SHORT NOTE # On Free Inverse Semigroups ## Claudio Gutiérrez Communicated by Gerard J. Lallement ### Abstract Using techniques of Rewriting Theory, we present a new proof of the known theorem of Munn that FI_X , the free inverse semigroup on X, is isomorphic to birooted word- Inverse semigroups form a variety of semigroups with one additional unary operation, ()⁻¹. The following set I of equations axiomatizes it (see [1]): $$x(yz) = (xy)z (1)$$ $$(x^{-1})^{-1} = x (2)$$ $$(xy)^{-1} = y^{-1}x^{-1} (3)$$ $$xx^{-1}x = x (4)$$ $$(x^{-1})^{-1} = x$$ $$(xy)^{-1} = y^{-1}x^{-1}$$ $$xx^{-1}x = x$$ $$xx^{-1}yy^{-1} = yy^{-1}xx^{-1}.$$ (2) (3) (4) The set of terms over X, T_X , is defined recursively by: (1) Every $x \in X$ is a term, (2) If t_1, t_2 are terms, then t_1t_2 and $(t_1)^{-1}$ are terms. We will avoid superfluous parentheses, e.g. will write xyz instead of (xy)z or x(yz). Note that for each term $t \in T_X$, there is an *I*-equivalent term $w_t = u_1 \cdots u_n$, with $u_i \in X \cup \{a^{-1} : a \in X\}$ (apply repeatedly Ax. (2) and (3)). For a given set X, denote by G_X the set of finite, directed, acyclic graphs (i.e. trees) whose edges are labeled by elements of X, with two distinguished vertices, sand f. A birooted word-tree on X is a tree in G_X which does not contain subgraphs of the form $\bullet \leftarrow \stackrel{a}{\longrightarrow} \bullet \stackrel{a}{\longrightarrow} \bullet$ or $\bullet \stackrel{a}{\longrightarrow} \bullet \leftarrow \stackrel{a}{\longleftarrow} \bullet$, where $a \in X$. If $g \in G_X$ then g is a tree, hence between s and f there is exactly one simple path $s \bullet \stackrel{u_1}{-} \bullet \stackrel{u_2}{-} \bullet \cdots \bullet \stackrel{u_{n-1}}{-} \bullet_f$ where $\bullet \stackrel{u_1}{-} \bullet$ represent $\bullet \stackrel{a}{-} \bullet$ if $u_i = a$, and $\bullet \leftarrow \stackrel{a}{-} \bullet$ if $u_i = a^{-1}$. So, each $g \in G_X$ has the form of the graph on the left: and the T_i 's are directed labeled trees (see the graph on the right). Hence, formally we can describe each $g \in G_X$ as: $$g = (T_1, u_1, \dots, T_{n-1}, u_{n-1}, T_n), \tag{6}$$ where each T_i is defined recursively as a multiset $T_i = \{v_1 T_{i1}, \dots, v_{j_i} T_{ij_i}\}$ or $T_i = \bullet$, with $u_i, v_j \in X \cup \{a^{-1} : a \in X\}$. GUTIÉRREZ 155 For $g_1, g_2 \in G_X$, define $(g_1)^{-1}$ as the same tree as g_1 but with s and f interchanged, and g_1g_2 as the tree obtained from g_1 and g_2 by identifying the vertices f_1 and s_2 , and distinguishing s_1 and f_2 . So, G_X becomes an algebra over the same signature as I which clearly satisfies axioms (1)-(3). Lemma 1. Let g be as in (6). The following functions are well defined: - 1. $\tau: G_X \longrightarrow T_X$ defined by $\tau(g) = \tau(T_1)u_1\tau(T_2)\cdots u_{n-1}\tau(T_n)$ and $\tau(T_i) = v_1\tau(T_{i1})v_1^{-1}\cdots v_{j_i}\tau(T_{ij_i})v_{j_i}^{-1}$ and $\tau(\bullet) = \epsilon$, the empty word. - 2. $\gamma: T_X \longrightarrow G_X$, defined by $\gamma(a) = {}_s \bullet \stackrel{a}{\longrightarrow} \bullet_f$ for $a \in X$, and extended recursively by $\gamma(t_1t_2) = \gamma(t_1)\gamma(t_2)$ and $\gamma(t^{-1}) = \gamma(t)^{-1}$. Define in G_X the binary relation \Longrightarrow by Definition 1. $$p \stackrel{a}{\longleftrightarrow} \stackrel{a}{\bullet} q \stackrel{a}{\longleftrightarrow} \stackrel{\bullet}{\bullet}_r \implies q \stackrel{a}{\longleftrightarrow} \stackrel{\bullet}{\bullet}_{p=r}$$ $$p \stackrel{a}{\longleftrightarrow} \stackrel{\bullet}{\bullet}_q \stackrel{a}{\longleftrightarrow} \stackrel{\bullet}{\bullet}_r \implies q \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\bullet}_{p=r}$$ $$(7)$$ for every $a \in X$. Read "the graph on the left rewrites to the one on the right". Extend it to all graphs in G_X by defining $g \Longrightarrow g'$ iff for some $a \in X$ the left hand side of (7) or (8) is a subgraph of g, and g' is obtained from g by identyfying the vertices p and r and eliminating the repeated edge. The symbol $\stackrel{*}{\Longrightarrow}$ denotes the reflexive-transitive closure of \Longrightarrow , and $\stackrel{*}{\Longleftrightarrow}$ the reflexive, symmetric and transitive closure of \Longrightarrow (i.e. $g \stackrel{*}{\Longleftrightarrow} h$ if there is a sequence $g = g_1, \dots, g_m = h$ with $g_i \Longrightarrow g_{i+1}$ or $g_i \longleftarrow g_{i+1}$ for each $i = 1, \ldots, m-1, m \ge 1$). Let $r, t \in T_X$, and let q, h be graphs in G_X . - 1. If $I \vdash r = t$ then $\gamma(r) \iff \gamma(t)$. - 2. If $a \iff h$ then $I \vdash \tau(a) = \tau(h)$. (1) Note that γ is an homomorphism, hence it is enough to prove the case when r = t is an axiom in I. The cases of Ax. (1)-(3) are trivial. For Ax. (4) and (5) use the fact that given a term t and $w_t = u_1 \cdots u_n$, then $\gamma(t) = \gamma(w_t)$, hence, $\gamma(tt^{-1}) = \gamma(u_1 \cdots u_n u_n^{-1} \cdots u_1^{-1})$. It follows that $\gamma(tt^{-1}) \stackrel{*}{\Longrightarrow} s = f \stackrel{u_1}{\longrightarrow} \stackrel{u_2}{\longrightarrow} \cdots \stackrel{u_n}{\longrightarrow} \cdots$ From here, an induction on n proves that $\gamma(tt^{-1}t) \stackrel{*}{\Longrightarrow} \gamma(t)$ and that $\gamma(tt^{-1}rr^{-1}) \stackrel{*}{\Longrightarrow}$ $g \stackrel{*}{\longleftarrow} \gamma(rr^{-1}tt^{-1})$, for some $g \in G_X$. (2) is a proof by induction on the length of $\stackrel{*}{\Longleftrightarrow}$. So, it is enough to prove that $g \Longrightarrow g'$ implies $I \vdash \tau(g) = \tau(g')$. Let g be as in (6) and suppose $\bullet_p \xleftarrow{a} \bullet_q \xrightarrow{a} \bullet_r$ is a subgraph of g (the other case is symmetric). Then, either it is a subgraph of T_j $(1 \le i \le n)$ or one of its edges is one of the u_i $(1 \le i \le n)$. Each of these cases has two subcases (the graphs on the left in the figure below show the four cases.) Below, " \equiv " indicates the use of definition of τ , and "=" the use of Axiom (4). Case (A1). There is a subtree in T_i of the form $T = a^{-1}\{aT', T''\}$. $$\tau(g) \equiv \cdots \tau(a^{-1}\{aT', T''\}) \cdots \equiv \cdots a^{-1}a\tau(T')a^{-1}\tau(T'')a \cdots \\ \equiv \cdots \tau\{a^{-1}\{\bullet\}, T', a^{-1}T''\} \cdots$$ $$\equiv \cdots \tau \{a^{-1} \{\bullet\}, a^{-1}T'', T'\} \cdots$$ $$\equiv \cdots a^{-1}aa^{-1}\tau(T'')a\tau(T') \cdots$$ $$= \cdots a^{-1}\tau(T'')a\tau(T') \cdots$$ $$\equiv \cdots \tau (\{a^{-1}T'', T'\}) \cdots \equiv \tau(q').$$ Case (A2). There is a subtree in T_i of the form $T = \{aT', aT''\}$. $$\tau(g) \equiv \cdots \tau(\{aT', aT''\} \cdots \equiv \cdots a\tau(T')a^{-1}a\tau(T'')a^{-1} \cdots$$ $$\equiv \cdots \tau(a\{T', a^{-1}\{\bullet\}, T''\}) \cdots$$ $$\equiv \cdots \tau(a\{a^{-1}\{\bullet\}, T', T''\}) \cdots$$ $$\equiv \cdots aa^{-1}a\tau(T')\tau(T'')a^{-1} \cdots$$ $$= \cdots a\tau(T')\tau(T'')a^{-1} \cdots$$ $$= \cdots \tau(a\{T, T''\}) \cdots \equiv \tau(g').$$ Case (B1). There is i with $u_i = a^{-1}$ and $T_{i+1} = \{aT, \ldots\}$. $$\tau(g) \equiv \cdots \tau(u_i)\tau(aT) \cdots \equiv \cdots a^{-1}a\tau(T)a^{-1} \cdots$$ $$\equiv \cdots \tau(\{a\{\bullet\}, T\})a^{-1} \cdots$$ $$\equiv \cdots \tau(\{T, a^{-1}\{\bullet\}\})a^{-1} \cdots$$ $$\equiv \cdots \tau(T)a^{-1}aa^{-1} \cdots$$ $$= \cdots \tau(T)a^{-1} \cdots \equiv \tau(a').$$ Case (B2). There is i with $u_i = a^{-1}$ and $u_{i+1} = a$. $$\tau(g) \equiv \cdots \tau(u_i)\tau(T)\tau(u_{i+1})\cdots \equiv \cdots a^{-1}\tau(T)a\cdots$$ $$\equiv \cdots \tau(a^{-1}T)\cdots \equiv \tau(g').$$ **Lemma 3.** 1. There is no infinite sequence $g_1 \Longrightarrow \cdots \Longrightarrow g_i \Longrightarrow \cdots$ 2. If $h_1 \longleftarrow g \Longrightarrow h_2$ then there is $\bar{g} \in G_X$ such that $h_1 \stackrel{*}{\Longrightarrow} \bar{g} \stackrel{*}{\longleftarrow} h_2$. **Proof.** For (1) just note that each \Longrightarrow -step diminishes by one the number of vertices of a finite graph. For (2), if the two subgraphs to be rewritten in g are edge-disjoints, then define \bar{g} as the graph obtained from g by doing both rewritings (note that the order in which they are done does not matter). If the two subgraphs to be rewritten have common edges, g must have a subgraph like $\bullet \leftarrow a$ $\bullet \rightarrow \bullet \leftarrow a$ $\bullet \rightarrow \bullet \leftarrow a$. Observe that again \bar{g} defined as before works. From the two statements of Lemma 3, a purely combinatorial argument shows that a "global" version of 3(2) also holds: If $h_1 \stackrel{*}{\longleftarrow} g \stackrel{*}{\Longrightarrow} h_2$ then there is \bar{g} such that $h_1 \stackrel{*}{\Longrightarrow} \bar{g} \stackrel{*}{\longleftarrow} h_2$. In fact, something seemingly stronger, but actually equivalent to it, can be proved (for a discussion of these rewriting concepts and the missing proofs see [3]): **Lemma 4.** If $g_1 \stackrel{*}{\Longleftrightarrow} g_2$ then there is g such that $h_1 \stackrel{*}{\Longrightarrow} g \stackrel{*}{\Longleftrightarrow} h_2$. **Theorem 1.** Up to isomorphism, the free inverse semigroup on X consists of all isomorphism classes of birooted word-trees on X. **Proof.** Lemmas 3 and 4 show that each $\stackrel{*}{\Longleftrightarrow}$ -class of graphs in G_X has a canonical representative: Consider any g in the class, and apply repeatedly \Longrightarrow until it is no more applicable. By Lemma 3(1) this process stops, and from Lemma 4, the element obtained, denoted by nf(g), can be proved to be unique. Define $B_X = \{ \text{nf}(g) : g \in G_X \}$. Observe that B_X is by definition the set of all birooted word-trees on X. Moreover it is a quotient-algebra of G_X . Denoting by $\langle I \rangle$ the congruence generated by the equations in I, and by FI_X the free inverse semigroup on X, we have: $$FI_X \equiv T_X/\langle I \rangle \xrightarrow{\gamma} (G_X/ \stackrel{*}{\Longleftrightarrow}) \xrightarrow{\mathrm{nf}} B_X.$$ Clearly nf is an isomorphism. Also γ is an isomorphism with inverse τ : Given $t \in T_X$, observe that $\tau \gamma(w_t) = w_t$, and using Lemma 2 it follows that $I \vdash \tau \gamma(t) = \tau \gamma(w_t) = w_t = t$. Similarly it can be shown that $\gamma \tau$ is the identity in G_X . Hence $FI_X \cong B_X$. ### References - [1] P.A. Grillet, "Semigroups, An introduction to the Structure Theory", Marcel Dekker, Inc., New York, 1995. - [2] W.D. Munn, Free Inverse Semigroups, Proc. London Math. Soc.(3) 29 (1974), 385-404. - [3] W. Wechler, "Universal Algebra for Computer Scientists", EATCS Monographs on TCS, Vol 25, Springer-Verlag, Berlin, New York, 1992. Department of Mathematics Wesleyan University Middletown, CT 06459 U.S.A. Received May 31, 1998 and in final form September 14, 1998