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ABSTRACT
The basic data model for the Semantic Web is RDF. In this
paper we address updates in RDF. It is known that the se-
mantics of updates for data models becomes unclear when
the model turns, even slightly, more general than a sim-
ple relational structure. Using the framework of Katsuno-
Mendelzon, we define a semantics for updates in RDF. Par-
ticularly we explore the behavior of this semantics for the
“erase” operator (which in general is not expressible in RDF).
Our results include a proposal of sound semantics for RDF
updates, a characterization of the maximal RDF graph which
captures exactly all consequences of the erase operation ex-
pressible in RDF, and complexity results about the compu-
tation of this graph and updates in RDF in general.

1. INTRODUCTION
The Semantic Web is a proposal oriented to represent

Web content in an easily machine-processable way. The ba-
sic layer of the data representation for the Semantic Web
recommended by the World Wide Web Consortium (W3C)
is the Resource Description Framework (RDF) [12]. The
RDF model is more than a simple relational structure; its
expressivity turns more general the existential conjunctive
fragment of first order logic by adding transitivity of some
predicates and inheritance axioms. From a database point
of view, it can be viewed as an extension of a representation
system along the lines of naive tables without negation [1].

In this paper we concentrate on the problem of updating
RDF data. In the last two years the semantic web com-
munity has shown an increasing interest in this problem.
However, the existing proposals have so far ignored the se-
mantic problems associated to the presence of blank nodes
and of RDFS vocabulary with built-in semantics [15, 17, 22,
14], and tackled the subject from a syntactical point of view.
Related to the update problem in RDF, some studies have
addressed changes in an ontology [13, 19], and more recently,
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the representation and querying of temporal information in
RDF [6] has been also studied.

1.1 The Problem of Updates in RDF
Updates and Revision. The semantics of updates for data

models becomes difficult when the model turns –even slightly–
more general than a simple relational structure [4]. For
knowledge bases, the abstract general problem of updat-
ing is: what should be the result of changing a theory T
with a sentence ϕ? As Katsuno and Mendelzon [10] argued,
the answer to this problem depends on the application at
hand. There is a fundamental distinction between update
(now in a technical sense) and revision [11, 10]. Update
means bringing the knowledge base up to date when the
world described by it changes; revise means incorporating
new information obtained about a static world. This dis-
cussion is relevant when facing updates in the RDF model.
Thus, the distinction between update and revision becomes
of central importance. On the one hand, one of the main
design goals of the RDF model is allowing distributed revi-
sions of the knowledge base in the form of addition of in-
formation in a monotonic way [20]. By some classic results
of Gardenförs [3], the notion of revision becomes trivial in
this setting. On the other hand, when viewing RDF from a
database point of view (i.e., huge but delimited repositories
of metadata, like metadata for a library, for instance), the
notion of update becomes relevant. In this paper we con-
centrate on this latter notion, and follow the approach of
Katsuno and Mendelzon [10].

Updates in RDF. Management, in particular maintain-
ability, of RDF data needs a well defined notion of update.
The problem becomes relevant since the standardization of
a query language for RDF [16]. We will show that the prob-
lem of characterizing these changes in RDF is far from being
trivial and raises interesting practical and theoretical issues
that, so far, have been overlooked.

Consider for example the case of a web music store that
uses Semantic Web technology for making it easier to find
information about artists depending on their music styles.
This is a very dynamic environment, where artists and mu-
sic styles are continuously being updated. Figure 1 shows
a small portion of this web site, where sc means “subclas-
sOf”, type indicates an instance of a class, and an edge
between two nodes represents a triple of the form, for in-
stance (a, sc, c). Suppose we want to delete all triples con-
taining the value artist in Figure 1 (a). The result, clearly,
is the one shown in Figure 1 (b), where dashed lines indicate



artist

J. Page

guitar player

performer

type

type

sc

sc

sc

artist

J. Page

guitar player

performer

type

type

sc

sc

sc

(b)(a)

Figure 1: Deleting all triples containing “artist”.
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Figure 2: Deleting the triple (guitarplayer, sc, artist).

the deleted arcs and nodes. However, if we want to delete
the triple (guitarplayer, sc, artist), a reasonable semantics
for this operation must ensure that the triple above can-
not be deduced from the updated database. This semantics
yields two possible results, depicted in Figures 2 (a) and
(b). Additionally, we have to decide what to do with the
triple (J.Page, type, artist): was it inserted directly, or was
deduced from the triples (J.Page, type, guitar player) and
(guitar player, sc, artist)? (see Section 3). In the former
case, it should stay; in the latter it should be deleted. What
is to be done? Expressing the new scenario is beyond the
expressivity of RDF. One of the goals of this paper is to
give a sound semantics for this operation. In this version,
we concentrate on ground graphs (i.e., RDF graphs without
blank nodes) and the operation of erase. In this direction,
we characterize the formulas expressible in RDF which re-
main logical consequences of a graph G after erasing from it
another graph H.

The paper is organized as follows. In Section 2 we dis-
cuss related work. Section 3 reviews RDF concepts and
presents a formalization of RDF. In Section 4 we introduce
our semantics for updates based on the Katsuno-Mendelzon
approach. Section 5 presents a characterization of erasing
in RDF. Section 6 studies the complexity of the update and
erase operations proposed. We conclude in Section 7.

2. RELATED WORK
Updates in knowledge bases and representation

systems. The semantics of an incomplete database (i.e.
a relational databases containing incomplete information)
is the set of all of its possible states. Updates are then
defined over this interpretation. Thus, a deletion would
consist in eliminating a tuple from every possible database
state. Analogously, an insertion must be applied to all pos-
sible states. The notion of representation system comes in
to determine the degree in which the system is capable of
expressing the new state of the database. In short, a repre-
sentation system is composed of a set of tables, a mapping

from tables to instances, and a set of allowed operations (like
insertion, join, and so on). If the exact result of all allowed
expressions can be computed, we have a strong representa-
tion system. Otherwise, we may limit to obtain approximate
answers (and we have a weak representation system). A re-
sult by Imielinsky and Lipski [9] states that representation
systems based on naive tables (a relation containing vari-
ables and constants) are weak for the standard relational op-
erations not including negative selection nor set difference.
In [1] this result is extended to consider updates. They show
that, for naive tables, adding the insertion operation yields
a weak representation system. However, if Ω contains pos-
itive selection, projection, and deletion, we do not have a
weak representation system. This result is explained by the
fact that naive tables do not handle disjunction. The con-
clusion is that naive tables are adequate for querying but
not for updates. As RDF can be considered an extension of
a representation system based on the notion of naive tables
without negation, we conclude that, in order to be appropri-
ate for handling update and erase, RDF would need negation
and disjunction.

Updates in graph databases. Updates have been also
studied in the context of graph databases. This is relevant
to our work because the RDF model is closely related to
graph data models [2]. In particular, the Graph-based data
model (GDM) and its update language GUL, introduced by
Hidders [8] are based on pattern matching. Two basic oper-
ations are defined in GUL: addition and deletion. In the case
of deletion, there is a base pattern which contains a core pat-
tern. The nodes, edges and class names that are not in core
pattern are deleted for every matching of the base pattern.
This approach is a promising line to implement in RDF the
semantic notions presented in this paper.

Updates in web databases: XML and RDF. XML
Updates have been extensively addressed in the XML world.
Tatarinov et al [18] proposed an XQuery extension that has
been the first step leading to the proposal currently under
study at the W3C [21]. The W3C specified the proper-
ties required for update operators in XML. RDF Updates
have recently attracted the attention of the RDF commu-
nity. Nevertheless, all proposals have so far ignored the se-
mantic problems arising for updates associated to the exis-
tence of blank nodes and the presence of RDFS vocabulary
with built-in semantics. Sarkar [17] identified five update
operators, also based on [18]. These operators are: Add,
InsertAfter, Delete, Remove, and Replace, and presented al-
gorithms for the Add and InsertAfter operations. Zhan [22]
proposed an extension to RQL, and defined a set of update
operators. Both works define updates in an operational way,
and semantic issues are considered to a very limited extent.
Another approach was proposed by Ognyanov and Kiryakov
[15]. The main statement of this approach is that the two
basic types of updates in an RDF repository are the addi-
tion and the removal of a statement (triple). Then, the work
turns simply into a description of a graph updating proce-
dure, where labels indicate a version of the graph at a certain
moment in time. Finally, Magiridou et al [14] recently pro-
posed RUL, a declarative update language for RDF. They
define three operations, insert, delete and modify. The pro-
posal is based on RQL and RVL. The main drawback of this
work is that it does not consider blank nodes and schema



updates, i.e., the issues that raise the most interesting the-
oretical issues. Leaving these issues out turns the problem
trivial. Thus, the authors basically end up dealing with
changes to instances of classes.

3. PROBLEM STATEMENT

3.1 Review of Basic RDF Notions
We present here a streamlined version of RDF. The mate-

rial of this subsection can be found in [5] with more detail.
There is an infinite set U (RDF URI references); an infi-

nite set B = {Nj : j ∈ N} (Blank nodes); and an infinite
set L (RDF literals). A triple (v1, v2, v3) ∈ (U ∪ B) × U ×
(U ∪ B ∪ L) is called an RDF triple. In such a triple, v1

is called the subject, v2 the predicate and v3 the object. We
often denote UBL the union of the sets U , B and L.

Definition 1. An RDF graph (just graph from now on) is
a set of RDF triples. A subgraph is a subset of a graph. The
universe of a graph G, universe(G), is the set of elements of
UBL that occur in the triples of G. The vocabulary of G,
denoted voc(G), is the set universe(G)∩ (U ∪L). A graph is
ground if it has no blank nodes. We also define the union of
two graphs G1, G2, denoted G1 ∪ G2, as the set theoretical
union of their sets of triples.

RDFS Vocabulary. There is a set of reserved words defined
in the RDF vocabulary description language, RDF Schema
–just rdfs-vocabulary for us– that may be used to describe
properties like attributes of resources (traditional attribute-
value pairs), and also to represent relationships between re-
sources. In this paper –following [5]– we will restrict to a
fragment of this vocabulary which represents the essential
features of RDF. It is constituted by the classes rdfs:Class
[class] and rdf:Property [prop], and by the properties rdfs:
range [range], rdfs:domain [dom], rdf:type [type], rdfs: sub-
ClassOf [sc] and rdfs:subPropertyOf [sp]. We present a se-
mantics for this fragment, based on the following set of rules.

GROUP A (Subproperty)

(a, type, prop)

(a, sp, a)
(1)

(a, sp, b) (b, sp, c)

(a, sp, c)
(2)

(a, sp, b) (x, a, y)

(x, b, y)
(3)

GROUP B (Subclass)

(a, type, class)

(a, sc, a)
(4)

(a, sc, b) (b, sc, c)

(a, sc, c)
(5)

(a, sc, b) (x, type, a)

(x, type, b)
(6)

GROUP C (Typing)

(a, dom, c) (x, a, y)

(x, type, c)
(7)

(a, range, d) (x, a, y)

(y, type, d)
(8)

Definition 2 (Deductive System). Let G be a graph.
For each rule r : A

B
above, define G `r G ∪ B iff A ⊆ G.

Also define G `s G′ iff G′ is a subgraph of G.
Define G ` G′ if there is a finite sequence of graphs

G1, . . . , Gn such that (1) G = G1; (2) G′ = Gn; and (3)
for each i, either, Gi `r Gi+1 for some r, or Gi `s Gi+1.

Definition 3. Let G be an RDF graph. The closure of
G, denoted cl(G), is the maximal set of triples G′ over
universe(G) plus the rdfs vocabulary such that G′ contains
G and G ` G′.

In the next section we will need the logical notion of a
model of a formula (an RDF graph). The model theory of
RDF (given in [7]) follows standard classical treatment in
logic with the notions of model, interpretation, and entail-
ment (denoted |=). See [5] for details. Throughout this
paper we will work with Herbrand models, which turn out
to be special types of RDF graphs themselves. For a ground
graph G, a Herbrand model of G is any RDF graph that con-
tains cl(G) (in particular, cl(G) is a minimal model). From
[5] the following results can be deduced.

Proposition 1. G |= H iff cl(H) ⊆ cl(G).

Theorem 1. The deductive system of Definition 2 is sound
and complete for |=. That is, G1 ` G2 iff G1 |= G2.

3.2 The Problem
Consider the simplest problem related to the erase oper-

ation that we can find in RDF, and the associated semantic
and complexity issues, namely: delete a tuple t or a set of
tuples H, from an RDF graph G. To illustrate with a con-
crete example, let G = {(a, sc, b), (b, sc, c)}, and consider
the following problems:

Problem 1: Erase (a, sc, c) from G. Result: should (a, sc, c)
be derivable from G after the deletion?. If not, should we
delete (a, sc, b) or (b, sc, c)?

Problem 2: Erase (a, sc, b) from G. Result: before dele-
tion, (a, sc, c) was implicit in G (it was entailed by G).
Should it still be in G after deletion?. Should deletion be
syntax-independent?

Problem 3: Erase {(a, sc, b), (b, sc, c)} from G. Result:
is it the empty set?. Either (a, sc, b) or (b, sc, c)?. Again,
should (a, sc, c) be in the result?

A standard approach in KB is to ensure that, after dele-
tion, the statement t should not derivable from G, and that
the deletion should be minimal. The result should be ex-
pressed by another formula, usually in a more expressive
language. For example, if in G above we erase (a, sc, c), the
“faithful” result should be something like (a, sc, b)∨(b, sc, c).
But the problem is that we do not have disjunction in RDF.

In this paper we explore the behavior of the Katsuno-
Mendelzon approach to define a semantics for update in
RDF and concentrate on the characterization of the erase
operation and its consequences over the formulas expressible
in RDF. We will limit ourselves to study these questions for
the case of ground graphs.

4. SEMANTICS OF UPDATE AND ERASE
In this section we address the problem introduced in Sec-

tion 3.2. We characterize update and erase operations (i.e.,
adding or deleting an RDF graph H to/from another RDF
graph G) using the Katsuno-Mendelzon approach, that is,
identifying a theory with the set of models that satisfies it.



4.1 Katsuno-Mendelzon approach for RDF
The K-M approach to updates can be characterized as

follows from a model-theoretic point of view: for each model
M of the theory to be changed, find the set of models of the
sentence to be inserted that are “closest” to M . The set of
all models obtained in this way is the result of the change
operation. Choosing an update operator then reduces to
choosing a notion of closeness of models [4].

Definition 4. The operator ◦, representing the update of
G with H, is defined as follows:

Mod(G ◦H) =
[

m∈Mod(G)

min(Mod(H),≤m), (9)

where min(Mod(H),≤m) is the set of models of H minimal
under ≤m, which is a partial order depending on m.

We will use the following notion of distance between mod-
els, which gives us an order.

Definition 5 (Order). Let G, G1, G2 be models of RDF
graphs with voc(G) ⊆ voc(G2), voc(G1), and let G be a set of
models of RDF graphs. The symmetric difference between
two models G1 and G2, denoted as G1 ⊕G2, is (G1 \G2) ∪
(G2 \G1). Then : (1) define a relation ≤G such that G1 ≤G

G2 (G1 is “closer” to G than G2) if and only if G1 ⊕ G ⊆
G2 ⊕ G; (2) G1 is ≤G-minimal in G if G1 is in G, and if
G2 ∈ G and G2 ≤G G1 then G2 = G1.

4.2 The notion of Update
Working with positive theories, the problem of update

is fairly straightforward. The only concern is keeping the
principle of irrelevance of syntax, i.e., the update should not
depend on the particular syntax of the sentences involved.

Theorem 2. Given the RDF graphs G and H, the update
of G with H, G ◦ H, is expressible as another RDF graph.
Formally, m ∈ (G + H) if and only if m ∈ Mod(G ◦H).

Proof. If m ∈ Mod(G + H) then m ∈ Mod(G) and
m ∈ Mod(H). Then mG = m is the model in Mod(G) such
that m is ≤mG -minimal in Mod(H). Then, m ∈ Mod(G ◦
H). Conversely, let m ∈ Mod(H) and mG ∈ Mod(G) such
that m is ≤mG -minimal. Then mG ⊆ m: otherwise, (m ∪
mG) <mG m, contradiction. Hence m |= (G + H).

Proposition 2. Let D, G, H be RDF graphs. Then, the
definition of update satisfies the following statements: (1)
D ◦G |= G; (2) if D |= G then D ◦G ≡ D; (3) if G1 ≡ G2

and H1 ≡ H2 then G1◦H1 ≡ G2◦H2 (irrelevance of syntax);
(4) (D ◦ G) + H |= D ◦ (G + H); (5) if D ◦ G |= H and
D ◦H |= G then D ◦G ≡ D ◦H. (Note that these statements
are an analogous, in our setting, of the K-M postulates for
update not involving disjunction).

4.3 The notion of Erase
Erasing statements from G means adding models to Mod(G).

Definition 6. The operator •, representing the erasure, is
defined as follows: for graphs G and H, G •H is given by:

Mod(G •H) = Mod(G) ∪
[

m∈Mod(G)

min(((Mod(H))c,≤m)

(10)

and ( )c denotes complement. In words, the models of (G •
H) are those of G plus the collection of models mH 6|= H
such that there is a model m |= G for which mH is ≤m-
minimal among the elements of Mod(H)c. Compare identity
(9).

Proposition 3. Let D, G, H be RDF graphs. Then, the
definition of erase satisfies the following statements: (1)
D |= D •G; (2) if D 6|= G then D •G ≡ D; (3) D •G 6|= G;
(4) if G1 ≡ G2 and H1 ≡ H2 then G1 • H1 ≡ G2 • H2;
(5) (D • G) + G |= D. (Note that these statements are an
analogous, in our setting, of the K-M postulates for erase
not involving disjunction).

Representing faithfully in the RDF language the notions
of update and erase defined above is not possible in the
general case. The Update operator presents no difficulties,
and it is in fact an RDF graph (formula). However, the
Erase operator presents problems, arising from the fact that
we have neither negation nor disjunction in RDF.

5. CHARACTERIZING DELETION IN RDF
The following notion is the key to obtain a workable char-

acterization of erase (expressed previously only in terms of
sets of models), based on the behavior over the formulas
expressible in RDF.

Definition 7 (Erase Candidates). Let G and H be RDF
graphs. Then the set of erase candidates of G and H, de-
noted ecand(G, H), is defined as the set of maximal sub-
graphs G′ of cl(G) such that G′ 6|= H.

Proposition 4. Let G, H be models and G |= H. If m ∈
(G−H), then there is a unique E ∈ ecand(G, H) with m |=
E.

Proof. Let m 6|= H and mG |= G such that m is ≤mG -
minimal. Assume mG |= cl(G). Consider the subgraph
E = (m ∩ mG) of cl(G). Clearly m |= E, and hence and
E 6|= H. Claim: E ∈ ecand(G, H). Assume E ⊆ cl(G) is not
maximal with the property of not entailing H. Then there is
t ∈ (cl(G)\E) with E∪{t} 6|= H. Then consider m′ = cl(m∪
t). We have that m′ 6|= H and m′ <mG m, a contradiction.
The uniqueness of E follows from its maximality.

Theorem 3. If ecand(G, H) = {E}, then (G •H) ≡ E.

The theorem follows from the following proposition, that
additionally states that ecand(G, H) defines a partition in
the set of models defined by G•H, and each such set is “rep-
resented” by the RDF graph E. Note that the smaller the
size of ecand(G, H), the better the approximation to G •H
of each element in ecand(G, H), being the limit Theorem 3.

We are ready for the theorem characterizing the RDF sub-
graph of cl(G) which captures exactly all consequences of
G •H expressible in RDF:

Theorem 4. For all formulas F of RDF,
T

ecand(G, H) |=
F if and only if Mod(G •H) ⊆ Mod(F ).

The proof follows from Proposition 4.

5.1 Computing Erase Candidates
From the discussion above, it follows the relevance of com-

puting erase candidates to approximate G•H. We will need
the notion of proof sequence based on the deductive system
from Section 3.



Definition 8 (Proof Sequence). Let G, H be RDF graphs.
Then a proof sequence of H from G is a sequence of RDF
graphs H1, . . . , Hn such that:

1. H1 ⊆ G and H ⊆ Hn.

2. For each pair Hi+1 and Hi one of the following holds:

(a) (Standard rules) Hi+1 = Hi ∪ {t}, for t1, t2 ∈ Hi

and t1 t2
t

is the instantiation of a rule (see rules
in Secc 3).

(b) (Mapping rule) µ(Hi+1) = Hi for a mapping µ.

Because of Theorem 1, proof sequences are sound and
complete for testing entailment.

The first element in a proof sequence P will be called
base(P ). base(P ) is a minimal base for the graphs G, H iff
it is minimal under set inclusion among the bases of proofs
of H from G, that is, for every proof P ′ of H from G,
base(P ) ⊆ base(P ′). We refer to the set of minimal bases
of G, H as minbases(G, H).

We use the following notion of a cover for a collection of
sets. A cover for a collection of sets C1, . . . , Cn is a set C
such that C ∩ Ci is non-empty for every Ci.

Lemma 1. Let G, H be RDF graphs. C is a cover for the
set minbases(G, H) iff (G \ C) 6|= H.

Proof. (If) If C is not a cover, then there is a minimal
base B ∈ (G \ C). Then there is a proof P for H from
G\P , where base(P ) = B, contradicting that (G\C) 6|= H.
(Only If) Suppose not. Then there is a proof P for H from
G \ C. We have that there is no minimal base B such that
B ⊆ base(P ). Hence base(P ) is a minimal base for G, H,
contradicting that C is a cover for all minimal bases.

Theorem 5. Let G, H, D be RDF graphs. Then C is a
minimal cover for the collection of sets minbases(G, H) iff
(i) (G \C) 6|= H and (ii) G \C is a maximal subgraph G′ of
G such that G′ 6|= H.

Proof. Follows from Lemma 1. It can be easily verified
that the minimality of C implies the maximality of G \ C
and vice versa.

Corollary 1. Let G, H, D be RDF graphs. E ∈ ecand(G, H)
if and only if E = cl(G) \ C for C a minimal cover for the
collection of sets minbases(cl(G), H).

6. COMPLEXITY
In this section we study the complexity of computing an

erase operation (computing update is straightforward). We
show that computing erase candidates reduces to finding
cuts in a class of directed graphs that encode RDF graphs.

Finding erase candidates reduces to compute RDF graphs
we call delta candidates. We denote dcand(G, H) the set of
RDF graphs {(nf(G)\G′) : G′ ∈ ecand(G, H)}. Each of the
graphs in dcand(G, H) will be called a delta candidate for
G, H. Notice that the delta candidates can be alternatively
defined as minimal graphs D ⊆ cl(G) such that (cl(G)\D) 6|=
H.

6.1 Minimal Cuts
We will need the following standard notation related to

cuts in graphs. Let (V, E) be a directed graph. A set of

edges C ⊆ E disconnects two vertices u, v ⊆ V iff each
path from u to v in the graph passes through a vertex in
C. In this case C is called a cut. This cut is minimal if
the removal of any node from C does not yield another cut.
We also generalize cuts for sets of pairs of vertices yielding
multicuts. A minimal multicut for a set of pairs of nodes
(u1, v1), (u2, v2), . . . , (un, vn) is a minimal set of edges that
disconnects ui and vi. Given a graph G and a set of pairs
of nodes N , we denote by MinCuts(N, G) the set of minimal
multicuts of N in G. Notice that when N has a single pair
MinCuts(N, G) is a set of cuts.

We will show that, in general, an element in dcand(G, H)
is the union of two cuts: one defined in a directed graph we
will denote G[sc], and the other in a graph denoted G[sp].

Given an RDF graph G, denote by G[sc] = (N, V, λ) the
labeled directed graph defined in Table 1 (above). For each
triple of the form specified in the first column of the table,
we have the corresponding edge in V . The set of nodes N
consists of all the nodes mentioned in the edges given in the
table. The function λ : E → G maps each edge in E to
a triple in G, according to Table 1 (above). The labeled
directed graph G[sp] is defined similarly in Table 1 (below).
As notation, we use the letters n and m to refer distinctly
to nodes in G[sc] and G[sp], respectively.

Triple Edge in G[sc]
(a, sc, b) (na, nb)
(a, type, b) (na, nb)
(a, type, class) (na, na)

Edges in G[sp]
(p, sp, q) (mp, mq)
(a, p, b) (ma,b, mp) (mb,a, mp)
(p, dom, c) (mp, mc,dom)
(p, range, c) (mp, mc,range)

Table 1: Description of the graphs G[sc] (above) and
G[sp] (below).

For an RDF triple t we define a set of pairs of nodes that
specified the cut problems related to the erase of the triple
t from an RDF graph G. The set t[sc, G] will contain pairs
of nodes in the graph G[sc] and the set t[sp, G] will contain
pairs of nodes in G[sp]. Formally, we denote by t[sc, G]
the pairs of nodes (u, v), u, v nodes in G[sc] as described
in Table 2 (second column). Analogously, we define t[sp, G]
using Table 2 (third column). As an example, for a triple
of the form (a, sc, b) in a graph G, (a, b, c)[sc, G] contains
the single pair of nodes (na, nb), where both nodes na, nb

belong to G[sc]. Notice that there is always a single pair of
nodes in t[sc, G], and the only case where t[sc, G] may have
several pairs of nodes is when t is of the form (a, type, b).

For an RDF graph U , U [sc, G] is the union of the sets
ti[sc, G], for the triples ti in U .

6.2 Complexity of Erase
For the sake of space, we will present here the case where

the graph to erase has a single triple. Our results can be eas-
ily generalized to computing erase candidates ecand(G, H)
for the case where H has several triples.

A delta dcand(G, t), will be defined with two sets of graphs,
denoted dcandsc(G, t) and dcandsp(G, t). For each D ∈
dcand(G, t), D = D1 ∪ D2, for of any two RDF graphs



Triple t ∈ G t[sc, G] t[sp, G]
(a, sc, b) (na, nb) –
(a, sp, b) – (ma, mb)
(a, p, b) – (mab, mp)
(a, type, c) (na, nc) pairs (ma,x, mc,dom) for all x

pairs (mx,a, mc,range) for all x

Table 2: Pair of nodes t[sc, G] and t[sp, G] associated
to a triple t in a graph G.

D1 ∈ dcandsc(G, t) and D2 ∈ dcandsp(G, t).

Proposition 5. Let G be an RDF graph, G′ = cl(G), and
consider a triple t. The following holds: (i) dcandsc(G, t) =
MinCuts(G′[sc], t[sc, G′]); (ii) dcandsp(G, t) = MinCuts(G′[sp],
t[sp, G′]).

Proof. (Sketch) Corollary 1 can be expressed in terms
of delta candidates as follows. Let G, H, D be RDF graphs.
Then D ∈ dcand(G, H) iff D is a minimal cover set for
minbases(cl(G), H).

We sketch the proof for the case where t is of the form
(a, sc, b). In this case we can verify that minbases(G′, H)
corresponds to the RDF triples associated to the simple
paths (paths with no cycles) from na to nb in G[sc]. There-
fore, it follows that the minimal cuts MinCuts(G′[sc], t[sc, G′]
are exactly the delete candidates dcand(G, t). Notice that
in the case where t is of the form (a, sc, b), dcand(G, t) =
dcandsc(G, t), because, in this case dcandsp(G, t) is empty.

Theorem 6. Let G, H be ground RDF graphs, and t be
a ground a triple. The problem of deciding whether E ∈
ecand(G, t) is in PTIME.

Proof. (Sketch) From Proposition 5, the problem re-
duces to determine if D = cl(G) \ E is a delta candidate
in dcand(G, t). Let G′ = cl(G), G′ can be computed in
polytime. The triples in D yield two sets of edges dcandsc

and dcandsp in the graphs G′[sc] and G′[sp], respectively.
Thus we have to test (i) whether t[sc, G′] is a minimal cut
in G′[sc] and (ii) whether t[sp, G′] is a minimal (multi)cut
in G′[sp]. In both cases the test can be done in PTIME by
simple reachability analysis in the graphs G′[sc] and G′[sp],
respectively. Testing whether a set of edges S is a mini-
mal cut for (v1, u1) in a graph GR = (V, E) can be done
by performing polytime reachability analysis in the graph
as follows. To test whether S is a cut, delete from E the
edges in S, and test whether v1 reaches u1 in this new graph.
To test minimality, do the same test for each set of edges
S′ ⊂ S resulting from removing a single edge from S. S is
minimal iff all of the S′s are not cuts. We proceed similarly
for testing if a set of edges is a minimal multicut.

7. CONCLUSIONS
In this paper we considered an RDF database as a knowl-

edge base, and treated the problem of updating the database
in the framework of the traditional proposals of knowledge
base updating. We characterized the update of a graph G
with a graph H within the framework of the K-M approach,
and defined the meaning of the update and erase operations
in RDF on a solid foundation (considering, in the latter case,
that we do not have negation nor disjunction in RDF). We
also provided algorithms for calculating these operations, in-
cluding a detailed complexity analysis. In future work we

will develop an update language for RDF, and extend our
study to more expressive languages, like OWL.
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