
 1

Data Management: Past, Present, and Future

Jim Gray

Microsoft Research

June 1996

Technical Report

MSR-TR-96-18

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

This paper appeared in IEEE Computer 29(10): 38-46 (1996)

IEEE: © 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

 2

Data Management: Past, Present, and Future
Jim Gray,

Microsoft Research,
301 Howard St.

 San Francisco, CA 94105,
415-778-8222

Gray@Microsoft.com.DRAFT

Abstract: Soon most information will be available at your fingertips, anytime, anywhere. Rapid
advances in storage, communications, and processing allow us move all information into Cyberspace.
Software to define, search, and visualize online information is also a key to creating and accessing online
information. This article traces the evolution of data management systems and outlines current trends.
Data management systems began by automating traditional tasks: recording transactions in business,
science, and commerce. This data consisted primarily of numbers and character strings. Today these
systems provide the infrastructure for much of our society, allowing fast, reliable, secure, and automatic
access to data distributed throughout the world. Increasingly these systems automatically design and
manage access to the data. The next steps are to automate access to richer forms of data: images, sound,
video, maps, and other media. A second major challenge is automatically summarizing and abstracting
data in anticipation of user requests. These multi-media databases and tools to access them will be a
cornerstone of our move to Cyberspace.

1. Introduction And Overview

Computers can now store all forms of
information: records, documents, images,
sound recordings, videos, scientific data,
and many new data formats. We have
made great strides in capturing, storing,
managing, analyzing, and visualizing this
data. These tasks are generically called
data management. This paper sketches the
evolution of data management systems
describing six generations of data managers
shown in Figure 1. The article then outlines
current trends,

Data management systems typically store huge quantities of data representing the historical records of an
organization. These databases grow by accretion. It is important that the old data and applications
continue to work as new data and applications are added. The systems are in constant change. Indeed,
most of the larger database systems in operation today were designed several decades ago and have
evolved with technology. A historical perspective helps to understand current systems.

There have been six distinct phases in data management. Initially, data was manually processed. The
next step used punched-card equipment and electro-mechanical machines to sort and tabulate millions of
records. The third phase stored data on magnetic tape and used stored program computers to perform
batch processing on sequential files. The fourth phase introduced the concept of a database schema and
online navigational access to the data. The fifth step automated access to relational databases and added
distributed and client-server processing. We are now in the early stages of sixth generation systems that
store richer data types, notably documents, images, voice, and video data. These sixth generation systems
are the storage engines for the emerging Internet and Intranets.

Manual Processing - Paper and Pencil
Mechanical-Punched card

4000 BC 1800 1960 1980 2000

Stored Program - sequential record processing

NonProcedural - Relational
Online - Navigational Set Processing

Multi-Media Internetwork

Figure 1: The six generations of data management,
evolving from manual methods, through several stages of
automated data management.

 3

2. Historical perspective: The Six Generations of Data
Management

2.0. Zeroth generation: Record Managers 4000BC -1900

The first known writing describes the royal assets and taxes in Sumeria. Record keeping has a long
history. The next six thousand years saw a technological evolution from clay tablets to papyrus to
parchment and then to paper. There were many innovations in data representation: phonetic alphabets,
novels, ledgers, libraries, paper and the printing press. These were great advances, but the information
processing in this era was manual. (Note to editor: it would be nice to have a photo of a Sumarian tablet or a Hollerith
machine here. U. Penn has a good collection of photos of Sumerian tablets.)

2.1. First Generation: Record Managers 1900 -1955

The first practical automated information processing began circa 1800 with the Jacquard Loom that
produced fabric from patterns represented by punched cards. Player pianos later used similar technology.
In 1890, Hollerith used punched card technology to perform the US census. His system had a record for
each household. Each data record was represented as binary patterns on a punched card. Machines
tabulated counts for blocks, census tracts, Congressional Districts, and States. Hollerith formed a
company to produce equipment that recorded data on cards, sorted, and tabulate the cards [1]. Hollerith’s
business eventually became International Business Machines. This small company, IBM, prospered as it
supplied unit-record equipment for business and government between 1915 and 1960.

By 1955, many companies had entire floors dedicated to storing punched cards, much as the Sumerian
archives had stored clay tablets. Other floors contained banks of card punches, sorters, and tabulators.
These machines were programmed by rewiring control panels (patch-boards) that managed some
accumulator registers, and that selectively reproduced cards onto other cards or onto paper. Large
companies were processing and generating millions of records each night. This would have been
impossible with manual techniques. Still, it was clearly time for a new technology to replace punched
cards and electro-mechanical computers.

2.2. Second Generation: Programmed Unit Record Equipment 1955-1970

Stored program electronic computers had been developed in the 1940’s and early 1950’s for scientific and
numerical calculations. At about the same time, Univac had developed a magnetic tape that could store as
much information as ten thousand cards: giving huge improvements in space, time, convenience, and
reliability. The 1951 delivery of the UNIVAC1 to the Census Bureau echoed the development of punched
card equipment. These new computers could process hundreds of records per second, and they could fit in
a fraction of the space occupied by the unit-record equipment.

Software was a key component of this new technology. It made them relatively easy to program and use.
It was much easier to sort, analyze, and process the data with languages like COBOL and RPG. Indeed,
standard packages began to emerge for common business applications like general-ledger, payroll,
inventory control, subscription management, banking, and document libraries.

The response to these new technologies was predictable. Large businesses recorded even more
information, and demanded faster and faster equipment. As prices declined, even medium-sized
businesses began to capture transactions on cards and use a computer to process the cards against a tape-
based master file.

The software of the day provided a file-oriented record processing model. Typical programs
sequentially read several input files and produced new files as output. COBOL and several other
programming languages were designed to make it easy to define these record-oriented sequential tasks.

 4

Operating systems provided the file abstraction to store these records, a job control language to run the
jobs, and a job scheduler to manage the workflow.

Batch transaction processing systems captured transactions on cards or tape and collected them in a
batch for later processing. Once a day these transaction batches were sorted. The sorted transactions were
merged with the much larger database (master file) stored on tape to produce a new master file. This
master file also produced a report that was used as the ledger for the next day’s business. Batch
processing used computers very efficiently, but it had two serious shortcomings. If there was an error in a
transaction, it was not detected until that evening’s run against the master file, and the transaction might
take several days to correct. More significantly, the business did not know the current state of the
database – so transactions were not really processed until the next morning. Solving these two problems
required the next evolutionary step, online systems. This step also made it much easier to write
applications.

2.3. Third Generation: Online Network Databases 1965-1980

Applications like stock-market trading and travel reservation need to know the current information. They
could not use the day-old information provided by off-line batch transaction processing – rather they need
immediate access to current data. Starting in the late 1950’s, leaders in several industries began
innovating with online transaction databases which interactively processed transactions against online
databases. Several technologies were key to enabling online data access. The hardware to connect
interactive computer terminals to a computer evolved from teletypes, to simple CRT displays, and to
today’s intelligent terminals based on PC technology. Teleprocessing monitors provided the specialized
software to multiplex thousands of terminals onto the modest server computers of the day. These TP
monitors collected request messages from a terminal, quickly dispatched server programs to process each
message, and then dispatched the response back to the requesting terminal. Online transaction
processing augmented the batch transaction processing that performed background reporting tasks.

Online databases stored on magnetic disks or drums provided sub-second access to any data item. These
devices and data management software allowed programs to read a few records, update them, and then
return the new values to the online user. Initially, the systems provided simple record lookup: either by
direct lookup by record number or associative lookup by a record key.

Simple indexed-sequential record organizations soon evolved to a more powerful set-oriented record
model. Applications often want to relate two or more records. Figure 2.a shows some record types of a
simple airline reservation system and their relationships. Each city has a set of outgoing flights. Each
customer has a set of trips, and each trip consists of a set of flights. In addition, each flight has a set of
passengers. This information can be represented as three set-hierarchies, as shown in figure 2.b. Each of
the three hierarchies answers a different question: the first is the flight schedule by city. The second
hierarchy gives the customer’s view of his flights. The third hierarchy tells which customers are on each
flight. The travel reservation application needs all three of these data views.

The hierarchical representation of figure 2.b has a major shortcoming. Storing data redundantly is
expensive, but also creates update problems: when a flight is created or is altered the flight information
must be updated in all three places (all three hierarchies.) To solve these problems, the information could
be represented with a network data model shown in figure 2.c. Figure 2.c depicts a single database where
each record is stored once and is related to a set of other records via a relationship. For example, all the
flights involved in a specific customer’s trip are related to that trip. A program can ask the database
system to enumerate those flights. New relationships among records can be created as needed. Figure 2.c
is variously called a Bachman diagram or an Entity-Relationship diagram [2], [5]. The relational diagram
of figure 2 (figure 2.d) is described in the next section.

 5

Managing associative access and set-oriented processing was so common that the COBOL community
chartered a Data Base Task Group (DBTG) to define a standard way to define and access such data.
Charles Bachman had built a prototype data navigation system at GE. Bachman received the Turing
award for leading the DBTG effort which defined a standard data definition and data manipulation
language. In his Turing lecture he described the evolution from flat-file models to the new world where
programs could navigate among records by following the relationships among the records [2]. Bachman’s
model is reminiscent of Vannevar Bush’s Memex system [2] or the pages-and-links navigational model of
today’s Internet.

The COBOL database community crystallized the concept of schemas and data independence. They
understood the need to hide the physical details of record layouts. Programs should see only the logical
organization of records and relationships, so that the programs continued to work as the data layout was
reorganized and evolved over time. Records, fields, and relationships not used by the program should be
hidden – both for security reasons, and to insulate the program from the inevitable changes to the database
design over time. These early databases supported three kinds of data schemas: (1) a logical schema that
defines the global logical design of the database records and relationships among records, (2) a physical
schema that describes the physical layout of the database records on storage devices and files, and the
indices needed to support the logical relationships, and (3) each application was given a sub-schema
exposing just the subset of the logical schema used by the program. The logical-physical-sub-schema
mechanism provided data independence. Indeed, may programs written in that era are still running
today using the same sub-schema the programs started with, even though the logical and physical schemas
have evolved to completely new designs.

These online systems had to solve the problem of running many concurrent transactions against a
database shared among many terminal users. Prior to this, the single-program-at-a-time old-master new-
master approach eliminated concurrency and recovery problems. The early online systems pioneered the
concept of transactions that lock just the records that they access. Transaction locking allows concurrent
transactions to access different records. The systems also kept a log of the records that each transaction
changed. If the transaction failed, the log was used to undo the effects of the transaction. The transaction
log was also used for media recovery. If the system failed, the log was re-applied to an archive copy of the
database to reconstruct the current database.

By 1980 the set-oriented network (and hierarchical) data models were very popular. Cullinet, a company
founded by Bachman, was the largest and fastest-growing software company in the world.

Cities

Flights

Cities

Customers

Trips

Flights

Flights

Customers

Cities

Flights

Customers

Trips

from to Has trip

segment

passenger

City Flight CustomerTripSegment

Flight# Trip# Other info…

Segme

22

78

22

A table

A row (record)

Field names US 122

US 981

US 155

Flight Trip Other info

Customers

Trips

Flights

a b c d

Figure 2: The evolution of data models. (a) A pure hierarchical model with records grouped under
other records. (b) As the application grows, different users want different views of the data
expressed as different hierarchies. (c) A Bachman diagram showing the record sets and
relationships among record types. (d) The same information represented as in the relational model
where all data and all relationships are explicitly represented as records. The relations are shown
at the top of the figure. Some details of the Segment relation are shown at the lower right; it has a
record for each flight (segment) in any passenger’s itinerary.

 6

2.4. Fourth Generation: Relational Databases and client-server computing
1980-1995

Despite the success of the network data model, many software designers felt that a navigational
programming interface was too low-level. It was difficult to design and program these databases. E.F.
Codd’s 1970 paper outlined the relational model [4] that seemed to provide an alternative to the low-level
navigational interfaces. The idea of the relational model is to represent both entities and relationships in
a uniform way. The relational data model has a unified language for data definition, data navigation, and
data manipulation, rather than separate languages for each task. More importantly, the relational algebra
deals with record sets (relations) as a group, applying operators to whole record sets and producing record
sets as a result. The relational data model and operators gives much shorter and simpler programs to
perform record management tasks. To give a concrete example, the airline database of the previous
section would be represented by five tables as shown in Figure 2.d. Rather than implicitly storing the
relationship between flights and trips, a relational system explicitly stores each flight-trip pair as a record
in the database. This is the “Segment” table in Figure 2.d.

To find all segments reserved for customer Jones going to San Francisco, one would write the SQL query:
Select Flight#
From City, Flight, Segment, Trip, Customer
Where Flight.to = “SF” AND

 Flight.flight# = Segment.flight# AND
 Segment.trip# = trip.trip# AND
 trip.customer# = customer.customer# AND
 customer.name = “Jones”

The English equivalent of this SQL query is: “Find the flight numbers for flights to San Francisco which
are a segment of a trip booked by any customer named “Jones.” Combine the City, Flight, Segment, Tip,
and Customer tables to find this flight.” This program may seem complex, but it is vastly simpler than the
corresponding navigational program.

Given this non-procedural query, the relational database system automatically finds the best way to match
up records in the City, Flight, Segment, Trip, and Customer tables. The query does not depend on which
relationships are defined. It will continue to work even after the database is logically reorganized.
Consequently, it has much better data independence than a navigational query based on the network data
model. In addition to improving data independence, relational programs are often five or ten times
simpler than the corresponding navigational program.

Inspired by Codd’s ideas, researchers in academe and industry experimented throughout the 1970’s with
this new approach to structuring and accessing databases promising dramatically easier data modeling
and application programming. The many relational prototypes developed during this period converged on
a common model and language. Work at IBM Research led by Ted Codd, Raymond Boyce, and Don
Chamberlin and work at UC Berkeley led by Michael Stonebraker gave rise to a language called SQL.
This language was first standardized in 1985. There have been two major additions to the standard since
then [5], [6]. Virtually all database systems provide an SQL interface today. In addition, all systems
provide unique extensions that go beyond the standard.

The relational model had some unexpected benefits beyond programmer productivity and ease-of-use.
The relational model was well suited to client-server computing, to parallel processing, and to graphical
user interfaces. Client-server application designs divide applications in two parts. The client part is
responsible for capturing inputs and presenting data outputs to the user or client device. The server is
responsible for storing the database, processing client requests against a database, and responding with a
summary answer. The relational interface is especially convenient for client-server computing because it
exchanges high-level requests and responses. SQL’s high-level language minimizes communication
between client and server. Today, many client-server tools are built around the Open Database
Connectivity (ODBC) protocol that provides a standard way for clients to make high-level requests to
servers. The client-server paradigm continues to evolve. As explained in the next section, there is an
increasing trend to integrate procedures into database servers. In particular, procedural languages like

 7

BASIC and Java have been added to servers so that clients can invoke application procedures running at
the server.

Parallel database processing was the second unanticipated benefit of the relational model. Relations are
uniform sets of records. The relational model consists of operators closed under composition: each
operator takes relations as inputs and produces a relation as a result. Consequently, relational operators
naturally give pipeline parallelism by piping the output of one operator to the input of the next. It is rare
to find long pipelines, but relational operators can often be partitioned so that each operator can be cloned
N ways and each clone can work on 1/Nth of the input relation. These ideas were pioneered by academe
and by Teradata Corporation (now NCR). Today, it is routine for relational systems to provide hundred-
fold speedups by using parallelism. Data mining jobs that might takes weeks or months to search multi-
terabyte databases are done within hours by using parallelism. This parallelism is completely automatic.
Designers just present the data to the database system, and the system partitions and indexes the data.
Users present queries to the system (as ODBC requests) and the system automatically picks a parallel plan
for the query and executes it.

Relational data is also well suited for graphical user interfaces (GUIs). It is very easy to render a relation
as a set of records – relations fit a spreadsheet metaphor. Users can easily create spreadsheet-like
relations and can visually manipulate them. Indeed, there are many tools that move relational data
between documents, spreadsheets, and databases. Explicitly representing data, relationships, and meta-
data in a uniform way makes this possible.

Relational systems combined with GUIs allow hundreds of thousands of people to pose complex database
queries each day. The combinations of GUIs and relational systems has come closest to the goal of
automatic-programming. GUIs allow very complex queries to be easily constructed. Given a non-
procedural query, relational systems find the most efficient way to execute that query.

Continuing the historical perspective, by 1980 Oracle, Informix, and Ingress had brought relational
database management systems to market. Within a few more years, IBM and Sybase had brought their
products to market. By 1990, the relational systems had become more popular than the earlier set-
oriented navigational systems. Meanwhile file systems, and set-oriented systems were still the workhorses
of many corporations. These corporations had built huge applications over the years and could not easily
change to relational systems. Rather, relational systems became the key tool for new client-server
applications.

2.5. Fifth Generation: Multimedia Databases 1995-

Relational systems offered huge improvements in ease-of-use, graphical interfaces, client-server
applications, distributed databases, parallel data search, and data mining. Nonetheless, in about 1985, the
research community began to look beyond the relational model. Traditionally, there had been a clear
separation between programs and data. This worked well when the data was just numbers, characters,
arrays, lists, or sets of records. As new applications appeared, the separation between programs and data
became problematic. The applications needed to give the data behavior. For example, if the data was a
complex object, then the methods to search, compare, and manipulate the data were peculiar to the,
document, image, sound, or map datatype (see figure 3).

 8

The traditional approach was to build the datatypes right
into the database system. SQL added new datatypes for
time, time intervals, and two-byte character strings. Each
of these extensions was a significant effort. When they
were done, the results were not appropriate for everyone.
For example, SQL time cannot represent dates before the
Christian Era and the multi-character design does not
include Unicode (a universal character set for almost all
languages). Users wanting Unicode or pre-Christian dates
must define their own datatypes. These simple examples,
and many others convinced the database community that
the database system must allow domain specialists to
implement the datatypes for their domains. Geographers
should implement maps, text specialists should implement
text indexing and retrieval, and image specialists should
implement the type libraries for images. To give a specific
example, a data time series is a common object type.
Rather than build this object into the database system, it is
recommended that the type be implemented as a class
library with methods to create, update and delete a time
series. Additional methods summarize trends and
interpolate points in a series, and compare, combine and
difference two series. Once this class library is built, it can
be “plugged into” any database system. The database

system will store objects of this type and will manage the data (security, concurrency, recovery, and
indexing) but the datatype will manage the contents and behavior of time-series objects.

People coming from the object-oriented programming community saw the problem clearly: datatype
design requires a good data model and a unification of procedures and data. Indeed, programs
encapsulate the data and provide all the methods to manipulate the data. Researchers, startups, and
established relational database vendors have labored long and hard since 1985 to either replace the
relational model or unify the object-oriented and relational systems. Over a dozen Object-Oriented
database products came to market in the late 1980’s, but customers were slow to accept these systems.
Meanwhile, the traditional vendors tried to extend the SQL language to embrace object oriented concepts,
while preserving the benefits of the relational model.

There is still heated debate on the outcome of this evolution vs. revolution in data models. There is no
debate that database systems must store and retrieve objects that are managed by class libraries. The
debate revolves around the role of SQL, around the details of the object model, and around the core class
libraries that the database system should support.

The rapid evolution of the Internet amplifies these debates. Internet clients and servers are being built
around “applets” and “helpers” that capture, process, and render one data type or another. Users plug
these applets into a browser or server. The common applets manage sound, image, text, video,
spreadsheets, graphs. These applets are each class libraries for their associated types. Desktops and web
browsers are ubiquitous sources and destinations for much of the data. Hence, the types and object models
used on the desktop will drive the server class libraries that database systems must support.

To summarize, databases are being called upon to store more than just numbers and text strings. They are
being used to store the many kinds of objects we see on the World Wide Web, and to store relationships
among them. The distinction between the database and the rest of the web is being blurred. Indeed, each
database vendor is promising a “universal server” that will store and analyze all forms of data (all class
libraries and their objects).

Unifying procedures and data extends the traditional client-server computing model in two interesting
ways: (1) active databases and (2) workflow. Active databases autonomously perform tasks when the

People

Name Address Papers Picture Voice

Mike

Won

David NY

Berk

Austin

People

Name Address

Mike

Won

David NY

Berk

Austin

Figure 3: The transition of traditional
databases storing numbers and characters
into an object-relational database where
each record can contain data with complex
behavior. These behaviors are encapsulated
in the class libraries that support the new
types. In this model, the database system
stores and retrieves the data and provides
relationships among data items, but the
class libraries provide the item behavior.

 9

database changes. The idea is that a user-defined trigger procedure fires when a database condition
becomes true. Using the database procedure language, database designers can define pre-conditions and
triggers procedures. For example, if a re-order trigger has been defined on an inventory database, then the
database will invoke a reorder procedure on an item anytime the item’s inventory falls below the reorder
threshold. Triggers simplify applications by moving logic from the applications to the data. The trigger
mechanism is a powerful way to build active databases that are self-managing.

Workflow generalizes the typical request-response model of computing. A workflow is a script of tasks
that must be executed. For example, a simple purchase agreement consists of a seven step workflow for:
(1) buyer request, (2) bid, (3) agree, (4) ship, (5) invoice, (6) pay. Systems to script, execute and mange
workflows are becoming common.

To close on the current status of data management technology, it makes sense to describe two large data
management projects that stretch the limits of our technology today. The Earth Observation System Data /
Information System (EOS/DIS) is being built by NASA and its contractors to store all the satellite data
that will start arriving from the Mission to Planet Earth satellites in 1997. The database, consisting of
remote sensor data, will grow by 5 terabytes a day (a terabyte is a million megabytes). By 2007, the
database will have grown to 15 petabytes. This is a thousand times larger than the largest online
databases today. NASA wants this database to be available to everyone, everywhere, all the time. Anyone
should be able to search, analyze, and visualize the data in this database. Building EOS/DIS will require
advances in data storage, data management, data search, and data visualization. Most of the data has both
spatial and temporal characteristics, so the system requires substantial advances storing those data types,
as well as class libraries for the various scientific data sets. For example, this application will need a
library to recognize snow cover, vegetation index, clouds, and other physical features in LandSat images.
This class library must easily plug into the EOS/DIS data manager.

The emerging world-wide library gives another challenging database example. Many institutional
libraries are putting their holdings online. New scientific literature is being published online. Online
publishing poses difficult societal issues about copyrights and intellectual property, but it also poses deep
technical challenges. The size and diversity of this information are daunting. The information appears in
many languages, in many data formats, and in huge volumes. Traditional or approaches to organizing
this information (author, subject, title) do not exploit the power of computers to search documents by
content, to link documents, and to cluster similar documents together. Information discovery, finding
relevant information in the sea of text documents, maps, photographs, sounds, and videos, poses an
exciting and challenging problem.

3. Reflections And Predictions

Advances in computer hardware have enabled the evolution of data management from paper-based
manual processing to modern information search engines. This progress in hardware is expected to
continue for many more years.

Data management software has advanced in parallel to these hardware advances. The record and set-
oriented systems gave way to relational systems that are now evolving to object-relational systems. These
innovations give one of the best examples of research prototypes turning into products. The relational
model, parallel database systems, active databases, and object-relational databases all came from the
academic and industrial research labs. The development of database technology has been a textbook case
of successful collaboration between academe and industry.

Inexpensive hardware and easy software have made computers accessible to almost everyone. It is now
easy and inexpensive to create a web server or a database. Millions of people have done it. These users
expect computers to automatically design and manage themselves. These users do not want to be
computer operators. They expect to add new applications with almost no effort: a plug-and-play mentality.
This view extends from simple desktop systems to very high-end servers. Users expect automated
management with intuitive graphical interfaces for all administration, operations, and design tasks. Once

 10

the database is built and operational, users expect simple and powerful tools to browse, search, analyze
and visualize the data. These requirements stretch the limits of what we know how to do today.

Many data management challenges remain, both technical and societal. Large online databases raise
serious societal issues. Electronic data interchange and data mining software makes it relatively easy for a
large organization to track all your financial transactions. By doing that, someone can build a very
detailed profile of your interests, travel, and finances. Is this an invasion of your privacy? Indeed, it is
possible to do this for almost everyone in the developed world. What are the implications of that? What
are the privacy and security rules surrounding online medical records? Who should be allowed to see your
records? How will copyrights work when anyone anywhere can access an electronic copy of a document?
Cyberspace crosses national boundaries. What are the rights and responsibility of people operating in
Cyberspace?

Our grandchildren will probably still be wrestling with these societal issues 50 years hence. The technical
challenges are more tractable. There is broad consensus within the database community on the main
challenges and a research agenda to attach those problems. Every five years, the database community
does a self-assessment that outlines this agenda. The most recent self-assessment, called the Lagunita II
report [8], emphasizes the following challenges:

? ? Defining the data models for new types (e.g., spatial, temporal, image, …) and integrating them
with the traditional database systems.

? ? Scaling databases in size (to petabytes), space (distributed), and diversity (heterogeneous).

? ? Automatically discovering data trends, patterns, and anomalies (data mining, data analysis).

? ? Integrating (combining) data from multiple sources.

? ? Scripting and managing the flow of work (process) and data in human organizations.

? ? Automating database design and administration.

These are challenging problems. Solving them will open up new applications for computers both for
organizations and for individuals. These systems will allow us to access and analyze all information from
anywhere at any time. This easy access to information will transform the way we do science, the way we
manage our businesses, the way we learn, and the way we play. It will both enrich and empower us and
future generations.

Perhaps the most challenging problem is understanding the data. There is little question that most data
will be online – both because it is inexpensive to store the data in computers and because it is convenient
to store it in computers. Organizing these huge data archives so that people can easily find the
information they need is the real challenge we face. Finding patterns, trends, anomalies, and relevant
information from a large database is one of the most exciting new areas of data mangement [7]. Indeed,
my hope is that computers will be able to condense and summarize information for us so that we will be
spared the drudgery searching through irrelevant data for the nuggets we seek. The solution to this will
require contributions from many disciplines.

References

[1] Engines of the Mind: A History of the Computer, J. Shurkin, W.W. Norton & Co. 1984.

[2] “The Programmer as Navigator,” C.W. Bachman, CACM 16.11, Nov. 1973.

[3] “As We May Think,” The Atlantic Monthly, V. Bush, July 1945.

[4] “A Relational Model of Data for Large Shared Databanks,” E. F. Codd, CACM 13.6, June 1970.

[5] An Introduction to Database Systems, 6th edition,C. J. Date, Addison Wesley, 1995

 11

[6] Understanding the New SQL: A Complete Guide, J. Melton, A. R. Simon, Morgan Kaufmann, 1993.

[7] Advances in Data Mining and Knowledge Discovery, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
R. Uthurusamy, MIT Press, Cambridge, MA., 1995

 [8] “Database Research: Achievements and Opportunities Into the 21st Century”, A. Silbershatz, M. J.
Stonebraker, J.D. Ullman, editors. ACM SIGMOD Record 25:1 (March, 1996), pp. 52--63.

