ~ with index 
1 ~ < I and exponent of periodicity pl < p. 

(2) I f  an element of TRANSF(GE) has a unifier, then G E  has a unifier. 

Proof. (Sketch). 

Proof of (1). Because S is a unifier, thus in particular S(col(xe)) = u l . . -  u,  = 
S(col(~e)), with ui E 12 U C. Hence, we have a function f from the boundaries 
in [le, rc] U [[e, ee] to { 1 , 2 , . . . , s }  with S ( i , j )  = u]( 0 " " u f ( j ) - l .  Extend it by 
defining f ( i  tr) = f ( i )  for i G [lc,rc]. Then the following order -< in B D  ~ = 
B D  U {i tr : i �9 [le, re]} is a print of GE: 

- For i , j  E B D ,  define i 5 j i f f i  ~_BD j. 
- For le 5BD j ~_BD re, define [e ~_ jtr  .~ ee. 
- For i , j  E B D '  and [e 5 i , j  -~ re, define i _ j i f f / ( i )  < f ( j ) .  

Define GE'  = TRANSPORT(GE, -~). In order to construct the unifier S'  of GE' ,  
for i E BD~: define S ' ( i , i + l )  = uf(0 �9 .. uI(i+l)_ 1 iflc "< i -< fc, and S ' ( i , i + l )  = 
S(i ,  i + 1) otherwise. Then S ~ is a unifier of G E  ~ and strict if S is strict. Also, 
from lc "<BD cr it follows that  the index of S ~ < index of S. Also, the exponent of 
periodicity of S ~ does not exceed that  of S since Sl(col(x)) is a suffix of S(col(x)) 
for any base x of G E  ~. 

Proof of (2). Suppose S' is a unifier of some GE'  E TrtANSF(GE). Let i , j  
be consecutive in BD.  Define S ( i , j )  as S ' ( i , j )  if i , j  E BD';  as S l ( i t r , j  tr) if 
i t r , j  tr E BD';  as c if there is a constant base (c, ( i , j ) )  in GE,  and finally as the 
empty word if there is no base (c, ( i , j ))  in G E  and i or j is not in B D  ~. It can 
be checked that  S is a unifier of GE. [~ 

5 T h e  F i n a l  A l g o r i t h m  

Given a word equation E, define its associated Makanin's tree, T(E), recursively 
as follows: 

- The root of T(E) is C. 
- The children of E are GEN(s (see Lemma 6) 
- For each node G E  (not the root), the set of its children is TRANSF(GE). 

T h e o r e m  12. Let s be a word equation. Then C has a unifier if and only if 
T ( g )  has a node labelled with a solved generalized equation. 

Proof. Suppose E has a unifier. By Lemma 6 there is an element of GEN(E) 
which has a strict unifier with some index IE. By induction on the depth of the 
node, using Lemma 11, it can be proven that  T ( E )  has a branch, with each node 
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labelled by a strictly-unifiable generalized equation and the index decreases for 
every child. Since the index is non-negative, the branch is finite; hence there 
must be a node GE for which TRANSF does not apply. The only possibility is 
that GE is solved. 

On the other direction, apply induction again, using lemmas 6 and 11. [] 

Theorem 12 immediately gives a semi-decision procedure: examine all nodes 
of T(s to find out if E has a solution. But in general, the tree could be infinite. 
Here comes the kernel of Makanin's algorithm: there exists a finite number KE 
that bounds the number of nodes we have to visit. 

MAKANIN(•) 
1. K +-- Kz /* bound of the search 
2. S ~- GEN(E) 
3. SEARCH(S, K) 

SEARCH(S, K) 
1. if  all elements of S are marked t h e n  
2. r e t u r n  FAILURE 
3. else 
4. pick a non-marked GE = (C, ~', BD, BS) 6 S 
5. if  GE is solved t hen  
6. r e t u r n  SUCCESS 
7. else if  [BD I > K t h e n  
8. mark GE ; SEARCH(S,K) 
9. else 
10. S ~- S U TRANSF(GE) 
11. mark GE ; SEARCH(S, K) 

6 C o r r e c t n e s s  a n d  T e r m i n a t i o n  

From now on, let us fix a word equation s and let T(s be its associated Makanin 
tree. All generalized equations will be nodes of T(s For GE = (C, X, BD, BS) 
with parameters M = IBDI, N = IBSI, V = 21Xl (the number of variable bases) 
write GE(M, N, V). 

The cornerstones of Makanin's algorithm are the next two theorems. The 
first is based on a deep result in word combinatorics, stated by Bulitko in 1970, 
whose bound was improved recently by Kow and Pacholski [9]. 

T h e o r e m  13. If a word equation E is unifiable, then it has a unifier with expo- 
nent of periodicity p~ < 31t:12 L~ 13 

A simple proof (for a weaker bound) which gives a good intuition of why, if 
E is unifiable, there must be unifiers of this kind can be found in [8]. The next 
theorem is due to Makanin. 
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The or e m 14. I] GE(M, N, V) is a node o.f T(E), then the exponent of period- 
2 log v (M/N--2) ieity of all its strict unifiers exceeds w 

The proof of this result is tricky, and the rest of the paper is devoted to it. 
Before proving it, let us show why Makanin's algorithm works. 

The or e m 15. MAKANIN is correct and terminates. 

Proof. Let E be a word equation. Termination of MAKANIN(~) reduces to show 
that SEARCH(GEN(~), Ks terminates. 

Define p = 31~12 l'~163 and Kz = 24plzls lg2lEl+lg2[s q- 41~ I. Now observe that 
there are only finitely many generalized equations GE(M, N) with fixed param- 
eters M, N, and that at every stage in SEARCH, every element GE(M, N) E S 
has M < Kz (line 7 of SEARCH) and N < 21~1 (Lemma 6(3) and line 13 in 
TRANSPORT). Hence, because in each loop one more element of S is marked, 
SEARCH will eventually stop. 

MAKANIN is correct. If ~ has no unifier, then by Thm. 12 there is no solved 
node in T(s Hence SEARCH will never reach line 6. Therefore eventually all 
nodes will be marked and SEARCH will output FAILURE. 

Now suppose that C has a unifier. Then by Thm. 13, it has a unifier with ex- 
ponent of periodicity less than p. LFrom the proof of Thin. 12 it follows that there 
is a branch in 7"(E) ending in a node labelled with a solved generalized equation 
SGE. By Lemmas 6(1) and 11(1), it follows that each node GE(M, N, V) in 
the branch has a strict unifier with exponent of periodicity p~ < p. Also from 

2 logv (M/N-2)  -- pt.  Thm. 14 we have v 3 < So we can conclude, using V < N < 21~1, 
that M < 2 ~ Ig V+lg N + 2N < KE. Hence all the nodes in the branch even- 
tually will be in S, so SEARCH will visit SGE and check that it is solved (line 
5) and return SUCCESS. [] 

Now let us prove Thm. 14. The general lines are as follows: (i) From each 
G E E  T(C) we can obtain (using the relations generated by the boundary se- 
quences of the bases) certain chains of words. This is Prop. 25, whose proof is 
long and very technical; (ii) By a counting argument it follows that a large num- 
ber of boundaries in GE produces long chains of words. This is Prop. 27; (iii) 
Combine (ii), using Lemma 20, with a combinatorics result (Prop. 17) establish- 
ing a relation between long chains of words and high exponent of periodicity. 

Let us begin with the formal definitions of those chains of words. 

Definit ion 16. A domino tower is a sequence of words B1C1, . . . ,  BkCk (Bi and 
Ci non-empty) such that for all 1 < i < k 

1. There are (possible empty) words Si such that Bi+l = SiBi 
2. There are (possibly empty) words Ri, Ti such that CiRi = Ci+lTi. 

s,I I ~ I s,I I ~ I 
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The length of the sequence is called the height of the domino tower. 

The following result (whose proof can be found in [14]) establishes a relation 
between the length of a domino tower and the exponent of periodicity of some 
of its words. 

Proposition 17. Let X = { X 1 , . . . ,  XN} be a set of non-empty words. Suppose 
the sequence of words BIC1, . . .BkCk is a domino tower of height k and each 
BiCi e ~'. I f  for all i, IB~+ml > IBd, then some word BtCt has the form 

k BtCt = PSQ, where P is non-empty and s + 1 >_ m---~N " [3 

So we need to generate long domino towers whose building blocks are ele- 
ments of A'. In this way, one variable will have a large exponent of periodicity. 

D e f i n i t i o n  18. Let GE be a generalized equation, x a variable base of GE. 

(1) A sub-base of x, S~, is a column of the form (LEFT(Z),/) with i E Ex. If 
LEFT(Z) = i the sub-base is called empty. 

(2) Each sub-base Sz has its dual (the corresponding column in the dual vari- 
able), denoted S~ or Sz. This pair is called boundary equation and denoted 
Sx -~ Sz. Note that  if U is a unifier of GE, then U(S) = U(S). 

GE' will denote TRANSPORT(GE, "<). Also LEFT I is the corresponding func- 
tion in GE', etc. So, if S = (LEFT(x), i)x is a sub-base of GE, then S '  will denote 
its 'image' in GE', i.e. (LEFT'(X),itr)z if X is t ransport  and (LEFT'(x),i)z oth- 
erwise. In case S'  is empty or it is not a sub-base of GE' (i.e. x becomes empty 
in GE' or x = xc and i -~ cr in GE) then S is called a terminal sub-base. 

D e f i n i t i o n  19. Let $1, $ 2 , . . . ,  Sn be sub-bases of GE. 

(1) Let $1 = (bl, i) and Sz = (b2, i) be sub-bases with the same second boundary. 
S1 is a suffix of $2 if b2 _ bl. We write S1 C_ $2. 

(2) A (monotone) sui~x chain in GE is a sequence S1, $ 2 , . . .  Sn of sub-bases 
with 

$1 _(= $2 ,',., $2 (=_ $3 ~' ~..~3 c_ . . .  (~_ Sn-1 '~' ,,.~r,,-1 C_.Sn 

We will denote this chain by S1 C* S n.  

(3) A convex sutftx chain is a sequence $ 1 , . . . ,  S t , . . . ,  S ,  such that  S1 C_* St and 
St .'~ St and St D_* Sn. We write $1 C_*D_ Sn. Note that  when t = 1 or t = n 
we have chains as in 1. (i.e. convex chains generalize monotone chains.) 

The next lemma (whose proof is an easy check) shows the relation between 
suffix chains and domino towers. 

Lemma 20. Let S 1 , . . . ,  Sk be a monotone suffix chain of GE and U a unifier 
o] GE. Suppose Sj is a sub-base of zi~. Then 

(1) u(s ) is a surf= of U(Sj+l) for aU i = 1 , . . .  ,n. 
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(2) Define Bj  = U ( S j )  and Cj such 
of words B1C1,. . . ,BkCk forms 

The next lemmas have long (but 
possible cases of the bases involved 
do one case to give the flavor of the 

that U ( col(xij ) ) = BjCj .  Then the sequence 
a domino tower of height k. [] 

straightforward) proofs by exhaustion of all 
(transport, fixed, carrier, its dual). We will 
technique. 

L e m m a  21. Let S~ C_ Sy in G E  and S x , S  v be non-terminal. Then 
1. I f  y is the carrier or its dual, then S~ C* S~ or S~ D* S~ in GE' .  
2. I f  y is neither the carrier nor its dual, then S~ C_* S~ in GE' .  

Proof of 1. Let S ,  = (bl, i ) ,  C (b2, i)y = Sy. 
(a) y is the carrier. So lc = b2 "~ bl. Suppose first that  x is transport,  i.e. 

bl -~ cr. It  holds that  S~ = (b tr, i tr) D_ (cr tr, i t~) ..~ (c'r, i) _D (c'r, i) = S~ in GE'.  
Now, suppose x is fixed, i.e. cr ~ bl. We have S~ = (bs, i) C (cr, i) = S~ in GE'.  
Note that  this also works if x is the dual of the carrier. 

(b) Now, assume y is the dual of the carrier, that  is [c = b2 _~ bl. Note 
that  x cannot be the carrier now. So let us suppose x is neither the carrier nor 
its dual. Because the dual of the carrier is fixed (always), x must be fixed too 
(cr -~ /c = b2 __. bl). Hence we have S' = (bl,i) C_ (crtr,i) ---- S~ or S~ D S~, 
depending on whether bl ~ c tr or c t~ -~ bl. [] 

L e m m a  22. Let Sz C_ Sy ... S~ C_ Sz in G E  and Sx be non-terminal. 

(1) I f  z is the carrier or its dual and y is the carrier or its dual, then Sz is 
non-terminal and S~ C* SIz in GEI. 

(2) If  z is the carrier or its dual, Sz is non-terminal, and y is neither the carrier 
nor its dual, then S~ C_*D S~. 

(3) I f  z is neither the carrier nor its dual, Sz is non-terminal, then S~ C_* S~. 
[] 

L e m m a  23. Suppose Sx C* Sz in GE,  and Sx, Sz are non-terminal. Then 

(1) I f  z is the carrier or its dual, S~ C_*D SIz in GE  I. 
(2) I f  z is neither the carrier nor its dual, S~ C_* SIz in G E  I. 

Proof. A simultaneous induction for (1) and (2) on the length of the chain. The 
base cases are lemmas 21 and 22. [] 

L e m m a  24. (convex chains) Let Sz and Sz be sub-bases of G E  which are non- 
terminal. Suppose there is a convex chain from Sz to Sz in GE.  Then there is 
a convex chain from S~ to SIz in G E  I. 

Proof. Induction on the length of $1 C_* St "~ St D* Sn. Consider the turning 
point t and the possibles cases for the chains $1 c_* St and Sn C* ~'t- n 

All the preceding work was done in order to prove the next lemma. Extend 
the notation S C_ B to allow B to be a constant base, i.e. S - (b, i) C_ (l, r) = 13 
iff i = r and b ~ I. Similarly for S _D/3. 
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P r o p o s i t i o n  25. For each non-empty sub-base S of G E E  T(~) ,  there is a 
convex chain S = $1 , . . .  , S n , B  with B = col(bs) for some base bs of GE.  

Proof. Induction on the depth of structure of T(C). For elements G E E  GEN(E), 
the only sub-bases are of the form (LEFT(x), RIGHT(x)) (Lemma 6(2)), so the 
statement is trivially true. Now suppose the statement is valid for GE. We will 
prove it for GE' = TRANSPORT(GE, ~). 

Let S ~ be a non-empty sub-base of G E  ~. It is an image of a sub-base S in 
GE, so by hypothesis there is a convex chain S = $ 1 , . . . ,  Sn, B = col(bs) in GE 
and S is non-terminal because S ~ is its image. If Sn is non-terminal, applying 
Lemma 24 it follows that  S~ , . . . ,  Sin, B ~ is convex and B ~ = col~(bs). 

So suppose Sn is terminal. Let t (1 < t < n) be the smallest index such that  
S t , . . . ,  Sn are all terminal sub-bases. So St-1 is non-terminal, and by Lemma 
24 there is a convex chain from S~ to S~_ 1 in G E  ~. Let us show that  it can 
be completed to end with col(bs) for some base bs. Denote St-1 = (ly,j)~ and 
St = (l~, j)~. 

If z is neither the carrier nor its dual, then S~-I = ~'y(Itr,j~tr~Jy _D ( j t r , j t r )z  = 
colt(z) in GE ~ if y is transport.  If y is fixed then cr _~ l~, hence St-1 C St and 
so $1 C* St-1 because the chain is convex. Then S~-1 = ( ly , j )y  C_ (at, j )  ... 
( c r t r , j  tr) ~_ ( j tr , j t r )z  in GE ~. 

If z is the carrier then j ~_ cr (St is terminal), so y is transport.  Now, if 
St-bl ---~ B constant, it must be fixed, so S~ {ltr :tr~ _ B ~. t - l =  xoy,J Jv D I f S t + l = S ~  
with u a variable, u can neither be the carrier nor its dual (because St+l is also 
terminal), hence S' {lt~ -tr~ t--1 ~ k~ ,J )Y ~-- ( j t r , j t r ) u  in G E ' .  I f  z is the dual of the 
carrier the analysis is similar. [3 

A strict convex chain is one in which each sub-base appears just once. (Note 
that a sub-base is characterized by its column and its base.) 

L e m m a  26. Let So = (bo,i) be a fixed sub-base of G E ( M , N , V ) .  The number 
of different sub-bases S of G E  such that there is a strict convex chain S = 
S1, . . . ,  Sj = So of length j <_ k is less than V ~. 

Proof. Consider the set of chains SI,..., Sj with Si C Si+ 1 or Si D Si-bl for 
each i. Clearly it contains the set of strict convex chains. For j = 1 note that if 
(b, i) C (bo, i) or (b, i) D (bo, i), b must be a left boundary of a variable base, and 
there are less than V such boundaries different from b0. The general case follows 
by simple combinatorics, i.e. there are no more than V k chains of that type. [3 

P r o p o s i t i o n  27. Let GE(M,  N,  V)  E T(C).  Then there is a strict convex chain 
of length bigger than log v ( M / N  - 2) in GE.  

Proof. A sub-base is of the form (b, i)z with i E Ez. There are at least (M - 2N) 
different non-empty sub-bases (the number of boundaries -line 14 of TRANSPORT- 
minus the left and right boundaries of each base). By Prop. 25, for each such 
sub-base S there is a convex chain S = S1 , . . .  ,Sn, B = col(bs) for some base 
bs. But there are N bases in GE, hence there is a base bs0, such that  at least 
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(M - 2 N ) / N  sub-bases have a convex chain to bso (which is strict because 
all sub-bases were different). Now, by Lemma 26, V k > (M - 2 N ) / N ,  hence 
k > l o g v ( M / N  - 2). [] 

Proof of Theorem 14. By Prop. 27, for n = l o g v ( M / N  - 2) there is a strict 
convex chain $ 1 , . . . ,  S t , . . . ,  Sn. Hence S1 , . . . ,  St or S n , . . . ,  St is a (monotone) 
chain of length k > n/2.  

Let U be a strict unifier of G E  and consider the domino tower BIC1, �9  Bk CA 
of height k associated to the chain as in Lemma 20, all of whose words BjCj  = 
U(col(xij)) are in {U(col(x)) : x �9 X}. There are V variable bases, so, for every 
i two sub-bases of the same variable must appear in S i , . . . ,  Si+v. Now because 
all sub-bases are different (strict chain), [Bi+vI = IV(Si+v)l > IU(Si)I = IBil. 
We conclude from Prop. 17 that  there is a word BjCj  of the form PSQ with P 

2 logv(M/N--2  ) 
non-empty and s + 1 > v - ~  > v3 [] 

7 Final Remarks 

There are three key points in estimating the time complexity of MAKANIN: 
first, bounds on PE, the exponent of periodicity of word equations. Thm. 13 
is almost optimal: it is known that  PE ~ 2 ~162 (see [9]); The second point 
is bounds on Kz,  the depth of the search. Jaf[ar's estimate [5] was of the or- 
der 16N15p(6[C[2) 2 (2N) 32p(eI~I2)N5 . We improved it to 2 ~163 lg V+lg N where 
p(x) = 3x21'~ and V _< N _< 21E]; The third point, bounds on SEARCH. A rough 
bound is the number of all different GE(M,  N)  with N <_ 2[El and M ~_ Kz .  
There seems to be much room for improvement on these last two points. Also 
a finer analysis of TRANSPORT would imply a clearer picture of the interplay 
among prints, associated Diophantine equations, and the kind of search needed. 
Rounding, the current time complexity bound on MAKANIN is triple exponential 
in Is 

Finally, let us say that  it is easy to add two lines to TRANSPORT in order to 
get explicit solutions: we need an extra variable U (a list of pair of boundaries) 
for each pair of duals to keep track of the value of the original variable. The 
proof of Lemma 11 tells how they have to be updated. 
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