Semigroup Forum Vol. 61 (2000) 154-158
© 2000 Springer-Verlag New York Inc.
DOI: 10.1007/5002339910051

SHORT NOTE

On Free Inverse Semigroups
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Abstract
Using techniques of Rewriting Theory, we present a new proof of the known theorem
of Munn that FIx , the free inverse semigroup on X , is isomorphic to birooted word-
trees on X .

Inverse semigroups form a variety of semigroups with one additional unary
operation, ( )~'. The following set I of equations axiomatizes it (see [1]):

z(yz) = (zy)z (1)
(zHt =z (2)
(zy)™! = y a7 (3)
zrlz = =« (4)
zrlyyt = gyl (5)

The set of terms over X, T, is defined recursively by: (1) Every z € X is a term,
(2) If t1,t, are terms, then t;t; and (t1)7" are terms. We will avoid superfluous
parentheses, e.g. will write zyz instead of (zy)z or z(yz). Note that for each term
t € Tx. there is an [-equivalent term w, = uy---u,, with v, € X U{a™ : a € X}
(apply repeatedly Ax. (2) and (3)).

For a given set X , denote by Gy the set of finite, directed, acyclic graphs (i.e.
trees) whose edges are labeled by elements of X . with two distinguished vertices, s
and f. A birooted word-tree on X is a tree in Gx which does not contain subgraphs
of the form e«2-e—2se or e——e<~—e_ where a € X.

If g € Gx then g is a tree, hence between s and f there is exactly one simple
path s._”_‘_."i.....f‘"_‘i.f where e—-e represent e——e if u; = a, ande<—e if
u; =a" . So, each g € Gx has the form of the graph on the left:

U1 Un—1
=Y 0 O Vo)
s f
il A 3

and the T;’s are directed labeled trees (see the graph on the right). Hence, formally
we can describe each g € Gx as:

g:(Tl‘u17‘"aTn—l‘un—th)a (6)

where each T} is defined recursively as a multiset T3 = {v;Ti1,...,v; T, } or Ty = e,
with u;,v; € XU {a™' 1 a € X}.
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For g1,92 € Gy, define (g;)7! as the same tree as g; but with s and f

interchanged, and g, g, as the tree obtained from ¢; and g, by identifying the vertices
f1 and sy, and distinguishing s; and f,. So, Gx becomes an algebra over the same
signature as [ which clearly satisfies axioms (1)-(3).

Lemma 1. Let g be as in (6). The following functions are well defined:

1. 1 : Gx — Tx defined by 7(g9) = 7(T)uam(T2) - un_17(Ty) and 7(T;) =
ur(Ta)vi v, 7(Tyg, )y, and 7(e) = €, the empty word.
2. v:Tx — Gx, defined by v(a) = ;0——e; for a € X, and extended recursively

by y(tita) = ¥(t)v(t2) and y(t71) = y(¢)7". m
Definition 1.  Define in Gx the binary relation = by

a [ a

p* %% T g% 7%=y (7)
a a x

PO T g% %= (8)

for every a € X. Read “the graph on the left rewrites to the one on the right”.
Extend it to all graphs in Gx by defining ¢ == ¢' iff for some a € X the left hand
side of (7) or (8) is a subgraph of g, and ¢ is obtained from g by identyfying the
vertices p and r and eliminating the repeated edge. The symbol == denotes the
reflexive-transitive closure of =, and <= the reflexive, symmetric and transitive
closure of == (i.e. g <= h if there is a sequence g = gy,...,9m = h with g; == g;1,
or g, <= g;41 foreach i=1,... . m—1, m>1).

Lemma 2. Let r,t € Tx, and let g, h be graphs in Gx .
1. IfI-r =t then y(r) <= ~(t).
2. If g <= h then I+ 7(g) = 7(h).

Proof. (1) Note that v is an homomorphism, hence it is enough to prove the case
when r =t is an axiom in I. The cases of Ax. (1)-(3) are trivial. For Ax. (4) and
(5) use the fact that given a term ¢ and w; = u; - - un, then v(¢) = v(w,), hence,
Y(ttY) = y(ug - uqut - upt). Tt follows that y(tt7!) = _je—e—"e. - e
From here, an induction on n proves that v(tt~'t) == y(t) and that vy(tt~'rr™!) =
g <= y(rr~1#t™1), for some g € Gx.

(2) is a proof by induction on the length of <=. So, it is enough to prove
that g = ¢’ implies I - 7(g) = 7(¢'). Let g be as in (6) and suppose e, —e,— e,
is a subgraph of g (the other case is symmetric). Then, either it is a subgraph of T;
(1 < j < n) orone of its edges is one of the u; (1 <14 < n). Each of these cases has
two subcases (the graphs on the left in the figure below show the four cases.) Below,
“=" indicates the use of definition of 7, and “=" the use of Axiom (4).

Case (Al). There is a subtree in T of the form T = a~'{aT",T"}.

(g)=---m(aHaT', T"}) - = -0 lar(Tha ' 7(T"a- -
= -r{aH{e}, T,a ' T"}- -
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. -T{a‘l{-}, aflT"’T'} c.
o taaTr(Tar (T - -
L (Tar (T - - -
(T TY) = ().

Tl

fl

Case (A2). There is a subtree in T of the form T = {aT", aT"}.

(g) = 7({aT",aT"} - —ar(Tha rar(T")a™
T(a{T",a” {o}, T"}) -
r(a{a {e}, T, T"}) -
~aatar(TYT(TYa ™t -+
= ar(THT(TNa™t---
= 70T, T"}) - =7(g).

Case (B1). There is 7 with v, =a™! and T;y; = {aT,...}.

<o rar(T)a™ -
-7({a{e}, T})a”
T({T 0™ e }})
(T
(

He e

-

—r(Ta  aa™
(et =7(g").

Case (B2). There is ¢ with u; =a™! and u;.; = a.
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(B2) —>

be,

Lemma 3. 1. There is no infinite sequence g, == -+ == g; = - - -

2. If hy <= g = hy then there 1s g € Gx such that by == § <= h,.

Proof. For (1) just note that each = -step diminishes by one the number of
vertices of a finite graph. For (2), if the two subgraphs to be rewritten in ¢ are
edge-disjoints, then define § as the graph obtained from g by doing both rewritings
(note that the order in which they are done does not matter). If the two subgraphs
to be rewritten have common edges, g must have a subgraph like e<*— o230
Observe that again § defined as before works. =

From the two statements of Lemma 3, a purely combinatorial argument shows
that a “global” version of 3(2) also holds: If hy <= g == h, then there is § such
that hy = § <= hy. In fact, something seemingly stronger, but actually equivalent
to it, can be proved (for a discussion of these rewriting concepts and the missing
proofs see [3]):

Lemma 4. If gy <= g, then there is g such that hy = g <= h,. n

Theorem 1. Up to isomorphism, the free inverse semigroup on X consists of all
isomorphism classes of birooted word-trees on X .
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Proof. Lemmas 3 and 4 show that each <==-class of graphs in G'x has a canonical
representative: Consider any g in the class, and apply repeatedly = until it is no
more applicable. By Lemma 3(1) this process stops, and from Lemma 4, the element
obtained, denoted by nf(g), can be proved to be unique.

Define Bx = {nf(g) : ¢ € Gx}. Observe that By is by definition the set of
all birooted word-trees on X . Moreover it is a quotient-algebra of Gx. Denoting
by (I) the congruence generated by the equations in I, and by FIy the free inverse
semigroup on X, we have:

Fly = Ty /() = (G /<) 2 By
Clearly nf is an isomorphism. Also 7 is an isomorphism with inverse 7: Given
t € Tx, observe that 7v(w;) = w,, and using Lemma 2 it follows that I - 7y(t) =
7v{w;) = w; = t. Similarly it can be shown that ~7 is the identity in Gx. Hence

FiIy = By. n
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