
Gradual Polymorphic Effects
Complete Definition and Soundness Proof

Technical Report TR/DCC-2015-2
University of Chile

July 2015

Matı́as Toro
PLEIAD Lab

Computer Science Department (DCC)
University of Chile
mtoro@dcc.uchile.cl

Éric Tanter
PLEIAD Lab

Computer Science Department (DCC)
University of Chile
etanter@dcc.uchile.cl

Contents

1 Introduction 2

2 Source Language 2
2.1 Syntax . 2
2.2 Static Semantics 2

3 Internal Language 3
3.1 Syntax . 3
3.2 Static Semantics 5
3.3 Dynamic Semantics 5

4 Source to Internal Language Translation 6

5 Auxiliary Functions and Definitions 7

6 Type Soundness 8
6.1 Soundness of Internal Language 8

6.1.1 Progress 8
6.1.2 Preservation 9

6.2 Translation Preserves Typing 10
6.3 Auxiliary Lemmas and Propositions 11

1. Introduction
What follows is a formalization of a gradual polymorphic effect system, which works as a privilege checking system. This
system combines the work of Lightweight Polymorphic Effects (hereafter, LPE) [5] and a Theory of Gradual Effect Checking
(hereafter, TGE) [1] to support gradual effects and effect polymorphism. Like in TGE, the system is a generic effect system,
following Marino and Millstein [3].

Section 2 describes the source language, including its syntax and static semantics. As is usual in accounts of gradually-
typed languages [1, 2, 6], the dynamic semantics is given indirectly through a translation to an internal language. The internal
language itself is presented in Section 3, and the translation from source programs to programs in the internal language is
formalized in Section 4. Section 5 gathers auxiliary definitions. Finally, the proof of type soundness is presented in Section 6.

2. Source Language
We now the core language with integrated support for gradual effect checking and effect polymorphism. The language is
inspired by TGE and LPE, is call Gradual Polymorphic Effect System (GPES).

2.1 Syntax

φ ∈ Priv, ξ ∈ CPriv = Priv ∪ {¿}
Φ ∈ PrivSet = P (Priv) , Ξ ∈ CPrivSet = P (CPriv)

v ::= unit | (λx : T . e)T ;Ξ;x Values
e ::= x | v | e e | e :: Ξ Terms

T ::= Unit | (x : T)
Ξ−→̄
x
T Types

Figure 1. Syntax of the source language

Figure 1 presents the syntax of GPES. As in TGE, the language is parameterized on some finite set of privileges Priv for
a given effect domain. Subeffecting is a partial order on effect privileges, denoted φ1 <: φ2. A consistent privilege, in CPriv,
can additionally be the unknown privilege ¿. A consistent privilege set Ξ is an element of the power set of CPriv, i.e. a set of
privileges that can include ¿.

A value can either be unit or a function. The main difference with TGE is that functions are fully annotated, including
the type of the argument T1, the return type T2, the latent (consistent) privilege set Ξ, and the relative effect variables x. A
term e can be a variable x, a value v, an application e e, or an effect ascription e :: Ξ. A type is either Unit or a function type
(x : T)

Ξ−→
x

T . Although functions have only one argument, the relative effect variables x can include variables defined in the
surrounding lexical context.

For instance, in a context Γ where f is defined, a function that takes a function g as argument, performs some output, and
applies both f and g, can be defined as follows:

(λg : Unit
>−→Unit)Unit;{@output};{f,g}

2.2 Static Semantics
The typing rules are presented in Figure 2.

Rule [Var] is self explanatory. Rule [Fn] typechecks the body of the function using the annotated privilege set Ξ1 and relative
effect variables x1, and verifies that the type of the body T ′ is a consistent subtype of the annotated return type T2.

To type an effect ascription (rule [Eff]), the ascribed privilege set is used to typecheck the inner expression. This rule is the
same as in TGE save for the polymorphic context and the fact that is uses consistent subcontainment to check that the ascribed
privilege set is valid in the current context.

Rule [App] is an adaptation of the corresponding TGE typing rule to support relative effects. The sub-expressions e1 and
e2 are typed using adjusted privilege sets (according to each domain). c̃heck verifies that the application is allowed with the
given permissions Ξ. A subtlety is that if the invoked function is effect-polymorphic, its latent effects are not only Ξ1, but also
include the latent effects of the relative effect variables of the functions in y that are not already present in the polymorphic
context x.

These additional latent effects are computed by the auxiliary function latentΓ;x(T) defined in [4]. The function needs access
to both the type environment Γ and the polymorphic context x to lookup the types of the relative effect variables. An extra

Ξ; Γ;x ` e : T Var
Γ(x) = T

Ξ; Γ;x ` x : T
Fn

Ξ1; Γ, x : T1;x1 ` e : T ′ T ′ .: T2

Ξ; Γ;x ` (λx : T1 . e)
T2;Ξ1;x1 : (x : T1)

Ξ1−−→
x1

T2

Eff

Ξ1; Γ;x ` e : T
Ξ1 @∼: Ξ

Ξ; Γ;x ` (e :: Ξ1) : T

App

ãdjust(Ξ); Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 : T2

Ξ1
′ = Ξ1 ∪ (∪f∈(y\x)latentΓ;x((Γ, y : T2)(f)))

Ξ1
′ @∼: Ξ T2 .: T1 c̃heck(Ξ)

Ξ; Γ;x ` e1 e2 : T3
AppP

Γ(f) = (y : T1)
Ξ1−−→
y

T3 ãdjust(Ξ); Γ;x ` e2 : T2

f ∈ x T2 .: T1 c̃heck(Ξ)

Ξ; Γ;x ` f e2 : T3

Figure 2. Type rules of the source language

subtlety is that the type of each f in y\x is obtained in an environment in which the argument y has type T2, not T1. This is to
account for effect polymorphism: the actual latent effects of the argument come from e2.

Rule [AppP] is a new rule for the application of functions that are the parameter of an enclosing effect-polymorphic function
(i.e. f ∈ x). The difference between [AppP] and [App] is very subtle: the typing rule [AppP] does not need to check if the
latent effects of the function being applied are consistently subcontained in the set of privileges of the enclosing application.
The reason is that in [AppP] the application is being polymorphic on f , meaning that the application is allowed to produce any
effect that f may produce.

Subtyping and Consistent Subtyping The typing rules rely on the definitions of subtyping and consistent subtyping presented
in Figure 3. The judgement of the consistent subtyping rules has the form Γ ` T ′ .: T where type T ′ is consistent subtype of
T . Rules [CSrefl] and [CSTrans] represent the reflexivity and transitivity rules respectively. Γ is used to calculate the privilege
sets of the relative effect variables of function types. [CSFun] represents the rule for consistent subtyping between function
types. Let us remember that the latent privilege set of a function typed T1

Ξ−→
x

T2 consist of two components: the privilege set

Ξ, and the latent effects of its relative effect variables x. For this, rule [CSFun] uses the relation (Ξ′, x′) - (Ξ, x) to compare
the effect of two function types. The privilege set Ξ′ must be consistently contained in Ξ and each relative effect variable

x′ ∈ x′ is either contained in the relative effect variables x, or its type Γ(x′) = (y : Ta)
Ξy−−→
y

Tb conforms to (Ξy, y) - (Ξ, x)

recursively.
Rules [SRefl], [STrans], [SFun] represent the subtyping rules which are identical to the consistent subtyping rules but using

subtyping and subcontained operators.
The auxiliary metafunction [x/x′]T replaces the relative effect variable x′ with x in type T .

3. Internal Language
GPES leaves many aspects of dynamic privilege checking implicit. This section introduces an internal language, GPESIL, that
makes these details explicit. GPES’s semantics are then defined by type-directed translation to GPESIL (Section 4).

3.1 Syntax
GPESIL is structured much like GPES but elaborates several concepts as shown in Figure 4.

Following TGE, the internal language includes a new term Error to denote runtime effect check failures. The has
operation checks for the availability of particular privilege sets at runtime, and the restrict operation restricts the privileges
available while evaluating its subexpression.

In addition, in order to support effect polymorphism and the cast compilation approach described later, the internal
language introduces a new application operator to denote primitive applications that are introduced internally as part of
the eta-expansion performed during translation. These applications should not interfere with effect checking (in TGE, where
casts are not compiled away but interpreted at runtime, the dynamic semantics use a direct substitution to avoid checking
wrapper applications; see Rule [E-Cast-Fn] in [1]). Because once again we need to be able to distinguish effect-polymorphic
applications, the new primitive operator •x is tagged with a variable x to represent a primitive application of a polymorphic
variable x.

Γ ` T ′ .: T CSRefl
Γ ` T .: T

CSTrans
Γ ` T1 .: T2 Γ ` T2 .: T3

Γ ` T1 .: T3

CSFun
Γ ` T1 .: T1

′ Γ, x : T1 ` (Ξ′, [x/x′]x′) - (Ξ, x) Γ, x : T1 ` [x/x′]T2
′ .: T2

Γ ` (x′ : T1
′)

Ξ′
−−→
x

T2
′ .: (x : T1)

Ξ−→
x′

T2

Γ ` (Ξ′, x′) - (Ξ, x) CCnf
Ξ′ @∼: Ξ ∀x′ ∈ x′.Γ ` x′ - (Ξ, x)

Γ ` (Ξ′, x′) - (Ξ, x)
Γ ` x - (Ξ, x) CCnfVar x ∈ x

Γ ` x - (Ξ, x)

CCnfRel
x /∈ x Γ(x) = (y : Ta)

Ξy−−→
y

Tb y /∈ x Γ, y : Ta ` (Ξy, y) - (Ξ, x)

Γ ` x - (Ξ, x)

Γ ` T ′ < : T SRefl
Γ ` T < : T

STrans
Γ ` T1 < : T2 Γ ` T2 < : T3

Γ ` T1 < : T3

SFun
Γ ` T1 < : T1

′ Γ, x : T1 ` (Ξ′, [x/x′]x′) � (Ξ, x) Γ, x : T1 ` [x/x′]T2
′ < : T2

Γ ` (x′ : T1
′)

Ξ′
−−→
x

T2
′ < : (x : T1)

Ξ−→
x′

T2

Γ ` (Ξ′, x′) � (Ξ, x) Cnf
Ξ′ ⊆: Ξ ∀x′ ∈ x′.Γ ` x′ � (Ξ, x)

Γ ` (Ξ′, x′) � (Ξ, x)
Γ ` x � (Ξ, x) CnfVar x ∈ x

Γ ` x � (Ξ, x)

CnfRel
x /∈ x Γ(x) = (y : Ta)

Ξy−−→
y

Tb y /∈ x Γ, y : Ta ` (Ξy, y) � (Ξ, x)

Γ ` x � (Ξ, x)

[x/x′]T

T = (y : T1)
Ξy−−→
y

T2 y /∈ {x, x′}

[x/x′]T = (y : [x/x′]T1)
Ξy−−−−→

[x/x′]y
[x/x′]T2

[x/x′]x [x/x′]x = y where yi =

{
x if xi = x′

xi otherwise

Figure 3. Subtyping and Consistent subtyping rules

Finally, GPESIL adds the corresponding frames to represent evaluation contexts in the small-step semantics. One for
applications and polymorphic applications f . Another frame for errors g. And last, a frame for the primitive operations h.

x ∈ Var, T ∈ Type, v ∈ Value, e ∈ Term

v ::= unit | (λx : T . e)T ;Ξ;x Values
e ::= x | v | e e | e•xe | Error | has Φ e | restrict Ξ e Terms

T ::= Unit | (x : T)
Ξ−→̄
x
T Types

f ::= � e | v � Frames
g ::= f | h | has Φ � | restrict Φ � Error Frames
h ::= �•xe | v•x� Primitives Frames

• , •⊥ where ∀x ∈ Var, ⊥ 6= x

Figure 4. Syntax of the internal language

3.2 Static Semantics
The type system of the internal language is presented in Figure 5. GPESIL mostly extends the source language with a few
critical differences.

In the internal language, effectful operations must have enough privileges to be performed. [IApp] and [IAppP] represent
the rules for application and polymorphic application. Both rules replace c̃heck with strict-check, consistent subtyping.: with
subtyping < : , and the consistent containment @∼: with containment ⊆. Rule [IAppP] new applies to the new polymorphic
application operator ◦ because polymorphic variables f may be casted during translation and therefore translated into new
expressions.

The primitive applications counterparts of rules [IApp] and [IAppP] rules are rules [IAprm] and [IAprmP] respectively. The
major difference is that the primitive rules do not perform a strict-check given that they are internal artefacts introduced by the
translation, and therefore should be “transparent” for static effect checking.

The restrict operator constrains its subexpression to be typable with a privilege set that is statically contained in the
union of its current privilege set and the latent effects of the relative variables x. For example the body of a map function
that only produces the effects of its argument Ξ1, can restrict its body to some privilege set smaller than Ξ1, otherwise no
restrictions could be inserted.

Ξ; Γ;x ` e : T IVar
Γ(x) = T

Ξ; Γ;x ` x : T
IUnit

Ξ; Γ;x ` unit : Unit

IApp

ãdjust(Ξ); Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 : T2

T2 < : T1 |Ξ1 ∪ lat(Γ, y : T2, y, x)| ⊆: |Ξ|
e1 /∈ x strict-check(Ξ)

Ξ; Γ;x ` e1 e2 : T3
IAppP

Γ(f) = (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 : T2

f ∈ x T2 < : T1 strict-check(Ξ)

Ξ; Γ;x ` f e2 : T3

IAprm

Ξ; Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

Ξ; Γ;x ` e2 : T2

e1 6= x T2 < : T1 |Ξ1 ∪ lat(Γ, y, x)| ⊆: |Ξ|
Ξ; Γ;x ` e1•xe2 : T3

IAprmP

Γ(f) = (y : T1)
Ξ1−−→
y

T3

f = x Ξ; Γ;x ` e2 : T2 T2 < : T1

Ξ; Γ;x ` f•xe2 : T3

IHas
(Φ ∪ Ξ); Γ;x ` e : T

Ξ; Γ;x ` has Φ e : T
IRst

Ξ1; Γ;x ` e : T
Ξ1 ≤ Ξ ∪ lat(Γ, x, ∅)

Ξ; Γ;x ` restrict Ξ1 e : T
IError

Ξ; Γ;x ` Error : T

IFn
Ξ1; Γ, x : T1;x1 ` e : T ′ T ′ < : T2

Ξ; Γ;x ` (λx : T1 . e)
T2;Ξ1;x1 : (x : T1)

Ξ1−−→
x1

T2

Figure 5. Type rules of the internal language

3.3 Dynamic Semantics
GPESIL’s dynamic semantics are presented in Figure 6. The evaluation judgement has the form Φ ` e → e′, meaning that e
reduces to e′ under the current privilege set Φ. The dynamic operations that are inserted either restrict the current privilege set
(restrict) or check the current privilege set for a given effect privilege (has). These operations are inserted whenever the
unknown effect is used in a typing derivation, to enforce the corresponding dynamic checks. If an effect check fails, a runtime
effect error is raised.

The [EFrame], [EError] and [EFrameprim] are rules for reducing context frames f , g, and h respectively. The [EApp] and
[EAppP] describes how an application of a lambda with a value reduces to the body by replacing the variable xwith the value v.
Both rules are guarded by a check. Just like [1], if this check fails, then the program is stuck; if programs never get stuck, then
any effectful operation that is encountered must have the proper privileges to run. The rule [EAprm] is the rule for primitive
applications respectively.

The [EHasT] rule reduces the expression e only if the checked privilege set Φ′ is contained in the current privilege set. The
[EHasV] rule describes how a has operation applied to a value reduces to the same value (values do not produce effects).

Φ ` e→ e′ EFrame
adjust(Φ) ` e→ e′

Φ ` f [e]→ f [e′]
EFrameprim Φ ` e→ e′

Φ ` h[e]→ h[e′]
EError

Φ ` g[Error]→ Error

EApp
check(Φ)

Φ ` (λx : T1 . e)
T2;Ξ1;x1 v → [v/x]e

EHasT
Φ′ ⊆ Φ Φ ` e→ e′

Φ ` has Φ′ e→ has Φ′ e′
EHasV

Φ ` has Φ′ v → v

EHasF
Φ′ 6⊆ Φ

Φ ` has Φ e→ Error
ERst

Φ′′ = max({Φ′ ∈ γ(Ξ) | Φ′ ⊆: Φ} Φ′′ ` e→ e′

Φ ` restrict Ξ e→ restrict Ξ e′

ERstV
Φ ` restrict Ξ v → v

EAprm
Φ ` (λx : T1 . e)

T2;Ξ1;x1•yv → [v/x]e

Figure 6. Evaluation rules of the internal language

In case the checked privilege set is not contained in the current privilege set, rule [EHasF] reduces to an Error which is
propagated using [EError]. The [ERst] reduces a restricted expression e using the maximal privilege set Φ′′ that is subcontained
in the current privilege set Φ. The maximal set it is computed using the function max as shown in Figure 8 (a direct adaptation
of the definition of TGE to account for subeffecting). The [ERstV] removes restrict on values.

4. Source to Internal Language Translation

Ξ; Γ;x ` e⇒ e′ : T TVar
Γ(x) = T

Ξ; Γ;x ` x⇒ x : T
TUnit

Ξ; Γ;x ` unit⇒ unit : Unit

TFn
Ξ1; Γ, x : T1;x1 ` e⇒ e′ : T ′ T ′ .: T2

Ξ; Γ;x ` (λx : T1 . e)
T2;Ξ1;x1 ⇒ (λx : T1 . e

′)T2;Ξ1;x1 : (x : T1)
Ξ1−−→
x1

T2

TApp

ãdjust(Ξ); Γ;x ` e1 ⇒ e1
′ : (y : T1)

Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 ⇒ e2
′ : T2

Ξ1
′ = Ξ1 ∪ lat(Γ, y : T2, y, x) Ξ1

′ @∼: Ξ T2 .: T1

e1
′′ = 〈〈(y : T2)

Ξ−→
x
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉trueΓ e1
′

e1 /∈ x c̃heck(Ξ) Φ = ∆(Ξ)

Ξ; Γ;x ` e1 e2 ⇒ insert-has?(Φ, e1
′′ e2

′) : T3

TAppP

Γ(f) = (y : T1)
Ξ1−−→
y

T3 ãdjust(Ξ); Γ;x ` e2 ⇒ e2
′ : T2

ef = 〈〈(y : T2)
Ξ−→
x
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f

f ∈ x T2 .: T1 c̃heck(Ξ) Φ = ∆(Ξ)

Ξ; Γ;x ` f e2 ⇒ insert-has?(Φ, ef e2
′) : T3

TEff
Ξ1; Γ;x ` e⇒ e′ : T Ξ1 @∼: Ξ Φ = (|Ξ1|\|Ξ|)

Ξ; Γ;x ` (e :: Ξ1)⇒ insert-has?(Φ,restrict Ξ1 e
′) : T

Figure 7. Transformation rules to the internal language

The dynamic semantics of GPES are defined by augmenting its type system to generate GPESIL expressions. The type-
directed elaboration judgement has the form Ξ; Γ;x ` e⇒ e′ : T where e is translated into e′. The translation uses static type
and effect information from the source program to determine where runtime checks must be inserted.

Most of this translation is straightforward. Rule [TApp] describes the non-polymorphic function application. There are two
main differences compared to [App]. First, a runtime check may be introduced using insert-has?, to determine whether the
statically-missing privileges in Ξ to perform the application are available at runtime. This privilege set Φ is obtained using the
metafunction ∆ defined in [1] and presented in Figure 8, which computes the minimal set of additional privileges needed to
safely pass the c̃heck verification. The metafunction insert-has? inserts a dynamic check for privileges only if the privilege set
Φ is not empty. Second, a higher-order cast may be introduced to ensure that e1

′ has the proper type to accept e2
′ as argument.

A subtlety here is that the relative effects of e1
′ must be taken into consideration when inserting the cast. The cast is compiled

at translation time as seen in Figure 8 and discussed further in Section 5 below.

Rule [TAppP] is the transformation rule for applications of functions that are the parameter of an enclosing effect-
polymorphic function. The compiled cast metafunction is inserted with a flag indicating to not insert dynamic checks for
the effects of f .

5. Auxiliary Functions and Definitions

latentΓ;x(T)
Ξp = ∪f∈(y\x)latentΓ;x((Γ, y : T1)(f)))

latentΓ;x((y : T1)
Ξ−→
y
T2) = Ξ ∪ Ξp

lat(Γ, x1, x) = (∪f∈(x1\x)latentΓ;x(Γ(f)))

〈〈T2 ⇐ T1〉〉
c

Γ e =


e if T1 < : T2

(λf : T1 . 〈T2 ⇐ T1
′〉 cΓ f)T2

′;⊥;∅•e if T1 6< : T2, and e 6= x

〈T2 ⇐ T1
′〉 cΓ x if T1 6< : T2, and e = x

Where T1
′ = (x2 : T11)

Ξ1−−−−−−→
[x2/x1]x1

T12, if T1 = (x1 : T11)
Ξ1−−→
x1

T12, and T2 = (x2 : T21)
Ξ2−−→
x2

T22

〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x2 : T11)
Ξ1−−→
x1

T12〉
true

Γ f =

(λx2 : T21 . 〈〈T22 ⇐ T12〉〉
true

Γ restrict
(
Ξ2 ∪ lat(Γ′, x2, ∅)

)
has |Ξ1 ∪ lat(Γ′, x1, x2)|\|Ξ2| f•(〈〈T11 ⇐ T21〉〉

x2 6∈ x2

Γ x2))T22
′;Ξ2;x2

Where Γ′ = (Γ, x2 : T21)

〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x2 : T11)
Ξ1−−→
x1

T12〉
false

Γ f =

(λx2 : T21 . 〈〈T22 ⇐ T12〉〉
true

Γ restrict
(
Ξ2 ∪ lat(Γ′, x2, ∅)

)
f•f (〈〈T11 ⇐ T21〉〉

x2 6∈ x2

Γ x2))T22
′;Ξ2;x2

Where Γ′ = (Γ, x2 : T21)

∆(Ξ) =
(⋃

mins({Φ ∈ γ(Ξ) | check(Φ)})
)
\|Ξ|

mins(Υ) =
{

Φ ∈ Υ | ∀Φ′ ∈ Υ. Φ′ 6⊂: Φ
}

strict-check(Ξ) ⇐⇒ check(Φ) for all Φ ∈ γ(Ξ).

max(Υ) = {Φ ∈ Υ | ∀Φ′ ∈ Υ,Φ′ ⊆: Φ}

Ξ1 ≤ Ξ2 ⇐⇒ |Ξ1| ⊆: |Ξ2|

Figure 8. Auxiliary functions and definitions used in the gradual polymorphic effect system

The auxiliary functions and definitions are presented in Figure 8. The latent metafunction calculates the latent effects of a
function type. It is the union of the concrete effect Ξ and the latent effects of its relative effects y (analysing the relative effects
types defined in Γ).

The cast compilation metafunction 〈〈·〉〉cΓ inserts a cast only if static subtyping does not hold. The first novelty with respect
to TGE is the boolean variable c, which indicates the cast is for non-polymorphic applications (c = true) or polymorphic
applications (c = false). When the cast is for non-polymorphic application, the cast must include the has operator and
must perform a primitive application inside the eta-abstraction (do not check for application privileges). On the other hand if
the cast is for polymorphic applications the cast must not include the has check and must perform a primitive polymorphic
application inside the eta-abstraction (do not check for application privileges and do not check that the privilege set of the
method is contained in the current privilege set).

The second novelty is that casts are transformed away during translation, in contrast to TGE where casts are new forms
dealt with in the runtime semantics. For this, if the casted expression e is not a variable, it must be first reduced to a value and

then perform the has and restrict operations. Therefore, the casted expression e is applied to a new lambda. In case the
expression e is a variable, no primitive application must be inserted.

The general restrict /has scheme is the same as in TGE, except for two crucial differences to regain the flexibility of
effect polymorphism. First, the has check is conditioned to the check flag c as previously mentioned. Second, the inserted
restrict and has must include the latent effects of the relative effect variables of both types, because they represent the
maximal privilege set that x2 and x1 may produce. This adaptation of restrict /has corresponds to the flexibility of effect
polymorphism: applying a function on which the expression is polymorphic is considered to not produce any effect (so, no
has), but the permitted effects are bounded by the declared latent effects of that function (so, a richer restrict). Finally,
the cast on the return type always inserts a dynamic check (there is no polymorphism on return values). In the translation rule
[TApp], the higher-order cast starts with the check flag set to true, because the application is not polymorphic, while in rule
[TAppP], the outer check flag is false.

The insert-has? metafunction only inserts a has if Φ is not empty. ∆ calculates the minimal static privilege set necessary
to safely pass the check function. mins and max metafunctions calculates the minimal and maximal privilege set over a set of
privilege set. strict-check(Ξ) is defined as safely pass the check function for all concrete privilege set Φ contained in γ(Ξ).
Finally the ≤ operator is defined as consistent subcontainment between two concrete privilege sets.

6. Type Soundness
This section establishes type soundness of GPES. First we prove soundness of GPESIL (Section 6.1) through progress
(Section 6.1.1) and preservation (Section 6.1.2). Then we prove that the translation from GPES to GPESIL preserves typing
(Section 6.2), thereby establishing type soundness for GPES. Auxiliary lemmas and propositions used in the proofs of the main
theorems are proven in Section 6.3.

6.1 Soundness of Internal Language
6.1.1 Progress
Theorem 1. (Progress).
Suppose Ξ; ∅; ∅ ` e : T . Then either e is a value v, an Error, or Φ ` e→ e′ for all privilege sets Φ ∈ γ(Ξ).

Proof. By structural induction over derivations of Ξ; ∅;x ` e : T .

Case ([IUnit] and [IFn]). Both unit and (λx : T1 . e)
T2;Ξ1;x1 are values.

Case ([IVar], [IAppP], [IAprmP]). This case cannot happen by hypothesis.

Case ([IError]). Error is an Error.

Case ([IRst]). By induction hyphothesis, e is either

• A value, in which case [ERstV] can be applied to restrict Ξ′ e.
• An error, in which case [EError] can be applied with g = restrict Ξ′ �.
• ∀Φ′ ∈ γ(Ξ′),Φ′ ` e → e′, in particular for the Φ′′ in the premise of [ERst], thus [ERst] can be applied. This Φ′′ exists

because Ξ′ ≤ Ξ and the polymorphic context is empty. Thus, ∃Φ′ ∈ γ(Ξ′) such that Φ′ ⊆: Φ.

Case ([IHas]). By induction hypothesis, e is either

• a value, in which case [EHasV] applies.
• An error in which case rule [EError] applies with g = has Φ �.
• ∀Φ′ ∈ γ(Φ ∪ Ξ),Φ′ ` e→ e′. We also know that for any Φ ∈ γ(Ξ), either

Φ′ 6⊆: Φ. In this case, rule [EHasF] applies.
Φ′ ⊆: Φ. In this case, since Φ′ ⊆: Φ and Φ ∈ γ(Ξ), then also Φ ∈ γ(Φ′ ∪ Ξ). Thus by hypothesis, Φ ` e→ e′ and thus
we can apply rule [EHasT].

Case ([IApp]). By induction hypothesis, e1 is either

• An Error, in which case [EError] applies with g = � e.
• ∀Φ′ ∈ γ(ãdjust(Ξ)),Φ′ ` e1 → e1

′. By Theorem 16, since Φ ∈ γ(Ξ), ãdjust(Φ) ∈ γ(ãdjust(Ξ)) and thus
ãdjust(Φ) ` e1 → e1

′ and rule [EFrame] can be applied.

• A value. By Lemma 15 then e1 = (λx : T1 . e)
T2;Ξ1;x

At the same time, also by induction hyphotesis, e2 is either:
An Error, in which case [EError] applies with g = v �.
∀Φ′ ∈ γ(ãdjust(Ξ)),Φ′ ` e2 → e2

′. In which case by analogous arguments to the same case for e1, rule [EFrame]
can be applied.
A value. By typing premises, also strict-check(Ξ). By definition of strict-check, then ∀Φ ∈ γ(Ξ).check(Φ), and thus for
any Φ ∈ γ(Ξ) rule [EApp] can also be applied.

Case ([IAprm]). By induction hypothesis, e1 is either

• An Error, in which case [EError] applies with h = � e.
• ∀Φ′ ∈ γ(Ξ),Φ′ ` e1 → e1

′. Since Φ ∈ γ(Ξ) and thus Φ ` e1 → e1
′ and rule [EFrameprim] can be applied.

• A value. By Lemma 15 then e1 = (λx : T1 . e)
T2;Ξ1;x

At the same time, also by induction hyphotesis, e2 is either:
An Error, in which case [EError] applies with h = v �.
∀Φ′ ∈ γ(Ξ),Φ′ ` e2 → e2

′. In which case by analogous arguments to the same case for e1, rule [EFrameprim] can be
applied.
A value. In this case [EAprm] can be applied.

6.1.2 Preservation
Theorem 2 (Preservation). If Ξ; Γ;x ` e : T , and Φ ` e→ e′ for Φ ∈ γ(Ξ), then Ξ; Γ;x ` e′ : T ′ and T ′ < : T

Proof. By structural induction over the typing derivation and the applicable evaluation rules.

Case ([IFn], [IUnit], [IVar], [IAppP],[IAprmP] and [IError]). These cases are trivial since there is no rule in the operational
semantics that takes these expressions as premises to step.

Case ([IApp] and [EFrame] with f = � t). Thanks to Theorem 16, we can use the induction hypothesis to establish that

ãdjust(Ξ); Γ;x ` e1
′ : T1

′ Ξ1
′

−−→
y′

T3
′ and T1

′ Ξ1
′

−−→
y′

T3
′ < : T1

Ξ1−−→
y

T3
′. By definition of subtyping, T1 < : T1

′ and

therefore T2 < : T1
′. By definition of latent effect and subtyping |Ξ1

′ ∪ lat(Γ, y′, x)| ⊆: |Ξ1 ∪ lat(Γ, y, x)| and therefore
|Ξ1

′ ∪ lat(Γ′, y′, x)| ⊆: |Ξ|. Thus we can reuse rule [IApp] to establish that Ξ; Γ;x ` e1
′ e2 : T3

′ and we know that T3
′ < : T3.

Case ([IApp] and [EFrame] with f = v �). By Theorem 16 we can use the induction hypothesis to establish that
ãdjust(Ξ); Γ;x ` e2

′ : T2
′ and T2

′ < : T2.
Since T2 < : T1, then also T2

′ < : T1 and we can reuse rule [IApp] to establish that Ξ; Γ;x ` e1 e2
′ : T3.

Case ([IApp] and [EApp]). In this case e1 = (λy : T1 . e)
T3;Ξ1;y and Ξ1; Γ, y : T1; y ` e : T3.

Thus by Theorem 18, Ξ1; Γ; y ` [e2/y] e : T3, with T3
′ < : T3. Then by Proposition 14, Ξ; Γ;x ` [e2/y] e : T3

′, T3
′ < : T3.

Case ([IHas] and [EHasT]). e = has Φ e′. Therefore, application of [EHasT] takes the form
Φ ⊆: Φ′ Φ′ ` e′ → e′′

Φ′ ` has Φ e′ → has Φ e′′
with Φ′ ∈ γ(Ξ).
Since Φ ⊆: Φ′, then also Φ′ ∈ γ(Φ ∪ Ξ) and then by induction hypothesis Φ ∪ Ξ; Γ;x ` e′′ : T ′, T ′ < : T . We can then use
rule [IHas] to establish that Ξ; Γ;x ` has Φ e′′ : T ′ too.

Case ([IHas] and [EHasV]). e = has Φ v. Ξ; Γ;x ` e : T and Φ ` has Φ v → v. By induction hypothesis (Φ ∪ Ξ); Γ;x `
v : T . Using Lemma 17 we can conclude that Ξ; Γ;x ` v : T .

Case ([IHas] and [EHasF]). Trivial by using rule [IError]

Case ([IRst] and [ERst]). Since by rule [ERst] Φ′′ ∈ γ(Ξ1), we can use the induction hypothesis to establish that Ξ1; Γ;x `
e′ : T ′, T ′ < : T . Then we reuse rule [IRst] to establish that Ξ; Γ;x ` restrict Ξ1 e

′ : T

Case ([IRst] and [ERstV]). By induction hypothesis and using Lemma 17 using the same argument of [IHas] and [EHasV].

Case ([IAprm] and [EFrameprim] with h = �•xe). Same argument of case [IApp] and [EFrame] but using [IAprm] instead
of [IApp].

Case ([IAprm] and [EFrameprim] with h = v•x�). By Theorem 16 we can use the induction hypothesis to establish that
adjust(Ξ); Γ;x ` e2

′ : T2
′ and T2

′ < : T2.
Since T2 < : T1, then also T2

′ < : T1 and we can reuse rule [IAprm] to establish that Ξ; Γ;x ` v•xe2
′ : T3.

Case ([IAprm] and [EAprm]). In this case e1 = (λy : T1 . e)
T3;Ξ1;y and e2 = v.

1. By assumption
(a) Ξ; Γ;x ` (λy : T1 . e)

T3;Ξ1;y•xv : T3

(b) Ξ1; Γ, y : T1; y ` e : T3

(c) Ξ; Γ;x ` v : T2 and T2 < : T1.
(d) |Ξ1 ∪ lat(Γ, y, x)| ⊆: |Ξ|

2. We need to prove that Ξ; Γ;x ` [v/y] e : T3
′ with T3

′ < : T3.
3. We proceed by cases for [v/y] e.

(a) y /∈ y
i. By Theorem 18, Ξ1; Γ; y ` [v/y] e : T3

′, with T3
′ < : T3

ii. By (1.d) and proposition 14, Ξ; Γ;x ` [v/y] e : T3
′, T3

′ < : T3.
(b) y ∈ y.

i. By Theorem 19, Ξ1 ∪ latentΓ;∅(T2); Γ; y\y ` [v/y] e : T3
′, with T3

′ < : T3

ii. As y /∈ x and y ∈ y, by definition of latent function latentΓ;∅(T2) ∪ lat(Γ, y\y, x) = lat((Γ, y : T2), y, x)

iii. As y ∈ y and (1.c), then by definition of latent function lat((Γ, y : T2), y, x) ⊆ lat(Γ, y, x)

iv. By (3.b.ii), (1.d) and Proposition 14, Ξ; Γ;x ` [v/y] e : T3
′, T3

′ < : T3.

6.2 Translation Preserves Typing
Theorem 3 (Translation preserves typing). If Ξ; Γ;x ` e⇒ e′ : T in the source language then Ξ; Γ;x ` e′ : T in the internal
language.

Proof. By Case analysis

Case ([TUnit] and [TVar]). Using the rule premises we can trivially apply rules [IUnit] and [IVar], respectively.

Case ([TApp]). 1. By assumption
(a) Ξ; Γ;x ` e1 e2 ⇒ insert-has?(Φ, e1

′′ e2
′)

2. By induction on 1a

(a) ãdjust(Ξ); Γ;x ` e1
′ : (y : T1)

Ξ1−−→
y

T3

(b) ãdjust(Ξ); Γ;x ` e2
′ : T2

3. We also know that T2 .: T1 and Ξ1
′ @∼: Ξ, then (y : T1)

Ξ1−−→
y

T3 . (y : T2)
Ξ−→
x
T3.

4. Since e1
′ /∈ x, then ãdjust(Ξ); Γ;x ` 〈〈(y : T2)

Ξ−→
x

T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉trueΓ e1
′ : (y : T2

′)
Ξ′

−−→
z

T3 and

(y : T2
′)

Ξ′

−−→
z

T3 < : (y : T2)
Ξ−→
x
T3 by 1a, 3 and proposition 21.

5. Since c̃heck(Ξ), by lemma 20, we know that strict-check(∆(Ξ) ∪ Ξ)

6. Finally we proceed on the cases for insert-has?.
(a) Φ = ∅. In this case, we also know that strict-check(Ξ) because ∅ ∪ Ξ = Ξ. Then we can apply rule [IApp] to establish

that Ξ; Γ;x ` (〈〈(y : T2)
Ξ−→
x
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉trueΓ e1
′) e2 : T3

(b) Φ 6= ∅
i. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` 〈〈(y : T2)

Ξ−→
x

T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉trueΓ e1
′ : (y : T2

′)
Ξ′

−−→
z

T3 by 4, privilege

monotonicity and subsumption proposition 14
ii. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` e2

′ : T2 by 2b, privilege monotonicity and subsumption proposition 14

iii. ∆(Ξ) ∪ Ξ; Γ;x `
(
〈〈(y : T2)

Ξ−→
x
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉trueΓ e1
′) e2

′ : T3 by i, ii, 5 and [IApp]

iv. Ξ; Γ;x ` has ∆(Ξ)
((
〈〈(y : T2)

Ξ−→
x
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉trueΓ e1
′) e2

)
: T3 by [IHas]

Case ([TAppP]). 1. By assumption
(a) Ξ; Γ;x ` f e2 ⇒ insert-has?(Φ, ef e2

′)

(b) f ∈ x
2. ãdjust(Ξ); Γ;x ` e2

′ : T2, by induction on 1a.
3. We also know that T2 .: T1.

4. Since c̃heck(Ξ), by 20, we know that strict-check(∆(Ξ) ∪ Ξ)

5. We proceed by cases for 〈〈(y : T2)
Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f

Case ((y : T1)
Ξ1−−→
y

T3 < : (y : T2)
Ξ−→
f
T3). Then

(a) 〈〈(y : T2)
Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f = f

(b) Finally we proceed on the cases for insert-has?.
i. Φ = ∅. In this case, we also know that strict-check(Ξ) because ∅ ∪ Ξ = Ξ. We can apply rule [IAppP], to establish

that Ξ; Γ;x ` f e2 : T3.
ii. Φ 6= ∅

A. Γ(f) = (y : T1)
Ξ1−−→
y

T3

B. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` e2
′ : T2 by 2b, privilege monotonicity and subsumption proposition 14

C. ∆(Ξ) ∪ Ξ; Γ;x ` f e2
′ : T3 by A, B, 1b, 4 and [IAppP].

D. Ξ; Γ;x ` has ∆(Ξ)
((
〈〈(y : T2)

Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f
)
e2

)
: T3 by [IHas]

Case ((y : T1)
Ξ1−−→
y

T3 6< : (y : T2)
Ξ−→
f
T3). Then

(a) 〈〈(y : T2)
Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f = 〈(y : T2)
Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉falseΓl
f

(b) ãdjust(Ξ); Γ;x ` 〈(y : T2)
Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉falseΓl
f : (y : T2)

Ξ−→
f
T3 from proposition 22.

(c) For 1b: |Ξ ∪ lat(Γ, {f}, x)| ⊆: |Ξ|
(d) Finally we proceed on the cases for insert-has?.

i. Φ = ∅. In this case, we also know that strict-check(Ξ) because ∅ ∪ Ξ = Ξ. Then we can apply [IApp] to establish
that Ξ; Γ;x ` (〈〈(y : T2)

Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f) e2 : T3.

ii. Φ 6= ∅
A. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` 〈(y : T2)

Ξ−→
f

T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉falseΓl
f : (y : T2)

Ξ−→
f

T3 by 4, privilege

monotonicity and subsumption proposition 14
B. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` e2

′ : T2 by 2b, privilege monotonicity and subsumption proposition 14

C. ∆(Ξ) ∪ Ξ; Γ;x `
(
〈〈(y : T2)

Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f
)
e2

′ : T3 by A, B, 4 and (c).

D. Ξ; Γ;x ` has ∆(Ξ)
((
〈〈(y : T2)

Ξ−→
f
T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f
)
e2

′
)

: T3 by [IHas]

6.3 Auxiliary Lemmas and Propositions
Property 1 (Privilege Monotonicity).

• If Φ1 ⊆: Φ2 then check(Φ1) =⇒ check(Φ2);
• If Φ1 ⊆: Φ2 then adjust(Φ1) ⊆: adjust(Φ2).

Definition 1 (Consistent Adjust).
Let ãdjust : CPrivSet→ CPrivSet be defined as follows:

ãdjust(Ξ) = α ({adjust(Φ) |Φ ∈ γ (Ξ)}) .

Lemma 4. ∀Φ ∈ γ(Ξ), |Ξ| ⊆: Φ.

Proof. By definition of |·|,
|Ξ| =

⋂
Φ∈γ(Ξ)

Φ

and then the lemma follows by definition of intersection.

Proposition 5. |Ξ| = Ξ\{¿}

Proof. By cases on the definition of γ.

Case (¿ /∈ Ξ). Then |Ξ| =
⋂
{Ξ} = Ξ = Ξ\{¿}.

Case (¿ ∈ Ξ). Then |Ξ| =
⋂
{(Ξ\{¿}) ∪ Φ|Φ ∈ P (PrivSet)} = Ξ\{¿}

Lemma 6. |Ξ| ∈ γ(Ξ).

Proof. By cases on the definition of γ:

Case (¿ 6∈ Ξ). Since γ produces a singleton with Ξ, intersection over the singleton retrieves Ξ.

Case (¿ ∈ Ξ). Since ∅ ∈ P (CPrivSet), Ξ \ {¿} ∈ γ(Ξ), which also is the intersection of every possible set in γ(Ξ).

Lemma 7. Ξ1 ⊆: Ξ2 ⇒ Ξ1 ≤ Ξ2.

Proof. By Proposition 5 and definition of ⊆, Ξ1 ⊆: Ξ2, which is the definition of ≤.

Lemma 8. Ξ1 ≤ Ξ2 and strict-check(Ξ1)⇒ strict-check(Ξ2)

Proof. Since strict-check(Ξ1), then ∀Φ ∈ γ(Ξ1), check(Φ). In particular, by Lemma 6, check(|Ξ1|). By Privilege Monotonic-
ity Property 1 for check, therefore, check(|Ξ2|). Then by Property 1 for check and by lemma 4, check(Φ) ∀Φ ∈ Ξ2 and thus
strict-check(Ξ2).

Lemma 9. If strict-check(Ξ1) and Ξ1 ⊆: Ξ2 then strict-check(Ξ2).

Proof. By lemma 7, Ξ1 ≤ Ξ2. Therefore, the lemma follows from Lemma 8.

Lemma 10. |α(Υ)| =
⋂

Υ, for Υ 6= ∅.

Proof. By cases on the definition of α(Υ).

Case (Υ = {Φ} branch). then Φ = α(Υ), and since dom (α) = P (PrivSet), ¿ 6∈ Φ. Therefore γ(Φ) = Υ, and therefore by
definition of |·|, |α(Υ)| =

⋂
Υ.

Case (otherwise branch). Then α(Υ) = (
⋂

Υ) ∪ {¿}. Thus |α(Υ)| =
⋂
{(
⋂

Υ) ∪ Φ|Φ ∈ P (PrivSet)} and thus |α(Υ)| =⋂
Υ.

Lemma 11. If
⋂

(Υ1) ∈ Υ1 and
⋂

(Υ1) ⊆:
⋂

(Υ2), then
⋂
{adjust(Φ) |∀Φ ∈ Υ1} ⊆:

⋂
{adjust(Φ) |∀Φ ∈ Υ2}.

Proof. Suppose
⋂

(Υ1) ∈ Υ1 and
⋂

(Υ1) ⊆:
⋂

(Υ2). Now suppose φ ∈
⋂
{adjust(Φ) |∀Φ ∈ Υ1}. Then since

⋂
(Υ1) ∈ Υ1,

in particular φ ∈ adjust(
⋂

(Υ1)) too.
Now let Φ ∈ Υ2. Since

⋂
(Υ1) ⊆:

⋂
(Υ2), it follows that

⋂
(Υ1) ⊆: Φ. So by monotonicity, φ ∈ adjust(Φ).

Thus, since Φ is arbitrary, φ ∈ adjust(Φ) for all Φ ∈ Υ2 and thus φ ∈
⋂
{adjust(Φ) |∀Φ ∈ Υ2}.

Lemma 12. If Ξ1 ≤ Ξ2 then ãdjust(Ξ1) ≤ ãdjust(Ξ2)

Proof. By definition of ≤ and |·|,
⋂

(γ(Ξ1)) ⊆:
⋂

(γ(Ξ2)). Also, by Lemma 6,
⋂

(γ(Ξ1)) ∈ γ(Ξ1). Thus, by Lemma 11,⋂
{adjust(Φ) |∀Φ ∈ γ(Ξ1)} ⊆:

⋂
{adjust(Φ) |∀Φ ∈ γ(Ξ2)}.

Given that by definition of γ, for any Ξ γ(Ξ) 6= ∅, we can infer by Lemma 10 that |α({adjust(Φ) |∀Φ ∈ γ(Ξ1)})| ⊆:

|α({adjust(Φ|∀Φ ∈ γ(Ξ2))})|. By definition of ãdjust, this is equivalent to |ãdjust(Ξ1)| ⊆: |ãdjust(Ξ2)|, which at the same
time is the definition of ãdjust(Ξ1) ≤ ãdjust(Ξ2).

Lemma 13. If Ξ1; Γ;x ` e : T and Ξ1 ∪ lat(Γ, x, z) ≤ Ξ2, then Ξ2; Γ; z ` e : T .

Proof. By structural induction over the typing derivations for Ξ1; Γ;x ` e : T .

Case (Rules [IFn], [IUnit], [IVar], [IError]). All of these rules do not enforce a restriction between the Ξ2 in the conclusions
and any Ξ (if existent) in the premises, so the same rule can be directly re-used to infer Ξ2; Γ;x ` e : T .

Case (Rule [IApp]). By lemma 12, since Ξ1 ∪ lat(Γ, x, z) ≤ Ξ2, ãdjust(Ξ1 ∪ lat(Γ, x, z)) ≤ ãdjust(Ξ2). By property ??
ãdjust(Ξ1) ∪ lat(Γ, x, z) ≤ ãdjust(Ξ1 ∪ lat(Γ, x, z)), then ãdjust(Ξ1) ∪ lat(Γ, x, z) ≤ Ξ2.

Thus by induction hypothesis, we can infer both that ãdjust(Ξ2); Γ; z ` e1 : T1
Ξ′

−−→
y

T3 and that ãdjust(Ξ2); Γ;x ` e2 : T2.

By Lemma 8, we also know that strict-check(Ξ2).
By hypothesis we also know that T2 < : T1 and |Ξ′ ∪ lat(Γ, y, x)| ⊆: |Ξ1|, and then we can use rule [IApprm] to establish that
Ξ2; Γ;x ` e1 e2 : T3.

Case (Rule [IAppP]). By lemma 12, since Ξ1 ∪ lat(Γ, x, z) ≤ Ξ2, ãdjust(Ξ1 ∪ lat(Γ, x, z)) ≤ ãdjust(Ξ2). By property ??
ãdjust(Ξ1) ∪ lat(Γ, x, z) ≤ ãdjust(Ξ1 ∪ lat(Γ, x, z)), then ãdjust(Ξ1) ∪ lat(Γ, x, z) ≤ Ξ2.

Thus by induction hypothesis, we can infer both that ãdjust(Ξ2); Γ;x ` f : T1
Ξ′

−−→
y

T3 and that ãdjust(Ξ2); Γ;x ` e2 : T2.

By Lemma 8, we also know that strict-check(Ξ2).
By hypothesis we also know that T2 < : T1 and then we can use rule [IAppP] to establish that Ξ2; Γ;x ` f e2 : T3.

Case (Rule [IAprm]). Similar argument to rule [IApp] without the need of lemma 8.

Case (Rule [IAprmP]). Similar argument to rule [IAppP] without the need of lemma 8.

Case ([IHas]). Since by hypothesis, |Ξ1 ∪ lat(Γ, x, z)| ⊆: |Ξ2|, in particular we know that Φ ∪ |Ξ1 ∪ lat(Γ, x, z)| ⊆: Φ ∪ Ξ2.
We know that |Φ∪Ξ∪ lat(Γ, x, z)| = Φ∪|Ξ|, then |Φ∪Ξ1∪ lat(Γ, x, z)| ⊆: |Φ∪Ξ2| and thus Φ∪Ξ1∪ lat(Γ, x, z) ≤ Φ∪Ξ2.
By induction hypothesis, Φ ∪ Ξ2; Γ; z ` e : T . Then we can use rule [IHas] to establish that Ξ2; Γ; z ` has Φ e : T .

Case (Rule [IRst]). (Ξ1; Γ;x ` restrict Ξ′ e : T)
By hypothesis we know that Ξ′ ≤ Ξ1∪lat(Γ, x, ∅). By definition of lat function, the relation Ξ1∪lat(Γ, x, z) ≤ Ξ2 is equivalent
to Ξ1 ∪ lat(Γ, x, ∅) ≤ Ξ2 ∪ lat(Γ, z, ∅). Thus by transitivity of ⊆, Ξ′ ≤ Ξ2 ∪ lat(Γ, z, ∅). Therefore, we can use rule [IRst] with
the premises of the hypothesis to establish that Ξ2; Γ; z ` restrict Ξ′ e : T .

Proposition 14 (Subsumption). If Ξ1; Γ;x ` e : T and Ξ1 ∪ lat(Γ, x, z) ⊆: Ξ2, then Ξ2; Γ; z ` e : T .

Proof. By Lemma 7, Ξ1 ≤ Ξ2. Thus, by Strong Subsumption Lemma 13, Ξ2; Γ; z ` e : T .

Lemma 15 (Canonical Values). 1. If Ξ; Γ;x ` v : Unit, then v = unit

2. If Ξ; Γ;x ` v : T1
Ξ1−−→
x1

T2, then v = (λx : T1 . e)
T2;Ξ1;x

Proof. The only rules for typing values in our type system are [IUnit], [IFn] and [IFnprm], respectively. They associate the type
premises with the expressions in the conclussions.

Theorem 16. Φ ∈ γ(Ξ)⇒ adjust(Φ) ∈ γ(ãdjust(Ξ)).

Proof. Let Φ ∈ γ(Ξ). Then adjust(Φ) ∈ {adjust(Φ′) | Φ′ ∈ γ(Ξ)}.
By Proposition 1, {adjust(Φ′) | Φ′ ∈ γ(Ξ)} ⊆: γ(α({adjust(Φ′) | Φ′ ∈ γ(Ξ)})), which by Definition 1 is equivalent to
γ(ãdjust(Ξ)).

Lemma 17.

1. Ξ; Γ;x ` v : T ⇒ Ξ′; Γ;x′ ` v : T

2. Ξ; Γ;x ` x : T ⇒ Ξ′; Γ;x′ ` x : T

Proof. 1. We proceed by cases on v.

Case (unit). Then we can use rule [IUnit] for any other Ξ′.

Case ((λx : T1 . e)
T2;Ξ1;y). There is only one typing rule for functions. We can reuse the same [IFn] To type the function to

the same type in a context Ξ′ by reusing the original premise.

2. There is only one rule for typing variable identifiers, [IVar]. Since the lemma preserves the environment Γ, we can use rule
[IVar] to type the identifier in any Ξ′ context.

Theorem 18 (Preservation of types under substitution for monomorphic abstractions). If Ξ; Γ, x : T1;x ` e3 : T3 and
Ξ; Γ;x ` v : T2, with x /∈ x and T2 < : T1, then Ξ; Γ;x ` [v/x] e3 : T ′ and T ′ < : T3

Proof. By structural induction over the typing derivation for e2.

Case ([IUnit] and [IError]). Trivial since substitution does not change the expression.

Case ([IVar]). By definition of substitution, the interesting cases are:

• e3 = y 6= x ([v/x] y = y). Then by assumption we know that Γ(y) = T3 and thus we can infer that Ξ; Γ;x ` y : T3.
• e3 = x ([v/x]x = e2). Then by the theorem hypothesis we know that Ξ; Γ;x ` v : T2. We also know that Ξ; Γ, x : T1;x `
x : T3, which means that T3 = T1 and thus T ′ = T2 < : T1 = T3.

Case ([IFn]).

• (λx : T . e)T2;Ξ1;y . Then substitution does not affect the body and thus we reuse the original type derivation.
• (λy : T . e)T2;Ξ1;y Then by induction hypothesis, substitution of the body preserves typing and thus rule [IFn] can be used

to reconstruct the type for the modified expression.

Case ([IHas] and [IRst]). Analogous to the case for [IFn], since substitution for these expression is defined just as recursive
calls to substitution for the premises in the typing rules.

Case ([IApp]). By Lemma 17, we can infer that Ξ′; Γ;x ` v : T2, in particular for Ξ′ = ãdjust(Ξ). Thus we can use our
induction hypotheses in both subexpressions of e3 = e′1 e

′
2.

Therefore, while ãdjust(Ξ) ; Γ;x ` e′1 : (y : T ′
1)

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` e′2 : T ′

2 with T ′
2 < : T ′

1 and |Ξ′ ∪

lat(Γ, y′, x)| ⊆: |Ξ| also ãdjust(Ξ) ; Γ;x ` [v/x] e′1 : T ′′
1

Ξ′′

−−→
y′′

T ′′
3 and ãdjust(Ξ) ; Γ;x ` [v/x] e′2 : T ′′

2 with T ′′
1

Ξ′′

−−→
y′′

T ′′
3 < : T ′

1
Ξ′

−−→
y′

T ′
3 and T ′′

2 < : T ′
2.

We therefore know that T ′′
2 < : T ′′

1, |Ξ′′ ∪ lat(Γ, y′′, x)| ⊆: |Ξ| and we can use rule [IApp] to infer back that Ξ; Γ;x `
[e2/x] e′1 [e2/x] e′2 : T ′′

3, and by transitivity of subtyping, T ′′
3 < : T3.

Case ([IAppP]). By Lemma 17, we can infer that Ξ′; Γ;x ` v : T2, in particular for Ξ′ = ãdjust(Ξ). Thus we can use our
induction hypotheses to in both subexpressions of e3 = f e′2. Also, given that x /∈ x, and f ∈ x then f 6= x.

Therefore, while Γ(f) = (y : T ′
1)

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` e′2 : T ′

2 with T ′
2 < : T ′

1 also ãdjust(Ξ) ; Γ;x ` [v/x] f =

f : T ′
1

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` [v/x] e′2 : T ′′

2 with T ′′
2 < : T ′

2.

We therefore know that T ′′
2 < : T ′

1 and we can use rule [IAppP] to infer back that Ξ; Γ;x ` [e2/x] f [e2/x] e′2 : T ′′
3, and by

transitivity of subtyping, T ′′
3 < : T3.

Case ([IAprm] and [IAprmP]). Same argument of rules [IApp] and [IAppP] respectively.

Theorem 19 (Preservation of types under substitution for polymorphic abstractions). If Ξ; Γ, x : T1;x ` e3 : T3 and Ξ; Γ;x `
v : T2 with x ∈ x and T2 < : T1, then Ξ ∪ latentΓ;∅(T2); Γ;x\x ` [v/x] e3 : T ′ and T ′ < : T3.

Proof. By structural induction over the typing derivation for e2.

Case ([IUnit] and [IError]). Trivial since substitution does not change the expression.

Case ([IVar]). Similar to case [IVar] of Theorem18.

Case ([IFn]).

• (λx : T . e)T2;Ξ1;y . Then substitution does not affect the body and thus we reuse the original type derivation.
• (λy : T . e)T2;Ξ1;y Then by induction hypothesis, substitution of the body preserves typing and thus rule [IFn] can be used

to reconstruct the type for the modified expression.

Case ([IHas] and [IRst]). Analogous to the case for [IFn], since substitution for these expression is defined just as recursive
calls to substitution for the premises in the typing rules.

Case ([IApp]). By Lemma 17, we can infer that Ξ′; Γ;x\x ` v : T2, in particular for Ξ′ = ãdjust(Ξ). Thus we can use our
induction hypotheses in both subexpressions of e3 = e′1 e

′
2.

Therefore, while ãdjust(Ξ) ; Γ;x ` e′1 : (y : T ′
1)

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` e′2 : T ′

2 with T ′
2 < : T ′

1, Γ′ = Γ, y : T ′
2

and |Ξ′ ∪ lat(Γ′, y′, x)| ⊆: |Ξ| also ãdjust(Ξ) ∪ latentΓ;∅(T2); Γ;x\x ` [v/x] e′1 : T ′′
1

Ξ′′

−−→
y′′

T ′′
3 and ãdjust(Ξ) ∪

latentΓ;∅(T2); Γ;x\x ` [v/x] e′2 : T ′′
2 and T ′′

2 < : T ′
2.

We also know that the ãdjust function is monotically increasing 1, therefore ãdjust(Ξ)∪latentΓ;∅(T2) ⊆ ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
.

By proposition 14, ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
; Γ;x\x ` [v/x] e′1 : T ′′

1
Ξ′′

−−→
y′′

T ′′
3 and ãdjust

(
Ξ ∪ latentΓ;∅(T2)

)
; Γ;x\x `

[v/x] e′2 : T ′′
2

We know that T ′′
2 < : T ′′

1, |Ξ′′ ∪ lat((Γ, y : T ′′
2, x : T2), y′′, x\x)| ⊆: |Ξ′ ∪ lat((Γ′, x : T2), y′, x\x)| and |Ξ′ ∪

lat(Γ′, y′, x)| ⊆: |Ξ|, replacing x for v and adding the latent effects of v in both sides, |Ξ′ ∪ lat((Γ′, x : T2), y′, x\x)| ⊆:
|Ξ ∪ latentΓ;∅(T2)|, therefore |Ξ′′ ∪ lat((Γ′, x : T2), y′′, x\x)| ⊆: |Ξ ∪ latentΓ;∅(T2)|. Then, we can use rule [IApp] to infer
back that Ξ ∪ latentΓ;∅(T2); Γ;x\x ` [e2/x]x [e2/x] e′2 : T ′′

3, and by transitivity of subtyping, T ′′
3 < : T3.

Case ([IAppP] with f = x). By Lemma 17, we can infer that Ξ′; Γ;x\x ` v : T2, in particular for Ξ′ = ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
.

Thus we can use our induction hypothesis to in both subexpressions of e3 = x e′2.

Therefore, while Γ(x) = (y : T ′
1)

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` e′2 : T ′

2 with T ′
2 < : T ′

1 also ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
; Γ;x\x `

[v/x]x = v : T ′′
1

Ξ′′

−−→
y′′

T ′′
3 and ãdjust(Ξ) ; Γ;x\x ` [v/x] e′2 : T ′′

2 with T ′′
1

Ξ′′

−−→
y′′

T ′′
3 < : T ′

1
Ξ′

−−→
y′

T ′
3 and T ′′

2 < : T ′
2.

We also know that the ãdjust function is monotically increasing, therefore ãdjust(Ξ)∪latentΓ;∅(T2) ⊆ ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
.

By proposition 14, ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
; Γ;x\x ` [v/x] e′2 : T ′′

2

Also, by definition latentΓ;∅(T2) = Ξ′′ ∪ lat(Γ, y′′, x\x). As T ′′
2 < : T2 then |Ξ′′ ∪ lat((Γ, y : T ′′

2), y′′, x\x)| ⊆
|Ξ′′ ∪ lat(Γ, y′′, x\x)|, therefore |Ξ′′ ∪ lat((Γ, y : T ′′

2), y′′, x\x)| ⊆: |Ξ ∪ latentΓ;∅(T2)|. We therefore know that T ′′
2 < : T ′

1

and we can use rule [IApp] to infer back that Ξ ∪ latentΓ;∅; Γ;x\x ` [v/x]x [v/x] e′2 : T ′′
3, and by transitivity of subtyping,

T ′′
3 < : T3.

1 While LPE, TGE and Marino and Millstein [3]’s work are framed as generic effect frameworks, it turns out that LPE is less expressive than the other two.
The system defined in LPE cannot represent the capability of the adjust function to remove effect privileges for the evaluation of some sub-expressions. This
is mainly because the mechanism that LPE uses to check effects are effect ascriptions, but effect ascriptions cannot express the requirement that an expression
has ”the inferred effects minus a certain effect”. Because this work is based on LPE, we need to restrict the adjust function to be monotonically increasing.
We leave the study of gradual polymorphic effects in a more general setting that does not impose monotonicity on adjust for future work.

Case ([IAppP] with f 6= x). By Lemma 17, we can infer that Ξ′; Γ;x\x ` v : T2, in particular for Ξ′ = ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
.

Thus we can use our induction hypothesis to in both subexpressions of e3 = f e′2.

Therefore, while Γ(f) = (y : T ′
1)

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` e′2 : T ′

2 with T ′
2 < : T ′

1 also ãdjust(Ξ) ; Γ;x\x `

[v/x] e′2 : T ′′
2 with T ′′

1
Ξ′′

−−→
y′′

T ′′
3 < : T ′

1
Ξ′

−−→
y′

T ′
3 and T ′′

2 < : T ′
2.

We also know that the ãdjust function is monotically increasing, therefore ãdjust(Ξ)∪latentΓ;∅(T2) ⊆ ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
.

By proposition 14, ãdjust
(
Ξ ∪ latentΓ;∅(T2)

)
; Γ;x\x ` [v/x] e′2 : T ′′

2

We can use rule [IAppP] to infer back that Ξ ∪ latentΓ;∅; Γ;x\x ` f [v/x] e′2 : T ′′
3, and by transitivity of subtyping,

T ′′
3 < : T3.

Case ([IAprm] and [IAprmP]). Same argument of rules [IApp] and [IAppP] respectively.

Lemma 20. c̃heck(Ξ)⇒ strict-check(∆(Ξ) ∪ Ξ)
i.e. If check(Φ) for some Φ ∈ γ(Ξ), then check(Φ) for every Φ ∈ γ(∆(Ξ) ∪ Ξ).

Proof. Suppose check(Φ) for some Φ ∈ γ(Ξ)
Then Υ = {Φ ∈ γ(Ξ) | check(Φ)} 6= ∅ so Φ =

⋃
mins(Υ) exists.

Furthermore, by monotonicity [3], check(Φ).
Note that Φ ⊆: Φ\|Ξ| ∪ Ξ = ∆(Ξ) ∪ Ξ, so if Φ2 ∈ γ(∆(Ξ) ∪ Ξ) then Φ ⊆: Φ2 and by monotonicity [3], check(Φ2).

Proposition 21. If Ξ; Γ;x ` e : T1, e /∈ x and T1 .: T2 in the internal language, then Ξ; Γ;x ` 〈〈T2 ⇐ T1〉〉cΓe : T2
′ and

T2
′ < : T2.

Proof. By Case analysis

Case (T1 < : T2). 1. By assumption Ξ; Γ;x ` e : T1

2. 〈〈T2 ⇐ T1〉〉cΓe = e by definition of metafunction.
3. Ξ; Γ;x ` 〈〈T2 ⇐ T1〉〉cΓe : T1 by 1 and 2.

Case ((x1 : T11)
Ξ1−−→
x1

T12 6< : (x2 : T21)
Ξ2−−→
x2

T22 and e 6= x). Where T1 = (x1 : T11)
Ξ1−−→
x1

T12, T2 = (x2 : T21)
Ξ2−−→
x2

T22

and Γl = (Γ, x1 : T21, x2 : T11, f : T1)

1. 〈〈T2 ⇐ T1〉〉cΓe = (λf : T1 . 〈T2 ⇐ T1〉
c

Γl
f)T2

′;⊥;∅•e

2. ⊥; Γ, f : T1; ∅ ` 〈T2 ⇐ T1〉
c

Γl
f : T2

′, where T2
′ < : T2 by proposition 22.

3. Ξ; Γ;x ` (λf : T1 . 〈T2 ⇐ T1〉
c

Γl
f)T2

′;⊥;∅ : T1
⊥−→ T2

′ by [IFun]

4. Ξ; Γ;x ` (λf : T1 . 〈T2 ⇐ T1〉
c

Γl
f)T2

′;⊥;∅•e : T2
′, and T2

′ < : T2 by [IAprm]

Case ((x1 : T11)
Ξ1−−→
x1

T12 6< : (x2 : T21)
Ξ2−−→
x2

T22 and e = x). Where T1 = (x1 : T11)
Ξ1−−→
x1

T12, T2 = (x2 : T21)
Ξ2−−→
x2

T22

and Γl = (Γ, x1 : T21, x2 : T11)

1. 〈〈T2 ⇐ T1〉〉cΓe = 〈T2 ⇐ T1〉cΓl
e by definition of metafunction.

2. Ξ; Γ;x ` 〈T2 ⇐ T1〉cΓl
e : T2

′ where T2
′ < : T2 by proposition 22.

3. Ξ; Γ;x ` 〈〈T2 ⇐ T1〉〉cΓe : T2
′ by 1 and 2.

Proposition 22. If Ξ; Γ;x ` f : (x2 : T11)
Ξ1−−→
x1

T12 , x1 ∈ Γl, x2 ∈ Γl, T21 .: T11, and T12 .: T22 , then

Ξ; Γ;x ` 〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x2 : T11)
Ξ1−−→
x1

T12〉cΓl
f : (x2 : T21)

Ξ2−−→
x2

T22
′

(depending on the cast function, T22
′ = T22 or T22

′ = T12).

Proof. Let Ξl1 = Ξ1 ∪ lat(Γl, x1, x2) and Ξl2 = Ξ2 ∪ lat(Γl, x2, ∅). Let Γ′ = Γl = Γ, x2 : T21.

• We proceed by cases over c

Case (c = true, |Ξl1|\|Ξ2| 6= ∅).

IFN

PROP.2
IRST

IHAS

IAPRM 1 & 2

IVAR

Γ′(f) = (x2 : T11)
Ξ1−−→
x1

T12

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` f : (x2 : T11)
Ξ1−−→
x1

T12

PROP.2
T11

′ .: T11

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` (〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x) : T11

′

T11
′ < : T11 |Ξ1 ∪ lat(Γ′, x1, x2)| ⊆: |Ξl

1| ∪ |Ξl
2|

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` f•(〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x2) : T12

Ξl
2; Γ′;x2 ` has (|Ξl

1|\|Ξ2|) f•(〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x2)) : T12

Ξ2; Γ′;x2 ` restrict
(
Ξl

2

)
has (|Ξl

1|\|Ξ2|) f•(〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x2)) : T12

Ξ2; Γ′;x2 ` 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
has (|Ξl

1|\|Ξ2|) f•(〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x2)) : T22

′

Ξ; Γ;x ` (λx2 : T21 . 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
has (|Ξl

1|\|Ξ2|) f•(〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x2)))T22

′;Ξ2;x2 : (x2 : T21)
Ξ2−−→
x2

T22
′

Case (c=true, |Ξl1|\|Ξl2| = ∅). Trivial by using the same argument for c=true, |Ξl1|\|Ξl2| 6= ∅.
Case (c = false). Let Γ′ = Γ, x2 : T21.

IFN

IRST

IAPRMP

IVAR

Γ′(f) = (x2 : T11)
Ξ1−−→
x1

T12

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` f : (x2 : T11)
Ξ1−−→
x1

T12

PROP.2
T11

′ .: T11

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` (〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x) : T11

′ T11
′ < : T11

Ξl
2; Γ′;x2 ` f•f (〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x2) : T12

Ξ2; Γ′;x2 ` 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
f•f (〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x2) : T22
′

Ξ; Γ;x ` (λx2 : T21 . 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
f•f (〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x2))T22
′;Ξ2;x2 : (x2 : T21)

Ξ2−−→
x2

T22
′

References
[1] F. Bañados, R. Garcia, and É. Tanter. A theory of gradual effect systems. In Proceedings of the 19th ACM SIGPLAN Conference on

Functional Programming (ICFP 2014), pages 283–295, Gothenburg, Sweden, Sept. 2014. ACM Press.

[2] R. Garcia, É. Tanter, R. Wolff, and J. Aldrich. Foundations of typestate-oriented programming. ACM Transactions on Programming
Languages and Systems, 36(4):12:1–12:44, Oct. 2014.

[3] D. Marino and T. Millstein. A generic type-and-effect system. In Proceedings of the ACM SIGPLAN International Workshop on Types
in Language Design and Implementation, pages 39–50, 2009.

[4] L. Rytz. A Practical Effect System for Scala. PhD thesis, École Polytechnique Fédérale de Lausanne, Sept. 2013.

[5] L. Rytz, M. Odersky, and P. Haller. Lightweight polymorphic effects. In J. Noble, editor, Proceedings of the 26th European Conference
on Object-oriented Programming (ECOOP 2012), volume 7313 of Lecture Notes in Computer Science, pages 258–282, Beijing, China,
June 2012. Springer-Verlag.

[6] J. Siek and W. Taha. Gradual typing for functional languages. In Proceedings of the Scheme and Functional Programming Workshop,
pages 81–92, Sept. 2006.

	Introduction
	Source Language
	Syntax
	Static Semantics

	Internal Language
	Syntax
	Static Semantics
	Dynamic Semantics

	Source to Internal Language Translation
	Auxiliary Functions and Definitions
	Type Soundness
	Soundness of Internal Language
	Progress
	Preservation

	Translation Preserves Typing
	Auxiliary Lemmas and Propositions

