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Abstract: In the last decade, positioning has become a steadily growing research topic. The 
increase in use and availability of wireless networks has allowed for an ever growing exchange of 
information and increased communication capabilities. Mobile applications offer resource 
positioning, which can help in different areas of society. These applications can be used to track 
people with special needs or elderly people, to help people navigate through the city, or to allow 
parents to know the whereabouts of their children. The objective of this survey is to describe the 
numerous positioning techniques and methods used to address the positioning problem, and 
determine their overall performance in outdoor and indoor settings based on a set of metrics. To 
facilitate the understanding of our work, a set of comparison tables is elaborated based on the 
method’s performance, along with a brief discussion for each table. Finally, we review the work of 
other authors in positioning. 
 
Keywords: Positioning, positioning techniques, triangulation, fingerprinting, positioning, vision 
analysis. 
 

1.  Introduction 
 
In recent years, there has been a notorious increase in the use of wireless systems. Currently, 
wireless technologies are widely used in medical, industrial, logistical, transportation, as well as 
many other application areas [Pah02]. The wide availability of wireless information access has 
brought along a high demand for accurate positioning in wireless networks, for both indoor and 
outdoor environments [Hig01]. By means of a positioning technique, a mobile device can either 
gather the information about its position or can be localized from elsewhere. 
 
This strongly emerging interest in positioning is driven by several factors. At first, the great success 
of wireless systems is essentially explained by the mobility they enable, which is coupled with 
uncertainty. However, this uncertainty is often not desired in applications like industrial 
manufacturing, network organization and many other applications, and the only means to 
efficiently overcome it is to know the position of our assets. Security and integrity also benefit 
strongly from local positioning, using information on the data origin, the propagation path, and 
the destination. Last but not least, the data capacity of wireless networks is inherently limited, so 
an intelligent context-dependent information transfer is needed [Vos03]. One essential context 
variable is the positioning of mobile devices. 
 
Positioning can be roughly divided in two categories, based on the environment in which they 
work best. These two categories are outdoor positioning, and indoor positioning. In outdoor 
environments, the GPS, a satellite-based positioning system, is currently the most widely used. It 
offers maximum coverage for positioning in these environments with relatively little effort 
[Hof93]. GPS cannot be deployed for indoor use, because line-of-sight (LOS) transmission between 
receivers and satellites is not possible in an indoor environment. Compared with outdoor, indoor 
environments are more complex. There are various obstacles [Lad04], for example, walls, 
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equipment, human beings, all influencing the propagation of electromagnetic waves, which lead to 
multi-path effects. Some interference and noise sources from other wired and wireless networks 
also degrade the accuracy of positioning. The building geometry, the mobility of people and the 
atmospheric conditions result in multi-path and environmental effects [Gu09]. 
 
Some authors believe that the positioning problem for outdoor environments has a concrete 
solution in the form of the Global Positioning System [Gu09]. Nevertheless, the appearance of new 
technologies and the proliferation of wireless and mobile networks has allowed for positioning to 
remain an open area, filled with research opportunities [Pra02, Liu07, Gu09]. This is especially true 
for indoor environments, where research attention has increased, thanks to the aforementioned 
availability of wireless networks and mobile devices. Important research issues include: the degree 
of accuracy of the positioning information, the delay in estimating a position, the amount of 
position estimation requests that can be processed simultaneously, and the coverage of the 
positioning service. Another important issue is the reliability of the positioning process. Some 
access points may be disabled because of local power failures, management, upgrades, or even 
accidents. In such cases, the user should still be able to use positioning services, though with 
reduced capabilities. 
 
Different applications may require different types of positioning information. According to 
Hightower et al. [Hig01], the main types are physical positioning, symbolic positioning, absolute 
positioning, and relative positioning. Physical positioning is expressed in the form of coordinates, 
which identify a point on a 2-D or 3-D map. The widely used coordinate systems are 
degree/minutes/seconds (DMS), degree decimal minutes, and universal transverse mercator 
(UTM). Symbolic positioning expresses a location in a natural-language way, such as in the office, 
in the third-floor bedroom, etc. Absolute positioning uses a shared reference grid for all located 
objects. Relative positioning depends on its own frame of reference, and its information is usually 
based on the proximity to known reference points or base stations [Liu07]. Depending on the 
technique used by a positioning system, one or more of these types of positioning information will 
be required for the positioning process. 
 
In this work, we will address the different techniques used to estimate the position of users and 
devices (resources), and offer a comparison of the performance of these techniques in both indoor 
and outdoor environments. Section 2 addresses the notion of positioning, as well as current 
positioning techniques and their most commonly used methods. In Section 3, we describe the set 
of metrics that will be used to measure the performance of the techniques. Section 4 contains the 
comparison tables and discussion of the performance of each method. Section 5 reviews the work 
of other authors in positioning, and Section 6 shows the conclusions to which we arrived during 
the elaboration of this survey and possible extensions of this work. 
 

2. Resource Positioning 
 
In the last few years, there has been a growing interest in Context-aware Systems, specifically 
those that provide Location-aware or Location-based information services. These services are 
accessible through mobile devices by means of a communication network, and allow resources to 
determine their current position [Mar99]. Originally, positioning was used only to assist 
Emergency-911 calls, but is now considered one of the potential market drivers in the 
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telecommunications industry. Promising applications of positioning include vehicle navigation, 
fraud detection, resource management and automated billing [May07], among others. 
 
Positioning technologies have become commonplace in different aspects of everyday life [Zei02]. 
In order to meet the needs of users and offer adaptive and convenient personal services, the 
positioning information of a resource can be provided by a positioning system at different places, 
such as home, office, etc. There have been different approaches to solve the positioning problem, 
each attempting to address positioning depending on the context in which these systems are 
deployed [Hig01], such as GPS for outdoors, and fingerprinting or proximity for indoor 
environments. 
 
Accurate positioning can be applied to areas such as commercial applications, public safety 
services and military systems [Pra02]. There is an increasing need for indoor positioning systems to 
track people with special needs, e.g. the elderly, children who are away from visual supervision, 
and visually impaired people. These systems would allow location of on-demand resources (e.g. 
portable equipment or people) in physical environments, like hospitals or warehouses. They could 
also be used to track inmates and guards inside a prison. All of these scenarios apply for outdoor 
positioning systems as well, especially in public safety and military applications. 
 
A positioning system is usually composed of several physical components: (1) one or more mobile 
devices usually carried around or attached to a resource; (2) a communication network that 
supports user-to-service interaction; (3) a service and application provider to processes the 
positioning requests; and (4) a positioning component to provide the current location [Rui10]. 
There are usually two kinds of positioning components: base stations and mobile devices. Base 
stations are fixed in a known location, in contrast to mobile devices. Base stations continuously 
transmit a signal that is measured at the resources location (for autonomous positioning devices), 
or wait to receive a signal sent by a mobile device (for remote positioning devices). 
 
This section presents a review of the most widely used techniques to address the positioning 
problem. In general, most positioning methods attempt to perform measurements on one or more 
signals, processing these measurements in order to estimate the position of a resource. A 
positioning system uses different kinds of signals and varied techniques to determine a resource’s 
position, depending on the technologies used [Hig01]. These technologies can be categorized in 
four groups: Infrared, radio frequency, ultrasound, and inertial, with radio frequency signals being 
the most popular [Rui10]. We will not address these technologies any further in this survey. 
 
Based on the information measured and how the position estimation is performed, we can classify 
positioning techniques in four groups: (1) Triangulation techniques, (2) proximity-based 
techniques, (3) fingerprinting techniques, and (4) Scene Analysis techniques. Triangulation uses 
the properties of triangles to determine a target resource position. Proximity assigns the closest 
base station’s position to a target resource. Fingerprinting averages the signals received from a 
resource to resolve its position in a grid. Vision analysis uses image or video captures and 
computational vision to position resources in a given environment. The triangulation, 
fingerprinting and vision analysis techniques can provide absolute, relative and proximity position 
information, while the proximity technique only provides proximity information. 
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2.1. Triangulation 
 
Triangulation uses the geometric properties of triangles (i.e. distance and angles) and a set of 
reference points with known locations to estimate the position of a resource. The accuracy of this 
technique improves when more reference points are used for the estimation process. An 
advantage of this method is that it involves a small setup effort in order to start calculating the 
resources location. Triangulation has two derivations: Lateration and angulation [Hig01]. 
 
Lateration, also known as range measurement, estimates the position of a resource measuring its 
distance to at least three reference points with known geographical coordinates. Then, using the 
direction or length of the vector drawn between the location to be estimated and the reference 
points, it is possible to calculate the absolute position of the desired resource [Ver11]. Five 
methods are commonly used to estimate positions using lateration: Time of Arrival, Time 
Difference of Arrival, Round-trip Time of Flight, Received Signal Strength, and Signal Attenuation. 
GPS, a special case of lateration method, and is also addressed in this section. 
 

Time of Arrival (TOA): The TOA method assumes that the distance between two resources is 
directly proportional to the propagation time of a message between them. TOA-based 
positioning systems measure the one-way propagation time, and then proceed to calculate the 
distance between the transmitter and the receiver of the message. In order to enable 2-D 
positioning, TOA measurements must be made with respect to signals from at least three 
reference points [Fan90]. For 3-D positioning, an additional reference point is needed. In 
general, direct TOA has two problems: (1) The clock of all participants has to be precisely 
synchronized; and (2) a time-stamp must be labeled in the message in order for the measuring 
unit to discern the distance the signal has traveled. 
 
Time Difference of Arrival (TDOA): The general idea of the TDOA method is to determine the 
relative position of a resource by examining the difference in time at which its signal arrives at 
multiple measuring units. Thus, a target’s position can be estimated from the intersections of 
two or more TDOA measurements. For each of these measurements, the target must lie on a 
hyperboloid with a constant range difference between the two measuring units. Two 
hyperbolas are formed from TDOA measurements at three fixed measuring units to provide an 
intersection point, which locates the target resource [Fan90]. Note that the receivers do not 
need to know the absolute time at which the pulse was transmitted; only the time difference is 
relevant. Fig. 1 helps illustrate how TDOA works. 
 
Round-tripTime of Flight (RTOF): This method is used to measure the time-of-flight of a signal 
traveling from the target resource to the measuring unit and back [Gün05]. In RTOF, a less strict 
relative clock synchronization than that of TOA is required, though both methods use the same 
range measurement mechanism. The measuring unit is considered a common radar, with the 
target responding to an interrogating radar signal, and the complete roundtrip propagation 
time being calculated by the measuring units. However, it is still difficult for a measuring unit to 
know the exact delay/processing time it takes the target to return the signal. In long or 
medium-range systems, this delay could be ignored if it is small in comparison to the 
transmission time. However, for short-range systems, such as those used for indoor location, 
this delay cannot be ignored. 
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Received Signal Phase (RSP): Also known as Carrier Signal Phase of Arrival, this method uses the 
carrier phase (or phase difference) of a frequency range to estimate the position of a target 
[Pov10]. To understand how RSP works, assume that all participating devices emit sinusoidal 
signals of the same frequency with a zero phase offset. The RSP method calculates the phase 
difference of all signals received at the target, estimating its position based on those 
calculations. For an indoor positioning system, it is possible to use the signal phase method 
together with TOA/TDOA or RSS method to fine-tune the location positioning. However, this 
method requires a direct LOS signal path; otherwise it will cause more errors, especially in 
indoor environments. 

 
Received Signal Strength (RSS): Also known as Signal Attenuation, RSS estimates the position of 
a resource by measuring its distance from a set of measuring units based on the attenuation of 
emitted signal strengths [Ji04]. RSS calculates the signal path-loss due to propagation, using 
theoretical and empirical models to translate the difference between emitted and the received 
signal strength into a range estimate. RSS requires an important setup effort, and can be 
affected by multipath fading and shadowing present in indoor environments. Using multiple 
measurements from several base stations could help overcome this problem, increasing the 
accuracy. Also, the spacing between grid points influences the position estimation. Decreasing 
the spacing increases the database size without gaining accuracy (values measured 15cm apart 
will be more or less the same) [Pra02]. On the other hand, increasing it reduces the search 
space but drastically decreases the accuracy.  
 
Global Positioning System (GPS): GPS is a satellite-based positioning system, currently the most 
widely used in outdoor environments because it provides maximum coverage. GPS capability 
can be added to various devices simply by adding GPS cards and accessories to these devices. 
This enables position-based services such as navigation, tourism, etc. [Hof93]. However, GPS 
cannot be deployed for indoor use, because LOS transmission between receivers and satellites 
is not possible in an indoor environment. 
 
A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high 
above the Earth. Each satellite continually transmits messages that include the time the 
message was transmitted, and the satellite position at time of message transmission. The 
receiver uses the messages it receives to calculate the transit time of each message and to 
determine its distance to each satellite. These distances and the satellites positions are used to 
compute the position of the receiver [Van01]. 

 
At least three satellites are required to calculate a target’s position, since space has three 
dimensions and it is assumed that the target is near the Earth's surface. However, even a tiny 
clock error, multiplied by the speed at which satellite signals propagate (the speed of light), 
results in a large positional error. Therefore, receivers usually employ four or more satellites to 
resolve their position, although fewer satellites can be used in special cases. If a positioning 
variable is already known (i.e. altitude), a receiver can compute its position accurately using 
only three satellites. When fewer than four satellites are accessible, some GPS receivers may 
use additional clues or assumptions (such as reusing the last known altitude, dead reckoning, or 
inertial navigation) to give a less accurate or degraded position estimation [Bul00]. GPS has 
some disadvantages: Its accuracy depends on the number of visible satellites; its setup time can 
be quite long, many minutes in the worst case; and power consumption can be high. Moreover, 
GPS does not work indoor or when satellites are in shadow [Tre04]. 
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Angulation or direction of arrival (DOA) calculates the position of a resource by computing the 
angles relative to two or more reference points with known geographical coordinates. Then, it 
uses the angle of the vector drawn between the location to be estimated and the reference points 
to calculate the absolute position of the desired resource [Ver11]. The most well-known method 
used for angulation is Angle of Arrival (AOA). 
 
In AOA, the location of a target resource can be estimated using the intersection of several pairs of 
angle direction lines, each formed by the circular radius from a base station or a beacon station to 
the mobile target. AOA methods use at least two known reference points and two measured 
angles to derive the 2-D location of the target resource. This estimation, commonly referred to as 
direction finding, can be accomplished either with directional antennae or with an array of 
antennae [Che06]. The advantages of AOA are that a position estimate may be determined with 
fewer measuring units than lateration, three for 3-D and two for 2-D positioning. Also, no time-
synchronization between measuring units is required. The disadvantages include relatively large 
and complex hardware requirements, as well as location estimate degradation as the mobile 
target moves farther from the measuring units. 
 

 
Fig 1: Positioning methods used in Triangulation. 

 

2.2. Proximity 
  
Proximity algorithms provide symbolic relative location information. Proximity usually relies upon 
a dense grid of detectors, each having a well-known position. When a mobile target is detected by 
a single antenna, it is considered to be collocated with it. When more than one station detects the 
mobile target, it is considered to be collocated with the one that receives the strongest signal 
[Bra06], or at the interception area of both stations. The accuracy of this positioning strategy could 
be high, depending on the detection technology used and the number of detectors deployed in 
the physical environment. The greater the density of detectors, the higher the precision. This 
method is relatively simple to implement over different types of physical media, although an 
important setup effort is required on early deployment stages. In particular, positioning systems 
using infrared radiation (IR) and radio frequency identification (RFID) are often based on this 
method. 
 

Cell ID (CID): This method, also known as Cell of Origin, relies on the fact that mobile cellular 
networks can identify the approximate position of a mobile handset by knowing which cell site 
the device is using at a given time [Tre04]. A base station covers a set of cells, each with a 
known position and identified by a unique Cell-ID. Cells are grouped into clusters, each of them 
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identified by a Location Area Identifier (LAI). A mobile target continuously selects a cell and 
exchanges data with its corresponding base station. In turn, each station broadcasts both the 
LAI and the Cell-ID to its cells. Since the mobile targets are always receiving these broadcast 
messages, they always know their corresponding Cell-ID. This allows the mobile targets to 
approximate their position using the geographical coordinates of their corresponding base 
station, independent of the target’s absolute position within the cell. The main benefit of Cell-
ID is that it is already in use today and can be supported by all mobile handsets. 

 
Radio Frequency Identification (RFID): The radio frequency identification (RFID) is a means of 
storing and retrieving data through electromagnetic transmission to a radio-frequency 
compatible integrated circuit. RFID as a wireless technology enables flexible and cheap 
identification of individual person or device [Cho04], and is commonly used in complex indoor 
environments such as office, hospital, etc. There are two kinds of RFID technologies, passive 
RFID and active RFID [Gu09]. With passive RFID, a tracked tag is only a receiver, making them 
small and inexpensive at the cost of a reduced coverage range. Active RFID tags are 
transceivers, which actively transmit their identification and other information; this makes the 
cost of tags higher but provides a greater coverage area of active tags. 

 
Closest-Neighbor (CN) Algorithm: Consider a group of base stations arranged in a regular grid. 
Each of these stations is located   meters away from its closest adjacent station. In order to 
determine the position of a particular resource, each station performs a distance measurement 
to that resource. Let    be the distance measurement performed by base station  , which is 
located at    [     ]. The CN algorithm estimates the position of the resource as that of the 
station that is located closest to that resource. In other words, the position of a resource is the 
value of    for which the corresponding distance measurement,    is the minimum in the set 
[Kan04]. 
 
Least Square (LS) Algorithm: This method focuses on minimizing the value of the objective 

function  ( )  ∑ (√(    )
   (    )

    )
 

 
   , where   is the number of reference 

base stations. The square-root term is the distance between a point (   ) in the Cartesian 
coordinate system and a reference base station located at the point (     ), and    is known as 
the residual of the estimate. Given that this is a minimizing function, the closer we approach 
the target resource’s position, the lower the function’s value would be. At  ( )   , we would 
be at the target’s position. In practice, however, the set of distance measurements,    (    
 ) always contains errors, so the function will never be zero even at the target’s position. 
These errors are related to synchronization mismatches between the transmitter and receiver 
devices, (known as systematic error), or due to obstructed LOS (OLOS) channel conditions 
(known as channel-related errors) [Kan04]. OLOS channel conditions generally result in the 
strongest signal being received with longer delay, with the resulting distance measurement 
being longer than it should be. 

 

2.3. Fingerprinting 
 
Also known as Scene Analysis, this technique calculates the position of resources in a bounded 
physical space by comparing the current measurements of a given set of signals with pre-
measured data related to particular locations. Typically, the strategy involves two phases: an 
offline training phase and an online estimation phase. During the offline phase, samples of 
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location related data (e.g. Wi-Fi received signals strength) are collected for the whole physical 
space considered for the estimation process. During the online stage, the currently observed signal 
strengths of a resource are used in conjunction with the previously collected data to figure out an 
estimated position for the target resource. The fingerprinting technique is simple to deploy 
compared to AOA or TDOA techniques [Kae04], but is costly to implement over a large area. 
Instead of depending on accurate estimates of angle or distance to determine the location, 
location fingerprinting associates location-dependent characteristics (such as signal attenuation) 
with a location and uses these characteristics to infer location position. This technique is quite 
accurate, but involves an important effort to collect samples during the offline phase [Ver11]. One 
of the main challenges to this technique is that the signal emitted by the resources could be 
affected by diffraction, reflection, and scattering in indoor environments. Fingerprinting can be 
performed by using pattern recognition based methods and probabilistic methods. 
 
Pattern Recognition-based fingerprinting methods apply pattern recognition algorithms over a 
set of signals (usually the signal strength) to determine the current position of a resource. Some of 
the most used methods for fingerprinting are k-Nearest Neighbor, Support Vector Machine, 
Smallest M-vertex polygon, and Neural Networks. 
 

k-Nearest Neighbor Averaging Method (kNN): The kNN averaging uses the online signal 
strength to search for   closest matches of known locations in signal space from a previously 
built signal database, by means of the root mean square errors principle [Was05]. In this 
approach,   is a parameter that can be adapted in order to improve performance. By averaging 
these   location candidates with or without adopting the distances in signal space as weights, 
an estimated location is obtained via weighted kNN or unweighted kNN. 

 
Support Vector Machine (SVM): A widely used technique for data classification and regression, 
SVM is a tool for statistical analysis and machine learning. SVMs have been used extensively for 
a wide range of applications in science, medicine, and engineering with excellent empirical 
performance [Cri00]. Support vector classification of multiple classes and support vector 
regression have been successfully used in location fingerprinting by treating the positioning 
problem as a classification problem [Liu07]. 

 
Smallest M-vertex Polygon (SMP): SMP uses the online signal strength values to search for 
candidate locations in signal space with respect to each signal transmitter separately. M-vertex 
polygons are formed by choosing at least one candidate from each transmitter (assuming a 
total of   transmitters). Averaging the coordinates of vertices of the smallest polygon (the one 
with the shortest perimeter) gives the position estimate of a target resource [Liu07]. 

 
Neural Networks: Usually, a multi-layer perceptron (MLP) network with one hidden layer is 
used for neural-networks-based positioning system [Was05]. During the offline stage, the signal 
strength and the corresponding location coordinates are adopted as the inputs and the targets 
for the training purpose. After the training stage, appropriate weights are obtained. The input 
vector of signal strengths is multiplied by the trained input weight matrix, and then added with 
input layer bias, if a bias is chosen. The result is put into the transfer function of the hidden 
layer neuron, and the output of the function is multiplied by the trained hidden layer weight 
matrix, and then added to the hidden layer bias if it is chosen. The output of the system is a 
two-element vector for 2-D or a three-element vector for 3-D estimated location. 
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Probabilistic fingerprinting methods make an estimation of the probability of a resource being at 
a certain place given the observed measurements at each location [Kon04]. Moreover, 
connections and divisions between different places could be considered, since someone cannot 
walk through a wall. This approach is more complex and requires more computational power, but 
usually presents better results. The most commonly used method for probabilistic fingerprinting 
are the Bayes’ Theorem and Markov Chains. 
 

Bayes’ Theorem Probabilistic Method (BT): This method addresses positioning as a classification 
problem [Kon04]. Assuming that there are   candidate locations {             }, and   is the 
observed signal strength vector during the online stage, the following decision rule can be 

obtained: Choose    if  (    )   (    ), for                  . Here,  (    )  denotes 

the probability that the mobile node is in location   , given that the received signal vector is   
[Liu07]. Also assume that  (  ) is the probability that the mobile node is in location   . The 
given decision rule is based on posteriori probability. Using Bayes’ formula, and assuming that 

 (  )   (  )  for              , we choose    if  (    )   (    ) , for 

                 , based on the likelihood that  (    ) is the probability that the signal 
vector s is received given that the mobile node is located in location   . 

 
Markov Chains Positioning (MC): The key idea of Markov Chains positioning is to compute and 
update a probability distribution over all possible locations in the environment [Bur98]. Let 
  〈     〉 denote a location in the state space of a target resource. The distribution, denoted 
by  (    ) expresses the target’s subjective belief for being at position   at time  . Initially, 
 (   ) reflects the initial state of knowledge: if the target knows its initial position,  (   ) is 
centered on the correct location; if a resource does not know its initial location,  (   ) is 
uniformly distributed to reflect the global uncertainty of the resource.  ( ) is updated 
whenever new sensor readings are received, allowing for positioning. This method is usually 
combined with vision analysis techniques for robot navigation [Bur98]. 

 

2.4. Vision Analysis 
 
This technique analyzes images received from one or more capturing points (e.g. cameras located 
in the surveillance area), in order to try to identify a target resource [Bru00]. Real-time analysis of 
images could be appropriate if the number of objects to be tracked is small, otherwise, it is more 
efficient to combine this technique with some of the previous ones to reduce the number of 
images required for the analysis. Using vision analysis involves an important effort during the 
setup phase, because they rely heavily on monitoring equipment. 
 
In vision-based positioning systems, a low price camera can cover a large area, and the targets 
require no additional devices for the position estimation. While vision analysis has unique 
advantages over other positioning systems, it also presents unique challenges. Privacy is an issue 
due to the nature of vision analysis, where multiple images of the targets are acquired. Since the 
position estimations are based on the saved vision information in a database, it needs to be 
updated if there is any change in the environment, like moving a desk from one side of the room 
to the other [Gu09].  
 
Vision-based positioning systems can also be greatly influenced by interference sources, such as 
weather, light, etc. For example, the turning on and off a light in a room reduces the detection 
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accuracy of a target’s position. A person’s appearance in an image varies significantly due to 
posture, facing direction, distance from the camera, and occlusions [Bru00]. Moreover, trying to 
position multiple resources moving around at the same time is still a challenge, due to the high 
computational requirements of this technique. Although a variety of algorithms can overcome 
most of these difficulties, a solution must work fast enough to make the system responsive to the 
room’s occupants. The Simultaneous Localization and Mapping technique tries to address these 
problems. 
 
Simultaneous Localization and Mapping (SLAM) addresses the problem of a resource (usually a 
robot) navigating an unknown environment. While navigating the environment, the robot seeks to 
acquire a map of its environment, and at the same time it wishes to localize itself using its map 
[Mon02]. The use of SLAM can be motivated by two different needs: Detailed environment 
models, or an accurate sense of a mobile robot’s location. SLAM serves both purposes, but we will 
focus only in the positioning part. SLAM can be achieved through extended Kalman filters, graph-
based optimization techniques, and particle filtering, among other navigation techniques. 

 
Extended Kalman Filters (EKF): Historically, EKF [May90] is the earliest and perhaps the most 
influential SLAM algorithm. First, a map with all known landmarks must be stored in a database 
accessible to the robot. If the identity of an observed landmark is unknown, EKF cannot be 
applied. The robot compares which of the landmarks stored in the database most likely 
corresponds to a landmark just observed, using this information to estimate its current 
position. The proximity estimation to a landmark considers measurement noise and actual 
uncertainty using Mahalanobis distance [DeM00], which is a weighted quadratic distance, to 
gauge similarity between observed and stored data. To minimize the chances of false data 
associations, many implementations use visible features to distinguish individual landmarks 
and associate groups of landmarks observed simultaneously [Thr08]. A key limitation of the EKF 
solution to the SLAM problem lies in the quadratic nature of the covariance matrix. A number 
of researchers have proposed extensions to the EKF SLAM algorithms that gain remarkable 
scalability through decomposing the map into sub-maps, for which co-variances are maintained 
separately. EKF SLAM has been applied successfully to a large range of navigation problems, 
involving airborne, underwater, indoor, and various other vehicles [Thr08]. 
 
Graph-Based Optimization (GO): This method addresses the SLAM problem through nonlinear 
sparse optimization. Landmarks and robot locations can be thought of as nodes in a graph. 
Every consecutive pair of positions {       } is tied together by an arc that represents the 
information conveyed by the odometry reading   . Other arcs exist between locations    and 
landmarks   , assuming that at time   the robot sensed landmark  . Arcs in this graph are soft 
constraints. Relaxing these constraints yields the robot’s best estimate for the map and the full 
path [Lu97]. GO SLAM can scale to much higher dimensional maps than EKF SLAM. Unlike EKF, 
GOT does not use a covariance matrix, which translates into less used space and lower update 
times, depending on the size of the map [Thr08]. Although the update time of the graph is 
constant and the amount of memory required is linear, optimizations can be expensive. Finding 
the optimal data association is suspected to be an NP-hard problem, although in practice the 
number of plausible assignments is usually small. 
 
Particle Methods (PM): This SLAM method is based on particle filters. In this paradigm, a 
particle represents a concrete guess of the value of the current state (position) of a robot based 
on observed landmarks. By collecting a set of particles, the particle filters capture a 
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representative sample of the path distribution of the robot [Mon02], allowing for an estimation 
of its position. Under controlled conditions, the particle filter has been shown to approach the 
true path as the particle set size goes to infinity. The key problem with this method is that the 
space of maps and robot paths is immense, exponentially scaling with the dimension of the 
underlying state space [Mon03]. 

 

3. Metrics for Positioning Performance 
 
The performance of a positioning technique cannot be measured only by its accuracy. There is an 
evident difference between acceptable performance values for indoor and outdoor environments, 
even when the same technique is being used in both scenarios. For this reason, a number of 
metrics are required to perform an accurate benchmark. The following set of metrics has been 
considered for our classification: Accuracy, precision, scalability, complexity, deployment cost, and 
robustness. Usually, a positioning system offers a tradeoff between some of the metrics, such as 
sacrificing some accuracy to lower complexity and so on. These tradeoffs depend entirely on the 
application needs of the system. 
 
Since authors have used different ranges to measure their own results, we have established a 
simple interval-based qualitative measuring scale for our evaluation: Low, medium, and high 
scores. Our scale is based on the maximum and minimum values observed for each metric in other 
authors’ work. If the exact values are not available, an estimation is made based on a similar 
method’s performance. For example, a low score in accuracy would mean that the target’s 
position can be pointed to a wide area, whereas a high score would indicate that its exact position 
can be pinpointed with little distance error. A low score in deployment cost would mean that 
there is little to no installation and training effort in order to put it online, and a medium score 
would mean that the effort is within normal boundaries. A medium score in robustness would 
indicate that the method is able to cope with some data loss, while a high score would mean that 
it can, to some extent, keep positioning the target with heavy data loss (at least for a time). 
 

3.1. Accuracy 
 
Also known as location error, accuracy is the most important requirement of positioning systems. 
Usually, mean distance error is adopted as the performance metric, which is the average Euclidean 
distance between the estimated location and the true location. Accuracy can be considered to be 
a potential bias, or systematic effect/offset of a positioning system. The higher the accuracy, the 
better the system; however, there is often a tradeoff between accuracy and other characteristics.  
 
The intervals we have considered for accuracy take into account how well a positioning method 
estimates the position of a resource with respect to its real position. The scale must be different 
for indoor and outdoor environments, because of the inherent difference between them. 
Outdoors, a high score in accuracy would mean that the method can position a target within less 
than 15m of its real position [Mou01]; a medium score means that the method has an up to 30m 
estimation error; and a low score means that the method has an error greater than 30m. Indoors, 
a high score requires that the positioning method estimates the target’s position at less than 1m 
from its real position [Was05]; a medium score allows for up to 3m estimation error, and a low 
score anything beyond that. 
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3.2. Precision 
 
Location precision considers how consistently a positioning technique works, i.e., it is a measure of 
the robustness of the positioning technique as it reveals the variation in its performance over 
many trials. Accuracy only considers the value of mean distance errors, while cumulative 
probability functions of the distance error are used to measure precision. For example, one system 
has a location precision of 90% within 2.3 m, and 95% within 3.5 m; another one has a precision of 
50% within 2.3m and 95% within 3.3m. We could choose the former system because of its higher 
precision. It is important to use the average precision and not the highest precision, due to a 
common problem with most positioning methods: when closing in to the target, the accuracy 
consistency error tends to increase. This means that different position estimations made from the 
same readings could determine different positions when close to the target. 
 
We have considered that an average precision of at least 90% for both indoor and outdoor 
environments would earn a high score [Rui10, Vos03]. A medium score requires that the method 
reaches at least 80% precision, and a low score indicates that the average precision is below that 
value. 
 

3.3. Scalability 
 
The scalability of a positioning system in determined based on its performance when the 
positioning scope changes. A positioning system may need to scale on two axes: geography and 
density. Geographic scaling implies covering different volumes of areas without important 
performance issues. Usually, performance degrades when the distance between transmitter and 
receiver increases. Density scaling requires that the performance is not affected by a great number 
of simultaneous estimation requests. When the coverage area increases, or when positioning 
multiple targets in a crowded area, wireless signal channels may become congested, requiring 
additional calculations or more communication infrastructure to perform positioning. Another 
measure of scalability is the dimensional space of the positioning system, i.e. whether it can locate 
objects in 2-D or 3-D space, or both. 
 
The score in scalability for a positioning method is based on its capacity to support positioning 
over large areas, and the amount of targets that can be located simultaneously. It should be noted 
that there is a huge difference in ranges between outdoor and an indoor environments: a 
coverage area two kilometers wide is relatively small for outdoor positioning, while it would be 
unmanageable for indoor positioning systems. Tradeoffs between these requirements are also 
taken into account when assigning a score to a method. 
 
A high score implies that an outdoor method supports coverage areas in the range of Kilometers, 
with hundreds of simultaneous targets. For indoor methods, a high score requires them to cover a 
large area (i.e. a building, or a large warehouse) and provide service to dozens of targets. A 
medium score for outdoor methods means that the coverage area is hundreds of meters wide, and 
can support at least a hundred targets; indoors, the coverage area has to be medium-sized (i.e., a 
floor of a building) and able to support over ten targets. Methods with a coverage area below 
100m for outdoor and 10m for indoor methods, or able to service less than a hundred targets for 
outdoor or ten targets for indoor attain a low score.  
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3.4. Complexity 
 
Complexity of a positioning system can be attributed to hardware, software, and operation 
factors. If the computations of a positioning algorithm are performed on a centralized server side, 
the positioning could be calculated quickly due to powerful processing capability and sufficient 
power supply. If this computation is carried out on the mobile unit side, the effects of complexity 
become evident. Most mobile units lack powerful processing units and long battery life; thus, we 
would prefer positioning algorithms with low complexity. It is difficult to derive the analytic 
complexity formulae of different positioning techniques, so we only consider the computing time, 
location rate, and location lag, which is the delay between a mobile target moving to a new 
location and the reporting of the new position. 
 
It is difficult to determine an exact threshold for the complexity scores. Different methods have 
diverse results depending on the conditions of the environment [Liu07, Gu09, Van01, Rui10]. 
These scores apply for both indoor and outdoor environments. It is important to note that the 
higher the complexity, the lower the score on this metric. To achieve a high score in complexity, 
the computing requirements, location rate and location lag of a method must be low. This means 
that little computing power is needed to locate a target, and the updates on its current position 
occur often and with little or no delay. A medium score represents the need for an above-average 
processing unit, less position updates, and longer time between these updates. A low score would 
imply that the method requires great amounts of CP or HW, or a combination of both. 
 

3.5. Overall Cost 
 
The overall cost of a positioning system may depend on many factors such as money, time, space, 
weight, and energy: Energy is an important cost factor of a system, for it determines how long it 
can remain active. The time factor is related to installation and maintenance (see deployment 
cost). Mobile units may have tight space and weight constraints, as is the case with mobile 
devices. In some instances, we can consider sunk costs, which reduce the overall cost of a 
positioning system by taking advantage of existing infrastructure. For example, some mobile units 
like electronic article surveillance tags and passive RFID tags are completely energy passive, only 
responding to external fields. This means they could have an unlimited lifetime, unlike most 
mobile units (devices with rechargeable battery) that have a lifetime of several hours per charge. 
 
A specific threshold for the overall cost score of a method cannot be established, due to the 
amount of features that need to be taken into account [Che04, Tre04]. We have considered that 
the cost in money and physical space are the most important for mobile positioning, so a high 
score would imply that a method does not require special, costly or burdensome equipment. A 
medium score would mean that at least one of the aforementioned factors is required for the 
method to work, and a low score that a method requires at least two of these factors. Note that a 
lower score in this metric is better, because it implies less cost. 
 

3.6. Deployment Cost 
 
The cost of deploying the physical component of a positioning system is highly dependent of the 
positioning technique and technologies that will be used during the positioning process. This of 
course includes the equipment installation, man or machine power required for this, and the 
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training necessary for the method to work. The effort required to put the system online should 
also be considered as a deployment cost. For example, a positioning system layered over a 
wireless network may be considered to have a low deployment cost if all the necessary units of 
that network have already been purchased and set-up for other purposes [Pra02]. 
 
The deployment cost accrues for equipment installation, the effort to put the system online, and 
the cost of training the system. The lower the score, the better the performance of the method in 
the deployment cost metric. A method would attain a low score if is there is little or no need for 
additional or cumbersome equipment installation, such as cameras or cable networks, or that the 
configuration and training phases are fairly cheap. A medium score would indicate that a mild 
effort is required on more than one cost factor, or a great effort in only one cost factor. A high 
score would mean that a considerable effort is required during installation, configuration or 
training phases. 
 

3.7. Robustness 
 
A positioning system is expected to operate normally even when some signals are not available, or 
bear values off the accepted range. Sometimes, the signal from a transmitter unit is totally 
blocked, so the signal cannot be obtained from some measuring units. The only information to 
estimate the location is the signal from other measuring units. Other times, measuring units in a 
harsh environment could be out of function or damaged, sending faulty signals or no signals at all. 
A positioning system has to make use of this incomplete or faulty information as best as it can to 
successfully position a resource, even if the results are not as accurate as they would be on normal 
circumstances. 
 
Our scale for evaluating robustness depends on how well a positioning method estimates the 
position of a resource, even with interference from different signals or structures, loss of signals 
due to damaged transmitters, or attenuation from environmental conditions. A high score means 
that the method can accurately position a target in the given environment (indoor or outdoor), 
even while under heavy interference or signal loss. A medium score indicates that the method can 
overcome a mild degree of interference, signal loss, or both, with only a small negative effect on 
the results. A low score is obtained when the method is unable to function properly, or is prone to 
give poor results when working under such conditions. 
 

3.8. Other Metrics 
 
Some authors mention additional metrics in their own works. These metrics have not been 
included in our classification, mainly due to the fact that they escape the scope of the survey. 
However, some of them present interesting ideas, and would allow to fine tune our classification 
in future iterations. This section addresses some of these metrics. 
 
The integrity risk is defined by Gilliéron et al. [Gil04] as the probability that a user will experience a 
position error larger than a specified limit without an alarm. They also consider the continuity of 
service as the requirement for a navigation service to be available for the user over a minimum 
time interval; and the availability of the navigation service, which is established by simultaneously 
fulfilling accuracy and integrity. 
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Hightower et al. [Hig01] define recognition as the capacity of a positioning technique to identify 
objects in order to take a specific actions based on their location. They also define limitation as the 
capacity of a positioning technique to work in different environments. 
 
Gu et al. [Gu09] propose security and privacy as the degree of user control of the usability of their 
personal location information and history. Fault tolerance, akin to robustness, is the ability of the 
positioning system to keep operating, even during malfunctions. User preference takes into 
account the level of comfort of the users (devices should be wireless, small, lightweight, have low 
power consumption, etc.). Commercial availability determines how readily available the design 
details are. Finally, limitations refer to positioning technology issues and other technical problems 
in the systems. 
 

4. Discussion of Positioning Methods Performance  
 
The metrics discussed in the previous section can be used to elaborate a comparison of the 
performance of the positioning methods reviewed in this survey. There are two sets of tables for 
each positioning technique, the first contains the metric scores for outdoor, and the second for 
indoor. The rows of each of these tables list the methods used by the techniques, and the columns 
the metrics. Each cell contains the score of the row’s method and column’s metric for the given 
technique. A brief discussion is presented for each table. 
 

4.1. Triangulation 
 
The methods considered are time of arrival (TOA), time differential of arrival (TDOA), roundtrip 
time of flight (RTOF), Received Signal Strength, (RSS), Received Signal Phase (RSP), GPS, and angle 
of arrival (AOA). Since TOA, TDOA and RTOF work under the same basic principle, they all share 
common traits, and therefore display a similar performance. The same holds for the RSS and RSP 
methods, which work under similar assumptions. GPS’ results are included only in the table 
outdoor environments, since multipath effects prevent it from working in indoor environments 
(without taking into account hybrid-GPS methods). 
 

Table 1: Performance of triangulation positioning methods in indoor environments 

Indoor Accuracy Precision Scalability Complexity 
Overall 

Cost 
Deployment 

Cost 
Robustness 

TOA High High High Medium Medium Low Medium 

TDOA High High Medium High High Low High 

RTOF High High Medium High High Low High 

RSP Medium High Medium Medium Low Low Medium 

RSS Medium Medium Medium Medium Low Low Medium 

AOA High Medium Medium High High Medium Medium 

 
Performance of TOA, TDOA and RTOF on Indoor Environments 
These methods are quite accurate, being able to position targets in the range of tens of 
centimeters with a high precision rate [Gu09]. However, synchronization errors might have 
adverse effects on the signal measurements [Vos03]. TOA’s complexity is medium-high, since it is 
difficult to implement [Gu09]. TDOA and RTOF are even more complex due their complicated 
hardware needs [Fuk03] and the computational power essential to diminish positioning errors 
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[Vos03]. The overall cost of TOA depends on how the tradeoff between accuracy and error 
mitigation is addressed [Vos03]. This cost is relatively high for TDOA and RTOF, due to the special 
hardware requirements [Fuk03]. The deployment cost for all of them requires only a small setup 
effort [Ver11], mainly because it uses existing infrastructure. As for robustness, a greater distance 
from the reference points induces a higher positioning error, due to time delay [Gu09]. This is 
especially true for TOA, since TDOA and RTOF have countermeasures to deal with these errors 
[Rui10]. 
 
Performance of RSP and RSS on Indoor Environments 
The RSS and RSP methods have an average accuracy, usually off by a few meters in the worst case 
[Fuk03]. This is mainly due to multipath effect and loss of signal strength present in indoor 
scenarios [Fel03]. Inside a building, the variation of the signal strength with distance is significant 
due to obstruction from walls and furniture [Pra02]. For RSS, multipath fading makes it poorly 
scalable [Ji04], while RSP has problems coping with an increased number of mobile clients [Pra02]. 
This also affects the complexity, accuracy and precision of these methods; increasing the 
granularity of the coverage area would require more calculations and would allow for more 
positioning errors in close quarters. The deployment cost is quite low thanks to the fact that RSS 
and RSP use available infrastructure (usually access points) to deploy the positioning system with 
minimum additional devices [Pra02].  
 
Performance of AOA on Indoor Environments 
The accuracy of AOA depends on the accuracy of the angle measurements [Liu07]. Its precision is 
consistent as long as the angle measurements are not affected by external factors. The 
calculations for AOA positioning are high due to the amount of operations needed to estimate 
distance and angles from the reference points to the target, heightening its complexity [Rui10]. 
Expensive equipment is also required, as well as a setup and calibration phase [Che04]. Also, the 
degradation of signals due to distance from base stations affects accuracy, leading to false 
positives on the current position [Rui10], and a small error in the measurement of an angle could 
cause a huge position error when the target is far from the reference points [Con02]. 
 

Table 2: Performance of triangulation positioning methods in outdoor environments 

Outdoor Accuracy Precision Scalability Complexity 
Overall 

Cost 
Deployment 

Cost 
Robustness 

TOA High High High Medium Medium Low Medium 

TDOA High High Medium High High Low High 

RTOF High High Medium High High Low Medium 

RSP Low Low Low High High Low Medium 

RSS Medium Low Low High High Low Medium 

AOA High Medium Low High High Medium Medium 

GPS High High High Low Low Low Medium 

 
Performance of TOA, TDOA and RTOF on Outdoor Environments 
These methods have medium-high accuracy in outdoor environments, with a 30m estimation error 
under favorable conditions [Mou01], and reliable precision. TDOA and RTOF have better accuracy 
and precision than TOA, at the cost of increased complexity and the need for special equipment. 
This is due to the use of multiple signal measurements to estimate positions, though 
synchronization errors might still affect these measurements [Vos03]. Moreover, a greater 
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distance from the reference points induces additional error due to signal time delay [Gu09], and 
an accurate synchronization between all participants is of utmost importance in order to obtain 
results [Che04]. Only a small effort is needed to setup a system using these positioning methods 
[Ver11]. 
 
Performance of RSP and RSS on Outdoor Environments 
The RSP and RSS methods have diminished accuracy outdoors, mainly because of environmental 
effects that affect the signal measurements; precision is also affected by these effects. For RSS, 
scalability becomes a major issue due to the size of the coverage area; a greater area requires 
more calculations, a bigger position database, and possibly additional equipment. The deployment 
cost remains low due to possibility of reusing available infrastructure to deploy the positioning 
system with minimum additional devices. As for robustness, there are more open spaces and 
fewer obstacles outdoors, so the effects of multipath and loss of signal found on indoor 
environments are not such a big problem. However, these issues are replaced by environmental 
effects, such as sunlight and fog, which increase the estimation error. 
 
Performance of AOA on Outdoor Environments 
AOA’s performance remains almost the same as that of observed indoors. The most evident 
variation is in scalability; the increased coverage area of an outdoor environment requires 
additional computational power. This requirement also affects the  complexity and overall cost of 
this method. AOA has some problems coping with objects around the trajectory of the signals, 
affecting the estimation and therefore decreasing its score on the robustness metric [Che04]. 
 
Performance of GPS on Outdoor Environments 
The accuracy of GPS has an estimation error of up to 15m on the ground, with a precision of 95% 
any time of the day [Mou01]. GPS has low computational requirements, especially for mobile 
devices [Van01]. A cheap GPS transceiver is all a device requires to enable GPS positioning. 
Scalability is not an issue, since countless people have been using this method worldwide at every 
hour of the day since its public release. Its use is so popular that the cost of GPS capable devices is 
available for everyone, though some more accurate and precise modern devices are out of 
common people’s monetary reach [Baj02]. Since GPS uses an array of satellites and a simple 
mobile transceiver unit, its deployment cost is also inexpensive. Even so, this method’s accuracy 
can be affected by environmental effects and atmospheric conditions [Gu09]. 
 

4.2. Proximity 
 
For proximity, the methods considered are Cell-ID (CID), Radio-frequency ID (RFID), closest 
neighbor (CN), and least square (LS). 
 

Table 3: Comparison of proximity positioning methods in indoor environments 

Indoor Accuracy Precision Scalability Complexity 
Overall 

Cost 
Deployment 

Cost 
Robustness 

CID Low Low High Low Low Low High 

RFID High High Low Low Low High Low 

CN Low High Low Medium Low High Low 

LS Medium Medium Medium High Low High Medium 
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Performance of CID on Indoor Environments 
Given the nature of CID, its accuracy and precision are especially low in indoor environments 
[Zei02]. Although CID positioning systems are able to support a large quantity of users at the same 
time with relatively little computational effort, the huge drawback of accuracy and precision is too 
much of a problem to be a competitive method. It remains an inexpensive technology, because 
infrastructure exists for use in mobile cellphone communication [Tre04]. The deployment cost of a 
CID positioning system is also low for the same reason. 
 
Performance of RFID on Indoor Environments 
RFID is one of the most widely used positioning methods in indoor environments. It has a high 
degree of accuracy and precision, both in active and passive positioning. The nature of the tags 
used for RFID positioning does not allow for a great coverage area [Gu09], though these tags are 
remarkably cheap. However, in order to install the tags in the coverage area, a huge deployment 
effort is needed [Gu09]; this effort increases as the coverage area grows. The RFID method 
requires little computational power to perform estimations [Cho04], though it is relatively weak 
against interference from foreign elements between the transmitters and the receiver devices, 
such as clothes [Gu09]. 
 
Performance of CN on Indoor Environments 
CN determines the position of the target as the position of its closest base station, making it a 
weak solution for indoor scenarios. Moreover, since this method tends to choose the same base 
station for a given signal measurement interval, its precision could be deceitfully high, even when 
the accuracy is low. CN is an iterative process, requiring a moderate amount of computational 
power. However, no special equipment is required to perform the estimations, aside from the 
transmitters and receivers. Still, the setup and training phases of this method require an important 
deployment effort. 
 
Performance of LS on Indoor Environments 
The LS method has modest accuracy, though it has precision issues due to synchronization and 
obstructed LOS [Kan04]. It can support a relatively large number of positioning targets, but this 
number depends on the size of the coverage area. Since LS uses an iterative minimization function, 
it requires moderate computational power to perform the estimations [Con02]. As with other 
proximity methods, an important deployment effort is required during the setup stage. 
 

Table 4: Comparison of proximity positioning methods in outdoor environments 

Outdoor Accuracy Precision Scalability Complexity 
Overall 

Cost 
Deployment 

Cost 
Robustness 

CID Low Low High Low Low Low High 

RFID Low High Low Low Medium High Low 

CN Low Medium Low High Low High Low 

LS Low Medium Low High Low High Medium 

 
Performance of CID on Outdoor Environments 
CID’s performance in outdoor environments is similar to that observed for indoor, with a low 
accuracy due to the way it estimates a target’s position. Both the accuracy and precision of CID are 
highly dependent on the size of the coverage area, which can range 200m to over 30Km [Mou01]. 
However, it still supports a larger quantity of simultaneous requests than other methods with 
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relatively little computational effort. CID is inexpensive due to reusing of infrastructure and 
requires little deployment effort for the same reason.  
 
Performance of RFID on Outdoor Environments 
RFID is a poor choice for outdoors, due to its small effective coverage area and large deployment 
cost. For these reasons, RFID is not used in outdoor environments, except for parking lots, 
warehouses and the like. RFID accuracy outdoors score is low because of the tag’s limited range, 
though its precision is still reliable, to an extent. To overcome this problem, more RF tags area 
needed, increasing the overall cost and deployment cost without much gain in accuracy. 
Moreover, environmental conditions such as sunlight and fog affect the signal measurements, 
although the OLOS problem is reduced due to the open areas and less obstacles. 
 
Performance of CN on Outdoor Environments 
The CN method’s accuracy is akin to that observed for CID. It can only estimate the position of a 
resource at the exact position of its closest base station [Kan04]. Although it has a good precision 
due to the iterative refining of the estimations, the size of the coverage area of outdoor scenarios 
renders this method’s computing requirements almost unbearable for most computational 
equipments. Thus, special, more powerful processing units are required. Its overall cost remains 
low despite that. An important effort must be made during the setup and training of this method. 
 
Performance of LS on Outdoor Environments 
The LS method’s accuracy score in outdoor scenarios is low due to the increased size of the 
coverage area. Since LS is an iterative process, a small error at an early iteration could adversely 
affect the final position estimation. Its precision remains the same, though it cannot support too 
many positioning targets due to the intense computational effort required to apply the minimizing 
function [Con02]. This method also requires an important effort during setup stages. 
 

4.3. Fingerprinting 
 
The methods considered are k-closest neighbor (kNN), support vector machines (SVM), smallest 
vertex polygon (SMP), neural networks (NN), Bayes theorem (BT), and Markov Chains (MC). Given 
the nature of fingerprinting, it is seldom used for outdoor positioning due to scalability and 
complexity issues. For this reason, we only considered indoor environments for our comparison. A 
common trait most fingerprinting methods share is that a small change in the layout of the 
environment or the position of emitter devices would require retraining the system. The NN and 
MC methods have a similar behavior, and are discussed together. 
 

Table 5: Comparison of fingerprinting positioning methods in indoor environments 

Indoor Accuracy Precision Scalability Complexity 
Overall 

Cost 
Deployment 

Cost 
Robustness 

kNN High High Medium High High High Medium 

SVM High Medium High Medium Medium High Medium 

SMP High Medium Medium High High High Medium 

NN High High High Medium Medium Medium High 

BT High High Medium High High High Medium 

MC High High Medium High High High Medium 
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Performance of kNN on Indoor Environments 
The kNN positioning method has a great accuracy at close range (2.4m at 50m, 1.26 at 25m), but it 
quickly deteriorates when closing in to the target [Was05]. This is due to an innate problem of the 
kNN algorithm: similar readings (i.e. close points) increase the probability of an estimation error. 
Even though the kNN algorithm doesn’t always compute position in the same way, it has a 
remarkable precision [Rui10]. A problem with kNN is that greater granularity (more fingerprints) 
increases the computational needs and requires a greater training effort [Was05].  
 
Performance of SVM on Indoor Environments 
The SVM method has a high accuracy rate, though its precision can be affected by similar readings 
of signals coming from different points. An advantage of this method is its scalability; it is able to 
support a large amount of simultaneous targets and can be easily adapted to position resources in 
3-D environments, thanks to its multi-dimensional approach. However, the complexity of the 
operations required for the positioning estimations demands a powerful computing infrastructure. 
As with other fingerprinting methods, changes in the transmitter’s layout imply retraining [Rui10], 
a stage that implies a significant deployment effort for SVM. 
 
Performance of SMP on Indoor Environments 
SMP calculates target positions via averaging, which leads to a relatively high accuracy in most 
cases, but a high precision error rate [Liu07]. It cannot cope with an increased number of 
positioning targets, because of the computational power required to make the averaging 
calculations. This impacts SMP’s score in both scalability and complexity. As with other 
fingerprinting methods, changes in the transmitter’s layout imply retraining [Rui10]. 
 
Performance of NN on Indoor Environments 
NN has great accuracy at close range (2.94m at 50m, 1.39m at 25m) [Was05], with a slightly lower 
precision than other fingerprinting methods. A strong point of NN is that they have better 
performance than other methods when the training database is very large, though it still requires 
a moderate amount of training and computing power to carry out acceptable estimations.  
 
Performance of BT and MC on Indoor Environments 
The BT and MC fingerprinting have greater accuracy at greater distances from the reference 
points, which decreases at closer distance [Cas01, Bur98]. Since both methods work under 
probability assumptions, their complexity is relative to the size of the coverage area and amount 
of targets [Rui10]. A “re-sampling” can be done at any time for the BT method, allowing the users 
to adjust marginal distributions of access points when a change invalidates the current signal 
calibration. This includes changes in access points configuration [Cas01]. A drawback of the MC 
method is the enormous size of its state space, which grows with each new state update [Bur98]. 
 

4.4. Vision Analysis 
 
The methods considered are the extended Kalman filters (EKF), graph-based optimization 
techniques (GO), and the particle filters method (PF). Most SLAM methods have varying accuracy 
and precision due to the fact that the position of the target is estimated based on the map 
elaborated by the correspondent method. Though vision analysis can be applied to outdoor 
scenarios, its maximum effective coverage area is not large enough to compete with other 
methods. For this reason, we only included the scores for indoor performance for this technique. 
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Moreover, exact values to set an interval for the scores of some of the metrics could not be found 
in the reviewed literature. 
 

Table 6: Performance of vision-based positioning methods in indoor environments 

Indoor Accuracy Precision Scalability Complexity 
Overall 

Cost 
Deployment 

Cost 
Robustness 

EKF Medium -- Medium High -- -- Low 

GO Medium -- High Medium -- -- Medium 

PF High -- Low High -- -- Low 

 
Performance of SLAM EKF on Indoor Environments 
The complexity of EKF is high due to the quadratic matrix used for calculating co-variance [Thr08]. 
Some variants of the EKF algorithm allow it to scale to environments of greater size by 
decomposing them into sub-maps with different co-variances. A robot navigating with EKF might 
not recognize observed landmarks even when they are in the training database, leading to inability 
to determine a position. This uncertainty of estimation results in a low score in robustness for EKF. 
 
Performance of SLAM GO on Indoor Environments 
This method allows for different levels of complexity, diminishing the computational power 
requirement [Lu97], allowing GO to scale to bigger environments than other vision analysis 
methods. The lack of a co-variance matrix makes it space-wise and also faster at updates, 
depending on the size of the training map [Thr08]. Additionally, even though the memory usage 
and update time of GO is constant, optimizations can be expensive and require retraining. 
 
Performance of SLAM PF on Indoor Environments 
Particle filters converge to the true position of a target under some minor assumptions and 
conditions [Mon02], however if these assumptions are wrong, the accuracy diminishes. The space 
of maps and paths grows with each update on the target’s position, requiring additional storage 
and faster processors. This is important due to the filters’ exponential growth rate with each state 
update [Mon03]. 
 

5. Related Work 
 
Gu et al. [Gu09] presented a set of indoor positioning systems, categorizing them based on the 
way they determine the location of resources. For each system, the advantages, disadvantages 
and limitations are addressed. Then, an evaluation of these methods is presented, based on the 
following set of metrics: security and privacy, cost, performance, robustness, complexity, user 
preference, availability and limitations. They state that combining positioning techniques and 
technologies can improve the quality of positioning services. Finally, they describe some of the 
current location sensing technologies and positioning projects in development at the time.  
 
In their work, Ruiz-López et al. [Rui10] provide a survey of various techniques and technologies for 
positioning services, with their relative advantages and disadvantages based on metrics, which 
they call functional requirements. They believe it is necessary to take the environment into 
consideration before deciding which positioning technology and technique should be used for a 
specific scenario. They also mention that different methods can be combined to improve accuracy 
on certain settings, and that the integration of indoor and outdoor technologies may help to 
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develop more efficient and robust systems. Finally, they hint the need for positioning services 
based on interoperable components, allowing the combining of positioning techniques and the 
technologies that support them in order to build hybrid systems. This would allow those 
components to be replaced and switched between them easily. 
 
Liu et al. [Liu07] elaborated an extensive survey on indoor positioning techniques and systems. 
They discuss three positioning techniques (to which they refer as algorithms) and some of the 
positioning methods used to implement them, describing several tradeoffs of the methods based 
in a performance measurement criteria. Then, a review of at the time current positioning systems 
and solutions is offered, based on the technology used by their authors (such as GPS-based, RFID-
based or cellular-based). This taxonomy is condensed into a set of tables showing for each solution 
the technology used, the algorithms, and their performance on the metrics defined in their work. 
 
Zeimpekis et al. [Zei02] present an overview of positioning techniques, grouping them based on 
where the positioning process is carried out (self positioning or remote positioning). They follow 
with a discussion of potential mobile applications and services that would benefit from the use of 
positioning techniques. They elaborate a taxonomy of indoor and outdoor positioning services, 
grouping them in two categories: Business-to-Consumer, and Business-to-Business. Finally, they 
discuss limitations and research challenges on mobile positioning techniques for indoor and 
outdoor environments. 
 
The work of Kanaan et al. [Kan04] presents a comparison of various geo-location algorithms for 
indoor scenarios. After describing these algorithms, they define Channel Models as the contextual 
conditions that introduce different amounts errors to the measurements; these channel 
conditions are Line-of-Sight (LOS), Obstructed LOS (OLOS), and mixed of them. A set of comparison 
tables for the reviewed algorithms for each channel condition is presented, with an evaluation of 
the performance of these algorithms in relation to the size of the indoor area over which a user is 
to be located. 
 
Hightower et al. [Hig01] developed a taxonomy to allow an easier evaluation of positioning 
systems. First, they established the differences between physical position and symbolic location, 
and between absolute and relative positioning. Then, they established metrics to evaluate their 
taxonomy, including localized location computation capability, accuracy, precision, scale, 
recognition, cost and limitations. The taxonomy is then used to survey some of them at the time 
current research and commercial positioning technologies. Finally, they established that future 
work should generally focus on lowering cost, reducing deployment cost, improving scalability, and 
creating flexible systems than on improving accuracy or precision. 
 
The paper presented by Madigan et al. [Mad05] present a positioning approach that allows the 
estimation of multiple wireless clients based on a Bayesian hierarchical model. Although it works 
only for indoor scenarios with available wireless networks, its results are similar to those of other 
methods. The innovation of the method presented by Madigan is the introduction of a fully 
adaptive zero profiling approach to location estimation that can track multiple targets 
simultaneously. The approach allows incorporating specific types of prior knowledge to improve 
the positioning process and results. 
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6. Conclusions and Future Work 
 
This paper offers a survey of current positioning indoor and outdoor techniques and methods, and 
is intended to serve as a guide for researchers and investigators on common positioning 
techniques. A detailed description of the most well known methods of positioning is offered, 
classified based on the technique they use to estimate positions. Using evaluation criteria based 
on metrics, the performance of these methods and the tradeoffs among them are presented. The 
comparison offered in Section 5 shows that every method has limitations, so tradeoffs must be 
established. We believe that this comparison could allow developers to determine the best 
positioning technique for a given scenario, or choosing which techniques to combine into a single 
positioning system. 
 
Positioning is an open field, full of research opportunities. The appearance of new technologies 
and scientific breakthroughs combined with the availability of wireless networks and mobile 
devices allows for different practical applications for positioning services. This is especially true for 
mobile devices, in particular smartphones. Social networks and advertising companies have begun 
using the position of users to offer services, and to publish content on the web. The growth in 
demand of positioning services requires that new approaches are taken, and new paths are 
discovered as new technologies and new demands for positioning services appear. 
 
Possible future work includes an extension of this work, adding additional metrics and less known 
positioning methods. Research on new or hybrid positioning methods would allow overcoming 
present limitations of positioning and allow for better services. These hybrid methods could help 
decrease the impact of tradeoffs, and increase accuracy and precision. Another area of research 
would be the integration of indoor and outdoor scenarios, allowing for a single positioning system 
to track a target both indoors and outdoors using different positioning methods. The improvement 
of current positioning devices (i.e. transmitters and receivers) could help overcome these 
challenges, and could also allow the deployment of sensors in areas that are not covered by a 
positioning system. This would be especially useful in emergency situations, such as earthquakes 
or floods. 
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8. Annex 
 
Multipath Effect: In wireless telecommunications, multipath is the propagation phenomenon that 
results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath 
include atmospheric ducting, ionospheric reflection and refraction, and reflection from water 
bodies and terrestrial objects such as mountains and buildings [Ji04]. 
 
Line-of-sight (LOS) propagation refers to electromagnetic radiation or acoustic wave propagation. 
Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves 
may be diffracted, refracted, reflected, or absorbed by atmosphere and obstructions with material 
and generally cannot travel over the horizon or behind obstacles [Kan04]. 
 
Obstructed Line-of-Sight (OLOS) or Non-Line-of-Sight (NLOS) is a term often used in radio 
communications to describe a radio channel or link where there is no visual line of sight (LOS) 
between the transmitting antenna and the receiving antenna. In this context LOS is taken either as 
a straight line free of any form of visual obstruction, even if it is actually too distant to see with the 
unaided human eye, or as a virtual LOS (i.e. as a straight line through visually obstructing material), 
thus leaving sufficient transmission for radio waves to be detected [Kan04]. 


