Gradual Union Types
Complete Definition and Proofs

Technical Report TR/DCC-2017-1
University of Chile

June 2017

Matias Toro and Eric Tanter

PLEIAD Laboratory
Computer Science Department (DCC)
University of Chile

Abstract. This report presents the complete definitions and proofs of
GTFL®, a gradual language that combines both gradual unions and
the traditional, totally-unknown type. Gradual union types combine the
benefits of both tagged and untagged unions, with added static flexibil-
ity backed by runtime checks. Compared to a standard gradually-typed
language with only the totally-unknown type 7, the resulting design is
stricter, allowing more blatantly wrong programs to be statically re-
jected. We also present a correct compilation scheme to GTFLE, an
internal language with support to threesomes, a space-efficient represen-
tation for casts.

Table of Contents

2 The Static Language: STFL|........

2
2
3 GTELY: DefIntions] . .« ... oovveeee et 7
3.1 Meaning of Gradual Unions|............... 7

7

9

8.1.1 Step 1: The Classic Interpretation|......................
13.1.2 Step 2: The Classic Set Interpretation|

[3.1.3 Step 3: The Union Interpretation] 9
[3.1.4 Step 4: The Stratified Interpretation].oooovvvnnnn.. 10

] 11

13.2.1 Consistent Predicates and Functions|. 11

8.2.2 Inductive definitions|. 14

[3.2.3 Examples of type derivations|............. 15

[3.3 Dynamic Semantics of GTFL®|. 15

[4 Properties of GTFLY|. 17
[T "Static Gradual Guaranteeoueeraneenennn.. 17

4.2 Type Safety| .. .o 22

[4.3 Dynamic Gradual Guarantee............ 25

[5 Compiling GTFL® to Threesomes|.ooouuee e, 29
5.1 Intermediate language: GTFLE|............................. 29
5.2 Cast Insertionlt 30
6.3 Correctness of the ranslational Semanticslo.ooveno... 33

1 Overview

In this document we present the full definitions and proofs of the static language
STFL, the gradual language GTFL® and the intermediate language GTFLg.
Section [2| presents the full definition and proofs of the static language STFL: the
static semantics, the dynamic semantics and its properties. Section [3| presents
the full definition and proofs of GTFL®: the Galois connections are presented
in Section , the static semantics in Section [3.2] and the dynamic semantics
in Section Section M| presents properties of GTFL® and their proofs: the
static gradual guarantee in Section [I.1] type safety in Section [£:2] and finally the
dynamic gradual guarantee in Section Section [5] presents the full definition
and proofs of the compilation of GTFL® to a threesome calculus. First we present
the intermediate language GTFLE in Section Section presents the cast
insertion rules, and Section presents the full formalization of the correctness
of the translational semantics.

2 The Static Language: STFL

In this section we present the full definition of STFL. Figure [I] presents the
syntax and type system, and Figure [2| presents the dynamic semantics. The rest
of this section present the type safety proof of STFL.

Lemma 1 (Substitution). [f Iz : Ty -t : T and I' b v : T] such that
T =Ty, then I'F [v/z]t : T' such that T =T.

Proof. By induction on the derivation of I,z : Ty F ¢ :T.
Proposition 1 (— is well defined). IfI'Ft:T,t — t then,
't T, where T' =T.

Proof. Case (T+). Then t = by + bs and

Dl DQ
(T+) (T+) I+ ny: T1 (T+) I+ no : TQ T1 = Int TQ = Int
I'Fni+ng:iInt
Then

ny +ng — (’17,1 H+]] TLQ)

But I' - (n1 [+] n2) : Int and the result holds.

fi
T € TYPE, z € VAR, t¢& TERM, I € VAR = TYPE

T:=Bool | Int | T—>T (types)
vai=n | b| (Ax:T.t) (values)
tu=v|xz|tt|t+t|iftthentelset|t::T (terms)
:Tel
Tx)—2 L S T)————— Tn)———
A ey (1) 1% Bool (T e
e :Ti+t:T : =
(T)\) . s L : 1 : 2 (T) FFtT T T1
F,EF()\I.T1.25)‘T1—>T2 FF(t.‘Tl).T1
't :Th 't :Th 'ty : T
I'Ets: Ty Ty = dOm(Tl) Ty = Int T = Int
T T+
(Tapp) TFtr ta : cod(Th) (T+) TFt+ts:Int
(Tif) F}—tliTl T1:BOO| Fl—tziTQ Fl—tgtTg
I' b if t1 then t2 else t3 : equate(T>, T3)
dom : TYPE — TYPE cod : TYPE — TYPE equate : TYPE? — TYPE
dom(Th —» Tz) =T cod(Ty — To) =T> equate(T,T) =T

dom(T') undefined o.w. cod(T) undefined o.w. equate(T1,T>) undefined o.w.

Fig. 1. STFL: Syntax and Type System

Case (Tapp). Then t = (Ax : Th1.t1) v, suppose I' = (Ax : Ti1.t1) : Ty, and
dom(Ty) = T11 and cod(T1) = Th2. Therefore

D
Ix:T1Ht:T
(TH) XA Et T
F"()\(EITll.tl)ZTll — 1o
D,
I'Hv:Ty T =Ti1

T:
(Tapp) T'F(Oa:Tiut)o: T

Then
()\.’1? : T11~t1) v o— [U/m]tl

By Lemmall] I' t- [v/z]t; : T}y, where T{, = Ty, and the result holds.

Case (Tif-true). Then t = if true then t; else t5 and

Do D, Dy
(sif) I true : Bool I'~t: T 'ty Ty
I | if true then ¢; else to : equate(Ty,T5)
Then if

if true then ¢t else to — ¢

vu=n|Ax.t|true|false | v T (values)
fo=04+t|v+0|0¢t|v0O|0: T (frames)
if O then t else t

Notions of Reduction
ny + na — n3g where ng = ny [+] n2
Az.t) v — ([v/z]t)
if true then t; else to — t1

if false then t; else to — to

vl —w
t — t | Reduction
t1 — to t1 — to
ti— 12 flta] — flte]

Fig. 2. STFL: Dynamic Semantics

But
D,

F}_tllTl

and by definition of the equate operator, T = equate(T7,T5) and the result
holds.

Case (Tif-false). Analogous to case (if-true).

Case (T::). Thent=wv :: T and

D
. F"’UZTl T1:T
() 'FoveT:T

Then
vuT — v

But 77 = T and the result holds.

Proposition 2 (Canonical forms). Consider a value v such that -+ v : T.
Then:

1. If T = Bool then v =5 for some b.
2. If T = Int then v =mn for some n.
3. If T =T, — T then v = Az : T1.ta) for some ts.

Proof. By inspection of the type derivation rules.

Lemma 2. Consider frame f, and term t1, such as I' = t; : Ty and I' + f[t1] :
T. Consider term ty, such that I' =t} : T{ and T{ = T1. Then I' & f[t}] : T’
such that T' =T.

Proof. By induction on the derivation of f[t1].
Case (Ot). Then f =0Oty, f[t1] = t1 t2 and

I+ f,l : Tl Ik t2 : T2 T2 = dom(Tl)
'+ tl tQ . COd(Tl)

(Tapp)
then f[t}] = t} t2. But as 7] = T3 then cod(Ty) = cod(T1) and dom(Ty) =
dom(TY). Therefore

Ik tl : Tl/ Ik t2 : TQ T2 = dom(Tl')
't to: cod(TY)

(Tapp)

and the result holds.

Case (v 0,0+ t,v 4+ O,if O then ¢ else t). Analogous to (O t)

Proposition 3 (— is well defined). IfI'¢: T, t——t' then, 't : T,
where T' =T

Proof. By induction on the structure of a derivation of t — ¢'.

Case (—>). Then t —» t'. By well-definedeness of — (Prop [I),
I'Ht : T’ where T" = T, and the result holds immediately.

Case (f0O). Then t = f[t1], '+t : Ty and t; —> t2. By induction hypothesis
I' -ty : Ty where Ty = T;. By Lemma 't f[ts] : T" such that T/ = T, and
the result holds immediatly.

Proposition 4 (Safety). If 't :T , then one of the following is true:

— t is a value v;
—t—t,and "'+t : T whereT' =T,

Proof. By induction on the structure of .
Case (Tb, Tn, TA, Tl). t is a value.
Case (T+). Then t =t; + t2 and

F"tllTl Fl_t2:T2 lelnt nglnt
I'Ht;+1t3:Int

(T+)

By induction hypotheses, one of the following holds:

1. t; is a value. Then by induction on ¢y one of the following holds:

(a) t2 is a value. Then by Canonical Forms (Lemma [2))

t — t
R—=)—"——
t—t

and by Prop(l} '+t : T’, where T" = T, and therefore the result holds.
(b) ta — t5. Then by induction hypothesis, I" & t5 : Ty, where T4 = Tb.
Then by (Tf), using f = v+ 0, t —> t; +t5 and by Lemma I
t1 4+t : Int and the result holds.
2. t; — t}. Then by induction hypotheses, I - ¢} : Int. Then by (Tf), using

f=0+ty, t —> t] +t3 and by Lemma I' Bt} + t3 : Int and the result
holds.

Case (Sapp). Then t =ty ty, T = T2 and

I+ tl : T1 I+ t2 : TQ T2 = dom(Tl)
I+ tl fg : COd(Tl)

(Tapp)

By induction hypotheses, one of the following holds:

1. t; is a value. Then by Canonical Forms (Lemma [2]), and induction on 5 one
of the following holds:
(a) t2 is a value. Then by Canonical Forms (Lemma [2))

i
(Rﬁ)#
t—t

and by Prop([l| "=t : T', where T" = T , and therefore the result holds.
(b) to — t5. Then by induction hypothesis, I" & to : T3, where Ty = Tb.
Then by (Tf), using f = v O, t — ¢; t} and by Lemmal[2] I' - ¢1 t} : T},
where T, = cod(T}) and the result holds.
2. t; > t}. Then by induction hypotheses, I'"" + t; : T{; — Ti, where
T, — T{5 = T1, . Then by (Tf), using f = O t2, t — t} t2 and by
Lemma [2} I' bt} ¢ : Ty where T}, = cod(T}) and the result holds.

Case (Tif). Then t = if t1 then t, else t3 and

I'tt1:Ty Ty =Bool I'kFity:Ty I'kHiz:Ty

(Tif) :
I+ if ¢ then ts else t3 : equate(Ts, T3)

By induction hypotheses, one of the following holds:

1. t; is a value. Then by Canonical Forms (Lemma [2))

(R—>)7t — f/
t—>t
and by Prop|l} I"+ ¢ : T’, where T = T , and therefore the result holds.
2. t; — t}. Then by induction hypothesis, I' + ¢} : T], where T} = T;.
Therefore T} = Bool. Then by (Tf), using f = if Othentelset, t —
if] then t else t3 and by Lemma [2| I' I if ¢ thenty else t3 : T’ where
T’ = equate(Ty,T3) and the result holds.

Case (T::). Then t =ty :: To and

F"tliTl T1:T2

(T::) Ik tl o Tg : T2

By induction hypotheses, one of the following holds:
1. t; is a value. Then

t — t

R—
(R=) t—t

and by Prop (1}, I"+ ¢ : T, where T" = T , and therefore the result holds.

2. t1 — t}. Then by induction hypothesis, I' I ¢} : T}, where T} = T;. Then
by (Tf), using f =0T, t —>] :: To, but I'F ¢} :: Ty : Ty and the result
holds.

3 GTFL®: Definitions

Section presents the Galois connections along its soundness and optimalit
proofs. Section presents the static semantics of GTFL®. Finally, Section
presents the dynamic semantics of GTFL®.

3.1 Meaning of Gradual Unions

This section presents the different steps taken to derive the Galois connection.
Section [3.1.1] presents the classic interpretation which interprets the unknown
type 7. Section presents the powerset lifting of the classic interpretation.
Section presents the union interpretation which add support for gradual
unions among gradual types that include the unknown type. Finally in Sec-
tion [3.1.4] we combine the classic set interpretation and the union interpretation,
named the stratified interpretation.

3.1.1 Step 1: The Classic Interpretation We start by presenting the Ga-
lois connection for gradual types made up with the (nullary constructor) ?, here
denoted GTYPE.

G € GTYPE

G:= 17?7 | Bool | Int | G—G

The meaning of these gradual types is standard, and defined through con-
cretization by Garcia et al. [2] as follows:

Definition 1 (GType Concretization). v, : GTYPE — P(TYPE)
v (Int) = {Int} 72 (Bool) = { Bool } 72(?) = TYPE

¥2(G1 = G2) ={T1 - T2 | T1 € 72(G1) ANT2 € 72(G2) }

Definition 2 (GType Precision). G1 is less imprecise than Gz, notation G1 E Ga,
if and only if v2(G1) C 12(G2).

Definition 3 (GType Abstraction). a7 : P(TYPE) — GTYPE

—~

a({TH=T ar(Ty = Ts) = ar(Th) — aa(Th) oz (0) = undefined

a7(f) = 7? otherwise

Proposition 5 (a7 is Sound and Optimal). [ff is not empty, then
(a) T C yr(aa(T)). (b) T € 7(G) = ar(T) £ C.
Proof. We proceed by induction on the structure of U. Let us start by proving
a).
Case ({Int}). Then a7({Int}) = Int. But 42(Int) = {Int} and the result holds.

Case ({Bool }). Analogous to case {Int}.

Case (T1 = Tg) Then on(f f) = on(fl) — Oé?(fg) But by definition of
Yo, v2(ar(Th) = ar(T)) = v2(ar(Th)) = ’Y?(@?(Tg)) By induction hypotheses,
T\ C y(as(Th)) and To € y2(ar(Th)), therefore T, = Ts C va(ar(TL) = an(Ta)
and the result holds.

Case (1)). This case cannot happen because a- is restricted to non-empty sets
of gradual intermediate types.

Case (T'). Then az(T) = ? and threfore y7(a7(T)) = TYPE, but T C TYPE and
the result holds.

Now let us prove b).

Case (Int). Trivial because y7(Int) = {Int}, and ag({Int}) = Int.
Case (Bool). Analogous to case Int.

Case (Gi — G3). We have to prove that Wy(ay(f)) C 7(Gy — Gs). But
we know that T C 77(Gr = G2) = 72 (G1)=72(Gs), therefore T has the
form {T;; — T;2 }, for some {T;;} C 172(G1) and {T;2} C 772(G2). But by
definition of a7, a;({Ti1 = Ti2}) = av({Ti1}) — a2({Ti2}) and therefore
(@r({ T) = ar({ Tz) = ler({Tix 1)) mar({ Tz }). But by induction
hypotheses v2(a2({ Ti1 })) € 72(G1) and y2(az({Ti2 })) € 72(G2) and the result
holds.

Case (7). Then we have to prove that v;(az(T)) C ~7(?) = TYPE, but this is
always true and the result holds immediately.

3.1.2 Step 2: The Classic Set Interpretation The powerset lifting of -y,
denoted A7, is simply the piecewise application of ~;:

Definition 4 (Ps.(GType) Concretization). 77 : Pgn(GTYPE) — Pgn(P(TYPE))
T(@) = {7(@)| G b}

Similarly, the powerset lifting of the abstraction function «», denoted as, is
the union of the piecewise application of az:

Definition 5 (P, (GType) Abstraction). a3 : P, (P(TYPE)) — P (GTYPE)

az2(0) = undefined (/1\7(%) = U oa(f)

o~

~ =
TeT

Proposition 6 (a; is Sound and Optimal). If?is not empty, then

— —_
- -

a) T C (@ (1)), b TCH(G) = @) C G

Proof. We start proving a). By definition of a3, a3 (T) = U a7(T). And by

TeT

—_

—_
— —~

definition of 73, 73(a7(T)) = {v2(a2(T)) | T € 7 }. We have to prove that VI €
?’,Hf’ € *%(077(1:“)) such that 7' C 7. But we now that a; is sound therefore
VT € 1:“, T C (a?(f)), and the result holds immediately.

Now we prove b). We know that VT € 1::\, T e f(@) such that T C T". We

have to prove that 77(a7(T)) C 7(G). But 2(@(T)) = {72(ez(T)) | T €T }.
But as a7 is optimal, ¥ non empty T, if T C G then v7(a2(T)) C v72(G). Then

we know that VT € T, y7(az(T)) C T, but T’ € 42(G) and the result holds.

3.1.3 Step 3: The Union Interpretation Now that we have defined the
meaning of gradual types formed with the unknown type 7, as well as the meaning
of gradual types formed with gradual unions &, we turn to defining the meaning
of gradual types in GTFL®, which combine both constructors, denoted UTYPE:

U e UTyPE
Uz=7 | U®U | Bool | Int | U—U (gradual types)

We define a Galois connection between UTYPE and Pp, (GTYPE) as follows:

Definition 6 (UType Concretization). vg : UTYPE — Pf, (GTYPE)
Yo(Int) = {Int} Y (Bool) = { Bool } Yo(?) ={7}
Yo(Ur = U2) ={Th = T2 | T1 € vo(Ur) NT> € v5(U2) }

Yo (U1 @ Uz) = v¢(Ur) U g (U2)

Definition 7 (UType Abstraction). ag : Pmn(GTYPE) — UTYPE

as(G)=aG ifG#0

Proposition 7 (ag is Sound and Optimal). If@ s not empty, then
a) G Cye(as(Q)). b) G Cyve(U) = ag(G) CU.

Proof. We proceed by induction on the structure of U. Let us start by proving
a).
Case ({Int}). Then ag({Int}) = Int. But vg(Int) = {Int } and the result holds.

Case ({Bool }). Analogous to case {Int }.
Case ({7}). Analogous to case {Int}.

Case (). This case cannot happen because ag is restricted to non-empty sets
of gradual intermediate types.

Case (T1 U Tg) Then ag, (T1 U Tg) = a@(Tl) O ag (Tg) But by definition of g,
7@(a@(Tl) &) a@(TQ)) = 7@(04@(T1)) U 7@(a@(Tg)) By induction hypothebes
T1 C vg(ag (Tl)) and T2 Cve (Oé@(TQ)) therefore T1 UT2 C e (ag (Tl)@a@ (Tg))
and the result holds.

Now let us prove b).

Case (Int). Trivial because yg(Int) = {Int}, and ag({Int}) = Int.
Case (Bool). Analogous to case Int.

Case (7). Analogous to case 7.

—

Case (Uy — Usz). We have to prove that vyg(ag(G)) C v¢(U; — Us). But
Yo (0 (G)) = v¢(®G) = G and the result follows.

Case (U; ® Us). Then vg (U ® Usz) = vg(U1) Uve(U2) and G = G1 U G4 for
some G and G such that G C v4(U1) and Go C g (Us). By definition of ag,
ag(G) = ag(G1) U ag(Gs2). By induction hypotheses, vg(ag(G1)) € v4(Ur)
and 7 (ae(G2)) € 76 (Uz), therefore as vg(G) = 7o (ae(G1)) U ve (e (G2)),
then 74 (G) € o (U1) Uvg(Uz) = 7¢(U) and the result holds.

3.1.4 Step 4: The Stratified Interpretation We can now compose the two
Galois connections in order to define a stratified interpretation for UTYPE in
terms of sets of sets of static types.

Definition 8 (Concretization). v: UTYPE — Pg, (P(TYPE)), v =77 0y

Definition 9 (Abstraction). « : Pg,(P(TYPE)) — UTYPE, a = ag o az

UeUTYPE, z€ VAR, € UTERM,I € VAR 22 UTyPE
U:=U®U|Int|Bool |U—U (types)

vi=mn|true | false | (A\z: U.t) (values)
tu=wv|z|tt|t+t]iftthentelset|t:: U (terms)

z:Uel

U= o (Ub) 3 Bool U)o
Tao:U Ft:U. 7 ~
(UN) , L 1~ 2 U:) '+t 5] U~U
F"(}\.’EZUl.t)IUlﬁUQ F}_(tilUl)iUl
_ IFha:Un U THi:Us
'ty : U Us ~ dom (U ~ ~
(Uapp) 2 iN 2/\/ (Th) U+) U, Int~ ~U2 Int
'+t tz:cod(Ul) 'ty +t2:Int
(i) I'tt:Uy Ui ~Bool TI'bity:Uy This:Us
T if t; then t2 else £5 : Us M Us
% : UTyPE — UTYPE 268 : UTyrPE — UTYPE

dom(U) = a(dom(7(V))) cod(U) = a(cod(v(U)))

Fig.3. GTFL®: Syntax and Type System

Because the composition of two Galois connection is a Galois connection, the
stratified interpretation (v, «) is a Galois connection.

Proposition 8 (a is Sound and Optimal). [f?is not empty, then

—_ —_ —_
- _ —_

a) T C y(a(T)). b) T C(U) = o(T) C U,

Proof. By propositions [7] and [6] and composition of sound and optimal abstrac-
tions.

3.2 Static Semantics of GTFL®

This section presents the full static semantics of GTFL® in Figure Sec-
tion[3.2.1] formally justifies the compositional lifting of predicates and functions.
Section presents the inductive definitions. Finally, Section [3.2.3| presents
some type derivations examples.

3.2.1 Consistent Predicates and Functions We can base our liftings of
predicates and types on inclusion and pointwise application that are extended
to sets of sets.

Definition 10 (Predicate Lifting). P(U1,Us) <= 3Ty € v(U1), Ts € y(Us), P(T1, Ts)
where € s the existential lifting of € to powersets: T € T < IT¢ ?,T eT

Equivalently: ﬁ(Uh U2) < 3?1 S ’}/(Ul), 3?2 € 7(U2)7 3T1 S fl, EITQ € fg, P(T17T2)
The lifting of a predicate can also be defined in terms of each of the composed
interpretations:
The lifting of a type function f uses the pointwigg application of f to all

elements of each subset of a powerset, which we note f.
Definition 11 (Function Lifting). f=ao }\o v

Definition 12 (Consistency). U ~ Us if and only if T € ~(Uy), 3Ty € ﬁ,ﬂfg €
'Y(UQ),EITQ e Tz,T1 =1T5.

Proposition 9. ﬁ(Ul,UQ) <~ dG; € ’Y@(U1)73G2 € ’Y@(U2)7ﬁ7(G1,G2)
where P is the predicate P lifted with .

Proof. By definition of lifting predicates, P(Uy, Us) = I e ~(Uh),3Ty €
Ty, 3Ty € (Uy), 3T € Ty . P(Ty, Ty).

If we unfold P;(Gy, Gs), then 3G, € g (U), 3G3 € 7o (Us), P2(G1, Go) <
G, € ’7@([]1)7 G, € ’7@(U2), a7 € ’77((;1)7 a7 € ’Y?(GQ).P(TlL\T2>.

We start with direction =. As v = 47074, then v(U1) = 77(G1) and y(Uz) =
;}/-;(62) As Ty € ’73(51) then T} = v7(G}) for some G} € Gi, and also T €
@(62) then T = ~v2(G%) for some G, € G>. Then we can always choose G, = G
and G = G4 and the result holds.

Then we prove direction <. As G1 € 74 (Uy) and T1 € 72(G1), then its easy
to see that Ty € (77 07vg)(U1) as we know that G € v (Uy) and (3 0vg)(U1) =

~v2(G). Analogous Ty € (77 0 v)(Uz), but v = 47 0 yg and the result
Gevg (Ur)
holds.

Proposition 10. Uy ~ Uz <= 3G1 € vg(U1),3G2 € v(U2), G1 ~2 G2 where ~7 is
the classic consistency operator defined in [2].
Proof. Direct by proposition [0]

When a function f receives more than one argument, then the lifting is the
pointwise application of f to every combinations of elements of each set of each
powerset. Formally:

Definition 13 (Lifting of type functions). Let f : TYPE"™ — TYPE, then f:
UTYPE" — UTYPE is defined as:

FUL, ... U2) = a U U U U f(T1, .., T2))

Gievg (Ur) Gn€vg(Un) T1€72(G1) Tn€v2(Gn)

FUL, ... Uz) = a({{ f(T1, ... Tn) | Tt € 72(G1), e Tn € 72(Gin) } |
Gi1 € vo(Uh),...,Gn € ’Y@(Un)})

Note that we can also define the lifting of a function using its intermediate
lifting:

Proposition 11. Let f : UTYPE" — UTYPE and f; : UTYPE" — UTYPE then,

fU,...,Us) <~

a0 fr0 9 (U, s Un) = 0l ({ f2(G1, e, Gn) | G1 € 4@ (Un), ooe, G € 70 (Un) })
where E is the pointwise application of f?, and fv is the lifting of f in the
intermediate abstraction.

Proof. For simplicity, we will prove it for a function that receives one argument,
the general case is analogous.

FU) = a0 Fory(U)

ag 0@ o f oy 0 e (U)

—agomofon({G|Gere(U)})

agomo f{{T|T €y (G)}|Gers(U)})
ago@m({ f(T) | T €7(G)} | G €1a(U)})
as({ar({ f(T) | T € 2(G)}) | G € 18(U)})
=ae({f(G) | G €Yo (U)})

—

— s 0 fr078(U)

Proposition 12. Let F': TYPE — TYPE be a partial function, and define the
predicate P(Ty,To) =Ty = F(T). Then P(Uy,Us) implies Uy ~ F(Us).

Proof. Suppose F(Ul, Us). Then Ty = F(T3) for some
T, € j:l, fl S ’}iUl) and Ty € fg,fz S ’}/(UQ) Therefore F(TQ) € fp,fp € ﬁ(’}/(Ug))

—~

F(y(Us)) C y(a(F(v(U2))). But F(Uz) = a(F((Us))), so

—

and by Prop

F(Ty) € T, Tr € v((F(7(U2)))) = y(F(Us)). Then by definition of consis-
tency, we can choose (11, F(T3)) € (Th,Tr), (11,Tr), € v(Uy, F(Us)) such that

T, = F(T3), therefore Uy ~ F(Us).

Proposition 13. Let P(Ty,T5) = T1 = dom(Ty). Then
Uy ~ dom(Us) implies P(Uy, Us).

Proof. Suppose Uy ~ (?o\r/n(Uz). Then exists 177 € ﬁ,ﬁ € v(Uy) and Ty €
Ty, Ty € v(dom(Us3)) such that Ty = T, which implies that 3T} € T4, T4 €
~v(G2), such that To = dom(Ty), which is by definition P(Uy, Us).

Proposition 14. Let P(T1,T3) = T1 = dom(Ts). Then Uy ~ M(Ug) if and
only if P(Uy,Us).

Proof. Direct consequence of Prop. [12] and

3.2.2 Inductive definitions This section presents inductive definitions of
some of the metafunctions presented in the paper.
Proposition 15.

U~U U~ U; U ~U Uy ~U
U~UL & U, U~U &U; UieUs ~U UireUs ~U

Usi ~Ui1r Uiz ~ Us2
U~U 7~U U~? Uir = Uiz ~ Uy = Ua2

Proof. Straightforward from the definition of consistency.
Definition 14 (Gradual Meet). Let M : UTYPE — UTYPE be defined as:
1. Unu=0U0

2.MU=0UnN?=U
unu; if UNUsy is undefined
3. UN(U1@Us) = (Uh@Us) MU =< U N U,y if UNU; is undefined.
(UnNnuU) e (UnNUs) otherwise
4. (Uin = Ur2) M (Ua1 = Usz) = (U1 NUz1) = (Ui MUs2)
5. Uy MUs is undefined otherwise.

Definition 15 (Equate lifting).

W(UhUz) =U,MNU; = 04({’1,:1 ﬂfg | ’1/:1 € ’Y(U1),f2 € ’y(UQ)}) =
ae ({equate,(G1,G2) | G1 € v8(Ur), G2 € va(U2)})

where EW‘WH is the lifting of the equate function in the intermediate ab-
straction (defined in [2]).

—
s

Proposition 16. M = aoequate o
Proof. Direct using induction and the definition of meet as intersection of sets

of sets.

Proposition 17.
U EU; U, EU,

UEU 7EU U]__>UQEU3_>U4
Ui C Uy U, C Us U, CUs Uy C Us
UlEU2@U3 Ul@UQEUg Ul@UQEU3

Proof. Direct using induction and the definition of the concretization function.

z:IntF 2z :Int @ Bool z:IntH1:Int Int © Bool ~ Int Int ~ Int
z:Intk(x+1):Int
- (Az :Int.(x + 1)) : (Int ® Bool) — Int

z:IntFxz:Int®Bool z:Intk1:lInt

Int @ Bool ~ Int Int ~ Int
z:ntk (z41):Int
-+ (Az s Int.(z + 1)) : (Int ® Bool) — Int -F1:Int Int ~ Int @ Bool

((Az s Int.(z + 1))1) : Int

z:IntkFz:Int®Bool z:Intk1:Int

Int ® Bool ~ Int Int ~ Int
z:Intk (z4+1):Int
-F (Az i Int.(z + 1)) : (Int & Bool) — Int - = true : Bool Bool ~ Int @ Bool

((Az : Int.(z + 1))true) : Int

z:BoolF1:Int Int~ Int® Bool x : Bool I false : Bool Bool ~ Int & Bool
(z : Bool 1 :: Int @ Bool) : Int & Bool (z : Bool |- false :: Int @ Bool) : Int & Bool
x : Bool - z : Bool Bool ~ Bool Int @ Bool ~ Int ¢ Bool Int @ Bool ~ Int & Bool

x : Bool = (if then (1 :: Int & Bool) else (false :: Int © Bool)) : Int & Bool

-+ (Az : Bool.(if z then (1 :: Int @ Bool) else (false :: Int & Bool))) : Bool — (Int & Bool)

Fig. 4. Examples of intrinsic type derivations

3.2.3 Examples of type derivations In this section we present some type
derivations examples in Figure

3.3 Dynamic Semantics of GTFL®

One of the salient features of the AGT methodology is that it provides a di-
rect dynamic semantics for gradual programs [2], instead of the typical trans-
lational semantics through an intermediate cast calculus [5]. The key idea is to
apply proof reduction on gradual typing derivations [3]; by the Curry-Howard
correspondence, this gives a notion of relation for gradual terms. We call such
semantics the reference semantics.

The main insight of AGT is that gradual typing derivations need to be aug-
mented with evidence to support consistent judgments. Evidence reflects the
justification of why a given consistent judgment holds. Therefore, the dynamic

semantics mirrors the type preservation argument of the static language, combin-
ing evidences at each reduction step in order to determine whether the program
can reduce or should halt with a runtime error.

A consistency judgment U; ~ U, is supported by an evidence € that denotes
the most precise knowledge about U; and U, gained by knowing that they are
related by consistency. It is written ¢ = Uy ~ Us. In the case of consistency,
which is symmetric (as opposed to, say, consistent subtyping), evidence boils
down to a single gradual type , i.e. ¢ € UTYPE, which is precisely the least
upper bound of both types, i.e. U; MU [2]. For instance, Int - Int @ Bool ~ Int.

Consider the simple program: (Az : Int @ Bool.z + 1) true. It is a well-typed
gradual program, and its typing derivation includes two consistent judgments:
Bool ~ Int & Bool to accept passing true as argument, and Int @& Bool ~ Int to
accept using z in the addition. When simplifying the typing derivation itself
(replacing the use of the x hypothesis with the typing derivation of the argu-
ment) it becomes necessary to combine the two consistent judgments in order
to justify the reduction. In general, in the safety proof of the static language,
this corresponds to a use of the fact that type equality is transitive. Here, tran-
sitivity demands that the respective evidences for the consistent judgments can
be combined. In the example, Int and Bool cannot be combined (their meet is
undefined), therefore the program halts with error.

To formalize this approach while avoiding writing down reduction rules on
actual (bi-dimensional) derivation trees, Garcia et al. adopt intrinsic terms [I,
which are a flat notation that is isomorphic to typing derivations. Specifically,
the typing derivation for the judgment I" ¢ : U is represented by an intrinsic
term ¢ € TERMy. (The reversed hat on f is meant to suggest the derivation tree.)

To illustrate how intrinsic terms are formed, consider addition and ascription:

Lzl S rI‘ERl\/[U1 e1FU; ~ Int fg € r:[‘ERl\/IU2 eoa F Uy ~ Int
512?1 + 82%2 € TERM|nt

te TeErmMy ebFU~U’
et : U' € TERMy-

The rules describe how a derivation tree for a compound expression is formed
from the sub-derivations of the subterms together with the evidences that sup-
port the consistency judgments. Note how the involved evidences show up in the
term representation. The syntax of intrinsic terms follows the same pattern as
that illustrated with addition and ascription. Also, intrinsic values ¥ can either
be simple values @ or ascribed values e :: U. With this notational device, the
reduction rules on derivation trees can be written as reduction rules on intrinsic
terms, possibly failing with an error when combining evidences, for instance:

e1(eqv = U) —, (207 61)1}. _)
error if (g9 0= £1) is not defined

(1Ux) 1UDb) (IUn)

z¥ € TERMy bB°' ¢ TERMBool n'™ € TERM)nt

tY' € TeRMy, ebFUL~U
etV' :: U € TERMy

tY2 € TERMy,

10X
v (AzY1.tY2) € TERMY, U,y

(1U::)

tV' ¢ TERMy, e bUi~Upn — Uiz t92 € TERMy, &2k Us ~ Uns

(IUapp
) (e1tY1) @117 012 (,4V2) € TERMy,,
(1) tY1 € TERMy, e b Ui ~Int tY2 € TERMy, eaF Us ~ Int
51tU1 + €2tU2 € TERMnt
tY' € TERMy, €1 - Uy ~ Bool U= (UzNUs)
(i) t"2 € TeRMy, ek Us~U tY3 € TERMy, e3-Us~U
1

if £1tV1 then e2tY2 else e5tV3 € TERMy

Fig. 5. Gradual Intrinsic Terms for GTFL®

The definition of consistent transitivity for a type predicate P, o, is given by
the abstract interpretation framework [2]; in particular, for type equality, o=
corresponds to the meet of gradual types .

Notice that for convenience, from this point forward we use the notation
tV € TERMy to refer to an intrinsic term £ € TERMy, u to refer to an 4, v to
refer to an ¥, and finally we sometimes omit the type notation in tV when the
type is not important in that context. Figure 5| presents the gradual intrinsic
terms of GTFL®. Figures |§| and |7] present some intrinsic type derivations of the
examples presented in Section 3:2.3] Figure 8| presents the syntax and notions of
reductions. Figure |§| presents the intrinsic reduction of GTFL®.

4 Properties of GTFL®

This section presents the proof of the static gradual guarantee in Section
Section presents the proof of type safety. Finally, Section [4.3| presents the
proof of the dynamic gradual guarantee.

4.1 Static Gradual Guarantee

Proposition 18 (Equivalence for fully-annotated terms).
For anyt € TERM, . Fst:T if and only if .F¢:T

Proof. By induction over the typing derivations. The proof is trivial because
static types are given singleton meanings via concretization.

2z € TERMintgBool 1 € TERMnt (Int) F Int ® Bool ~ Int (Int) I Int ~ Int
({Int)z + (Int)1) € TERMint
(Aaz((lnt)x + <Int>1)) S TERI\&(Int@)BooI)—)Int

T € TERMntgBool 1 € TERMnt
(Int) - Int @ Bool ~ Int (Int) I Int ~ Int

((Int)z + (Int)1) € TERMnt

(Am((lnt):c + (Int)l)) S TERM(IntGBBooI)—)Int 1 € TERMnt
((Int ® Bool) — Int) (Int @ Bool) — Int ~ (Int ® Bool) — Int (Int) I Int ~ Int & Bool

(((Int & Bool) — Int)(Az.({Int)z + (Int)1))@UEBD=It (104) 1) € TERM;p

T € TERMnt@Bool 1 € TERMnt
(Int) - Int ® Bool ~ Int (Int) I Int ~ Int

({Int)z 4 (Int)1) € TERMn;

(Az.((Int)z + (Int)1)) € TERM(intgBool)—Int true € TERMBool
((Int @ Bool) — Int) - (Int & Bool) — Int ~ (Int @ Bool) — Int
(Bool) = Bool ~ Int & Bool

(((Int ® Bool) — Int)(Az.({Int)z + (Int)1))@(nt&BeD=Int (Boo|\trye) € TERMn:

Fig. 6. Examples of intrinsic type derivations (part 1)

Definition 16 (Term precision).

(Pr) =7 (PY) =g (Pr)—

tcy U, CU Lot LTt

(PA) T —= (Pr)— =
()\x.Ul.t)E()\x.Ul.t) t1 +12 T 2] 4+ 15

Lot HCt iCi LCt Ct
(Papp)———2——=—=— (Pif) — ==

if then £, else 7o C if ¢ then tz else ig

A=A

tCy uUcCu
t.UCY U

(P::)

Definition 17 (Type environment precision).

rcr uvcu
.C. Iz:UCIT,z:U

Lemma 3. If'+t:U and T T I, then I" bt : U’ for some U C U’.
Proof. Simple induction on typing derivations.

Lemma 4. IfU; ~ Uy and Uy T Uy and Uy C U} then Uy ~ Uj,.

1 € TERMnt (Int) F Int ~ Int @ Bool false € TERMBoo (Bool) F Bool ~ Int & Bool

((Int)1 :: Int ® Bool) € TERMint@Bool ((Bool)false :: Int @ Bool) € TERMintgBool
2 € TERMBoo (Bool) F Bool ~ Bool
(Int & Bool) I Int & Bool ~ Int & Bool (Int & Bool) - Int & Bool ~ Int @ Bool

if (Bool)x then (Int @ Bool)({Int)1 :: Int & Bool)
else (Int & Bool)((Bool)false :: Int @ Bool)) € TERMjntg:Bool

(Az.if (Bool)zx then (Int @ Bool)({Int)1 :: Int & Bool)
else (Int @ Bool)((Bool)false :: Int @ Bool)) € TERMgooi— (Int@Bool)

Fig. 7. Examples of intrinsic type derivations (part 2)

Proof. By definition of ~, there exists (T, T) € (T, To) € v2(Uy, Us) such that
T, =To. Uy C U{ and Uy C U} mean that v(U;) C v(U;) and ~v(Usz) C ~v(UY),
therefore (Ty,T») € (Th,T2) € v*(U;,US).

Proposition 19 (Static gradual guarantee). If. t1: Uy and t1 C ta, then
. Fte : Usa, for some Uz such that Uy C Us.

Proof. We prove the property on opens terms instead of closed terms: If I" - th:
U1 and tl E tQ then I' t2 : U2 and U1 E U2.
The proof proceed by induction on the typing derivation.

Case (Uz, Ub). Trivial by definition of C using (Pz), (Pb) respectively.
Case (UX). Then t; = (\z : Uy.t) and U; = U] — Uj. By (U)) we know that:
Da:Ul-t:U

N AL - 1)
I't(z:Ut): U = U,

Consigler t~2 such that ?1 C t~2. By definition of term precision t~2 must have the
form ty = (Az : Uy.t')" and therefore

tcy v cul
Az : U8 C (\z: UJt)

(UX) (2)
Using induction hypotheses on the premise of Iz:Ujk t Uj with Uj C U .
By Lemma Ix: U Bt U) where Uy C UY'. Then we can use rule (U\)
to derive:

La:Ul o Uy
Itz UL U — Uy

(UA)

Where Uy C UJ. Using the premise of [2[and the definition of type precision we
can infer that
Uy —-u,cuy - U

and the result holds.

€ € EVIDENCE, et € EVTERM, ev € EVVALUE, t & TERM,,
v € VALUE, wu € SIMPLEVALUE, g € EVFRAME, [€ TMFRAME

et = ¢t

ev = eu

un=x|n|b| Azt

vi=u|eunU
gu=0+et|ev+0|0Q% et | ev @V O |0 :: U | if Othen et else et
fu=glel]

Notions of Reduction

—: TERMy X (TERMy U { error })
—¢: EVTERM x (EVTERM U { error })

€1ni1 + e2ne —> ng where ng = ny [+] na

icod(e1)([(e2 0= idom(e1))u :: Un1)/zV11]t) = U

sl(AazU“.t) QU2 gy —)
error if not defined

eatV2 : Us MU b= true

if £1b then e2tV? else e3tVs — U
g3t 3 U MU3 = false

e1(eqv 2 U) —¢ (e20 51)1).
error if not defined

Fig. 8. Syntax and notions of Reduction

Case (U+). Then t; = E+% and Uy = Int. By (U+) we know that:

FF’li:Ul FF?QZUQ U1~|nt Ugf\flnt

— (3)
FFt1+t2:|nt

(T+)

Consigler E:ZV such that t~1 C ?2. By definition of term precision t~2 must have the
form t3 = ¢, +¢”, and therefore
0o 0=
=" e (4)
B+t L+,

Using induction hypotheses on the premises of |3} I" - tN’l’ ;U] and I' + Zg : U3,
where U; C U] and U, C Uj. By Lemma 4] U{ ~ Int and U} ~ Int. Therefore we
can use rule (U+) to derive:

et U Thty:U, Ul~Int U~ lnt
It 41, Int

(T+)

and the result holds.

‘ —: TERMy X (TERMy U { error }) ‘ Reduction

tY —r 7€ (TERMy U {error}) et —s. et’
(R—>) U (Rg) /
t —r glet] — glet’]
et —. error tV Y tV s error
(Rgerr) (1] —s error (Rf) Ul 2 = (Rferr) 1U
g flitr] — flt2] f[t{] — error

Fig. 9. Intrinsic Reduction

Case (Uapp). Then t; = E Z’; and U; = Uje. By (Uapp) we know that:

Uam) THe .U, Trt: U, U~ dom(U}))
It cod(U))

ConsiAqer t~2~ such that t C 1o By definition of term precision > must have the
form ¢ = ¢, t”, and therefore

gt Tt
(Papp) —————2 — 2 (6)
Tt ¢y

Using induction hypotheses on the premises of I+ ﬁ {"and I' ﬁ Uy,
where U] C Uy and U2 Uy . By definition precision (Def ' and the deﬁmtlon

of dom, c/i—o\n/@(Ul) C dom(U1) and, therefore by Lemma ~ dom(U{’) Also,

by the previous argument cod (U)) C cod(U) Then we can use rule (Uapp) to
derive:

LUy THtg:U) UY~ dom(UY)
T4 cod(UY)

(Uapp)

and the result holds.

Case (Uif). Then t; = if E then ;fg else g and Uy = (UjNUS). By (Uif) we know
that:

-t .U Tvt,:U, Tt :U,
(Ulf) 1 i ~2 A2/ 3 3 (7)
I' - if t) then ¢} else ¢4 : (U5 N U3)

Consider 5 Such that th C tg By definition of term precision to must have the
form t5 = if t” then t” else t” and therefore
fCt et Tt
(Pif) _h=h bt helh _ (8)
if ¢} then t} else t; T if t{ then t] else tf

Then we can use induction hypotheses on the premises of [7] and derive:

FE& U TH:U) THt):UY

(Uif) S St
I' - if t} then t§ else t§ : (Uy NUY)

Where U] C Uy and Uj C UY. Using the definition of type precision (Def. |2) we
can infer that
(U1 NU;) T (U7 NUy)

and the result holds.
Case (U::). Then t; =t :: U;. By (U::) we know that:

rt:U, U ~U
Iet=U Uy

(9)

Consider t~2 such that t~1 C t~2. By definition of term precision t~2 must have the
form to = t' :: Uy and therefore

tCt C
(P:2) t~_t U;} C Uz (10)
tULCt :Us

Using induction hypotheses on the premises of@ '+t : Uy where Uj C Uj. We
can use rule (U::) and Lemma 4| to derive:
et Uy Us~U,
bt Uy : Uy

Where U; C Uy and the result holds.

4.2 Type Safety
In this section we present the proof of type safety for GTFL®.

Lemma 5 (Canonical forms). Consider a value v € TERMy. Then either
v=u, orv=cu: U withu € TERMy: and € = U’ ~ U. Furthermore:

1. If U = Bool then either v ="5b or v = ¢€b :: Bool with b € TERMpeo|-

2. If U = Int then either v =mn or v =en :: Int with n € TERMp.

3. If U = Uy — Uy then either v = (\zUr.tY2) with tV2 € TERMy, or v =
e(AaVitV2) : Uy — Uy with tV2 € TERMy; and e - U] — Uy ~ Uy — Us.

Proof. By direct inspection of the formation rules of gradual intrinsic terms

(Figure [5]).

Lemma 6 (Substitution). IftY € TERMy and v € TERMy, ,then [v/zV1]tV €
TERMy .

Proof. By induction on the derivation of V.

Proposition 20 (— is well defined). IftY — r, then r € CONFIGy U
{error}.

Proof. By induction on the structure of a derivation of tV — r, considering the
last rule used in the derivation.

Case (IU®). Then tV = e1ny + eano. Then

ny € TERMjny &1 Int~Int ng € TERM),y &2 b Int ~ Int

1IU+
() €1n1 + €9ng € TERM|nt

Therefore
e1n1 + eang — ng where n3 = ny [+] neo

But ng € TERM),; and the result holds.

Case (IUapp). Then tV = g1 (A\zV1 #V12) @V12V2 (g9u) and U = Us. Then

Dy
U12
tY1? € TERMY,, Do
()"/L‘Ull'tgjm) € TERMU11—>U12 uc TERMUé ga k- Ué ~ U

51}—U11—>U12NU1—>U2
e1(AzV1 #Y12) @Vi=U2 gyy € TERMY,

(Iapp)

If &/ = (g9 0= idom(e1)) is not defined, then tV — error, and then the result
hold immediately. Suppose that consistent transitivity does hold, then

g1 (MY V1)@V~ ooy € TERMy, — dcod(e1)([(e"u :: Uyp)/xV2)t) = Uy

As e F U} ~ Uy and by inversion lemma idom(e;) - Uy ~ Uiy, then &’ F
Uj ~ Uyy. Therefore €'u :: Uy € TERMy,,, and by Lemma@, te = [('u =
Ull)/mUu}tUlz S TERMU12.
Then
t'Uz ¢ TERI\/IU12 iCOd(&‘l) FUs ~Us

iCOd(&l)t/Um :: Up € TERMy,

(IU:)
and the result holds.
Case (IUif-true). Then tU = if £1b then e9tV2 else e3tY3, U = U, MUz and

be TERMy, €1+ U ~Bool U= (UnNUs)
tU2 S TERMU2 o Uy~ U
tUs € TERMy, esbF U3~ U

1Uif
() if £1b then £5t7> else £5tY3 € TERMy

Therefore
if £1b then 5172 else €3tU3 — etV Uy M Us

But
vz S ‘TERMU2 e Uy ~UsMUs

(IU::) v
eqt¥2 U MU;3 € TERMU2|—|U3

and the result holds.

Case (IUif-false). Analogous to case (if-true).

Proposition 21 (— is well defined). IftY —— r, then r € CONFIGy U
{error }.

Proof. By induction on the structure of a derivation of tV — r.

Case (R—). tY — r. By well-definedness of — (Prop , r € CONFIGy U
{error }.

Case (Rf). tV = f[tV'], f[tV] € TerMy, tV —s It2U'7 tV" € TERMy/, and
f : TERMy: — TERMy. By induction hypothesis, t§ € TERMy., so f[tS] €
TERMy.

Case (Rferr, Rgerr). r = error.

Case (Rg). tV = glet], g[tV'] € TERMy, and g : EVTERM — TERMy, and
et —. et’. Then there exists U, U, such that et = e.tV¢ and ¢, - U, ~ U,.
Also, te = eyv i Ue, with v € TERMy, and &, - U, ~ Uk,.

We know that e, = €, 0™ &, is defined, and et = g.t, —. e.v = et’. By definition
of o= we have e, - U, ~ U,, so g[et'] € TERMy.

Now we can establish type safety: programs do not get stuck, though they
may terminate with cast errors. Also the store of a program is well typed.

Proposition 22 (Type Safety). If tV ¢ TERMy then either tV is a value v;
tV — error; or tV — v for some term t'Y € TERM .

Proof. By induction on the structure of tV.
Case (Iu,In, Ib, Iz, I\). tY is a value.
Case (I:). tV = g1tV :: Uy, and

= TERMU1 e1F UL ~Us
61tU1 12 Uy € TERMy,

(I:2)

By induction hypothesis on tU*, one of the following holds:

1. tY" is a value, in which case tV is also a value.
2. tY1 +— 7| for some r; € TERMy, U {error }. Hence tV —— r for some
r € CONFIGy U { error } by Prop |21] and either (Rf), or (Rferr).

Case (IUif). tYV = if £1tY" then e5t"2 else e5tYs and

tUl S TERMU1 €1 - U1 ~ Bool U= (Ug 1 U3)
tlz ¢ r]:‘ERMU2 eg b Uy~ U
tUs ¢ T‘ERMU3 eskFUs~U

if €1tV then e5t72 else e5tV3 € TERMy

(IUif)

By induction hypothesis on tU*, one of the following holds:

1.

tY1 is a value u, then by (R—), tV — r and r € CONFIGy U { error } by

Prop 21}

. tY" is an ascribed value v, then, e1tY* —, et’ for some et’ € EVITERM U

{error }. Hence tV +— r for some r € CONFIGy; U { error } by Prop [21| and
either (Rg), or (Rgerr).

tUt +— 7y for some 7 € TERMy, U {error }. Hence tV +— r for some
r € CONFIGy U { error } by Prop |21] and either (Rf), or (Rferr).

Case (IUapp). tV = (1Y) @QUui =iz (gy¢U2)

tVr € TERMy, &1 F Uy ~ Uy — Usz
tV2 € TERMy, gg = Uy ~ Uy

IUapp
() (81tU1) @Uu—=Un (62tU2) S TERMU12

By induction hypothesis on tU*, one of the following holds:

. tUr is a value (AzUi1.Vi2) (by canonical forms Lemmals)), posing Uy = U}, —

Ul,.

Then by induction hypothesis on tV2, one of the following holds:

(a) tU2 is a value u, then by (R—), tV —— r and r € CoNFIGy U { error }
by Prop 21}

(b) tY2 is an ascribed value v, then, eotV2 — et’ for some et’ € EVTERM U
{error }. Hence tV — r for some r € CONFIGy U { error } by Prop
and either (Rg), or (Rgerr).

(c) tY2 = ry for some ro € CONFIGy, U { error }. Hence tV +—— r for some
r € CONFIGy U { error } by Prop [21] and either (Rf), or (Rferr).

. tY' is an ascribed value v, then, etV —. et’ for some et’ € EVTERM U

{error }. Hence tV — r for some r € CONFIGy; U { error } by Prop [21| and
either (Rg), or (Rgerr).

. tUt +— 7y for some 71 € CONFIGy, U {error }. Hence tV —— r for some

r € CONFIGy U { error } by Prop [21] and either (Rf), or (R ferr).

Case (IU+). Similar case to (IUapp)

4.3 Dynamic Gradual Guarantee

In this section we present the proof the Dynamic Gradual Guarantee for GTFL®.

QU{xUlgmUZ}I—xUlngQ NHELCD 2FnCn

U11 E U12 _QU{:L‘UH EJSUP"} FtUu EtUzz
2F a1 V1) C AV 4U22)

QU gl e Tl

2kt C U2 €11 E en €12 £ €22
U2C Uz e1Ce U CU;
(€1tU11 b Ulg) E (52tU21 o U22) .Q |— EntUll @Ul 612tU12 E

821tU21 @U2 EzztU22

Nk tUll C tU21 €11 L €21

0k Y2 C V23 €12 L €22

Q [tU13 E tU23 €13 E €23
QFif e11t91 then e12tY12 else £13tY13 C
if £21t721 then £20t722 else 5231&U23

QFU Clr U £l
11 L €21 €12 L €22

2+ (ElltUll + 612tU12) [(621tU21 + EgztU22)

Fig. 10. Intrinsic term precision

Definition 18 (Intrinsic term precision). Let
2 € P(VAR, x VAR,) be defined as 2 ::= { zVin C zUiz } We define an ordering
relation (- + - C -) € (P(VAR, X VAR,) x TERM, x TERM, shown in Figure |10

Definition 19 (Well Formedness of 2). We say that (2 is well formed iff
V{.T,‘G“ C xGi2 } € 2.G;1 C Gy

Before proving the gradual guarantee, we first establish some auxiliary prop-
erties of precision. For the following propositions, we assume Well Formedness

of 2 (Definition [19).

Proposition 23. If 2 - tY1 C tY2 for some 2 € P(VAR. X VAR,), then U; C
Us.

Proof. Straightforward induction on 2 F tUt C Y2 since the corresponding

precision on types is systematically a premise (either directly or transitively).

Proposition 24. Let g1, g € EVFRAME such that g[e11tY'] € TERMy, gleatt?] €
TERMUé, with, U{ C UQI . Then Z'fgl[€11t§]1] C 92[521#1]2}, €12 C €99 and tgl C tzUz,
then gi[e12t5"] C galeanty?]

Proof. We proceed by case analysis on g;.

Case (0@ et). Then for i € {1,2} g; must have the form 0 @Y &/tUi for
some U/, e/ and tYi. As g1]e11t7*] C go[e21tV2] then by Capp 1 C e2,¢) C &b,
Uy CUY and tUL C ¢Us,

As 19 C g99 and tgl C t2U2, then by Caopp 612t2U1 @Uut’ EﬁtU{ C 522t2U2 aQls

ehtV2, and the result holds.

Case (O+et, ev+0,ev @Y 0,0 :: U, if O then et else et). Straightforward using
similar argument to the previous case.

Proposition 25. Let g1, g2 € EVFRAME such that g1e1t*] € TERMyy, ga[eat™?] €
TeRMy;, with Uy € Uy . Then if gi[eit”] T ga[eatV?] then tY' C Y2 and
€1 Ceo.

Proof. We proceed by case analysis on g;.

Case (0@ et). Then there must exist some U/, &} and Y% such that g[e1tV1] =

etV @YY ¢/ tUi and g[eatV?] = eptU2 @U2 £4tV. Then by the hypothesis and the
premises of (Capp), tY' C Y2 and €; C &9, and the result holds immediately.

Case (O+et,ev+0, ev @Y ,0:: U,if O then et else et). Straightforward using
similar argument to the previous case.

Proposition 26. Let f1, fo € EVFRAME such that fy [tlljl] € TERMy:, f2 [tgjz] €
TERMy;, with U] TUS . Then if f1[t]*] C fo[t7?] and t5* T 152, then f1[t]"] C
Fa[t7?]

Proof. Suppose fi[tY*] = g;[e;t7?]. We know that g1 [e1t{"] € TERM/, go[et]?] €
TERMy; and U] C Uj. Therefore if g [e1tV"] E g1]e1tY2], by Prop , g1 C es.
Finally by Prop |24] we conclude that g; [sltgl] Cagr [eltgﬂ.

Proposition 27. Let fi, fo € EVFRAME such that f[tV] € TERMy,, fa [tV2] e
TEeRMy;, with Uy € Uy . Then if f1[t"1] E fo[t">] then tUr C 7.

Proof. Suppose fi[tU1] = g;[e:t{7]. We know that g [e,tY*] € TERMp, gale2t?] €
TERMy; and U C Us. Therefore if g; [e1tV1] C gleatV?], then using Prop [25| we
conclude that tUr C ¢z,

Proposition 28 (Substitution preserves precision). If 2U{zVs C 2U+} I-
tVr C Y2 and 2 tYs C Y, then Q1 [tYs /oUs|tVr C [tUs J2Vs]tV2,

Proof. By induction on the derivation of tV* T tU2 and case analysis of the last
rule used in the derivation. All cases follow either trivially (no premises) or by
the induction hypotheses.

Proposition 29 (Monotone precision for o=). Ife; C ey and e3 C ¢4 then
€1 o~ 3 E 1S5 o~ Eq.

Proof. By definition of consistent transitivity for = and the definition of preci-
sion.

PI'OpOSitiOIl 30. If U11 E U12 and U21 E U22 then U11 M U21 E U12 I U22.

Proof. By induction on the type derivation of the types and meet.

Proposition 31 (Dynamic guarantee for —). Suppose {2 t?l C tgb, If
tV0 —— 5 then tV2 — t52, where Q'+t Y2 for some 2" D 0.

Proof. By induction on the structure of tgl C tllh. For simplicity we omit the
{2 - notation on precision relations when it is not relevant for the argument.

Case (— +). We know that tY* = (g1;(n1) + €12(ng)) then by (E;) tY2 =
(Ezl(nl) + EQQ(TLQ)) for some €921,€292 such that €11 C €921 and €12 C €99 .

If tY* — n3 where n3 = (ny [®] no), then tV2 — n4 where n§ = (ny [®] no)
. But n3 = nj and therefore t5* C ¢5* and the result holds.

Case (—app). We know that

tlljl = g1 (AzV1 ¢Vi2) @UVr—U2 ¢154 then by (Capp) t?Q must have the form
tlljz = 621(/\1‘U21.tU22) @U3*>U4 E22U2 for some 521’IU21’tU227 Ug, U4,€22 and us.
Let us pose €1 = €12 0= idom(e11). Then

tlljl — iCOd(Ell)tll :: Uy with tll = [(51u1 i Ull)/.’L'Uu]tUlz.

Also, let us pose g9 = €99 0= idom(ea1) . Then

tY2 s icod(g91)th :: Uy with th = [(equg 2 Usy)/xU21]tV>2,

As 2+ tlljl E tgjz, then (5% E U2, €12 E €929 and idom(en) E ’idOm(Egl) as well,
then by Prop51 C ey. Then e1ug :: Upg C equg :: Uy by (CE..).

We also know by (Capp) and (Cy) that QU {zV2 C 22Uz} | V2 C U2 By
Substitution preserves precision (Prop t) C t}, therefore icod(e11)t] :: Uy E
icod (21)th :: Uy by (C..). Then t5" C ¢,

Case (—if-true). 177 = if £11true then £19tV12 else £13tV13 then by (C;;) t9°
has the form tlle = if egqtrue then e99tV22 else £495tU23 for some €91, €99, tV?2, €93,
and tY32. Then t1U1 — g19t%12 1 (U M Us3), and t1U2 — £99tU22 1 (Ungg M Usg).
Using the fact that t?l C th’ we know that e19 T €99, Y12 T tV22 and by Prop
U12 E U22 and U13 E U23. Therefore by PI‘Op (U12|_|U13) E (U22 HUQg). Then
using (C..), 5" C t5°.

Case (—if-false). Same as case —if-true, using the fact that €15 C e93 and

tUis [tU2s

Proposition 32 (Dynamic guarantee). Suppose t[lj1 C tllj"’, If tgl — tgl
then t(lj2 — 1€2U2 where t2U1 C t2U2.

Proof. We prove the following property instead: Suppose (2 + t?l C tle. If
V1 5 then V2 +— tJ> where ' - t5' C t52, for some 2’ D 0.

By induction on the structure of a derlvatlon of tUl C tU2 For simplicity
we omit the {2 F notation on precision relations when it is not relevant for the
argument.

Case (R—). 2 + tV* C V2, t¥* — . By dynamic guarantee of —»
(Prop , t%2 — Y2 where 2 F t§* C 52, for some 2 D 2. And the
result holds immediately.

Case (Rf). 17 = A[tV1], ¥ = £[t¥%]. We know that 2 F fi[tV1] C falts b2,
By using Prop |23} Uj C U2 By Prop n We also know that 2+ tli C tl By
induction hypothesis, t1 — t21, t — t , 2k t21 C t22 for some 2 D 2.
Then by Prop [26| then £’ - f; [t2] Cf [t2] and the result holds.

Case (Rg). t¥* = gilet1], tV2 = golets], where 2 F gi[ety] T gofets]. Also
et] —>c et} and ety —> eth.

Then there exists Uy, €11, €12 and v; such that et; = e11(e12v1 :: Up). Also there
exists Us, €21, €22 and v such that ets = e91(e29v2 :: Ua). By Prop €11 C €91,
and by (C..) e12 C €92, v1 C v9 and Uy C Us. Then as ety — (€120~ £11)v1 and
ety —>c (€22 0= £91)vy then, by Prop [29| we know that €15 0= €17 C €99 0= €91.
Then using this information, and the fact that vy C vy, by Prop [24] it follows
that 2+ gi[ety] T g[ets].

5 Compiling GTFL® to Threesomes

This section presents the translational semantics of GTFL®. Section presents
the intermediate language. Section presents the cast insertion rules, and
Section [5.3] presents the full formalization of the correctness of the translational
semantics.

5.1 Intermediate language: (—}TFLEB

Figure u.presents the syntax of GTFL® Figure|12|presents the full type system
of GTFLE

Flgure presents the full dynamic semantics of GTFLE . Applications of
a non-casted function are standard. The reduction rule for additions and con-
ditionals use the rval metafunction, which strips away the surrounding cast, if
any, to access the underlying value. The reduction of the application of a casted
function is standard, splitting the function cast into a cast on the argument and
a cast on the result. Two threesomes that coincide on their source/target types
are combined by meeting their middle types. If the meet is undefined then the
term steps to error. Otherwise both casts are merged to a new cast where the
middle type is now the meet between the middle types. Note that new casts
are introduced using the following cast metafunction, which avoids producing
useless threesomes:

fi
T € TYPE, z € VAR, t¢& TERM, I € VAR = TYPE

T:=Bool | Int | T—>T (types)
uz=n | b| (Az:U.Lt) (simple values)
vi= u | (UéU)u (values)
to=wv|xz|tt|t+t|iftthentelset|t::T | (UéU}t (terms)

Fig. 11. Syntax of the intermediate language

z:Uel

U~ o

(ITb) I'E b: Bool
F,ZEZUlhtZUQ 'L t1:Uq thgzdom(Ul)

TTA IT
N w0 0 o 0 (ITapp)

'k t1ts: Z;E(Ul)

'k t:U; U ~Us

U =~ U Us ~ Us a4 'k t1: Int 'k t2: Int

(IT() -
'k (U < Uit : Us

Fl—ztllBOO| thz:UQ thg,:UQ
(ITif)

'l if t1 thento elsets : Us

Fig. 12. GTFLE : Type system for the intermediate language

t ifUy =Us =Us
(U2 & Ui)t otherwise

Us

(U2 = Uhiht = {

5.2 Cast Insertion

We now briefly describe the cast insertion translation from a GTFL® term ¢
to a GTFLE term t. The cast insertion rules are presented in Figure Cast
insertion rules use twosomes to ease readability; a twosome (Us < Uj)t is equal

to (Us AN S Uy)t: the initial middle type is the meet of both ends [4]. Note
that useless casts are not introduced by translation due to the use of the cast
metafunction.

The key idea of the transformation is to insert casts in places where con-
sistency is used to justify the typing derivation. For instance, if a term ¢ of
type Int @ Bool is used where an Int is required, the translation inserts a cast
(Int < Int @ Bool)t, where ¢ is the recursive translation of ¢. This cast plays

uw=true | false | n | Ax.t
v:::u|<U<U:U)u (values)
fe=0+t]ov+0|0¢|vDO| (UéU)D | if O then t else ¢ (frames)

Notions of Reduction

nsg = rval(v1) [+] rval(vz)
v1 +v2 — n3

Az.t) v — [v/z]t

if v then t; else to — (Uzy — Usa Ly, > Un2)u v —
ty if rval(v) = true icod(Us) idom(Us)
2 <<U22 = U12>>(u <<U11 = —— U21>>'U)
ts if rval(v) = false

UsaMUzy

<U3 & U2><U2 & U1>’U — <<U3 U1>>U
error if Uss M Usz; is undefined

t — t | Reduction

t1 — 12 t1 — 12
t1—> 12 flta] — fltz] flerror] — error

Fig. 13. GTFLE : Dynamic Semantics of GTFLE

the role of the implicit projection from the gradual union type. Dually, when
a term of type Int is used where a gradual union is expected, the transla-
tion adds a cast that performs the implicit injection to the gradual union,
e.g. (Int ® Bool < Int)10. Note that a value with a cast that loses precision
is like a tagged value in tagged union type systems; the difference again is that
the “tag” is inserted implicitly.

Rule (C::) may insert a cast from the type of the body to the ascribed type.
Rule (Capp) may insert two casts. By declaring that the resulting type of the
application is E&E(Ul) and that the argument is consistent with 6/1—0\77/1((]1), we
are implicitly assuming that U; is consistent with some function type, which
justifies the cast on ¢;. The second cast on t5 comes from the consistent judgment
Uy ~ (/igr/n(Ul). Rule (C+) is similar.

z:Uel
I'rez=xz:U (Cb) I'b=b:Bool (Cn) I'Fn=mn:Int

(Cx)
Nz:Ubt=t:Us

I't(Oz:Uit)= Oz :Urt'): Uy — Uy

(CA)

'ti=t:U U~U
FF(?::U1):> <U1<=U>tl :Uq

(C:)

Frh=t, U T'ria=th:Us U~ dom(Uy)

(Capp) ——
'ttt =
(dom(U1) — cod(Un) < Uh)t, (dom(Uy) <= Ua)ty : cod(Un)
'+ "Uy Thrto=th:Us Up~Int U~ lnt
(C+) t1 = t1 1 2 2 2 1 n 2 n

IFbh+1= (Int< Uty + (Int < U)th : Int

I'tti=>t:U U ~Bool I'blo=th:Us I'bFilz=ty:Us

I if £ then 5 else t; =
if <BOO| = U1>t/1 then <U2 MUs < U2>t/2 else <U2 MUz < U3>té :Us M U3

(Cif)

Fig. 14. Cast insertion rules

(bl, bg) € Uy [[BOO”] <= b1 € TERMpool A b2 : Bool A by = bs
(nl, ng) € Uy [[Int]] <= n1 € TERM|nt Ao : Int Anqp = ne
(i1, u2) € Ux[Ur — U2] < w1 € TERMy, v, Aug : Up — UaA
VU' = Ui’ = Ug,er b Ui = Us ~ U’ = Uy, and
g2 = Ul ~ Uy, we have: Vj < k, (v1,v2) € V;[Ui],
(erits QU gy, (U & Uy — Us)ug (U} 2 Ul)wva) € T;[UY]
(ett1 :: Uyuz) € Vi[U] <= etq :: U € TERMy Ae = U A (i1, u2) € U U]
(6’111 i U, <U é U/>U2) S VkHU]] <= ¢euy :: U € TERMy A (ﬂl,u2) S L{k_l[[U']]
(t1,u2) € Vi[U] <= (t1,u2) € Ux[U]
(51,152)677@[[01] < £1€TERMU/\|—t21U/\Vj<k

(fl —)J 1 = (tz — v A (171,'02) S V}c_][Uﬂ))/\
(tz —)J Vy = (il — 01 A (171,112) S Vk*jHUﬂ))/\
(f1 — error = to —* error)A

(ts —7 error = t; —* error)

Fig. 15. Logical relations between intrinsic terms and cast calculus terms.

5.3 Correctness of the Translational Semantics

This section present all the definitions and properties used to prove the correct-
ness of translational semantics.

One of the novelty of this work is to establish that the translational semantics
of the gradual language enjoys both type safety and the gradual guarantees,
without relying on the usual proof techniques. The typical approach is to prove
type safety of a gradual language by first establishing type safety of the target
cast calculus and second proving that the cast insertion translation preserves
typing. Proving the gradual guarantees is a separate effort [6].

Here, we instead directly establish that the translation semantics is equiva-
lent to the reference semantics derived with AGT. Because the reference seman-
tics describes a type-safe gradual language that satisfies the gradual guarantees,
so does the translational semantics. We establish the equivalence between the
semantics using step-indexed: logical relations. We use step-indexed logical rela-
tions so the relation is well-founded: the definition without indexes may contain
some vicious cycles in presence of gradual unions. Equivalence between two terms
is acknowledged when either both evaluate to the same value, or both lead to
an error.

Figure presents the logical relations between simple values, values and
computations, which are defined mutually recursively. The logical relations are
defined for pairs composed of an intrinsic term ¢, which denotes the typing
derivation for a GTFL® term ¢, and a GTFLE term t. For simplicity, we write
t:Ufor -k t:U.

A pair of simple values (41, us) are related for k steps at type U, notation
(@1,u2) € U[U], if they both have the same type U and, if U is either Bool

or Int, then the values are also equal. If the simple values are functions, then
they are related if their application to related arguments , for j < k steps, yields
related computations, as explained below. Note that the relation between simple
values need not consider the case of gradual types, as no literal values have
gradual types.

A pair of values (01, v2) are related for k steps at type U, notation (91, vs) €
Vi [U]), if both have the same type and their underlying simple values are related.
One important point to notice is that we may only relate an ascribed value
ety :: U to a simple value uy if we do not learn anything new from the ascription,
i.e. both the type of @; and the evidence € are U. This corresponds to the
case where the reference semantics carries useless evidence—recall that the cast
insertion translation does not insert useless casts. Additionally, an ascribed value
ety :: U is related to a casted value if the evidence and ascription correspond to
the threesome. More precisely, the evidence € must be exactly the middle type of
the threesome, and the source and target types of the threesome must correspond
to the type of @ and the ascribed type U, respectively. Finally, in order to reason
about the underlying simple values, the ascription and cast must be eliminated
by combining them with an evidence and a cast respectively. Because of this
extra step, the underlying simple values must be related for k — 1 steps instead.

A pair of terms (f1,t3) are related computations for k steps at type U, nota-
tion (f1,t2) € Ti[U], if both terms have the same type U, then either both terms
reduce to related values at type U, or both terms reduce to an error. Formally,
for any j < k, if the evaluation of the intrinsic term #; terminates in a value v;
at least in j steps, then the compiled term ¢, also reduces to a value ve, and the
resulting values are related values for k — j steps at type U. Analogously, if the
evaluation of the compiled term ¢, reduces to a value v, at least in j steps, then
the intrinsic term #; also reduces to a related value v;. Finally, if either term
reduces to an error in at least j steps, then the other also reduces to an error.
Note that this last condition is only required because we do not assume type
safety of GTFLi.

Armed with these logical relations we can state the notion of semantic equiv-
alence between a GTFL? intrinsic term and a GTFLej> term.

Definition 20 (Semantic equivalence). Let { € TERMy, I' = FV () and
a GTFLi term t such that I' 5 t : U. We say that € and t are semantically
equivalent, notation t ~ t : U, if and only if for any k > 0, (01, 02) € G[I'], we
have (o1(f), 02(t)) € Te[U].

The definition of semantic equivalence appeals to the notion of related substi-
tutions. Two substitutions o1 and o9 are related for k steps at type environment
I', notation (o1,09) € Gi[I'], if they map each variable in I" to related values
(full definition in .

Note that we write ¢ instead of tV when it is clear from the context that it
is an intrinsic term. Also note that t : U =-k t: U.

Definition 21. Let o be a substitution and I" a type substitution. We say that
substitution o satisfy environment I', written o = I, if and only if dom(o) =

dom(I).

Definition 22 (Related substitutions). Let o1 be a substitution function
from intrinsic variables to intrinsic values, and let oo be a substitution func-
tion from wvariables to values from the intermediate language. Then we define
related substitution as follows:

(01,02) € Gu[I'] <= 0i = I' AVz € (01 (7 @), 09(x)) € Vi[[(2)]

Lemma 7 (Reduction preserves relations). Consider I' I t:U, Ve
TERMy and I' -t =t : U. Consider k,j > 0, if tV —J t'U and t —7 t', then
we have (tY,t) € Ti[U] if and only if ('Y, 1) € Tp—;[U]

Proof. The = direction relies on the determinism of the reduction relation and
the definition of related computations. The < direction follows direct from the
definition of (tY,t) € T;[U] and transitivity of —.

Lemma 8. If (t),ty) € To[U] then ife = U ~ U’, then (et; = U', (U" & U)ty) €
Te1[U']

Proof. If either term reduce to an error then the lemma trivially holds. If either
one of the term reduce to a value, then it holds by definition of related values
and Lemma [7]

Lemma 9. Consider k > 0. If (?1,152) € Ti[U] then (t~1,t2) € Tr-1[U]

Proof. Trivial by definition of related computations, as (t1,t2) € Te[U] is a
stronger property than (¢1,t2) € Tp—1[U].

Finally, semantic equivalence between the reference and the translational
semantics says that given a well-typed term ¢ from the gradual source language,
its corresponding intrinsic term ¢ is semantically equivalent to the cast calculus
term t obtained after the cast insertion translation.

Proposition 33 (Equivalence of reference and translational semantics).
If '+t : U, represented as the intrinsic term t € TERMy, and ' -t =t : U,
thent~t:U.

We open the proposition to prove this instead:

fr+t:U,tY € TeRMy, I'Ht =t : U, then Vk > 0, (01,02) € Gi[I],
(o1(tY), 02(t)) € Tu[L.

Proof. By induction on the type derivation of .

Case (Ub). Then t = b and therefore:

(UDb) I'+b: Bool

where U = Bool. Then the corresponding intrinsic term is:

IUb)————
() b € TERMBool

and the type derivation of the compiled term is:

(I'Tb) ' b: Bool

But o1(b) = b,02(b) = b, and b = b and the result holds immediately.
Case (Un). Then t = n and therefore:

(Un) I'En:iInt

where U = Int. Then the corresponding intrinsic term is:

IUn)———
(IUn) n € TERM|nt

and the type derivation of the compiled term is:

(ITn) I'k n:iInt

But 01(n) =n,o02(n) = n, and n = n and the result holds immediately.
Case (Uz). Then t = x and therefore:

x:Uel
UN—Fro.o

Then the corresponding intrinsic term is:

1Ux
1) z¥ € TERMy

and the type derivation of the compiled term is:

z:Uel

(ITx) b z:U

As (01,02) € Gi[I'] and = € dom(I"), then (Y, z) € V[U] and the result holds
immediately.

Case (U)). Then t = (A\z : Uj.ty) and therefore:

F,x:UlFtNQ:Uz
't (A\x:Uits): Uy — Us

(UX)

where U = U; — Us. Then the corresponding intrinsic term is:

() tS2 € TERMy,

(A\zY1.t52) € TERMY, S0,

and the type derivation of the compiled term is:
Na:Uik th:Us
't (\z:Usts): Uy — Us
where Iz : Uy bty = th : Us. Consider j < k,U' =U{ - UY,e1 F Uy — Uy ~

Ul = Uy,eq - U{ ~ Uy, 01, and v, such that (01, v5) € V;[U;]. We have to
prove that:

(61(>\$U1.Ul(tgz))@U/é‘g’[}/l, <U/ - U1 — U2>(/\1‘ : Ul.CTQ(tQ)) <U{/ — U1>) 7;[[Uél]]

(ITA)

Then we proceed depending on the structure of (97, v5), but ultimately we
converge to analogous cases where the argument are just related simple values.

1. If (97, vh) = (4}, ub) € Vi[Ui], then (af,us) € Uk [U;]. Therefore
(U & U, = U)(\z : Ur.oa(tz)) (U & UL)us

11 icod(eq)

—(Us

idom(eq)

U2>(>\$: U1.0’2(t2)) <U1 U{/><U{/ g U{>u12)

(a) If &2 0~ idom(e1) is not defined, then
e1(AzY1.01(t5?)) QY e9ii) — error. But by definition of consistent
transitivity eo Midom(e;) = () and therefore
(U & Uy — Up)(A\x = Uy.oa(tz)) (U} & Ul)ub, —? error and the re-
sult holds.
(b) If &’ = €9 0= idom(ey) is defined, then
er(AaV.o1(t57)) @V eqt)
—icod(e1)([e"dy = Uy JaV)o1 (t52)) = UY
=icod(e1) (o1 [zV > ') = UL](t52)) = UY
and, let us suppose than —(U] = U; = €’) (the other case is similar
modulo one step of evaluation)

(U 2 Uy — Up)(ha : Ur.oa(ts)) (U 2= U
icod (e ¢’

Uy 22X gy (U & U/l ()

—(U 2 U)ol > (U) £ Upyub) (ko)

As (@}, uh) € U [[Ul]] then by definition of related values,

(e'uf = Uy, (U £ Ui)us) € Vj11[U], then by Lemm&t@(s) U17 (U, £ Ui)uy) € V;[U].
Therefore by definition of related substitutions, (o1[z"* +— '@ :: Uy}, o2]x —

(U1 £ Ui)us]) € G;[I',x : Uy]. Then by induction hypothesis on pair
(tgz,F,.’ﬂ . Ul FZQ . UQ),
(o1a™ = €'ty = Di](t52)), 02l = (Ur & Up)us)(t)) € T;[Ue]

and the result holds by Lemma [0} and backward preservation of the
relations (Lemma [7)).

2. If (0, vh) = (eu) :: U, uh) € V;[U{], then e = U7 and (u},uh) € U;[U7]-
Then e, = e0=e, is defined because U] ~ U}, and therefore: &, (AzV .0 (t52)) @V’
90, — g1 (AUt .0 (t52)) @V ha). Then we proceed analogous to (1) and
the result holds.

3. If (0}, 0h) = (ety = U, (U] & U')ub) € V;[U], then (i), ub) € U;[U'], for
some U’ such that e F U" ~ Uj.

(a) If £ 0= &5 is not defined then e Meg = 0,
g1 (AU .0 (t52)) QU egei) :: U] — error and
(U & U, — Up)(\x = Uy.oa(tz)) (U & U (U, & U')uly — error, and
the result holds.

(b) If &), = £ 0™ &5 is defined then

e1(AzU .01 (t92)) QY epetl) = UL — &1 (AP .01 (£52)) @V bt
and

1

(U & U, — Up)(A\x = Uy.oa(te)) (U & UNU; & U'uly —
(U & Uy — Un)(\a : U.oa(ta)) (U7 2 U
and we proceed analogous to (1) and the result holds.

Case (U ::). Then t =t; :: U and therefore:

r'ct,:U U ~U

(U=) '+t :U0:U

Then the corresponding non ascribed intrinsic term is:

tV' € TERMy: eF U ~U

(IU =) -
ety" :: U € TERMy

Let us assume U’ # U (the other case is analogous). The type derivation of
the compiled term is:

(IT<>)

'k t,:U
Ik

(U & UM
Then we have to prove that
(o1 (tY) = U, (U & U)o (th)) € Ta[U]

By induction hypotheses on ; (o1 (tV"), 0o (t})) € Ti[U’]. If either term re-
duces to an error in less than k steps, then the result holds immediately. The
interesting case if they reduce to related values in less than k steps. Then suppose
0'1(tU1) —>j 171, Uz(tll) —* ’Ull, wherej <k (171,’0/1) S Vk_j[[Ulﬂ.

Let us assume ¥; = 41 then v] = u) (if they are ascribed values, then the
argument is similar modulo one extra step of evaluation, where a runtime error
may be produced).

eo (tV) U — ey = U

and _
(U EUNoo(th) — (U E UMW,

We need to prove that
(ety = U, (U & U"Yu}) € Vi [U]

but (41,v]) € Ve—;[U1] and by Lemma [0} (91,v]) € Vi—;—1[U1], and the result
holds by backward preservation lemma.

Case (Uapp). Then t = t; ty and therefore:

Tt iU Thia:Us U~ dom(Uh)
I'F s cod(Uy)

(Uapp)

and U = cAOE(Ul). Then the corresponding intrinsic term is:

tUl S TERMU1 e1 F UL ~ U1 — Uis tU2 € TERMU2 o HUs ~ Urq

(€1tU1) @Ull_}U12 (€2tU2) S TERMU12

(IUapp)

where Uy = dom(Uy) and Uy = cod(Uy).

We proceed assuming that the compilation always inserts casts (the other
cases are similar because then the evidences are equal to the types in the judg-
ment. Therefore the next combinations of those evidences are redundant and
never fails). Then suppose Uy # Uyy — Uig and U # Uyp. As ey = U3 MU —
Uyo, and g9 = Uy M Uy, the type derivation of the compiled term is:

thlliUl thlinu
I'hk <U11 — U2 é U1>t,1 <U11 g U2>t/2 : U12)

(ITapp)

Then we have to prove that
((e101(t71))@Y7 Y12 (g0, (t72)), (Ury — Urp & Ur)oa(t)) (Unn £ Ua)oa(ty)) € Ti[Unz]

By induction hypotheses on £ and t5 (o1 (tV1), 02(t))) € Te[U1] and (o1 (tV2), oo (th)) €
Ti[Uz2]- If either term reduces to an error in less than k steps, then the result
holds immediately. The interesting case if they reduce to related values in less
than k steps. Then suppose o1 (V1) —7 91, 01 (tV2) —7 g, 09(t)) —* 0],
oa(ty) —* vh, where j < k (01,v]) € Ve ;[Ui] and (02,v5) € Vi—;[Us]. If
01 = @y then v] = u}, by canonical forms the simple values must be lambdas
and the proof follows from Case(U\). If 0; = &)y :: Uy and @; € TERMy, then

suppose v} = (U; <= U})u) (the other case is similar but the evidence combi-
nation never fails). Also (u1,u}) € Ux—;—1[U1]. Suppose €} o= & is not defined
(which is equivalent to €} Me; = (), therefore

(618/1111 i Ul) @U11_>U12 (EQ’DQ) — error <—

11— Urp & U)W(Uy 2= U, (U £ Us)vl, —» error
Uy — Ury & U)(U) 4

and the result follows. Suppose €] = €} o= ¢; is defined. Then

(515/1’111 o Ul) @U11_>U12 (52732) —

(6/1/121) @UHHU12 (62172) =
<U11 — U12 <€:1 U1><U1 fé U{>u/1 <U11 fé U2>’Ué —
<U11 — U12 <€£ U{>U/1 <U11 é U2>’Ué

which is exactly the definition of related functions and then the result holds by
backward preservation of the relations (Lemma [7) and Lemma [9}

Case (Uif). Then t = t; t5 and therefore:

't :U Ui~Bool I'b#:Us T©'Ft3:Us
T'Fif t1 then ta else t3 : Us MUs

(Uif)

and U = Us M Us. Then the corresponding intrinsic term is:

tY1 € TERMy, e1 F U ~ Bool U= (UM Us3)
tV2 € TERMy, e2bUs~U tY3 € TERMy, e3bUs~U

if 1tU1 then €2tV else e5tY3 € TERMy

1Uif)

We proceed assuming that the compilation always inserts casts (the other
cases are similar because then the evidences are equal to the types in the judg-
ment. Therefore the next combinations of those evidences are redundant and
never fails). Then suppose Uy # Uy; — Uyg and Uy # Uyy. As ey = U MU —
Uys, and g5 = Uy M Uy, the type derivation of the compiled term is:

' ¢:U1 Uy ~Bool I'k th:Us Ik th:Us

(Cif) - - -
if (Bool <= Un)t; then (Us M Us <= Ua)th else (U MUz <= Us)th : U2 MUs

where 't =) : U, ' bty = th : Uy, and I' Ft3 = 15 : Us.

But by definition of substitution, o1 (tV) = if 101 (tV1) then else ex0q (tV2)e301 (tV2)
and oo(t') = if (Bool <= U)oy (t)) then (Uy MUz <= Uy)oo(th) else (Uy MUz <&
U3>02(t:/3). o B

By induction hypotheses on t;, ty and t3, (o1(tY1),02(t})) € Ti[U1] and
(o1(tY2),02(th)) € Ti[U2] and (o1(tY3),02(ty)) € Ti[Us] If either oy (Y1) or
oo(t}) term reduces to an error then the result holds immediately. The interest-
ing case is when they reduce to related values. Then suppose oy (tVt) —7 ¥,
o2(t)) —7 vy, where (91,v]) € Vi—;[U1] and (v2,v5) € Vi—;[Ua].

1. If ¥y = @y then vj = wuf, by canonical forms u; must be booleans pBool
and b. Suppose that b = true (the other case is analogous). Then tv —J
EQUl(tUz) :: UpMUs and ¢/ —7 <U2|_|U3 fé U2>02(t12). Then as (Ul(tUZ),UQ(t/z)) S
Ti[U2] and Lemma [8] Lemma |§| and backward preservation of the relation
the result holds.

2.

If o = el = Uy and @ € TERMpy, then suppose v} = (Ui L U,
(the other case is similar but the evidence combination never fails). Also
(@1,u)) € Up—;[U7]. Suppose €] o= e1 is not defined (which is equivalent to
e} Mey = 0), therefore

if e171 2 Uy then eq0q (tUQ) else 307 (tU3) — error <—
if (Bool <= Uy)(U; b Uj)u} then ... else ... — error

and the result follows. Suppose €] = €] o= €1 is defined. Then

)

if e167% 2 Uy then EQUl(tUQ) else 301 (t7%) —

if €/t1 then eq0y (t72) else e301 (tV?) =
if (Bool && Uy)(U; <= Ul)u then ... else ... —>
if (Bool €= U!)u/, then ... else ...

Then as (t1,u]) € Uk—;[U1] we proceed analogous to (1) and the result
holds.

Case (U+). Similar to the (Uapp) and (Uif) case.

References

1]
2]

3]

A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5(2):56—
68, 06 1940.

R. Garcia, A. M. Clark, and E. Tanter. Abstracting gradual typing. In 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2016), St Petersburg, FL, USA, Jan. 2016. ACM Press.

W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, pages 479-490. Academic Press, New York, 1980. Reprint
of 1969 article.

J. Siek and P. Wadler. Threesomes, with and without blame. In 87th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2010), pages 365-376. ACM Press, Jan. 2010.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, pages 81-92, Sept. 2006.

J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria for
gradual typing. In 1st Summit on Advances in Programming Languages (SNAPL
2015), pages 274-293, 2015.

	Gradual Union Types
	Overview
	The Static Language: STFL
	GTFL: Definitions
	Meaning of Gradual Unions
	Step 1: The Classic Interpretation
	Step 2: The Classic Set Interpretation
	Step 3: The Union Interpretation
	Step 4: The Stratified Interpretation

	Static Semantics of GTFL
	Consistent Predicates and Functions
	Inductive definitions
	Examples of type derivations

	Dynamic Semantics of GTFL

	Properties of GTFL
	Static Gradual Guarantee
	Type Safety
	Dynamic Gradual Guarantee

	Compiling GTFL to Threesomes
	Intermediate language: GTFL=>
	Cast Insertion
	Correctness of the Translational Semantics

