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Abstract

The Semantic Web is based in the idea of a common and minimal language to enable large quantities of
existing data to be analyzed and processed. This triggers the need to develop the database foundations of
this basic language, which is the Resource Description Framework (RDF).

This paper addresses this challenge by: 1) developing an abstract model and query language suitable to
formalize and prove properties about the RDF data and query language; 2) studying the RDF data model,
minimal and maximal representations, as well as normal forms; 3) studying systematically the complexity
of entailment in the model, and proving complexity bounds for the main problems; 4) studying the notions
of query answering and containment arising in the RDF data model; and 5) proving complexity bounds for
query answering and query containment.

1. Introduction

The Semantic Web is a proposal to build an infrastructure of machine-readable semantics for the data
on the Web. In 1999 the W3C issued a recommendation of a metadata model and language to serve as
the basis for such infrastructure, the Resource Description Framework (RDF) [45]. As time passed, RDF
evolved and increasingly gained attraction from both researchers and practitioners as a data model apt to
represent the first layer of semantics on the Web [51].

RDF follows the W3C design principles of interoperability, extensibility, evolution and decentralization.
Particularly, the RDF model was designed with the following goals: simple data model; formal semantics
and provable inference; extensible URI-based vocabulary; allowing anyone to make statements about any
resource. In the RDF model, the universe to be modeled is a set of resources, essentially anything that can
have a universal resource identifier, URI. The language to describe them is a set of properties, technically
binary predicates. Descriptions are statements very much in the subject-predicate-object structure, where
predicate and object are resources or strings. Both subject and object can be anonymous objects, known as
blank nodes. In addition, the RDF specification includes a built-in vocabulary with a normative semantics
(RDFS). This vocabulary deals with inheritance of classes and properties, as well as typing, among other
features [47]. Good introductory references for the RDF model are [48] and [49]. Figure 1 shows a simple
example of RDF data. Simultaneously to the release of data model, the natural problem of querying RDF
was raised. In fact, several languages for querying RDF were developed in parallel with RDF itself (see
the studies [13] and [12] for detailed comparisons of RDF query languages). In 2008 the RDF Data Access
Working Group (part of the Semantic Web Activity) released the standard of a query language for RDF,
called SPARQL [50] which address the basic needs of querying RDF, leaving several issues open for the
future: inclusion of RDFS vocabulary, paths, nesting, premises, etc.

All these developments have triggered the need of a more systematic research on formal aspects of the
RDF database model, that is, its data model and query language. Among the first formal studies of the
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Figure 1: An RDF graph specifying a schema to describe art resources. The relations subclass (sc), subproperty (sp), type,
domain and range belong to the RDFS vocabulary. The triple (Picasso, paints, Guernica) shows that in RDF specifications,
schemas and data can be described at the same level. Note that the set of arc labels and node labels may intersect, e.g. paints
is both a node label and an arc label. There are arcs not depicted to avoid crowding the figure. Example taken from [7].

characteristic of the RDF data model was the paper Foundations of Semantic Web Databases, presented at
the PODS conference in 2004 [23]. That paper presented an integrated analysis of fundamental database
problems in the realm of RDF, including normal forms and redundancy elimination, minimal representation
for data exchange, semantics of query languages, query containment and complexity of query processing

The RDF data model allows several representations for the same information, which raises the question
about the existence of normal forms and testing of equivalence among them. On the same lines, query lan-
guage features deserve a systematic and integrated study. Traditional database notions of query containment
do not translate directly to the RDF setting. They need to be reformulated to take into account the fact
that RDF queries process logical specifications rather than plain data. Additionally, if one adds premises
and constraints on queries, further complexity to the problem is added. Regarding query processing, the
presence of predefined semantics and blank nodes in RDF introduce new problems. These include testing
entailment of databases and query conditions for keeping RDF databases and query outputs as concise as
possible.

The PODS 2004 paper introduced a simple and abstract version of RDF which captured the core aspects
of the language, as well as a query language in a streamlined form to have a basic core to focus on the
central aspects of the aforementioned problems. The abstract model was not intended for practical use, but
designed to be simple enough to make it easy to formalize and prove results about its properties. The query
language design addressed the basic features that arise in querying RDF graphs as opposed to standard
databases: the presence of blank nodes, premises in queries, and the role played in this scenario by RDFS
vocabulary with predefined semantics.

This paper is an extended, modified and updated version of [23]. Besides including the formal proofs that
for space reasons were all absent in that conference version, in this paper we have extended several results
on minimal representations and query containment. In the meantime, since the publication of [23], several
results presented in the paper has been developed and improved by the RDF community. Of particular
interest in this direction was the introduction of an abstract fragment to study RDF [32], which corrected
the fragment presented in [23]. Thus, this paper incorporates these new improvements when necessary to
our discussion, and points to other relevant developments of the area. We expect this paper to serve as a
basic, self-contained and updated reference regarding the formal study of the RDF model on the lines of
[23].

Related Work. The RDF model was introduced in 1999 as a W3C recommendation [45]. In 2004 a standard
semantics for the data model [46] was issued by the W3C. The first formal analysis on RDF from a database
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point of view was presented by Gutierrez el at. [23], where complexity bounds on entailment and computing
cores were given. The RDF specification has been also object of several analysis in the W3C Committees
and in the academic world. The studies of Marin [30] and ter Horst [27] formalized the notation and
corrected minor problems. Horst [27] also proved completeness and complexity results for an extension to
some vocabulary of OWL. From a logical point of view, Yang and Kifer in [42], present an F-logic version
of RDF. They define two notions of entailment for RDF graphs and concentrate mainly in the semantics
of blank nodes and reification. De Bruijn et al. [9, 10] present a logical analysis of the theory of RDF
in a classical first order logic setting. In other direction, Muñoz et al. [32] study fragments of RDF and
systematize the core fragment which was introduced in [23]. Extensions of the model, adding expressiveness
leading to the realm of descriptive logics, can be found in the Web Ontology Language, OWL [38]. This line
of development has rich developments which we will not survey here.

Languages for querying RDF have been developed in parallel with RDF itself. We can mention rdfDB [20],
an influential simple graph-matching query language from which several other query languages evolved.
Among them, SquishQL [31] is a graph-navigation query language that was designed to test some of the
functionalities of an RDF query language. It adds constraints on the variables and returns a table as result.
SquishQL has several implementations like RDQL and Inkling [31]. RQL [28] has a very different syntax
based on OQL, but can perform similar sorts of queries. It is a typed language following a functional approach
and supports generalized path expressions. Its new version is [7]. Other languages are Triple [40], a query
and transformation language, QEL [33], a query-exchange language designed to work across heterogeneous
repositories, and DQL [44], a language for querying DAML+OIL knowledge bases, that consider RDF data
as a knowledge base, applying reasoning techniques to RDF querying. Good surveys are [39, 29], and more
recent ones [13, 12]. Recent developments in RDF query languages include studies of the W3C standard
SPARQL [50], its formal semantics and complexity [35] and expressive power [4], as well as extensions in
different directions [3, 15, 36].

There are several ideas developed in the database community that are of interest to RDF. Ideas from
the processing of semistructured data are of use in the RDF context, e.g. incomplete answers [14], and
query rewriting [34]. Despite the apparent similarities of the models, aspects like blank nodes, graph-
like structure, and semantics, make the problems studied in this paper somehow orthogonal to problems
addressed in previous research on semistructured data. The notion of core has appeared in various contexts,
e.g. graphs [26], data exchange [16]. Queries with premises (see Section 4.2) have been studied in the logic
programming community, e.g. [17]. Their complexity aspects from a database point of view are studied in [8].
Premises also appear in the context of query languages for knowledge bases, e.g. DQL [44]. In SQL-like
RDF query languages, this feature appears as a specification of a schema to be used when processing the
query [7, 31].

The paper is organized as follows. Section 2 gives the abstract formalization of RDF, including the
semantics, a deductive system, and studies the complexity of entailment. Section 3 studies normal forms
for RDF data. This section studies maximal representations (notions of closure), minimal representations
(including notions such as core), and normal forms for RDF data. Section 4 studies RDF query languages.
First we study the notion of answer in this context and then study query with premises. Section 5 deals
with query containment. In this section we show that in the RDF context there are diverse notions of
containment. Then we present results about query containment for queries with and without premises.
In Section 6 we study the complexity of query answering for the models presented. Finally we present
brief conclusions. To easy cross-referencing to readers, we enumerated theorems, propositions, corollaries,
definitions, notes, etc. with a unique sequential numbering.

2. Formalization of Abstract RDF

The RDF model is specified in a series of W3C documents [45, 46, 47, 49]. In this section we introduce
an abstract version of the RDF data model, which is both, a fragment following faithfully the original
specification, and an abstract version more suitable to do formal analysis. What is left out are features of
RDF directed to the implementations, such as detailed typing issues, some distinguish vocabulary which has
no particular semantics, and all topics involved with the XML-based syntax and serialization. The original
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formulation of this fragment was introduced in [23] and enriched and corrected in [32], and we present it
here to make this paper self-contained. The details can be found in [32].

The main objective of isolating and working over such a fragment is to have a simple and stable core
over which to discuss theoretical issues dealing with RDF from a database point of view.

2.1. RDF graphs

Assume there is an infinite set U (RDF URI references) and an infinite set B = {Nj : j ∈ N} (Blank
nodes). A triple (s, p, o) ∈ (U ∪ B) × U × (U ∪ B) is called an RDF triple.2 In such a triple, s is called the
subject, p the predicate and o the object. We often denote by UB the union of the sets U and B.

Definition 1. An RDF graph (just graph from now on) is a set of RDF triples. A subgraph is a subset of
a graph. The universe of a graph G, universe(G), is the set of elements of UB that occur in the triples of
G. The vocabulary of G, voc(G), is the set universe(G)∩U . A graph is ground if it has no blank nodes. In
general we will use uppercase letters N,X, Y, . . . to denote blank nodes, the initial lowercase letters a, b, c, . . .
(and p) for URIs and final lowercase letters v, w, x, . . . (and s, o) to denote general elements in UB.

Graphically we represent RDF graphs as follows: each triple (s, p, o) is represented by s
p

−→ o. Note
that the set of arc labels can have non-empty intersection with the set of node labels. Note that technically
speaking, and “RDF graph” is not a graph in classical graph theoretic terms. The problem is that the set
of nodes and arcs are not empty. For a further discussion of this issue see [25].

We will need some technical definitions. A map is a function µ : UB → UB preserving URIs, i.e., µ(u) = u
for all u ∈ U . Given a graph G, we define µ(G) as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. We
say that the graph µ(G) is an instance of the graph G. An instance of G is proper if µ(G) has fewer blank
nodes than G. This means that either µ sends a blank node to a URI, or identifies two blank nodes of G.
We will overload the meaning of map and speak of a map µ : G1 → G2 if there is a map µ such that µ(G1)
is a subgraph of G2.

Two RDF graphs G1, G2 are isomorphic, denoted G1
∼= G2, if there are maps µ1, µ2 such that µ1(G1) =

G2 and µ2(G2) = G1.
We define two operations on graphs. The union of G1, G2, denoted G1 ∪G2, is the set theoretical union

of their sets of triples. The merge of G1, G2, denoted G1 + G2, is the union G1 ∪ G′
2, where G′

2 is an
isomorphic copy of G2 whose set of blank nodes is disjoint with that of G1. Note that G1 + G2 is unique up
to isomorphism.

2.2. RDFS Vocabulary

The RDF specification includes a set of reserved words, the RDFS vocabulary (RDF Schema [47])
designed to describe relationships between resources as well as to describe properties like attributes of
resources (traditional attribute-value pairs).

Roughly speaking, this vocabulary can be divided conceptually in the following groups:
(a) A set of properties which are binary relations between subject resources and object resources:

rdfs:subPropertyOf [we will denote it by sp in this paper], rdfs:subClassOf [sc], rdfs:domain [dom], rdfs:range [range]

and rdf:type [type].
(b) A set of classes, that denote set of resources. Elements of a class are known as instances of that class.

To state that a resource is an instance of a class, the property type may be used.
(c) Other functionalities, like a system of classes and properties to describe lists, a systems for doing

reification.
(d) Utility vocabulary used to document, comment, etc. The complete vocabulary can be consulted in

[47].

2Note that we are not considering literals as independent objects in this model. In [23] literals were considered, but they
played no role in the development at that abstraction level. Thus, to simplify the model we simply disregarded them here.
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The groups in (b), (c) and (d) have a light semantics, essentially describing its internal function in the
ontological design of the system of classes of RDFS. Their semantics is defined by “axiomatic triples” [46]
which are relationships among these reserved words. All axiomatic triples are “structural”, in the sense
that do not refer to external data but talk about themselves. Much of this semantics correspond to what in
standard languages is captured via typing.

On the contrary, the group (a) is formed by predicates whose intended meaning is non-trivial and is
designed to relate individual pieces of data external to the vocabulary of the language. Their semantics is
defined by rules which involve variables (to be instantiated by real data). For example, rdfs:subClassOf[sc]
is a binary property reflexive and transitive; when combined with rdf:type[type] specify that the type of an
individual (a class) can be lifted to that of a superclass. This group (a) forms the core of the RDF language.
From a theoretical point of view it has been shown to be a very stable core to work with. The detailed
arguments supporting this choice are given in [32].

Thus, throughout the paper we will denote the rdfs-vocabulary by rdfsV ,

rdfsV = {sp, sc, type, dom, range}.

2.3. Semantics of RDF graphs

In this section we present the formalization of the semantics of RDF following [46, 32]. The normative
semantics for RDF graphs given in [46] follows standard classical treatment in logic with the notions of
model, interpretation, entailment, and so on. We follow here a simplification of the normative semantics
proposed in [32]. The two semantics were shown to be equivalent when focusing on the fragment of the
RDFS vocabulary that we are considering.

2.3.1. RDF Model Theory

We first present the notion of intepretation for RDF graphs following [32]. An RDF interpretation is
a tuple I = (Res, Prop, Class, PExt, CExt, Int) such that: (1) Res is a nonempty set of resources, called
the domain or universe of I; (2) Prop is a set of property names (not necessarily disjoint from Res); (3)
Class ⊆ Res is a distinguished subset of Res identifying if a resource denotes a class of resources; (4) PExt :
Prop → 2Res×Res, a mapping that assigns an extension to each property name; (5) CExt : Class → 2Res a
mapping that assigns a set of resources to every resource denoting a class; (6) Int : U → Res ∪ Prop, the
interpretation mapping, a mapping that assigns a resource or a property name to each element of U .

Intuitively, a ground triple (s, p, o) in a graph G is true under the interpretation I, if p is interpreted as
a property name, s and o are interpreted as resources, and the interpretation of the pair (s, o) belongs to
the extension of the property assigned to p. More formally, we say that I satisfies the ground triple (s, p, o)
if Int(p) ∈ Prop and (Int(s), Int(o)) ∈ PExt(Int(p)). An interpretation must also satisfy additional
conditions induced by the usage of the rdfs-vocabulary. For example, an interpretation satisfying the triple
(c1, sc, c2) must interpret c1 and c2 as classes of resources and must assign to c1 a subset of the set assigned to
c2. More formally, we say that I satisfies (c1, sc, c2) if Int(c1), Int(c2) ∈ Class and CExt(c1) ⊆ CExt(c2).

Blank nodes work as existential variables. Intuitively the triple (X, p, o) would be true under I if there
exists a resource s such that (s, p, o) is true under I. When interpreting blank nodes an arbitrary element can
be chosen, taking into account that the same blank node must always be interpreted as the same element.

To formally deal with blank nodes, an extension of the interpretation mapping Int is used in the following
way. Let A : B → Res be a function between blank nodes and resources. Denote by IntA : UB → Res the
extension of function Int defined by IntA(x) = A(x) for x ∈ B, and IntA(x) = Int(x) for x /∈ B.

We next formalize the notion of model for an RDF graph [46, 32]. We say that the RDF interpretation
I = (Res, Prop, Class, PExt, CExt, Int) models (is an interpretation for, is a model for) an RDF graph G,
denoted by I |= G, if every one of the following conditions hold:

Simple Interpretation:

• there exists a function A : B → Res such that for each (s, p, o) ∈ G,

Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ PExt(Int(p)).
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Properties and Classes:

• Int(sp), Int(sc), Int(type), Int(dom), Int(range) ∈ Prop

• if (x, y) ∈ PExt(Int(dom)) ∪ PExt(Int(range)) then x ∈ Prop and y ∈ Class

Sub-property :

• PExt(Int(sp)) is transitive and reflexive over Prop

• if (x, y) ∈ PExt(Int(sp)) then x, y ∈ Prop and PExt(x) ⊆ PExt(y)

Sub-class:

• PExt(Int(sc)) is transitive and reflexive over Class

• if (x, y) ∈ PExt(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y)

Typing :

• (x, y) ∈ PExt(Int(type)) iff y ∈ Class and x ∈ CExt(y)

• if (x, y) ∈ PExt(Int(dom)) and (u, v) ∈ PExt(x) then u ∈ CExt(y)

• if (x, y) ∈ PExt(Int(range)) and (u, v) ∈ PExt(x) then v ∈ CExt(y)

Given G1 and G2 RDF graphs, we say that G1 entails G2, denoted by G1 |= G2, when for every
interpretation I, if I |= G1 then I |= G2. We say that two RDF graphs are equivalent, denoted G1 ≡ G2, if
and only if G1 |= G2 and G2 |= G1. In [32], the authors showed that this entailment notion between RDF
graphs is equivalent to the W3C normative notion of entailment [46], when we focus on the fragment of the
RDFS vocabulary that we consider in this paper.

The normative semantics of RDF graphs introduces a simplified notion of model to deal with graphs
that do not mention vocabulary with predefined semantics. An interpretation I is a simple model of a graph
G, if I satisfies the Simple Interpretation condition for G. Note that the Simple Interpretation condition is
the only one in the formalization of models of RDF graphs that does not mention the rdfs-vocabulary. This
discussion motivates the following definition.

Definition 2. A simple RDF graph is a graph that does not mention the rdfs-vocabulary, i.e. G is simple
iff rdfsV ∩ voc(G) = ∅.

Note 3 (RDF versus Standard First Order Semantics). Probably the reader is asking [her/him]self
why all these non-standard idiosyncracies are needed to define a model theory for RDF. The problem is given
by the double role of some elements both, as predicates and as objects. For example the triple (a, type, type)
is a legal one in RDF. In a standard first order logic semantics it should be assigned a binary expression
type(a, type), which does not typecheck.

2.3.2. Deductive System

In this section, we present a deductive system for the notion of entailment. This system follows the one
presented in [32], and is based on a set of rules for |= given in [46].

The system is arranged in five groups of rules. Group A describes the semantics of blank nodes, which is
essentially the semantics of simple RDF graphs. Group B and Group C describe the semantics of sp and sc,
respectively. Group D states the semantics of dom and range, the domain and range of a relation. Group E
and Group F force the reflexivity conditions over sp and sc, respectively. In every rule, capital letters are
variables representing elements in UB.

GROUP A (Existential) For a map µ : G′ → G:
G

G′
(1)

GROUP B (Subproperty)
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(A, sp, B) (B, sp, C)

(A, sp, C)
(2)

(A, sp, B) (X, A, Y )

(X, B, Y )
(3)

GROUP C (Subclass)

(A, sc, B) (B, sc, C)

(A, sc, C)
(4)

GROUP D (Typing)

(A, sc, B) (X, type, A)

(X, type, B)
(5)

(A, dom, B) (C, sp, A) (X, C, Y )

(X, type, B)
(6)

(A, range, B) (C, sp, A) (X, C, Y )

(Y, type, B)
(7)

GROUP E (Subproperty reflexivity)

(X, A, Y )

(A, sp, A)
(8)

(p, sp, p)
for p ∈ {sp, sc, dom, range, type} (9)

(A, p, X)

(A, sp, A)
for p ∈ {dom, range} (10)

(A, sp, B)

(A, sp, A) (B, sp, B)
(11)

GROUP F (Subclass reflexivity)

(X, p, A)

(A, sc, A)
for p ∈ {dom, range, type} (12)

(A, sc, B)

(A, sc, A) (B, sc, B)
(13)

Note 4. As noted in [30, 27], the set of rules presented in [46] is not complete for |=. The problem
is produced when a blank node X is implicitly used as standing for a property in triples like (a, sp,X),
(X, dom, b), or (X, range, c). Here we solve the problem following the solution proposed by Marin [30] adding
rules 6 and 7. These rules are not defined in [46].

An instantiation of a rule is a uniform replacement of the variables occurring in the triples of the rule by
elements of UB, such that all the triples obtained after the replacement are well formed RDF triples, that
is, not assigning blank nodes to variables in predicate positions.

Definition 5 (Proof). Let G and H be RDF graphs. Define G ⊢ H iff there exists a sequence of graphs
P1, P2, . . . , Pk, with P1 = G and Pk = H, and for each j (2 ≤ j ≤ k) one of the following cases hold:

• there exists a map µ : Pj → Pj−1 (rule (1)),

• there is an instantiation R
R′

of one of the rules (2)–(13), such that R ⊆ Pj−1 and Pj = Pj−1 ∪ R′.

The sequence of rules used at each step (plus its instantiation or map), is called a proof of H from G.

The soundness and completeness of this deductive was shown in [32]:

Theorem 6 (Soundness and completeness [32]). Let G and H be RDF graphs, then G |= H iff G ⊢ H.
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2.4. Characterizations and Complexity of Entailment

In this section we present some well-known results about the complexity of testing entailment between
RDF graphs [23, 10, 27]. For the sake of completeness we present full proofs of some of these results.

We start by presenting a characterization of the semantic notions of entailment, via mappings between
graphs. First we need to define the following notion of closure, similar versions of which has been considered
in [46, 30, 27] using different sets of deductive rules. In Section 3.1 we will discuss in depth the notion of
closure.

Definition 7 (Closure RDFS-cl). The graph RDFS-cl(G), the closure of G, is defined as the set of triples
t which can be deduced from G using rules (2)-(13).

Note that RDFS-cl(G) is an RDF graph over universe(G) plus the rdfs-vocabulary. Because it consist
of adding triples by a fixed set of rules starting from G, it is not difficult to check that for a given G, the
closure RDFS-cl(G) is unique.

The following result appears in [46], in a slightly different formulation.

Theorem 8 ([46]). Let G1 and G2 be RDF graphs.

1. G1 |= G2 iff there is a map µ : G2 → RDFS-cl(G1).

2. If G1 and G2 are simple graphs then G1 |= G2 iff there is a map µ : G2 → G1.

Notice that, from the above theorem it follows directly that two simple RDF graphs G1 and G2 are
equivalent if and only if there exist mappings µ1 : G1 → G2 and µ2 : G2 → G1.

To state the complexity results we use a simple encoding of a standard graph with an RDF graph. Let
H = (V,E) be a standard graph, with V a nonempty set of nodes and E ⊆ V × V . Assume we have a set
BV = {Xv | v ∈ V } ⊆ B in order to represent the nodes of H, and let e be a distinguished URI reference
(e ∈ U). Then H is encoded by the RDF graph G = {(Xu, e,Xv) | (u, v) ∈ E}. We name G as enc(H).

With the above encoding, we obtain a straightforward connection between the classical notions of ho-
momorphism and isomorphism of standard graphs, and the notions of mapping and isomorphism of RDF
graphs. A homomorphism from a (standard) graph H1 = (V1, E1) to a graph H2 = (V2, E2), is a function
h : V1 → V2 such that (h(u), h(v)) ∈ E2 whenever (u, v) ∈ E1. When there is a homomorphism from H1 to
H2 we say that H1 is homomorphic to H2. An isomorphism between H1 = (V1, E1) and H2 = (V2, E2) is a
bijection f : V1 → V2 such that (f(u), f(v)) ∈ E2 if and only if (u, v) ∈ E1. If there is an isomorphism from
H1 to H2 we say that H1 and H2 are isomorphic. Given graphs H1 = (V1, E1) and H2 = (V2, E2) it is easy
to prove that H1 is homomorphic to H2 if and only if there exists a map enc(H1) → enc(H2). Similarly, it
holds that H1 and H2 are isomorphic if and only if enc(H1) ∼= enc(H2).

The following complexity results have appeared in several papers in different formulations [46, 23, 6, 27,
10]. This results belong to the folklore of RDF.

Theorem 9 (Folklore I). Given G1 and G2 two simple RDF graphs,

1. Deciding if G1 |= G2 is NP-complete.

2. Deciding if G1 ≡ G2 is NP-complete.

Proof.

1. Membership in NP follows taking the map as the witness. NP-hardness follows from an encoding of
Graph Homomorphism problem, that asks given two graphs H and H ′ if there is a homomorphism
from H to H ′. Several NP-complete problems are restrictions of Graph Homomorphism. For ex-
ample the Clique problem is the restriction when H is a complete graph. For our purpose, take two
standard graph H = (V,E) and H ′ = (V ′, E′) and their encodings as simple RDF graphs G = enc(H)
and G′ = enc(H ′). We know that H is homomorphic to H ′ if and only if there is a mapping G → G′,
and then we obtain that H is homomorphic to H ′ if and only if G′ |= G.
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2. Membership in NP follows taking the two maps as the witness. NP-hardness follows from an encoding
of the problem of determining whether two graphs H and H ′ are homomorphically equivalent, i.e.,
whether H is homomorphic to H ′ and H ′ is homomorphic to H. Several NP-complete problems are
restrictions of this problem. For example, if one restrict this problem to the case in which H is a
triangle (K3) then H is homomorphically equivalent to H ′ if and only if H ′ contains a triangle and is
3-colorable. For our purpose, take the standard graphs H and H ′ and their encodings as simple RDF
graphs G = enc(H) and G′ = enc(H ′). Now we know that G ≡ G′ if and only if there are mappings
G → G′ and G′ → G, and thus, G ≡ G′ if and only if H is homomorphic to H ′ and H ′ is homomorphic
to H.

¤

There is also a straightforward connection between the problem of testing entailment of simple RDF
graphs, and the problem of evaluating Boolean conjunctive queries. Given an RDF graph G consider for
every p ∈ voc(G) such that (s, p, o) ∈ G, a relation name Rp. We associate to G a Boolean conjunctive query
QG obtained by taking the conjunction of all the predicates Rp(s, o) such that (s, p, o) ∈ G, and considering
the blank nodes of G as existentially quantified variables in QG (the elements in voc(G) are considered as
constants in QG). Similarly, we can associate a relational database DG to every simple RDF graph G as
follows. For every p ∈ voc(G) such that (s, p, o) ∈ G there is a relation Rp in DG containing the set of tuples
{(s, o) | (s, p, o) ∈ G}. Notice that the active domain of DG is the the set universe(G), thus blank nodes are
allowed to appear in the tuples of the relations in DG. It is straightforward that, given G1 and G2 simple
RDF graphs, DG1

|= QG2
in the database sense if and only if there is a map G2 → G1. Thus, DG1

|= QG2

if and only if G1 |= G2.
The above connection can be used to obtain polynomial-time upper bounds for the problem of testing

entailment of simple RDF graphs, when one focuses on special classes of graphs. For instance, it is immediate
that given a fixed RDF graph G2, testing G1 |= G2 can be done in polynomial time. This is obtained as
a direct consequence of the data-complexity version of the evaluation problem for conjunctive queries [43],
that is, the complexity of the problem when the query is consider to be fixed and only the database is an
input parameter. Another case on which testing G1 |= G2 can be done in polynomial time, and generalizes
some results that appear in the folklore of RDF [23, 27, 10], is the case when G2 has no cycles induced
by blank nodes. More formally, a cycle induced by blank nodes in a simple RDF graph G, is a sequence
(x1, x2, . . . , xn) of elements in universe(G) where xn = x1 and for every i such that 1 ≤ i < n, there
exists p ∈ voc(G) with (xi, p, xi+1) ∈ G or (xi+1, p, xi) ∈ G, and xi, xi+1 ∈ B. If a simple RDF graph G
has no cycles induced by blank nodes, then the associated conjunctive query QG is an acyclic conjunctive
query [41]. In [41] it was shown that evaluating an acyclic conjunctive query can be done in polynomial
time. Thus, it follows directly that if G2 has no cycles induced by blank nodes, then G1 |= G2 can be tested
in polynomial time. Another notion that can be straightforwardly applied to obtain polynomial-time results
for the entailment problem, is the notion of tree-width of conjunctive queries (see [11, 19] for a definition of
tree-width of conjunctive queries). It is well known that conjunctive queries of bounded tree-width can be
evaluated in polynomial time [11, 19]. The notion of bounded tree-width has been recently applied in the
RDF context [37].

We end this section by stating the complexity of testing entailment in the presence of rdfs-vocabulary.

Theorem 10 (Folklore II). Checking G1 |= G2 is NP-complete for general (not necessarily simple) RDF
graphs.

Proof. The hardness part of the proof follows from the fact that simple RDF graphs are special cases of
RDF graphs. For the problem of deciding G1 |= G2 the witness is a proof of G2 from G1. In particular,
the witness is composed by the graph RDFS-cl(G1), a map µ : G2 → RDFS-cl(G1), a sequence of graphs
G1

1, G
2
1, . . . , G

k
1 , and a sequence r1, r2, . . . , rk−1 of instantiations of rules (8)-(7), such that (1) G1

1 = G1,
(2) Gk

1 = RDFS-cl(G1), and (3) for 1 ≤ i < k, Gi+1
1 is obtained from Gi

1 by applying rule ri. Notice that
every Gi

1 is a graph over universe(G1) and then the size of Gi
1 is at most cubic with respect to the size

of G1 (because |Gi
1| ≤ |universe(G1)|

3 ≤ |G1|
3). More over, the application of every rule adds at least
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one triple, and then k ≤ |G1|
3, implying that the witness is of polynomial size. The witness can be used

to check entailment in polynomial time, first checking that Gi+1
1 is obtained from Gi

1 for every i, checking
that RDFS-cl(G1) is closed under application of rules r (8)-(7), and then using the mapping µ and the
characterization of Theorem 8. ¤

3. Normal Forms

For each RDF graph there exist many different equivalent RDF graphs. For several purposes, it is
convenient to choose a distinguished representative of each such equivalence class, that is, a “normalized”
version of an RDF graph.

In the normative document specifying the semantics of RDF [46] there are notions that point in this
direction, although none completely satisfactory. Given an RDF graph, that document defines a notion of
minimal graph, a lean graph. We prove that for each RDF graph G, there is a unique lean graph equivalent
to it (modulo isomorphism), and following well known notions in graph theory, called it the core of G. On the
other hand, the document defines is a notion of maximal graph, that of closure (formalized in Definition 7)
which we call RDFS closure in this paper.)

In this section we discuss pros and cons of these notions, and propose a notion of normal form for RDF
graphs. In Section 3.1, we study maximal representations, give a semantics definition of closure and show
that it is equivalent to the RDFS closure. In Section 3.2, we study minimal representations, in particular
the notion of core. Based on the notions of core and closure, we formalize the notion of normal form, show
that it improves the RDFS closure in different aspects, and study the complexity of computing it.

3.1. Maximal Representations

In this section we explore maximal representations of RDF graphs, where the standard mathematical
notion is that of closure: a maximal (with respect to some metric) object of the same kind but equivalent
to the original one. Thus a naive definition is the following:

Definition 11 (naive closure). A closure of a graph G is a maximal set of triples G′ over universe(G)
plus the rdfs-vocabulary such that G′ contains G and is equivalent to it.

Example 12 shows that with this definition, there could be more than one closure for a graph.

Example 12. There could be more than one closure of a graph. For example the graph

c
r

ºº
a

p
66

p //

p
((

X d

b
q

GG

where p, q, r are different properties, has two different non-isomorphic closures, namely, either adding the
triple (X, r, d) or the triple (X, q, d) (but not both).

A relation between the notions of closure of Definitions 7 and 11 is presented in the following lemma.

Lemma 13. Let G′ be any closure of G as defined in Definition 11. Then RDFS-cl(G) ⊆ G′.

Proof. Let G′ be a closure of G, we will show that RDFS-cl(G)∩G′ = RDFS-cl(G). Let G⋆ = RDFS-cl(G)∩
G′, and suppose that G⋆ 6= RDFS-cl(G). Then the set RDFS-cl(G)−G⋆ is not empty. By the construction
of RDFS-cl(G) and because G ⊆ G⋆ there exists t ∈ RDFS-cl(G) − G⋆ such that G⋆ ⊢r G⋆ ∪ {t} and then
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because G⋆ ⊆ G′ we have that G′ ⊢r G′∪{t}, and then G′ ≡ G′∪{t}. Note that t /∈ G′ and then G′ ≡ G′∪{t}
is a contradiction with the maximality of G′. Finally G⋆ = RDFS-cl(G) and then RDFS-cl(G) ⊆ G′. ¤

What make the difference between the semantic notion of closure of Definition 11 and RDFS-cl are the
presence and treatment of blank nodes. The following notion is motivated by this observation.

The notion of Herbrand Model of a structure, is, roughly speaking, a model in which each syntactic
object (ground term) is represented as itself. When constructing Herbrand Models for sets of existential
first order sentences, the idea of Skolemization comes into play. The Skolemization of an existential sentence
consists simply in replacing every existentially quantified variable by a brand new constant. Following this
idea we can construct a ground graph associated to every RDF graph. Formally, given an RDF graph G,
define G∗ as the RDF graph obtained by replacing each blank X in G by a fresh constant cX . Conversely,
H∗ denotes the graph obtained from H after replacing each constant cX by the blank X and deleting triples
having blanks as predicates (which are not well defined triples in the RDF specification).

From the definition of RDFS-cl follows without difficulty the next lemma:

Lemma 14. Let G be an RDF graph, then RDFS-cl(G) = (RDFS-cl(G∗))∗.

We are ready to present a robust semantic notion of closure, not depending on the set of rules as RDFS-cl,
and not having the problems of Definition 11:

Definition 15. A closure of a graph G, denoted cl(G), is a graph G′ that satisfies: if G is a ground graph,
then G′ is a maximal ground graph equivalent to G, otherwise, G′ = H∗, where H is a closure of G∗.

Theorem 16 (cf. [32]). For each graph G:
1. The closure cl(G) is unique.
2. cl(G) coincides with the operational definition given in Hayes’ document, that is, cl(G) = RDFS-cl(G).
3. cl(G) has size Θ(|G|2).
4. Deciding if t ∈ cl(G) can be computed in time O(|G| log |G|).

Proof.
1. Suppose that G′ and G′′ are closures of a ground graph G, that is, G′ and G′′ are two maximal

ground RDF graphs equivalent to G. Then, by Theorem 8, G′ ⊆ RDFS-cl(G) and G′′ ⊆ RDFS-cl(G). But,
since RDFS-cl(G) ≡ G, and G′ and G′′ are maximal, it must be the case that G′ = RDFS-cl(G) = G′′. For
non-ground graph uniqueness follows from the injective nature of the operators (·)∗ and (·)∗.

2. If G is a ground graph, the previous proof shows that cl(G) = RDFS-cl(G). Otherwise, we
have cl(G∗) = RDFS-cl(G∗), and hence (cl(G∗))∗ = (RDFS-cl(G∗))∗. Thus, it is enough to prove that
RDFS-cl(G) = (RDFS-cl(G∗))∗, which is Lemma 14.

The items 3 and 4 are Theorems 6 and 7 in [32], where the proofs can be found. ¤

3.2. Minimal Representations

We study in this section the notion of core for RDF graphs which is related to the notion of lean presented
in [46]. Similar notions have been investigated in other contexts [26, 24, 16]. For RDF graphs, this notion
is closely bound to minimal representations.

Definition 17. A graph G is lean if there is no map µ such that µ(G) is a proper subgraph of G.

Example 18. Let p, q, r be different predicates and consider:

G1 a
p //

p

²²

X

Y

G2 a
p //

p

²²

X

q

²²
Y r

// b

Then G1 is not lean, but G2 is lean because there is no proper map of G2 into itself.
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Lemma 19. Let G1 and G2 be two lean RDF graphs. Then G1
∼= G2 if and only if there are maps G1 → G2

and G2 → G1.

Proof. The “only if” part is trivial by the definition of ∼=. For the “if” part, suppose that there are two
mappings µ1 : G1 → G2 and µ2 : G2 → G1. First, we know that µ1(G1) ⊆ G2 and µ2(G2) ⊆ G1 implying
that (µ1µ2)(G2) ⊆ µ1(G1) ⊆ G2. We have that µ1µ2 is a mapping such that (µ1µ2)(G2) ⊆ G2 and then
(µ1µ2)(G2) = G2 because G2 is lean. We have obtained that G2 = (µ1µ2)(G2) ⊆ µ1(G1) ⊆ G2, and then
µ1(G1) = G2. Similarly we obtain that µ2(G2) = G1 and then G1

∼= G2. ¤

The following theorem will be the basis of the applications of the notion of core in the context of RDF
graphs.

Theorem 20 (Core). Each RDF graph G contains a unique (up to isomorphism) lean subgraph which is
an instance of G. We will denote this unique subgraph by core(G).

Proof. First we show by induction on the size of G that every G contains a lean subgraph which is an
instance of G. If G is lean there is nothing to prove. Assume that G is not lean, then by definition there is a
map µ such that µ(G) ( G. By induction hypothesis the graph µ(G) contains a lean subgraph which is an
instance of µ(G), i.e. there is a map µ′ such that µ′(µ(G)) ⊆ µ(G) and µ′(µ(G)) is lean, then µ′(µ(G)) ⊆ G
and µ′(µ(G)) is a lean instance of G, completing this part of the proof.

Now we must show that the lean sub-instance is unique up to isomorphism. Consider G and two lean
subgraphs G1 and G2 that are instances of G. Because G1 is an instance of G there is a map G → G1, and
because G2 ⊆ G there is a map (the identity) G2 → G, and then there is a map G2 → G1. Similarly there is
a map G1 → G2 and because G1 and G2 are lean graphs and applying Lemma 19 we obtain that G1

∼= G2.
¤

Note that by definition of core we have G ⊢ core(G) and core(G) ⊢ G, and then every RDF graph is
equivalent to its core, that is G ≡ core(G).

For simple graph cores behave well: the concept of lean graph corresponds exactly to minimal represen-
tations, and allow to reduce logical equivalence to isomorphism of graphs, as the next theorem shows.

Theorem 21 (Cores for Simple RDF Graphs). Let G,G1, G2 be simple RDF graphs. Then:

1. core(G) is the unique (up to isomorphism) minimal (w.r.t. number of triples) graph equivalent to G.

2. G1 ≡ G2 if and only if core(G1) ∼= core(G2).

Proof.
(1) Suppose that Gm is another minimal graph such that G ≡ Gm. First note that Gm must be a lean

graph, because, if it were not lean then core(Gm) ( Gm and core(Gm) ≡ Gm ≡ G and then Gm would
not be a minimal (w.r.t. number of triples) graph equivalent to G. Now Gm ≡ G ≡ core(G) and then
Gm ≡ core(G), and because they are both lean simple graphs, and by Theorem 8 and Lemma 19, it holds
that Gm

∼= core(G).
(2) Let G1 and G2 be simple RDF graphs, then G1 ≡ G2 iff G1 → G2 and G2 → G1 iff core(G1) →

core(G2) and core(G2) → core(G1) iff core(G1) ∼= core(G2) by Lemma 19. ¤

The bad news is that computing cores is hard:

Theorem 22. Let G,G′ be RDF graphs.
1. Deciding if G is lean is coNP-complete.
2. Deciding if G′ ∼= core(G) is DP-complete.

Proof. Both proof are based on encodings of graph theoretic problems dealing with the well-known notion
of core: The core of a graph H is the smallest subgraph of H that is also a homomorphic image of H.

12



1. The proof is an encoding of the problem Core:
Instance: A graph H
Question: Is there a homomorphism of H to a proper subgraph?
This problem was shown to be NP-complete by Hell and Nesetril [26]. Encode the graph H = (V,E)
as the RDF graph G = enc(H). Now H has a homomorphism to a proper subgraph iff the RDF graph
G has an instance that is a proper subgraph, i.e. iff G is not lean. We have show that deciding if G is
not lean is NP-hard. Now for the membership in NP the certificate is the mapping µ such that µ(G)
is a proper subset of G, µ(G) ( G can be checked in polynomial time.

2. The proof is an encoding of the problem Core Identification:
Instance: Two graphs H and H ′.
Question: Is H ′ the graph theoretic core of H.
This problem was shown to be DP-complete in [16]. Encode the graphs H and H ′ as RDF graphs
G = enc(H) and G′ = enc(H ′). H ′ is the graph theoretic core of H, iff H ′ is isomorphic to a subgraph
of H that is an homomorphic image of H and has non homomorphism to a proper subgraph, iff G′ is
isomorphic to a subgraph of G that is an instance of G and has no instance that is a proper subgraph,
iff G′ is isomorphic to a lean subgraph of G that is an instance of G, iff G′ ∼= core(G) by uniqueness
of the core. Now for the membership in DP, one can split the problem in two, first checking if G′ is
isomorphic to a subgraph of G and an instance of G which both are NP (taking the maps as certificate),
and then checking if G′ is lean that we know is coNP.

¤

For the case of RDF graphs with RDFS vocabulary, things become more complex. Let us introduce a
notion of minimal representation.

Definition 23. A minimal representation of a graph G is a minimal (w.r.t. number of triples) graph
equivalent to G and contained in G.

We have seen that in the case of simple graphs core(G) is the (unique up to isomorphism) minimal
representation of G. Unfortunately, for the case of general graphs we do not have such unique minimal
representations in the general case. The semantics of the vocabulary plays a crucial role.

Example 24. There could be more than one reduction of a given graph. This follows from the transitive
property of sc and sp and classical results on transitive reduction on graphs [1]. The standard example is:

G a

b

sp
77

sp

** c
sp

jj

sp
gg

The graphs obtained by deleting either (b, sp, a) or (c, sp, a), are two non isomorphic reductions of G.

It is known that the transitive reduction of an acyclic graph is unique [1]. The class of graphs acyclic
for the properties of sp and sc form a big and important class. In fact, in modeling, this is considered good
practice [18]. Hence this could be a promising class with minimal representation. Unfortunately, we still we
have problems. Consider the following graph:

Example 25. Consider the graph G = {(a, sc, b), (type, dom, a), (x, type, a), (x, type, b)}
Even though it is acyclic w.r.t. subProperty and subClass, it has two non-isomorphic minimal represen-

tations:
G1 = {(a, sc, b), (type, dom, a), (x, type, a)}
G2 = {(a, sc, b), (type, dom, a), (x, type, b)}
In G1 the missing triple can be obtained via rule (5), and in G2 via rule (6) (replacing A = type, C = A,

B = b and X = x).
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The problem occurs because of the presence of vocabulary with predefined semantics in the subject or
object positions in a triple. If we forbid these triples, we get an important subclass of RDF graphs with
vocabulary for which there are minimal representations.

Theorem 26. Let G be an RDF graph with no reserved vocabulary in the subject nor in the object position,
and acyclic w.r.t. subProperty and subClass. Then G has a unique minimal representation.

Proof. Consider the intersection of all minimal representations of G. We will prove that this graph is
the unique minimal representation of G. We will prove that if t is a triple of G, either it is in all minimal
representations, or it is in none of them (thus, by definition of minimal representation, it can be deduced in
all of them).

Before we need some additional notions. Construct the graph Gsc build based on all triples (a, sc, b) of
G as follows: vertices, all subject and object elements of such triples; a directed edge (a, b) if and only if the
triple (a, sc, b) is in G. Similarly construct Gsp.

Next, if c is a vertex in Gsp, and if there is a triple (x, c, y) in G, mark in the graph Gsp the node c and
all its descendants with the pair (x, y).

First, assume the graph G has no reflexive triples of the kind (a, sc, a) nor (a, sp, a). Assume G1 and
G2 are minimal representations of G.

1. (a, sc, c). The only triples in all minimal representations are the ones in a transitive reduction of Gsc,
which is unique for acyclic graphs.
Note that because of our assumptions (no reserved vocabulary in subject nor object positions) the rule
(3) will not deduce triples of the kind (a, sc, c). Thus the only way to deduce such triples is using the
transitivity rule (4).

2. (a, sp, c). Similar as before.
3. All triples of the form (a, dom, c) and (a, range, c) are preserved in any minimal representation, because

there is no way of deducing them from other triples.
4. If t = (a, b, c) with no vocabulary RDFS involved, then (a, c) is a label of node b in Gsp (which is the

same graph as (G1)sp and (G2)sp; In fact, one key point in the analysis is that these graphs do not
change because the are no triples with sc nor sp allowed in object or subject positions). The only way
to deduce (a, b, c) is the existence of node d in Gsp with label (a, c) which is an ancestor of b.
Then if b = d the triple (a, b, c) should be in all minimal representations. If b 6= d, then (a, b, c) can be
safely ignored in any minimal representation.

5. (a, type, c). This kind of triple deserves careful analysis. Assume there is a triple (a, type, b) which is
in G1. With the restrictions imposed, note that a triple of the form (a, type, c) can be deduced only
by rule (5) or rules ( 6) or (7). Hence a triple (a, type, c) is in a minimal representation if and only if
is deduced by these rules. By induction, we already now that the antecedents of these rules must be
the same in any minimal representation. Hence the result follows.

Now, if G has a reflexive triple of the kind (a, sc, a) or (a, sp, a), note that either, it can be eliminated in
any minimal representation because can be obtained by one of the rules (8)-(13), or it cannot be obtained
by these rules, in which case is must be in any minimal representation. ¤

3.3. Normal Form

Although the notion of closure allows us to reduce RDF entailment to the existence of a mapping between
two RDF graphs (as Theorem 8 shows), it has some drawbacks, probably the most relevant is that it is syntax
dependent, that is, for graphs G,H it is not necessarily the case that cl(G) ∼= cl(H).

Example 27. Consider the following equivalent graphs G and H (where N is a blank node):

N

G : a
sc

// b sc
//

sc

??
ÄÄÄÄÄÄÄÄ

c
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and

H : a
sc

//

sc

BBb sc
// c

Then we have that even though G ≡ H, RDFS-cl(G) 6∼= RDFS-cl(H) and cl(G) 6∼= cl(H). Moreover, also
core(G) 6∼= core(H).

In fact, one would like a data representation, usually called normal form, with the following properties:

1. (Uniqueness) The normal form of a graph G, nf(G), is unique (up to isomorphism).
2. (Syntax-independence) For all graphs H,G, G ≡ H if and only if nf(G) ∼= nf(H).

The maximal and minimal representations we studied do not have these properties as example 27. For
simple RDF graphs, the core is really a normal form. But in general, it does not work because it not unique.
On the other hand, the closure is not syntax independent. Hence we will have to look for a compromise.
The following definition introduces, a combination of the closure and the core, fulfill the desiderata.

Definition 28. For a graph G, define its normal form, denoted nf(G), as the core of the closure of G, that
is, nf(G) = core(cl(G)).

The next theorem shows that the notion of normal form meets our desiderata.

Theorem 29 (Normal forms for RDF graphs). Let G and H be RDF graphs. Then:

1. The normal form is unique.
2. The normal form nf(G) is syntax independent, that is, G ≡ H if and only if nf(G) ∼= nf(H).

Proof.
1. Direct consequence of Proposition 16 and the uniqueness (up to to isomorphism) of the core.
2. Proposition 16 and Theorem 8 implies that G |= H if and only if H → cl(G) → core(cl(G)) = nf(G).

Hence, the statement follows using the fact that nf(G) and nf(H) are lean graphs applying Lemma 19. ¤

Note that the normal form for graphs G and H of Example 27 is H.
Unfortunately, computing the normal form is hard:

Theorem 30. Let G,G′ be graphs. The problem of deciding if G′ is the normal form of G is DP-complete.

Proof. The hardness part follows from the fact that if G is a simple graph deciding if G′ is the normal
form of G is equivalent to deciding if G′ is the core of G. By Theorem 22 we know that this last problem is
DP-hard. For the membership in DP, the problem is equivalent to test whether G′ is the core of cl(G). We
can split this problem in two, first checking if there is a map cl(G) → G′ which is NP, and then checking if
G′ is lean that we know is coNP. ¤

4. RDF Query Languages

Let V be a set of variables (disjoint from UB). Individual variables will be denoted ?X, ?Y, ?Person, etc.
As query language, we will use the notion of tableau borrowed from the database literature (see for

example [2]) but slightly extended to allow also a set of tuples in the head. A tableau is a pair (H,B) where
H,B are RDF graphs with some elements of UBs replaced by variables in V , B has no blank nodes, and all
variables of H occur also in B. We often write a tableau in the form H ← B to indicate the similarity with
logic programming and Datalog.

For example, a tableau such as

(?A, creates, ?Y ) ← (?A, type, F lemish), (?A,paints, ?Y ), (?Y, exhibited,Uffizi)

where identifiers preceded by ? are variables, intuitively defines the artifacts created by Flemish artists being
exhibited at Uffizi Gallery.
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Definition 31. A query is a tableau (H,B) plus a set of premises P and a set of constraints C, where P is
a graph over UB (i.e. with no variables) and C is a subset of the variables occurring in H. In other words,
a query is a tuple (H,B,P,C).

When P is omitted we assume the premise is empty, i.e. write (H,B,C) instead of (H,B, ∅, C). Similarly
for the set of constraints C or both.

The set of constraints C gives the user the possibility to discriminate between blank and ground nodes in
answers and plays the same role as IS NOT NULL in SQL. For example, the tableau above is a query with
no constraints. We can add to it the constraint {?A}; intuitively, as we will formalize in the next subsection,
this means that the ?A variable must be bound to a non-blank element in each answer to the query.

The premise P represents information the user supplies to the database to be queried in order to answer
the query. For example, the query:

(?X, relative, P eter) ← (?X, relative, P eter)
with premise P = {(son, sp, relative)} ask for all relatives of Peter knowing that “son” is a subproperty of
“relative”.

Note 32. The condition var(H) ⊆ var(B) avoids the presence of free variables in the head of the query.
The presence of blank nodes in the body of the query is unnecessary, because –as we will see– a variable plays
exactly the same role in this position. However, we do allow blank nodes in the head of the query to permit
some features which will clear in what follows.

4.1. Answers to a query

Let q = (H,B,P,C) be a query, D a database, and V a set of variables. This section defines the semantics
of the query q over the database D.

A valuation is a function v : V → UB. For a set C ⊆ V of variables, the valuation v satisfies the
constraint C (denoted v |= C) if for all x ∈ C, v(x) is not blank.3 We define v(B) as the graph obtained
after replacing every occurrence of a variable x in B by v(x).

A matching of the graph B in database D is a valuation v such that v(B) ⊆ nf(D). The matchings that
interest us are those that satisfy the constraints C.

The semantics includes, for each blank node N occurring in H, a Skolem function fN : (UB)k → C,
where k is the number of distinct variables occurring in B and C a set of blank nodes disjoint with any
appearing in the query or the database. For each valuation v, v(H) is the graph obtained by replacing each
variable ?X occurring in H by v(?X) and each blank node N occurring in H by fN (v(?X1), . . . , v(?Xk))
where ?X1, . . . , ?Xk are the variables occurring in B.

Definition 33. Let q = (H,B,P,C) be a query and D a database. A pre-answer to q over D is the set

preans(q,D) = {v(H) | v is a matching of B in D+P and v |= C, and v(H) is a well formed RDF graph}.

A graph v(H) in preans(q,D) is called a single answer of the query q over D.

Note 34. Some clarifications about the notion of matching are in order. We would like to preserve the
semantics of answers under equivalence of datasets, that is if D ≡ D′, then the answer of q against D
should be the same as the answers of q against D′.

For this, we need to query nf(D) instead of just D in order to deal with rdfs vocabulary because entailment
in this case is characterized in terms of nf (cf. Theorem 29). Recall that using simply a closure D′ of D
instead of nf(D) would not give unique answers as shown by the RDF graphs in Example 27.

A more general definition of matching obtained by replacing “v(B) ⊆ nf(D)” by “D |= v(B)” does not
work properly because it could give infinite answers. For example, given D = {(a, b, c)} and the query defined
as (?X, ?Y, ?Z) ← (?X, ?Y, ?Z), the answers would be D union all triples of the form (N, b,M) with N,M
blank nodes.

3This constraint is called a must-bind variable in DQL [44].
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A desirable property a query language for RDF should have is compositionality, i.e., the property that
complex queries can be composed from simpler ones [7]. For this, we need to output results in the same
format as input data. In our case, we can combine single answers in several different ways to obtain as final
answer an RDF graph. We concentrate on two approaches to do this:

1. ans∪(q,D) is the union of all single answers. With this approach, queries properly capture the in-
formation carried by blank nodes inside D (in particular when blank nodes play the role of bridges
between two single answers).

2. An alternative approach, ans+(q,D), is to merge all single answers, which means to rename blank
nodes if necessary to avoid name clashes.

Note that if there are no blank nodes in D, both approaches are the same.
The merge-semantics could be useful when querying several sources (e.g. several different files of metadata

corresponding to different web pages). In this case we do not want clashes of blank nodes of different
specifications. One important drawback of the merge-semantics is that there could be no data-independent
query that retrieves the whole database. An approach similar to merge-semantics can be found in query
languages for semistructured data [34].

The union-semantics is more intuitive. First, there exists an identity query (see Note 37 below). As
another illustration, consider a database D which has a blank node N with several properties, i.e., there
exist in D several triples (N, p1, z1), (N, p2, z3), . . . . If we follow the merge-semantics, we cannot retrieve the
properties of N with a data independent query. On the other hand, if we follow the union-semantics, the
query (?X, feature, ?Y ) ← (?X, ?Y, ?Z) will do it.

Proposition 35. Let q = (H,B,C, P ) be a query. Assume that when querying any database, the same
Skolem function fN is used for every blank node N in H. Then:

1. For both semantics, if D′ |= D then ans(q,D′) |= ans(q,D).

2. For all D, ans∪(q,D) |= ans+(q,D).

Proof.
1. Note that from D′ |= D follows that D′ + P |= D + P and then by Theorem 29 there is map µ with

µ(nf(D + P )) ⊆ nf(D′ + P ). In the proof we will use a map µ′ equal to µ in the blanks of D + P and the
identity outside. The restriction on µ′ to be the identity outside the blanks of D is to ensure that µ′ do not
change the value of any Skolem function used in the answer.

For merge semantics is enough to show that for every graph G ∈ preans(q,D), there is a graph G′

in preans(q,D′) such that G′ |= G. Let G ∈ preans(q,D), then G = v(H) for some valuation v that
satisfies the conditions C and v(B) ⊆ nf(D + P ). Note that the function µ′v : V → UB is a valuation that
satisfies the conditions C (because µ′ is the identity over U) and (µ′v)(B) ⊆ µ(nf(D + P )) ⊆ nf(D′ + P ),
and then (µ′v)(H) ∈ preans(q,D′) because (µ′v)(N) = v(N) for any blank node N in H. Finally, let
G′ = (µ′v)(H) = µ′(G), then G′ |= G and G′ ∈ preans(q,D′) completing this part of the proof.

For union semantics, let t ∈ µ′(ans∪(q,D)), then t ∈ µ′(v(H)) for a valuation v that satisfies C and
such that v(B) ⊆ nf(D + P ). This last statement implies that (µ′v)(B) ⊆ nf(D′ + P ), and because
µ′v : V → UB is a valuation that satisfies the conditions C and (µ′v)(N) = v(N) for any blank node N in
H, we have that (µ′v)(H) ∈ preans(q,D′), and then (µ′v)(H) ⊆ ans∪(q,D′). Finally t ∈ ans∪(q,D′) and
then µ′(ans∪(q,D)) ⊆ ans∪(q,D′) which implies that ans∪(q,D′) |= ans∪(q,D).

2. It follows from the general fact G1 ∪ G2 |= G1 + G2. ¤

Theorem 36. Let q = (H,B,C, P ) be a query, if D ≡ D′ then ans(q,D) ∼= ans(q,D′).

Proof. From D′ ≡ D follows that D′ +P ≡ D +P and then by Theorem 29 there nf(D +P ) ∼= nf(D′ +P ).
Consider an isomorphism µ : nf(D + P ) → nf(D′ + P ) such that µ is the identity outside the blanks of
D ∪ D′. Then µ witnesses the desired isomorphism. The restriction on µ to be the identity outside the
blanks of D ∪D′ is to ensure that µ do not change the value of any Skolem function used in the answer. ¤
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Note 37 (The identity query). The identity query is defined as (H,B) with H = B = {(?X, ?Y, ?Z)}.
Observe that this query works as identity modulo equivalence only with the union-semantics. Consider

the database D = {(X, b, c), (X, b, d)}. Then ans∪(q,D) ≡ D, but ans+(q,D) = {(X, b, c), (Y, b, d)}, which
is not equivalent to D because there is no map from D to ans+(q,D). This shows also that the converse of
Proposition 35, item 2, does not hold.

In the sequel, unless stated otherwise, we will assume the union-semantics.

4.2. Premises

Having premises in queries extends classical querying in several aspects: The possibility of simulating
if-then queries while still remaining within the expressiveness of the language; hypothetical analysis of
information; and the ability to query incomplete information by supplying information not in the database.
This is particularly relevant when querying sources which use external ontologies.

Our definition of premises differs from Bonner’s [8] in that we have one fixed premise for the whole query.
We also allow blank nodes, but not variables, in the premise.

It is important to remark that premises cannot be simulated with Datalog programs. For example
consider the following query:

(?X, relative,Mary) ← (?X, relative,Mary)
with premise P = {(son, sp, descendant)}.

It is not possible to write a data-independent Datalog-like query equivalent to it. The reason is that
we do not know in advance the existence, in a given database, of triples like (descendant, sp, relative) that
could indirectly link “son” with “relative” via the transitive relation sp.

5. Query containment

In this section we explore different notions of query containment and their characterizations. In Section
5.1, we introduce two different notions of query containment for RDF queries. In Section 5.2 we give
characterizations for the two notions in terms of mappings between the queries involved, for the case of
queries without premises. Finally, in sections 5.3 and 5.4, respectively, we study the containment problem
under premises and constraints.

5.1. Notions of Query Containment

Any reasonable notion of query containment q ⊑ q′ should embody the idea that ans(q′,D) comprises
all the information of ans(q,D). In relational databases, set-theoretical inclusion of tuples captures this
requirement. When databases are viewed as knowledge bases having a notion of entailment (denoted in
what follows by |=), the information comprised by a database is all that can be entailed from it. Hence the
right notion of q ⊑ q′ is ans(q′,D) |= ans(q,D) for all D. In the relational case both notions coincide. This
is not the case in our context. In what follows we will discuss these two versions of containment.

Given sets S, S′ of RDF graphs, we write that S ⊆iso S′ iff for each G ∈ S, there is G′ ∈ S′ with G′ ∼= G.

Definition 38 (containment). Let q, q′ be queries.
1. (standard containment) q ⊑p q′ iff for all databases D, preans(q,D) ⊆iso preans(q′,D).
2. (entailment-based containment) q ⊑m q′ iff for all databases D, ans(q′,D) |= ans(q,D).

Proposition 39. ⊑p implies ⊑m.

Proof. Let q = (H,B,P,C) and q′ = (H ′, B′, P ′, C ′) two queries. Suppose that q ⊑p q′, then given a simple
answer v(H) ∈ preans(q,D), there must exist v′(H ′) ∈ preans(q,D) with v′(H ′) ∼= v(H) via a map µ that
preserves blank nodes of D. Otherwise we replace blanks of D by fresh constants obtaining a contradiction.
Now the union of such maps

⋃
µ is a map from ans(q,D) to ans(q′,D). ¤

The converse of this proposition is not true as the following examples show.
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Example 40. When working with rdfs vocabulary, containment characterizations are more complex. In the
following queries, the head (not depicted) is assumed to be the same as the body.

B : ?Y

?X
sc // ?Z

sc

OO B′ : ?Y

?X

sc

==
zzzzzzzz

sc // ?Z

sc

OO

Clearly, q′ ⊑m q and q ⊑m q′. But q 6⊑p q′ nor q′ 6⊑p q.
Even if we do not allow rdfs vocabulary in queries, the two notions are not equivalent. Consider two

queries q = (H,B) and q′ = (H ′, B′), where B = B′, and the heads are as follows:

H : c

?X

q

OO H ′ : Y

?X

q

OO

where Y is a blank node, and ?X, ?Z are variables. Clearly, q′ ⊑m q but q′ 6⊑p q.
For queries without rdfs vacabulary and blank nodes we can still find examples for which the two contain-

ment notions disagree. Consider two queries q = (H,B) and q′ = (H ′, B′), where B = B′, and the heads
are as follows:

B : ?Y

?X
q // ?Z

p

OO B′ : ?Y

?Z

p

OO

In this case, q′ ⊑m q but q′ 6⊑p q.

We prove next that blank nodes in databases do not play any role in the containment problem, when
queries do not have constraints. We need the following auxiliary notions.

Let D be a set of databases. We write that q ⊑p q′ in D if and only if for all databases D ∈ D,
preans(q,D) ⊆iso preans(q′,D). We write that q ⊑m q′ in D iff for all databases D ∈ D, ans(q′,D) |=
ans(q,D).

Proposition 41. Let q, q′ be queries without constraints and let G be the set of ground databases. Then:
1. q′ ⊑m q in G if and only if q′ ⊑m q.
2. q′ ⊑p q in G if and only if q′ ⊑p q.

Proof.

1. The “If” direction is trivial. For “Only If”, assume it is not true. Then there is a database D such
that ans(q′,D) 6|= ans(q,D) (*). Consider the database Dg = µ(D), where µ is the map sending
blank nodes N of D to constants cN . Then Dg |= D, and ans(q′,Dg) |= ans(q,Dg), that is, there is
δ : ans(q,Dg) → ans(q′,Dg). Then we can build a map θ : ans(q,D) → ans(q′,D) defined as follows:
θ(x) = x if x is a blank node in D, and θ(x) = δ(x) elsewhere (URIs or blank nodes generated by
skolem functions). It is not difficult to show that θ is a map, yielding a contradiction with (*).

2. The “If” direction is trivial. For “Only If”, assume it is not true. Then there is a database D such
that ans(q′,D) 6⊆ ans(q,D) (*). Consider the database Dg = µ(D), where µ is the map sending blank
nodes N of D to constants cN . Then ans(q′,Dg) ⊆ ans(q,Dg). Now, we replace each constant cN in
Dg with N , and it can be easily verified that ans(q′,D) ⊆ ans(q,D), a contradiction.

¤
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5.2. Testing Containment

In this section we study the notions of containment for queries without premises and without constraints.
Testing standard containment of queries without premises resembles containment of conjunctive rela-

tional queries. A characterization of entailment-based containment is more subtle. The next theorem gives
characterizations for both notions.

Define G1 |= G2 for graphs G1, G2 containing variables, as v(G1) |= v(G2), where v is a valuation sending
the variables to fresh constants.

Theorem 42. Consider the queries q = (H,B) and q′ = (H ′, B′). Then:

1. q ⊑p q′ if and only if there is a sustitution of variables θ such that (a) θ(B′) ⊆ nf(B) and (b)
θ(H ′) ∼= H.

2. q ⊑m q′ if and only if there are substitutions θ1, . . . , θn (of variables) such that (a) θj(B
′) ⊆ nf(B)

and (b)
⋃

j θj(H
′) |= H.

Proof.

1. (If) Let D be a database, and v a substitution with v(H) ∈ preans(q,D), that is, v(B) ⊆ nf(D).
Hence nf(v(B)) ⊆ nf(D). But it can be easily verified (by structural induction on derivation rules) that
v(nf(B)) ⊆ nf(v(B)). Therefore, we obtain v(nf(B)) ⊆ nf(D). Now, let µ = v(θ()), using Condition
(a) of the theorem, we obtain v(θ(B′)) ⊆ nf(D), that is µ(H ′) ∈ preans(q′,D). But Condition (b) of
the theorem states that θ(H ′) ∼= H. Then v(θ(H ′))) ∼= v(H), hence, µ(H ′) ∼= v(H). Therefore q ⊑p q′.
(Only If) Assume q ⊑p q′. Consider the database D = µ(B), where µ(x) = x if x is a constant and
µ(x) = cx if x is a variable. Clearly, µ(H) ∈ preans(q,D), then there is µ′(H ′) ∈ preans(q′,D) such
that µ(H) ∼= µ′(H ′). Therefore, µ′(B′) ⊆ nf(D). Now, let θ = µ−1(µ′()). It can be easily verified that
θ satisfies conditions (a) and (b) of the theorem.

2. Because of Proposition 41, we need to show the statement for q ⊑m q′ in G, for G being the set of
ground databases.
(If) Let D be a ground database and ans(q,D) =

⋃
vi(H) and ans(q′,D) =

⋃
ui(H

′) (the vi(H)
and ui(H) are preanswers), we will prove that there is a map ω : ans(q,D) → ans(q′,D). Since D is
a ground database the preanswers do not share blank nodes and therefore it is enough to prove that
there are maps ωi : vi(H) → ans(q′,D), for each vi(H) ∈ preans(q,D). Consider the maps θ1, . . . , θj .
For each j, θj(B

′) ⊆ nf(B), hence vi(θj(B
′)) ⊆ vi(nf(B)) ⊆ nf(D). Hence, vi(θj(H

′)) ∈ preans(q′,D).
Therefore,

⋃
j vi(θj(H

′)) ⊆ ans(q′,D). Let α be the map of Condition (b), that is α(H) ⊆
⋃

j θj(H
′).

Notice that α only replace blank nodes, but the variables are preserved. Now let define ωi as follows:
ωi(x) = α(x) for each blank node x in v(H), and ωi(x) = x for each constant. From Condition (b), it
follows that ωi(vi(H)) ⊆

⋃
j vi(θj(H

′)), and hence ωi : vi(H) → ans(q′,D).
(Only If) Consider the database DB = v(B), where v is the 1-1 valuation assigning x to a fresh
constant ax. By hypothesis, we have ans(q′,DB) |= v(H). So, there are maps v′

1, . . . , v
′
n : B′ →

nf(DB), such that
⋃

j v′
j(H

′) |= v(H). Now, applying v−1 to both sides of the expression, and using

that (a) v−1 is 1-1 and works only over ground elements, and (b) considering variables resulting from the
application of v−1 as ground elements, we have that v−1(

⋃
j v′

j(H
′)) |= H. Then

⋃
j v−1(v′

j(H
′)) |=

H. Thus, let θj = v−1 ◦ v′
j , and we have conditions (1) and (2) of the theorem.

¤

We end the section by giving complexity bounds for the containment problem (for queries without
premises).

Theorem 43. Consider the queries q = (H,B) and q′ = (H ′, B′). Then:

1. Testing whether q ⊑p q′ is NP-complete.

2. Testing whether q ⊑m q′ is NP-complete.
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Proof.

1. NP-hardness: we can encode the problem of deciding G |= G′, where G,G′ are simple graphs. From
Therem 9 this problem is NP-complete. We just construct the queries q : (a, b, c) ← B and q′ :
(a, b, c) ← B′, where a, b, c are constants, and B,B′ are obtained from G,G′, respectively, by replacing
blanks with variables. From theorems 8 and 42 it can be easily verified that the two problems are
equivalent, that is q ⊆p q′ (i.e., there is a substitution of variables θ such that θ(B′) ⊆ B) iff G |= G′

(i.e., there is a map from G′ to G). Membership in NP follows directly from Theorem 42: just use θ
as a certificate.

2. NP-hardness: notice that, for the queries q, q′ given in the item 1 of this proof, Theorem 42 (2)
becomes: q ⊆m q′ iff there is a substitution θj such that θj(B

′) ⊆ nf(B) (because q, q′ have the same
head). Therefore, for q, q′ the two containment problems are equivalent, and we can use the encoding
from the previous proof. For proving membership in NP just notice that, from the proof of Theorem
42 (2), the number of maps θj is at most the number of triples of H. Then, the witness is the set {θj}
and the map that witness the entailment of Condition (b) of Therem 42 (2).

¤

5.3. Containment of Queries with Constraints

The results of Section 5.2 can be easily generalized to handle constraints. Next, we extend Theorem 42
to handle constraints.

Theorem 44. Consider the queries q = (H,B) and q′ = (H ′, B′). Then:

1. q ⊑p q′ if and only if there is a sustitution of variables θ such that (a) θ(B′) ⊆ nf(B) and (b)
θ(H ′) ∼= H, and (c) θ(C ′) ⊆ C

2. q ⊑m q′ if and only if there are substitutions θ1, . . . , θn (of variables) such that (a) θj(B
′) ⊆ nf(B)

and (b)
⋃

j θj(H
′) |= H, and (c) θj(C

′) ⊆ C.

Proof. Given a query q = (H,B,C), we define qc as the query (H,Bc, ∅), where Bc is obtained from B by
adding a triple (?X, is, ground) (which we will refer to as a constraint triple) for each ?X ∈ C.

Now, for a database D, we define Dc as D union a set including a triple (c, is, ground) for each constant
c that appears in D. We define Dc as the set containing Dc for all databases D.

Notice that for all queries q: ans(q,D) = ans(qc,Dc) and preans(q,D) = ans(qc,Dc). Therefore we have
that: q ⊑p q′ iff qc ⊑p q′c in Dc and q ⊑m q′ iff qc ⊑m q′c in Dc.

Now, Theorem 42 also applies for qc ⊑p q′c in Dc and qc ⊑m q′c in Dc. The new conditions (c) of both
parts of the theorem make explicit that the maps of Thereom 42 should include the new constraint triples.
¤

5.4. Containment of Queries with Premises

In this section, we present a first study of containment for queries with premises. We tackle the contain-
ment problem in the realm of RDF graphs over non-interpreted vocabulary, that is, rdfs graphs are treated
as simple graphs wherever they appear, that is in bodies, heads, and premises and databases. We refer to
this class of queries as simple queries.

We prove that simple queries with premises can be transformed into union of queries without premises,
which yields a characterization and complexity bounds for testing entailment. This result does not hold if
the semantics of rdfs vocabulary is considered, even if premises are simple RDF graphs. The results here
can also be extended to include constraints using the trick in the proof of Theorem 44, but for the sake of
simplicity, we omit constraints in this section.

We start by proving that, when testing q ⊑p q′ or testing q ⊑m q′, a mild extension of Theorem 42 can
handle a premise in q′.
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Theorem 45. Consider the simple queries q = (H,B, ∅) and q′ = (H ′, B′, P ′). Then:

1. q ⊑p q′ if and only if there is a sustitution (of variables and blank nodes) θ such that (a) θ(B′) ⊆ P ′+B
and (b) θ(H ′) ∼= H.

2. q ⊑m q′ if and only if there are substitutions θ1, . . . , θn (of variables) such that (a) θj(B
′) ⊆ P ′ + B

and (b)
⋃

j θj(H
′) |= H.

Proof. The proof mirrors closely that of Theorem 42 and we write it down for the sake of completeness.

1. (If) Let D be a database, and v a substitution with v(H) ∈ preans(q,D), that is, (a) v(B) ⊆ D. Let
µ = v(θ()). From (a) and (1) we obtain v(θ1(B

′)) ⊆ P ′ + D, and hence µ(H ′) ∈ preans(q′,D). But
(2) states that θ1(H

′) ∼= H. Then v(θ1(H
′))) ∼= v(H), hence, µ(H ′) ∼= v(H). Therefore q ⊑p q′.

(Only If) Assume q ⊑p q′. Consider the database D = µ(B), where µ(x) = x if x is a constant and
µ(x) = cx if x is a variable. Clearly, µ(H) ∈ preans(q,D), then there is µ′(H ′) ∈ preans(q′,D) such
that µ(H) ∼= µ′(H ′). Therefore, µ′(B′) ⊆ P ′ + D. Now, let θ = µ−1(µ′()). It can be easily verified
that θ satisfies conditions (a) and (b) of the theorem.

2. Because of Proposition 41, we need to show the statement for q ⊑m q′ in G, for G being the set of
ground databases.
(If) Let D be a ground database and ans(q,D) =

⋃
vi(H) and ans(q′,D) =

⋃
ui(H

′) (the vi(H) and
ui(H) are preanswers), we will prove that there is a map ω : ans(q,D) → ans(q′,D). Since D is a
ground database the preanswers do not share blank nodes and therefore it is enough to prove that there
are maps ωi : vi(H) → ans(q′,D), for each vi(H) ∈ preans(q,D). Consider the maps θ1, . . . , θj . For
each j, θj(B

′) ⊆ P ′ + B, hence vi(θj(B
′)) ⊆ P ′ + vi(B) ⊆ P ′ + D. Hence, vi(θj(H

′)) ∈ preans(q′,D).
Therefore,

⋃
j vi(θj(H

′)) ⊆ ans(q′,D). Let α be the map of Condition (b), that is α(H) ⊆
⋃

j θj(H
′).

Notice that α only replace blank nodes, but the variables are preserved. Now let define ωi as follows:
ωi(x) = α(x) for each blank node x in v(H), and ωi(x) = x for each constant. From Condition (b), it
follows that ωi(vi(H)) ⊆

⋃
j vi(θj(H

′)), and hence ωi : vi(H) → ans(q′,D).
(Only If) Consider the database DB = v(B), where v is the 1-1 valuation assigning to each variable

X a fresh constant aX . By hypothesis, we have ans(q′,DB) |= v(H). So, there are maps v′
1, . . . , v

′
n :

B′ → nf(DB), such that
⋃

j v′
j(H

′) |= v(H). Now, applying v−1 to both sides of the expression,

and using that (a) v−1 is 1-1 and works only over ground elements, and (b) considering variables
resulting from the application of v−1 as ground elements, we have that v−1(

⋃
j v′

j(H
′)) |= H. Then

⋃
j v−1(v′

j(H
′)) |= H . Thus, let θj = v−1 ◦ v′

j , and we have conditions (1) and (2) of the theorem.

¤

Next, we prove that, if the semantics rdfs vocabulary is not taken into account, a query with premises
can be transformed into a union of queries without premises.

Proposition 46. Let q = (H,B,P ) be a simple query. And let Ωq be the set of queries defined as:

Ωq = {qµ = (µ(H), µ(B − R), ∅) | µ : R → P and R ⊆ B and µ(B − R) has no blanks}.

Then, q =
⋃

qµ∈Ωq
qµ, that is, for all databases D, ans(q,D) =

⋃
qµ∈Ωq

ans(qµ,D).

Proof.
(⊆) Consider a database D, and v(H) ∈ preans(q,D). Then v(B) ⊆ D + P . Now, we can split B into

R and B − R, such that v(R) ⊆ P and v(B − R) ⊆ D. Now let µ be the map obtained by restricting
the domain of v to the variables in R. And let w be the map obtained by restricting the domain of v to
variables in B − R. If µ(B − R) has a blank, then there is a variable x such that µ(x) is a blank in P and
also µ(x) is a blank in D, contradicting the restriction that blanks of premises are disjoint with blanks of
databases. Therefore qµ is a query in the set given in the theorem. In addition, it can be easily verified that
w(µ(B − R)) ∈ D and hence w(µ(H)) ∈ preans(qµ,D), and hence v(H) ∈ preans(qµ,D).

(⊇) Consider a query qu, a database D and a preanswer v(µ(H)) ∈ preans(qu,D). Then v(µ(B−R)) ∈ D
and also from the definition of qµ we have µ(R) ∈ P . Then, we have v(µ(R)) ∈ P (because v(µ(R)) = µ(R)).
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Therefore, v(µ(B)) ⊆ P +D, hence v(µ(H)) ∈ preans(q,D). We can encode containment of classical tableau
into queries without premises. ¤

Example 47. As an example, the answer returned by the query q defined by:
q : (?X, p, ?Y ) ← (?X, q, ?Y ), (?Y, t, s), with P = {(a, t, s), (b, t, s)}).

is the same as the union of the answers returned by the following queries:
q1 : (?X, p, a) ← (?X, q, a), with P1 = ∅,
q1 : (?X, p, b) ← (?X, q, b), with P2 = ∅,
q3 : (?X, p, ?Y ) ← (?X, q, ?Y ), (?Y, t, s), with P3 = ∅.

Proposition 48. Let q1, q2 be queries without premises, and let q′ = (H ′, B′, P ′). Then:

1. (q1 ∪ q2) ⊑p q′ iff q1 ⊑p q′ and q2 ⊑p q′.

2. (q1 ∪ q2) ⊑m q′ iff q1 ⊑m q′ and q2 ⊑m q′.

Proof.

1. It follows directly from the definition of ⊑p.

2. (If) Then q1 ⊑m q′ in G and q2 ⊑m q′ in G, where G is the set of ground databases. Then for all constant
databases D, we have maps: µ1 : ans(q1,D) → ans(q′,D) and µ2 : ans(q2,D) → ans(q′,D). But,
because D is constant ans(q1,D) and ans(q2,D) do not share blanks, and hence µ1∪µ2 : (ans(q1,D)∪
ans(2,D)) → ans(q′,D). Hence, (q1 ∪ q2) ⊑m q′ in G. The conclusion follows from Proposition 41.
The “Only If” part is direct.

¤

Theorem 46 and propositions 46 and 48 yield the following algorithm for testing the containment q ⊑p q′

(respectively q ⊑m q′). First, we transform q into Ωq and then for each query qµ ∈ Ωq we use Theorem 45 to
test if qµ ⊑p q′ (respectively qµ ⊑m q′). We end this section by given complexity bounds for the conteinment
problems.

Theorem 49. Let q = (H,B,P ) and q′ = (H ′, B′, P ′) be simple queries.

1. Testing whether q ⊑p q′ is NP-hard and in Π2P .

2. Testing whether q ⊑m q′ is NP-hard and in Π2P .

3. If P = ∅ then both testing q ⊑p q′ and testing q ⊑m q′ are NP-complete.

Proof.

1. NP-hardness: follows from the same encoding as in the proof Theorem 43 (1). From Proposition 46
and Theorem 42, this can be solved by a NP machine with an NP oracle. The certificate is a query qµ

in the set given by Proposition 46, we use the oracle to test whether qµ 6⊑p q′. Hence the complement

problem is in NPNP, and the problem is in coNPNP.

2. Similar to the previous proof.

3. Follows directly from Theorem 45: just use θ as a certificate to prove membership in NP. For NP-
hardeness the encoding given in the proof of Theorem 43 (1) works here.

¤

23



6. Complexity of query answering

6.1. Computing matchings

In order to understand the complexity of computing the set of matchings for a query over a database,
we consider the simpler problem of testing emptiness of the query answer set.

1. Query complexity version: For a fixed database D, given a query q, is q(D) non-empty?
2. Data complexity version: For a fixed query q, given a database D, is q(D) non-empty?

Theorem 50. The evaluation problem is NP-complete for the query complexity version, and polynomial for
the data complexity version.

Proof. Reduction of 3SAT to the problem of evaluating a conjunctive query over a database. Membership
in NP follows immediately.

Data complexity version: This follows from the fact that the number of potential matchings of the body
of q in nf(D) is bounded by the number of subgraphs of nf(D) of size q, and the fact that the size of nf(D)
is polynomial in D. ¤

From the proof of Theorem 50 follows that the size of the set of answers of a query q issued against a
database D is bounded by |D||q|, where |D| is the size of the normal form of the database (number of triples)
and |q| is the number of symbols in the query.

6.2. Redundancy elimination

We give some observations on redundancies in queries, databases and set of answers.
It is desirable and possible to have queries with lean heads. Otherwise, the answer generated will have

redundancies which could have been avoided.
On the contrary, it is not always possible to have lean graphs in body of queries. For example,

consider the query q = (H,B, ∅), where H = (?Course, related, “DB”) and B = (?Dept, offers, “DB”),
(?Dept, offers, ?Course). B is not lean and is equivalent to the lean graph B′ = (?Dept, offers, “DB”). It
turns out that there is no query equivalent to q with body B′ (using any notion of equivalence).

Even having lean databases and queries with lean heads and bodies does not avoid redundancies in the
answer set. Consider the lean graph G2 in Example 18, and the query (?Z, p, ?U) ← (?Z, p, ?U). The answer
set is G1 which is not lean.

Answers to queries in RDF usually have redundancies. Ideally, the answer set ans(q,D) should reduce
these redundancies to the minimum, i.e. to an equivalent lean graph. The naive approach to eliminate
redundancy in answers is to compute: (1) ans(q,D), and (2) a lean equivalent to ans(q,D). The next
theorem shows that in the worst case there is no better approach.

Theorem 51. Given a lean database D and a query q, to decide whether ans∪(q,D) is lean is coNP-complete
(in the size of D).

The theorem follows from the fact that there is a query that computes the identity and from Theorem 22.
For merge-semantics redundancy elimination can be done much more efficiently:

Theorem 52. Given a lean database D and a query q, deciding whether ans+(q,D) is lean can be done in
polynomial time in the size of D.

Proof. Let A = ans+(q,D) and let us refer to maps from single answers to A as single maps. The key
observation is that, because single answers do not share variables in merge-semantics, maps µ : A → A
are exactly unions of single maps µj : Gj → A for each Gj single answer. (Note that in the case of
union-semantics the union of the µj would not be a function.)

Thus an algorithm for finding a proper map µ : A → A only needs to compute single maps and check
whether (1) at least a single map is proper, or (2) two of them share a blank node in their range. This can
be done in time polynomial on the set of single maps, whose size is polynomial in the size of D. Thus the
complete test can be done in polytime. ¤
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7. Conclusions and Future Work

The RDF data model poses new challenges to query languages. We have studied some fundamental
problems introduced by this model. This formalization needs to be extended to richer properties and
mechanisms of current working query languages for RDF, to establish a solid base to compare functionalities,
features and limitations of RDF query languages. Features like connectedness, reachability, paths, recursion,
extended constraints, aggregation and views must be developed.
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