
SNQL: A Social Networks Query and
Transformation Language

Mauro San Mart́ın1, Claudio Gutierrez2, and Peter T. Wood3

1Dept. of Mathematics, U. de La Serena - 2Dept. of Computer Science, U. de Chile
3Dept. of Computer Science and Information Systems, Birkbeck, Univ. of London

Abstract. Social Network (SN) data has become ubiquitous, demand-
ing advanced and flexible means to represent, transform and query such
data. In addition to the intrinsic challenges of querying graph data is the
requirement that networks be restructured, and thus that new values be
created.
To address these, we introduce a dedicated data model and query lan-
guage, SNQL, founded on previous research on graph databases and on
the experience of SN researchers. Technically, it is based in GraphLog
and second-order tuple generating dependencies, allowing expressiveness
for graph querying and node creation as required by SN, while keeping
the complexity of query evaluation in NLOGSPACE.

1 Introduction

The widespread embracing of social networking services—such as Facebook,
MySpace and LinkedIn—as the indispensable tools to manage people’s digital
and physical lives has resulted in rapidly growing amounts of social activity data.
Furthermore, the social information represented by many sites usually includes
not only people but a great variety of objects (usually referred to generically as
actors in the social networking literature) and relations [4]: photographs (Flickr),
other sites (del.icio.us), places (Yahoo! Travel), goods (Amazon), and so on. This
diversity produces complex social networks (SN) which require managing, query-
ing and transforming.

In the context of these new applications, users have access to an increas-
ing amount of SN data, and consequently the need arises for them to manage
and build their own networks based on relevant “pieces” of the huge networks
available. For example, it is common to find applicable online information about
published research linked with departmental and local scientific networks. This
calls for more advanced and flexible means to query and transform SN data.
Along the same lines, scientific experimentation with social network analysis
(SNA) tools (e.g. Pajek [10]) calls for data management tools to extract parts
of SN from different environments and to integrate, filter and transform them.

A further requirement is that SN data representation needs to be flexible
enough to incorporate on-the-fly attributes (e.g. for data curation). In addition,
data is used and seen from diverse points of view by different users. Hence
classical modeling in terms of a fixed set of entities, attributes and relationships
does not work well. For example, in SNA it is common for attributes to become

1

person

personperson friendship
Mary

a1
name

r1friend

Central
City

city

John

a2
name

friend

Capital
City

city

Anna3 name

introducer
Central
City city

a) Friendship Network among Persons

Mary

person

a1 name

friendship
r1

friend
John

person

a2
name

friend

Ann
person

a3 name

introducer
city

a4

lives-in
r2 place

Capital
City

name

inhabitant

city

a5

lives-in
r3

place

Central
City

name

inhabitant

lives-in
r4

place

inhabitant

b) Friendship Network among Persons (Cities Promoted from Attributes to Actors)

citycity friendships
between

cities

2

a5

inhabitants

r5friends

Central
City

name

1

a4

inhabitants

friends

Capital
City

name

c) Friendship Network between Cities

number

Fig. 1. Friendship Network and Transformations. a) A social network representing the
friendship relation (square node) between Mary and John, who were introduced by
Ann (actors as round nodes, and attribute values as grey dots). b) The same social
network after promoting city attributes to actors. c) The social network result after
grouping persons by city and computing aggregate attributes: inhabitants of each city,
and number of friendships between cities.

actors, for aggregated data of actors to become attributes, and for relations to
have arity greater than two.

Example 1. Consider a SN of friendship relations among people, including which
other person, if any, introduced them; this implies having relations of variable
arity (solved by representing relations as nodes). People are described by the
attributes ‘name’ and ‘city’ (see Fig. 1(a)). The study of the relevance of city of
residence to friendship might require promoting cities to actors and linking peo-
ple and cities with a new type of relation, e.g. ‘lives-in’ (see Fig. 1(b)). Another
type of transformation would be to group people by city of residence, thus defin-
ing a network of cities, where relations summarize friendships among residents
of cities. Additionally, one might like to describe in the network the population
(person count) of each city, and label the relations between them with the num-
ber of friendship-relations between people (see Fig. 1(c)). ut

The requirements suggested by Example 1 together with the integration of
diverse types of information as described above call for a simple and flexible
model of data for SN. Furthermore, due to the growing volume of SN data,
any transformation and query language for SN should be scalable. This implies
that a transformation and query language should conform, from a theoretical
perspective, to low complexity bounds, and, because of practical concerns, be
simple and modular while being sufficiently expressive.

Several of these challenges have been already voiced. Fifteen years ago Free-
man defined the maximal structure experiment that extended the basic network
representation to include attributes as well as to accommodate changes over

time [13]. More recently, the need to improve both network data formats in the
context of the social web as well as data management services for large and
dynamic social networks has been identified [8, 17].

To date, the above challenges have been addressed with ad-hoc approaches,
and to the best of our knowledge there is no generic data management solution
in spite of the wide agreement on the urgent necessity of addressing this prob-
lem [16, 20]. In the appendix on related work we will review widely-used tools in
SNA, such as Pajek and UCINET [15], which focus on the final analysis of SN
data. Some proposals for graph databases (e.g. GraphDB [14]) have features to
deal with SN data, but with ad-hoc developer-oriented languages. In the same
spirit some SN services provide APIs (e.g. Facebook’s Graph API1 and the Open
Graph Protocol).

The three most comprehensive proposals on the challenges presented above
are BiQL, SocialScope, and SoQL. SocialScope [3] is a logical architecture for
discovering and managing social information, which includes an algebraic query
language. It does not provide the capability to construct new data nor deal
with the complexity of data dynamics (particularly transformation of actors
into attributes). SoQL [18] is an SQL-like query language for SN, focused on
identifying groups and paths over a classical network. It does not incorporate
data transformation features. Finally, BiQL [11] is also an SQL-like language
with a rich set of features. However, efficiency is still not a concern in these
proposals, and none of them analyze computational complexity aspects of the
language.

Our transformation and query language, named SNQL, is inspired by two
earlier languages: GraphLog [9] and second-order tuple-generating dependen-
cies (SO tgds) [12]. SNQL comprises, both syntactically and conceptually, two
modules, one for SN matching and one for SN construction, which essentially
correspond to GraphLog and SO tgds, respectively.

GraphLog was a seminal query language for graph data, designed to be ex-
pressive while at the same time having low computational complexity. Apart
from standard features, it includes aggregation and transitive closure making it
suitable for many SN queries. However, GraphLog does not provide functionality
to create new objects/actors, a crucial requirement for SN.

Example 2. Consider again the SN from Example 1. The following SNQL query
produces the network depicted in Fig. 1(b) from that in Fig. 1(a) by promoting
the ‘city’ attribute to a new type of actor (city) and producing a new type of
relation (lives-in) to associate people with cities.

CONSTRUCT CP IF R2 = f(A1, A2) AND A2 = g(L1)

WHERE EP

FROM FriendshipNetwork

Patterns EP and CP, depicted in Fig. 2, denote an extraction pattern and a con-
struction pattern, respectively. FriendshipNetwork is the SN shown in Fig. 1(a).

1 http://developers.facebook.com/docs/reference/api/

L1
city

person friendship

L2

A1
name

R1P1
city

A2
lives-in

R2place

L1
name inhabitant

Extraction Pattern: EP Contruction Pattern: CP

person friendship

L2

A1
name

R1P1

Fig. 2. Attribute Promotion. Patterns EP and CP transform attribute ‘city’ to a new
actor whose id is functionally created from its literal value (bound to variable L1). Also
new relations are required to link persons to the newly created city actors.

Note that in the result, cities become hubs that connect all people living in
each of them, and that the new actors require creation of new ids from the data:
the oids of cities are produced by applying a function g to the literal values
bound to variable L1. Similarly, new relation identifiers for the ‘lives-in’ relation
are created, one for each (person,city) pair matched by (A1,A2). ut

Creation of values was addressed by database query languages such as IQL [2]
and ILOG [7], that allowed oid or value invention. By relying on rules that
use both recursion and oid invention, it can be shown that such languages can
express all computable database queries [7]. However, it turns out that when
recursion and invention are not allowed to interact, as in our proposal, queries
can be evaluated in PTIME [2]. In our language, we consider another formalism
used to invent values, namely, SO tgds [12]. SO tgds use existentially quantified
function symbols (and equalities) to specify the composition of schema mappings,
where values in a target schema (output) may need to be existentially quantified
(invented). Since SO tgds are not recursive, materializing the result of a schema
mapping (which corresponds to creating an SN in our setting) can be done in
PTIME [12].

Our contributions are as follows:

1. A data structure capable of representing the informational richness and mal-
leability of social networks.

2. A transformation and query language satisfying the data management re-
quirements of social networks with good properties: adequate expressiveness,
and accessible to social networks field practitioners.

3. A query language that includes object creation but maintains low complexity.
4. A corresponding evaluation algorithm whose complexity scales adequately.

The outline of the rest of the paper is as follows. Section 2 briefly presents
the requirements and SNA use cases. Section 3 defines the syntax (via exam-
ples) and semantics of SNQL. Section 4 presents results on the expressiveness
and complexity of SNQL. We included an Appendix with complete syntax and
extended related work.

2 SNQL Requirements and Use Cases

To identify the general requirements and operations needed for SNQL, we col-
lected use cases and archetypical operations from standard SNA literature [22,

Table 1. Selected social network data management use cases.

Use Case Description Required
Query Features

1. Selecting
Groups

Select a subnetwork of actors and relations that
satisfy conditions on their attribute values and/or
participation in certain relations.

Pattern match-
ing, filtering by
attributes values.

2. Pro-
moting
Attributes
to Actors

From an actor A1 and one of its attributes (att, v)
produce a new actor A2 = f(v) and a new relation
R = g(A1, v) (f and g functions): all actors with
value v for att will be connected to A2.

Pattern matching,
creation of new ob-
jects, pattern pro-
duction.

3. Identify-
ing Brokers

Each time a characteristic brokerage pattern is
found, label the broker in the output accordingly.
Some brokerage patterns require that certain re-
lations do not exist.

Pattern matching,
negation, pattern
production.

4. Counting
Binary Rela-
tions

Select all relations of a given type, group by par-
ticipant actors, count. Produce only one relation
per group with the new attribute count.

Pattern matching,
aggregation, pat-
tern production.

5. Ego-
network
selection

Select an actor along with all its direct neighbors,
and the relations between them.

Pattern matching,
induced subgraphs.

6. k-
neighbor-
hood

Same as above but to distance k instead of one. Pattern matching,
transitive closure,
induced subgraphs.

19, 10], surveyed relevant publications, mainly from the journal Social Networks,
and studied the operations available in SNA software tools such as Pajek [10].

2.1 Data structure requirements and definition

The natural and traditional choice for representing social networks is to use
graphs where actors are nodes and relations are edges. However, doing so lim-
its the representation power to that of binary relations and forbids attributes
on relations. Thus, our logical data structure, the social networks data model
(SNDM), is a graph where actors, relations and attributes are all modeled as
nodes, and edges associate attributes with the actors or relations they describe,
and actors with the relations in which they participate. This structure is imple-
mented using three sets of triples:

– A typing set N. Each triple (oid, [isa|isr], family) ∈ N indicates that the
actor or relation oid belongs to (is of type) family.

– A set R indicating roles. Each triple (a oid, role, r oid) ∈ R indicates that
the actor a oid participates with role in the relation r oid.

– A set M describing attributes. Each triple(oid, pred, v) ∈ M indicates that
the actor or relation oid has the attribute pred with value v.

2.2 Requirements of SNQL

Table 1 summarizes the use cases from the list gathered from the sources men-
tioned above. Each use case is selected for its relevance and justifies the inclusion
of a query language feature.

Social networks operations can be divided into two groups: data management
operations that return a social network, and measure operations that return
values or sets of values, such as centrality. Today there are various tools that
deal with measure operations (e.g. Pajek, R, and UCINET) and clearly belong
more to the SNA tools field than to the data management one.

SNQL focuses on the first type, data management operations, which produce
networks from networks. Through the use of aggregate functions, we assume
that node, group and network measures are available to the language but do not
need to be expressible in the language itself. Brandes [5] offers a survey of such
measures and the corresponding evaluation algorithms.

Each SNQL query must be able to filter and/or transform a given SN into a
new SN. Filter queries are used to reduce the size of a SN and to focus on rele-
vant groups. Transformations produce a new SN where some implicit structural
element has been made explicit.

3 The SNQL Query Language

The design of SNQL addresses the following issues: to be expressive enough, and
keep the evaluation cost under practical bounds. The challenge was to identify
a few generic operations to cover the required expressiveness, and to be closed,
that is, to be able to construct (and transform) social networks into social net-
works. The solution was to use GraphLog and second-order tuple generating
dependencies, allowing expressiveness for graph querying (see Figure 3).

3.1 Query Syntax

The language should be friendly enough for both the lay-user and the program-
mer. For the former, a visual language close to the SN graphical representation
is ideal: in the simpler cases, one extraction pattern and one construction pat-
tern cover many use cases; in the general case, the extraction pattern should
resemble the DAG of query graphs that exists in GraphLog [9]. For the latter,
an SQL-like language would be familiar to developers and advanced database
users (for searching text, writing, pasting, debugging, etc.) Thus, our language
has both syntaxes.

At the abstract level, and for the purpose of formally studying and analyzing
its semantics and complexity, we use a translation to a more formal representa-
tion, based on Datalog/GraphLog [1, 9], and the data exchange formalism called
second-order tuple generating dependencies [12].

An SNQL construct query Q follows the standard SELECT|CONSTRUCT –
WHERE – FROM structure of languages like SQL and SPARQL. It receives as

SNQL Query

Extraction
Patterns

Construction
Patterns

DataLog
Query

D': Result
Social Network

1
DataLog Query

 Evaluation

2
Production and gathering
of partial results (subnets)

D: Source
Social Network

One table for each
extraction pattern

X1 X2 Xn...

Variable
Bindings

SOtgd
Evaluation

Fig. 3. Overview of the SNQL language. An SNQL query is composed of an extraction
(datalog-like) plus a construction (SO tgd-like) pattern. The evaluation process has
two stages: (1) the Datalog program is evaluated over the data source network D
producing intermediate tables of variable bindings; (2) partial results are produced
from the obtained tuples (a table for each distinguished predicate) using the SO tgd.
All partial results are gathered in the final result network D′.

input social networks (the FROM clause), extracts information using patterns
(the WHERE clause), and outputs a new social network, possibly with new val-
ues, using the CONSTRUCT clause. For space reasons, we present the syntax of
SNQL by example, using the SN of friendship relations among people presented
in Example 1 (see Fig. 1) (the complete syntax is in Appendix A).

Example 3. (Promoting Attributes to Actors) Recall the query from Example 2,
where the patterns EP and CP were depicted in Fig. 2. Expanding the patterns
as lists of triples, the query is as follows:

CONSTRUCT {(A1, isa, person), (A2, isa, city), (R1, isr, friendship),

(R2, isr, lives-in), (A1, inhabitant, R2), (A1, P1, R1),

(A1, name, L2), (A2, place, R2), (A2, name, L1)}

IF R2=f(A1, A2) AND A2=g(L1)

WHERE {(A1, isa, person), (R1, isr, friendship),

(A1, city, L1), (A1, P1, R1), (A1, name, L2)}

FROM FriendshipNetwork

Example 4. (Grouping and Aggregation) The following SNQL query produces
the network depicted in Fig. 1(c) from that in Fig. 1(a), grouping people by city
and counting friendship relations between cities.

CONSTRUCT CP1 IF A4 = f(L1) AS SN1

WHERE AGG({L1}, COUNT AS L4, EP1)

FROM FriendshipNetwork

UNION

CONSTRUCT CP2 IF A5 = f(L2) AND A6 = f(L3) AND R2 = g(A5, A6) AS SN2

person
A1

person friendship

L2

A2

city

R1friend city
A4

L1
name

Extraction Pattern 1: EP1 Extraction Pattern 2: EP2 Contruction Pattern 1: CP1 Contruction Pattern 2: CP2
L1city

person

L3

A3

city

friend
L4inhabitants

city friendship
between cities

A5 R2friend
city

A6friend

L5

number

Fig. 4. Grouping and Aggregation. Patterns EP1 and CP1 group people by ‘city’ and
count the number of inhabitants in each city. Patterns EP2 and CP2 group and count
friendship relations between pairs of cities.

person friendship

L1

A1

name

R1friend

Extraction Pattern 1: EP1 (TC) Contruction Pattern 1: CP1

person

L2

A2

name

friend

person friendship

L3

A3

name

R2friend
person

L4

A4

name

friend

Extraction Pattern 2: EP2 Extraction Pattern 3: EP3 (TC)

person friendship

L1

A1

name

R3friend

person

L5

A5

name

friend

person friendship

L3

A3

name

R2friend
person

L4

A4

name

friend

Fig. 5. Transitive Closure. Patterns EP1 and EP3 identify all transitively reachable
actors from person named ‘John’ through ‘friendship’ relations. Patterns EP2 and CP1

produce the relations induced by pairs of actors in the set of reachable actors.

WHERE AGG({L2,L3}, COUNT AS L5, EP2 FILTER (L2 != L3))

FROM FriendshipNetwork

Patterns EP1, EP2, CP1, and CP2 are depicted in Fig. 4. Note that each new
group (actor) requires a new oid functionally produced from the value of at-
tribute ‘city’. Also the number of inhabitants bound to L4, and the number
of friendship-between-cities bound to L5, must be computed with the aggre-
gate function COUNT. The first argument of AGG is the set of grouping variables,
the second is the aggregation function required, and the third is an extraction
pattern. The results of the two construct queries are combined using UNION to
produce the desired result. ut

Example 5. (Transitive Closure) The following SNQL query (whose patterns are
shown in Fig. 5) produces the network comprising an actor that meets a given
criterion (his name is ‘John’), along with all other actors that can be reached
transitively by matching the given pattern (of friendship relations). Additionally
all induced relations between pairs of reachable actors are included in the result.

CONSTRUCT CP1

WHERE EP2 FILTER ((A3 != A4) AND (A3 = A1 OR A3 = A2) AND

(A4 = A1 OR A4 = A5))

AND (TC(A1, A2, EP1) WITH L1=’John’)

AND (TC(A1, A5, EP3) WITH L1=’John’)

FROM FriendshipNetwork

TC returns the transitive closure of the binary relation formed by all instantia-
tions of the variables appearing as its first and second arguments when matching
the extraction pattern of its third argument. A starting condition is specified af-
ter WITH. As a result, variables A2 and A5 are bound to the people reachable

0. Each triple t of the form (A,B,C) is translated as t(A,B,C), where t is n, r or
m according to the type of the triple.

1. A list of triples (basic pattern) { t1, ..., tn }: p(z)←
∧

i∈1..n ti(Ai, Bi, Ci).
2. PATT1 AND PATT2: p(z)← p1(x), p2(y)
3. PATT1 OR PATT2: p(z)← p1(x)

p(z)← p2(y)
4. PATT1 AND-NOT PATT2: p(z)← p1(x),¬p2(y).
5. PATT1 FILTER C: p(z)← p1(x), c(x)

(assuming condition C is simulated by predicate c)
6. TC (Vs, Vt, PATT1) WITH <start-condition>:

p(U, V)← p1(. . . U . . . V . . .), start cond(. . . U . . . V . . .)
p(U, V)← p1(. . . U . . .W . . .), p(W,V)

(assuming variable Vs corresponds to variable U and Vt to variable V of p1(x))
7. AGG(VList, AggF, PATT1) : p(z,A(y))← p1(z, y)

(assuming Vlist is the set of variables Z, Y = X−Z and AggF is the aggregate
function A)

Fig. 6. Translation of Extraction Pattern to Datalog.

from John through transitive friendship relations. Pattern EP2, along with the
FILTER conditions above, is then used to match all the induced friendship rela-
tions between distinct pairs of people reachable from ‘John’ (along with ‘John’
himself). ut

3.2 Query Semantics

An SNQL query Q of the form CONSTRUCT <T> WHERE <PATT> FROM <S> trans-
forms social networks into social networks, and is evaluated as shown in Figure 3.

The formal semantics can be expressed in standard formalisms (Datalog and
tuple-generating dependencies) as follows. Let D be a social network, Q an SNQL
query, and Q(D) the result of applying Q to D. For set of variables X, let x be
the tuple comprising all variables in X.

An extraction pattern is recursively decomposed and simulated by a Datalog
program as follows. Let PATT be the pattern to be simulated by predicate p and
assume that patterns PATT1 and PATT2 are simulated by p1 and p2, respectively.
Let z, x and y contain the projected variables of PATT, PATT1 and PATT2, re-
spectively. Depending on the structure of PATT, the translation is as shown in
Fig. 6.

The predicate p obtained from pattern PATT in the previous translation, is
now used to produce the query result. Here the list of triples <list-of-pattern-triples>
of the CONSTRUCT clause along with the corresponding lists of equalities <expr> = <expr>

play a central role. The equalities are of two types. One type defines each vari-
able: vi = termi, 1 ≤ i ≤ k; the other is of the form termi = terml, where each
term may contain variables (from p), constants and functions.

output-n(A4,isa,city) :- construct1(A4,L1,L4)

output-m(A4,name,L1) :- construct1(A4,L1,L4)

output-m(A4,inhabitants,L4) :- construct1(A4,L1,L4)

output-n(A5,isa,city) :- construct2(A5,R2,A6,L5)

output-n(R2,isr,friendship-between-cities) :- construct2(A5,R2,A6,L5)

output-n(A6,isa,city) :- construct2(A5,R2,A6,L5)

output-r(A5 friend,R2) :- construct2(A5,R2,A6,L5)

output-r(A6,friend,R2) :- construct2(A5,R2,A6,L5)

output-m(R2,number,L5) :- construct2(A5,R2,A6,L5)

construct1(A4,L1,L4) :- ag1(L1,N), A4=f(L1), L4=N

ag1(L1,count(A1)) :- ep1(A1,L1)

ep1(A1,L1) :- n(A1,isa,person), m(A1,city,L1)

construct2(A5,R2,A6,L5) :- ag2(L2,L3,M), A5=f(L2), A6=f(L3),

R2=g(A5,A6), L5=M

ag2(L2,L3,count(A2,R1,A3)) :- ep2(A2,A3,R1,L2,L3)

ep2(A2,A3,R1,L2,L3) :- n(A2,isa, person), n(R1,isr,friendship),

n(A3,isa,person), r(A2,friend,R1),

r(A3,friend,R1), m(A2,city,L2),

m(A3,city,L3), L2 != L3

Fig. 7. Translation of query in Example 4 to Datalog.

For a given CONSTRUCT trList IF eqList the construction process takes
the result of the extraction process, the p(z) predicate, plus the list of equalities
eqList translated as ∧jeqj to produce the following rule:

construct(v1, . . . , vk)← p(z) ∧
∧
j

eqj . (1)

Finally, the resulting social network SN is the set of instantiations of each
triple t in the list of triples trList in the CONSTRUCT using the values in the
construct predicate:

SN =
⋃{

t(u1, u2, u3) : ∃(..u1..u2..u3..) ∈ construct and t in trList
}

(2)

Example 6. Consider the SNQL query Q of Example 4 that involved grouping
and aggregation. The translation of Q to Datalog is shown in Figure 7. ut

In practice, the evaluation process may proceed more efficiently by avoiding
intermediate materialization: each match of the extraction pattern produces a
collection of tuples corresponding to Datalog predicates, and this collection of
tuples is processed by the construction pattern to produce a subnetwork of the
output (see Section 4).

4 Complexity and Expressiveness

The main goal of this paper was to introduce a sufficiently flexible data model
and expressive query language that meets the data manipulation requirements of
social networks. In this section we state—without proof due to space constraints—
results that show the good behaviour of the language regarding complexity and
expressive power.

SNQL is composed of two modules: one for extraction of information and one
for construction of a new network. In the design, consideration has been given
to providing the maximum expressiveness possible while keeping the complex-
ity of processing within reasonable bounds. First, for extraction, we considered
GraphLog (possibly with summarization functions), which is a graph query lan-
guage designed to be simple, graphical, oriented to graphs, and be as expressive
as possible while staying within the LOGSPACE complexity bound [9]. Sec-
ond, for the construction module, whose main purpose is the creation of new
identifiers in the process of creating the new network, the language is mod-
eled after second-order tuple-generating dependencies, which are known to be a
family of transformations between tables of tuples with the “right” expressive-
ness/complexity tradeoff [12].

Knowing this, it is not surprising that SNQL covers all use cases being used
in current practice by SN researchers. (There are still some queries defined the-
oretically by SN scientists which are not covered by SNQL; but it can be proved
that they fall out of the scope of a reasonably efficient complexity bound. A typ-
ical example is cohesive subgroups defined using shortest paths lengths between
members, for instance k-cores.) Formally stated, this result can be presented as
follows:

Claim. SNQL solves all use cases presented in SN practice that fall in the LOGSPACE
complexity bound.

A formal proof of this claim relies on the list of use cases in current practice.
The column “Required Query Features” of Table 1 collects the features needed
for the classical use cases from the SN community. All of them, except induced
subgraph, are incorporated directly in the language. For the induced subgraph,
Example 5 gives the idea how this is done.

As for the expressive power as compared to classical databases languages, we
can prove the following two results:

Theorem 1. The SNQL extraction module has the same expressive power as
GraphLog.

Theorem 2. The construction module can be specified by one SOtgd of the form:

∃f1 . . . fm(∀x1(φ1 → ψ1) ∧ . . . ∧ ∀xn(φn → ψn)),

where each (φi → ψi) has the form:

(p(x) ∧
∧
k

eqk)→ (t1 ∧ . . . ∧ tr), (3)

(a) For an expression
CONSTRUCT trList1 IF eqList1; ... trListn IF eqListn;

translated in the form of eq. (3), define n clauses: auxj(xj)← p(x)∧
∧

k eqk, j =
1, . . . , n.

(b) For each clause trListj IF eqListj; and each triple (x,y,z) in trListj, de-
fine a rule t(x, y, z)← auxj(xj).

(c) Add the clauses generated by (a) and (b) to the original Datalog program
generated from the extraction pattern (see Fig. 6).

(d) Obtain the values of the triples to be generated by running the new program.

Fig. 8. Evaluation Algorithm.

where p(x) and eqk follow the notation of equations (1) and (2), that is, predicate
p(x) is the result of the processing of the extraction pattern, and tj and eqk
are predicates resulting from the translation of the triples and equalities in the
CONSTRUCT clause, and each tuple xi includes all variables in p and in the
eqk’s.

A naive implementation of the semantics presented in Fig. 6 would materi-
alize intermediate results.

This can be avoided by using the algorithm in Fig. 8.

Lemma 1. The Evaluation Algorithm is correct.

It is possible to show that the above evaluation computes queries efficiently
from a database perspective. As is customary when studying the complexity
of the evaluation problem for a query language [21], we consider its associated
decision problem. We denote this problem by Evaluation and define it as
follows.

INPUT : A Social Network S, a query Q and a triple t = (a, b, c).
QUESTION : Is t ∈ [[Q]]D?

Theorem 3. The complexity of Evaluation is in NLOGSPACE.

5 Conclusions

Based on social network practice, we have presented the design of a data model
and query language for SN. Of particular novelty, is the ability of our language to
transform one network into another, in the process creating new actors and new
attributes based on aggregation, features crucial for social network researchers.

We presented the syntax, semantics and complexity analysis. The language
is based on classical database results to obtain a good balance between expres-
siveness and complexity. Presenting both a graphical and SQL-like syntax, we

designed it to have the most encompassing expressiveness while staying tractable.
In fact, we show that it includes all tractable operations found in our survey of
SN data management practice, and we prove that the cost of transforming net-
works can be done efficiently from a computational point of view. all tractable
operations found in our survey of current SN data management practice

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Abiteboul, S., Kanellakis, P.C.: Object identity as a query language primitive. J.
ACM 45(5), 798–842 (1998)

3. Amer-Yahia, S., Lakshmanan, L.V.S., Yu, C.: Socialscope: Enabling information
discovery on social content sites. In: CIDR. www.crdrdb.org (2009)

4. Amer-Yahia, S., Markl, V., Halevy, A.Y., Doan, A., Alonso, G., Kossmann, D.,
Weikum, G.: Databases and web 2.0 panel at vldb 2007. SIGMOD Record 37(1),
49–52 (2008)

5. Brandes, U., Erlebach, T. (eds.): Network Analysis: Methodological Foundations
[outcome of a Dagstuhl seminar, 13-16 April 2004], Lecture Notes in Computer
Science, vol. 3418. Springer (2005)

6. Breiger, R., Carley, K., Pattison, P. (eds.): Dynamic Social Network Modeling and
Analysis: Workshop Summary and Papers. The National Academies Press (2003)

7. Cabibbo, L.: The expressive power of stratified logic programs with value invention.
Inf. Comput. 147(1), 22–56 (1998)

8. Carley, K.M.: Linking capabilities to needs. In: Breiger et al. [6], pp. 363–370
9. Consens, M.P., Mendelzon, A.O.: Graphlog: a visual formalism for real life recur-

sion. In: PODS. pp. 404–416. ACM Press (1990)
10. de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with

Pajek. Cambridge University Press (2005)
11. Dries, A., Nijssen, S., Raedt, L.D.: A query language for analyzing networks. In:

Cheung, D.W.L., Song, I.Y., Chu, W.W., Hu, X., Lin, J.J. (eds.) CIKM. pp. 485–
494. ACM (2009)

12. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans. Database Syst. 30(4), 994–
1055 (2005)

13. Freeman, L., Romney, A.K., White, D.R. (eds.): Research Methods in Social Net-
work Analysis. Transaction Publishers (1992)

14. Güting, R.: Graphdb: modeling and querying graphs in databases. In: 20th VLDB
Conference. pp. 297–308 (1994)

15. Huisman, M., van Duijn, M.: Software for Social Network Analysis, chap. Software
for Social Network Analysis, pp. 270–316. Cambridge (2005)

16. Jagadish, H.V., Olken, F.: Database management for life science research: Sum-
mary report of the workshop on data management for molecular and cell biology.
OMICS 7(1), 131–137 (2003)

17. Mika, P.: Social Networks and the Semantic Web, Semantic Web And Beyond
Computing for Human Experience, vol. 5. Springer (2007)

18. Ronen, R., Shmueli, O.: Soql: A language for querying and creating data in social
networks. In: ICDE. pp. 1595–1602. IEEE (2009)

19. Scott, J.: Social Network Analysis. SAGE Publications, second edn. (2000)

20. Topaloglou, T., Davidson, S.B., Jagadish, H.V., Markowitz, V.M., Steeg, E.W.,
Tyers, M.: Biological data management: Research, practice and opportunities. In:
VLDB. pp. 1233–1236 (2004)

21. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
STOC. pp. 137–146. ACM (1982)

22. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Structural Analysis in the Social Sciences, Cambridge University Press (1994)

A SNQL Syntax

<construct-query> := CONSTRUCT <list-of-construct-patt>

WHERE <extract-patt>

FROM <list-of-social-networks>

<list-of-construct-patt> ::= <construct-patt>[AS <sn-id>

[, <construct-patt> AS <sn-id>]*]

<construct-patt> ::= <list-of-pattern-triples>

[IF <list-of-equalities>]

<list-of-equalities> ::= <expr> = <expr> [AND <expr> = <expr>]*

<extract-patt> ::= <list-of-pattern-triples> [MATCH <sn-id>]

| <extract-patt> AND <extract-patt>

| <extract-patt> OR <extract-patt>

| <extract-patt> AND-NOT <extract-patt>

| <extract-patt> FILTER <condition>

| TC(<startV>, <endV>, <extract-patt>)

WITH <start-condition>

| AGG(<group-vars>, <aggr-func>, <extract-patt>)

<list-of-pattern-triples> ::= {<pattern-triple>[, (<pattern-triple>)]*}

<pattern-triple> ::= (term, term, term)

<list-of-social-networks> ::= <social-network>[AS <sn-id>

[, <social-network> AS <sn-id>]*]

<social-network> ::= <sn-id> | <list-of-instance-triples>

<list-of-instance-triples> ::= {<instance-triple>[, (<instance-triple>)]*}

<instance-triple> ::= <n-triple> | <r-triple> | <m-triple>

<n-triple> ::= (<oid>, <constant>, <constant>)

<p-triple> ::= (<oid>, <constant>, <oid>)

<m-triple> ::= (<oid>, <constant>, <constant>)

<constant> ::= <object-id> | <literal>

<condition> ::= <logic-expression>

<term> ::= <variable> | <constant> | <expr> AS <alias>

<expr> ::= <variable> | <constant>

| <function>(<expr>[, <expr>]*)

<alias> ::= <variable> | <null>

