
Fast and Compact Web Graph Representations

Francisco Claude

fclaude@cs.uwaterloo.ca

David R. Cheriton School of Computer Science

University of Waterloo

Gonzalo Navarro

gnavarro@dcc.uchile.cl

Department of Computer Science

University of Chile

May 7, 2010

Abstract

Compressed graph representations, in particular for Web graphs, have become an attractive
research topic because of their applications in the manipulation of huge graphs in main memory.
The state of the art is well represented by the WebGraph project, where advantage is taken
of several particular properties of Web graphs to offer a tradeoff between space and access
time. In this paper we show that the same properties can be exploited with a different and
elegant technique that builds on grammar-based compression. In particular, we focus on Re-
Pair and on Ziv-Lempel compression which, although cannot reach the best compression ratios
of WebGraph, achieve much faster navigation of the graph when both are tuned to use the same
space. Moreover, the technique adapts well to run on secondary memory and in distributed
scenarios. As a byproduct, we introduce an approximate Re-Pair version that works efficiently
with severely limited main memory.

1 Introduction

The Web can be modeled as a directed graph: Every page corresponds to a node and every link
between two pages is represented as a directed edge between the corresponding nodes. This graph
is used to gather information about the Web, for example, to characterize its shape, prioritize
crawling, discover communities, etc.

Many techniques of interest to obtain information from the Web structure are essentially basic
algorithms applied over the Web graph. One of the classical references on this topic [KKR+99]
shows how the HITS algorithm to find hubs and authorities on the Web [Kle99] starts by select-
ing random pages and finding the induced subgraphs, which are the pages that point to or are
pointed from the selected pages. [DLL+06] show that several common Web mining techniques
used to discover the structure and evolution of the Web graph build on classical graph algorithms
such as depth-first search (DFS), breadth-first-search (BFS), reachability, and weakly and strongly
connected components. [STKA07] present a technique for Web spam detection that boils down to
algorithms for finding strongly connected components, for clique enumeration, and for minimum
cuts. There are entire conferences devoted to graph algorithms for the Web (e.g. WAW: Workshop
on Algorithms and Models for the Web-Graph).

In order to efficiently support these algorithms and traversals, one needs to provide a data
structure that retrieves the neighbors of a given node, or in the case of Web crawls, the pages
pointed from a given page. An important limitation when processing this kind of graphs is their

1



size. For example, according to WorldWideWebSize1, the graph of the Web indexed by Yahoo!,
Google, Bing, and Ask, is estimated to have at least 55 billion pages. Considering the typical number
of outlinks per page, this amounts to at least 1 trillion edges. A plain adjacency list representation
of this graph would need around 4 TB of memory space. Three kinds of approaches have been tried
to manage huge graph traversals:

• Represent the graph in external memory [Vit06]: Using suitable memory layouts, several
graph traversal algorithms run I/O-optimally on disk. Under the semi-external model (where
the array of nodes stays in main memory and the edges on disk), BFS/DFS take O(m/B)
I/O operations when n < M , being n the number of nodes, m the number of edges, B the
size of a disk page, and M the size of the main memory (B and M measured in number of
memory words).

Since a disk access can be up to 106 times slower than a main memory access, these algorithms
will certainly perform much worse than the version in main memory, even if I/O-optimal. Yet
their advantage is that they can manage huge graphs at low cost, since external memory is
much cheaper than main memory.

• Using distributed systems [BBYRNZ01, TGM93]: Distributing the information among many
computers is a good solution to manage huge amounts of data, in the aggregated main memory
of all the machines. Still, depending on the problem, the communication between the machines
may pose a significant latency, comparable to disk times in some cases.

• Compressed data structures [NM07]: The aim is to represent the data in compressed form
while retaining the ability to answer the same queries as their uncompressed counterpart.
Even if those structures are several times slower than their uncompressed version, they are
still orders of magnitude faster than operating the data on secondary memory.

In this paper we focus on the latter approach. We aim at representing graphs in highly com-
pressed form, so as to manage huge instances in main memory. We show that, for example, a
5-billion-edge crawl can be efficiently handled within a main memory of 2 GB (whereas a plain
representation would require 22 GB). For larger graphs, where compression is not sufficient to fit
them in RAM, compressed data representations have the potential of improving the other two
approaches as well. For secondary memory data structures, if one reduces the space required by
the data on disk, and keeps locality of access, the net effect is a reduction of m in the O(m/B)
time formula, due to reduced seek and transfer time. For distributed computing, compressed data
structures may allow using fewer computers to do the same task, and reducing network traffic as
well. Therefore, research in compressed data structures to handle Web graphs is useful regardless
of the approach.

As far as we know, the best space/time tradeoffs to compress Web graphs such that they can be
navigated in compressed form are those of Boldi, Santini, and Vigna [BV04a, BSV09]. They exploit
several well-known regularities of Web graphs, such as their skewed in- and out-degree distributions,
repetitiveness in the sets of outgoing links, and locality in the references, so as to offer an excellent
tradeoff between compression ratio and time to access the list of neighbors of a node. For this sake
they resort to several mechanisms such as node reordering, differential encoding, compact interval
representations and references to similar adjacency lists. They developed and maintain a so-called

1http://www.worldwidewebsize.com

2



WebGraph framework. It is associated to the site http://webgraph.dsi.unimi.it, which by itself
witnesses the level of maturity and sophistication that this research area has reached.

In this paper we present a new way of taking advantage of the regularities that arise in Web
graphs. Instead of different ad-hoc techniques, we use a uniform and elegant technique called Re-
Pair [LM00] to compress the adjacency lists. Re-Pair recursilvey finds pairs of repeated symbols
across all the lists and condenses them into a new “nonterminal” symbol, which has to be expanded
later when extracting the list. As the original linear-time Re-Pair compression requires much main
memory (2 to 5 integers per edge), we develop an approximate version that adapts to the available
space and can smoothly work on secondary memory thanks to its sequential access pattern. This
method can be of independent interest for compressing huge sequences of any kind.

Our experimental results over different Web crawls show that, although our methods cannot
reach the best compression ratios currently achieved within WebGraph, our traversal is 1.5–2 times
faster when we leave the WebGraph representations use as much memory as we need. Compared
to a plain graph representation, ours is shown to be up to 13 times smaller, which largely increases
the chance to fit very large graphs in main memory. For larger graphs, as explained, our technique
allows reducing seek times. For example, based on our compression results, we extrapolate that
the trillion-edge whole-indexed-Web estimation could be accessed up to 10 times faster on disk,
requiring just 20 to 45 GB (in RAM) for the nodes and 350 GB (on disk) for the edges, in the
semi-external memory model. This amount of RAM is becoming feasible on commodity servers.

From a more general perspective, we advocate for using grammar-based compression techniques
to compress Web graphs. These compressors find repeated subsequences and replace them by new
(so-called nonterminal) symbols. We also show that other grammar-based compressors can be used
instead of Re-Pair, as long as they are able of efficiently extracting snippets from a sequence and
of handling large alphabets. In particular, we modify the Ziv-Lempel variant called LZ78 [ZL78]
in order to achieve random access. LZ78 does not compress as much as our Re-Pair variants, yet it
is slightly faster to extract snippets. Both methods can be seen as approximations to the smallest
grammar generating the graph. Finding such smallest grammar is NP-hard [Ryt03, CLL+05].
Existing approximations [Ryt03, Sak05] require much space at compression time, which makes
them infeasible for our application.

A conference version of this paper appeared in 2007 [CN07]. Since then, other approaches
have been proposed that can be regarded as advocating for grammar-based compression. [BC08]
introduced the idea of “mining virtual nodes”. Translated into our terminology, their idea is to
find groups of (not necessarily consecutive) nodes that appear in several adjacency lists, replacing
them by a new symbol representing a virtual node, and iterating. By identifying virtual nodes with
nonterminals in our grammars, we have that their approach can be seen also as grammar-based
compression (especially because order is not important within adjacency lists, and thus putting
together the symbols to replace is valid). Their techniques to mine virtual nodes can be regarded,
in this framework, as yet another heuristic trying to solve the smallest grammar problem. We show
that simple Re-Pair is competitive with this promising line of research.

The source code for a representative subset of the variants proposed in this paper can be
downloaded from http://webgraphs.recoded.cl/, we also include some examples and further
documentation.

3



2 Related Work

The related work is divided into two parts. The first covers graph representations, starting with a
short survey for general graphs and then focusing on Web graphs. The second part is related to
compressed data structures. We focus mainly on rank and select queries over sequences, introducing
at the same time the notion of entropy for sequences.

2.1 Graph Representations

Let us consider graphs G = (V,E), where V is the set of vertices and E is the set of edges. We call
n = |V | and m = |E| in this paper. Standard graph representations such as the incidence matrix
and the adjacency list require n(n−1)/2 and n log(2m)+2m log n bits2, respectively, for undirected
graphs. For directed graphs the numbers are n2 and n logm + m log n, respectively. We call the
neighbors of a node v ∈ V , those u ∈ V such that (v, u) ∈ E, which in our application correspond
to the Web pages pointed by v.

The first compressed data structure for graphs we know of [Jac89] requires O(gn) bits of space
for a g-page graph (here a “page” is a subgraph whose nodes can be written in a linear layout so
that its edges do not cross) . The t neighbors of a node can be retrieved in O(g+ t logn) time. The
main idea is to represent the nested edges using parentheses, and the operations are supported using
succinct data structures that permit navigating a sequence of balanced parentheses. The retrieval
time was later improved to O(g + t) by using improved parentheses representations [MR97], and
also the constant term of the space complexity was improved [CGH+98]. The representation also
permits finding the degree (number of neighbors) of a node, as well as testing whether two nodes
are connected or not, in O(g) time.

Those techniques based on number of pages, as well as many others for planar and geometric
graphs we are omitting, are unlikely to perform well on more general graphs, in particular to Web
graphs. A more powerful concept that applies to this type of graph is that of graph separators.
Although the separator concept has been used a few times [DL98, HKL00, CPMF04] (yet not
supporting access to the compressed graph), the best results are achieved in recent work [BBK03,
Bla06]. Their idea is to find graph components that can be disconnected from the rest by removing
a small number of edges. Then, the nodes within each component can be renumbered to achieve
smaller node identifiers, and only a few external edges must be represented.

[Bla06] applies the separator technique to design a compressed data structure that gives constant
access time per delivered neighbor. The technique is carefully implemented and experimented on
several graphs. In particular, on a graph of 1 million (1M) nodes and 5M edges from the Google
programming contest3, the data structures require 13–16 bits per edge (bpe; this is the total bits
divided by the number of edges), and work faster than a plain uncompressed representation using
arrays for the adjacency lists. It is not clear how these results would scale to larger graphs, as much
of their improvement relies on smart caching, and this effect should vanish with real Web graphs.

There is also some work specifically aimed at compression of Web graphs [BKM+00, AM01,
SY01, BV04a, BSV09]. Several properties of Web graphs have been identified and exploited to
achieve compression:

Skewed distribution: The in- and out-degrees of the nodes distribute according to a power law,

2In this paper logarithms are in base 2.
3www.google.com/programming-contest, not available anymore.

4



that is, the fraction of pages having i links is 1/iθ for some parameter θ > 0. Different
experiments give rather consistent values of θ = 2.1 for incoming and θ = 2.72 for outgoing
links [ACL00, BKM+00].

Locality of reference: Most of the links from a site point within the site. This motivates the
use of lexicographical URL order to list the pages, so that outgoing links go to nodes whose
position is close to that of the current node [BBH+98]. Gap encoding techniques are then
used to encode the differences among consecutive target node positions.

Similarity of adjacency lists: Nodes tend to share many outgoing links with some other nodes
[KRRT99, BV04a]. This permits compressing them by a reference to the similar list plus a
list of edits.

[SY01] partition the adjacency lists considering popularity of the nodes, and use different coding
methods for each partition. A more hierarchical view of the nodes is exploited by [RGM03].
Different authors [AM01, RSWW01] take explicit advantage of the similarity property. A page
with similar outgoing links is identified with some heuristic, and then the current page is expressed
as a reference to the similar page plus some edit information to encode the deletions and insertions
needed to obtain the current page from the referenced one. [BV04a] built on previous work [AM01,
RSWW01] and further engineered the compression to exploit the properties above. They have
continued improving their scheme within the WebGraph framework, and currently display the best
tradeoffs between space usage and access time [BSV08, BSV09].

Experimental figures are not easy to compare, but they give a reasonable idea of the practical
performances. Over a graph with 115M nodes and 1.47 billion (1.47G) edges from the Internet
Archive, [SY01] require 17.83 bpe. [RSWW01], over a graph of 61M nodes and 1G edges, achieve
5.07 bpe for the graph. [AM01] achieve 8.3 bpe over TREC-8 Web track graphs (WT2g set), yet they
cannot access the graph in compressed form. [BKM+00] require 37.87 bpe on a graph of 200M nodes
and 1.5G edges (and can answer reverse neighbor queries as well). [BSV08]BSV09 largely improve
upon those results. For example they report in their WebGraph site, on a 133M node and 5.5G link
crawl, compression to slightly more than 2.6 bpe. In our experiments on this paper we show they
achieve reasonable traversal times within this space, if we use their better variant [BSV09]. In all
the representations that offer efficient access times [SY01, RGM03, RSWW01, BSV09], these are
of a few hundred nanoseconds per delivered edge.

[BC08] achieve the best compression we are aware of for massive graphs, by exploiting structural
properties of Web graphs and social networks. Specifically, they look for bi-cliques, that is, pairs
A and B of sets of nodes such that each node in A points to all nodes in B. Then they create
a “virtual” node so that all nodes in A point to it and it points to all the nodes in B. This
is applied iteratively until no good bi-cliques are found. Several heuristics are tried to find the
bi-cliques, which is a hard problem. They do not give times to extract neighbors, yet these are
probably competitive (albeit slower than those we achieve in this paper) as they have to decode
the integers (they use ζ-codes [BV04b]) and then expand nonterminals. We note that [AMN08]
report even better compression figures by exploiting frequent patterns in the adjacency matrix, but
their method does not support efficient extraction of edges and is difficult to apply on large graphs
(the largest figure reported is for a 20M edge graph, where they achieve 2.78 bpe, whereas [BC08]
achieve 2.90 bpe).

5



2.2 Rank and Select on Sequences

In this work we make use of compact data structures to manipulate sequences of symbols. In the
simplest case we consider bitmaps (i.e., binary sequences) that are able to answer rank and select
queries. Rank counts the number of 1s in a given prefix of the sequence and select finds the position
of the i-th occurrence of a 1 in the bitmap.

There are many constant-time solutions for the rank/select problem on bitmaps B[1, n]. One of
them requires n+o(n) space (that is, o(n) bits on top of B itself) [Cla96, Mun96]. An improvement
to this solution [RRR02] retains constant-time queries while using nH0(B) + o(n) bits of space
to represent B and the extra data structures. H0(B) corresponds to the zero-order entropy of
bitmap B: The zero-order entropy for a binary sequence B[1, n] with n0 zeros and n1 ones is
H0(B) = n0

n
log n

n0
+ n1

n
log n

n1
. Rank and select operations can be extended to arbitrary sequences

drawn from an alphabet Σ of size σ. The operations supported are: access(i) retrieves the character
at position i; rank(a, i) counts the number of occurrences of a until position i; and select(a, i) returns
the position where the i-th occurrence of the character a appears.

[GMR06] presented a data structure capable of performing these three operations in a sequence
S[1, n] using n log σ + n o(log σ) bits and O(log log σ) time. Note that n log σ is the space required
by a plain representation of the sequence. [FMMN07] achieve zero-order compression, that is,
nH0(S) + o(n) log σ bits of space, and O(1 + log σ

log logn
) time per operation (this is a constant if

σ = O(polylog(n))). The zero-order entropy formula generalizes to sequences as follows: H0(S) =
∑

a∈Σ
na

n
log n

na
, where na is the number of occurrences of symbol a in S.

The solution by Ferragina et al. builds over an elegant structure called the wavelet tree [GGV03].
This is a perfect binary tree where the root stores a bitmap formed by the n highest bits of each
symbol in the sequence. Those symbols with highest bit 0 are then sent to the left subtree, and
those with 1 to the right subtree. The decomposition continues recursively with the next highest
bit, and so on. The tree has σ leaves and overall stores n log σ bits, just as the original sequence. If,
however, those bitmaps are compressed to their zero-order entropy [RRR02], the wavelet tree over
the sequence S[1, n] requires overall space nH0(S) + o(n) log σ bits. It implements access, rank,
and select via log σ constant-time rank/select operations on the bitmaps. [FMMN07] improve
upon this result by using multiary wavelet trees.

3 Re-Pair and Our Approximate Version

Re-Pair [LM00] is a phrase-based compressor that permits fast and local decompression. It consists
of repeatedly finding the most frequent pair of symbols in a sequence of integers and replacing it
with a new symbol, until no more replacements are convenient. More precisely, Re-Pair over a
sequence T works as follows:

1. It identifies the most frequent pair ab in T

2. It adds the rule s → ab to a dictionary R, where s is a new symbol not appearing in T (s is
called a nonterminal).

3. It replaces every occurrence of ab in T by s.4

4In case of overlaps one replaces greedily left-to-right, e.g., one cannot replace both occurrences of aa in aaa, so
one replaces the first pair.

6



4. It iterates until every pair in T appears once.

Let us call C the resulting text (i.e., T after all the replacements). It is easy to expand any
symbol s from C in time linear on the expanded data (that is, optimal): We expand s using rule
s → s′s′′ in R, and continue recursively with s′ and s′′, until we obtain the original symbols of T
(called terminals).

As each new rule added to R costs two integers of space, replacing pairs that appear twice does
not involve any gain unless R is compressed. In the original proposal [LM00] a very space-effective
dictionary compression method is presented. However, it requires R to be fully decompressed
before using it. In this paper we are interested in being able to operate the graphs in little space.
Thus, we favor a second technique to compress R [GN07], which reduces its space to about a half
and can operate on the compressed representation. We use this dictionary representation in our
experiments.

Despite its quadratic appearance, Re-Pair can be implemented in linear time [LM00]. However,
this requires several data structures to track the pairs that must be replaced. These require too
much space and non-local accesses, so compressing large sequences is problematic. This has been
noted in applications of Re-Pair to natural language text compression [Wan03], and suffix array
compression [GN07], where workarounds specific of those applications were devised. In the first
case, the sequence was compressed by chunks and a complex postprocessing for merging dictionaries
was applied. In the second, an efficient approximate version that used specific properties of suffix
arrays was introduced, yet it cannot be applied in general.

We present now an alternative approximate Re-Pair compression method that: (1) works on
any sequence; (2) uses as little memory as desired on top of T ; (3) given an extra memory to
work, can trade accuracy for speed; (4) is able to work smoothly on secondary memory due to its
sequential access pattern.

3.1 Approximate Re-Pair

In this section we describe the method assuming we have M > |T | units of main memory available,
that is, the text fits in main memory. Section 3.3 considers the case of larger texts.

We place T inside the bigger array of sizeM , and use the remaining space as a (closed) hash table
H of size |H| = min(M − |T |, 2|T |). Table H stores unique pairs of symbols ab = titi+1 occurring
in T , and a counter of their number of occurrences in T . The key ab = titi+1 is represented as a
single integer by its position i in T (any occurrence works). Thus each entry in H requires two
integers.

The algorithm carries out several passes. At each pass, we identify the k most promising
replacements to carry out, and then try to materialize them. Here k ≥ 1 is a time/quality tradeoff
parameter. At the end, the new text is shorter and the hash table can grow. We detail now the
steps carried out for each pass.

Step 1 (counting pair frequencies) We traverse T = t1t2 . . . sequentially and insert all the
pairs titi+1 into H. If, at some point, the table surpasses a load factor 0 < α < 1 (defined by
efficiency considerations), we do not insert new pairs anymore, yet we keep traversing T to increase
the counters of already inserted pairs. This step requires O(|T |) = O(n) time on average (the
constant depends on α).

7



Step 2 (finding k promising pairs) We scan H and retain the k most frequent pairs from it,
using a heap of k pointers to cells in H. Hence we need also space for k further integers. This step
requires O(|H| log k) = O(n log k) time.

Step 3 (simultaneous replacement) The k pairs identified will be simultaneously replaced in
a single pass over T . For this sake we must consider that some replacements may invalidate others,
for example we cannot replace both ab and bc in abc. Some pairs can have so many occurrences
invalidated that they are not worthy of replacement anymore (especially at the end, when even the
most frequent pairs occur a few times). Special care is needed to handle this problem.

We first empty H and reinsert only the k pairs to be replaced. This time we store the explicit
key ab in the table, as well as a field pos, the position of its first occurrence in T . Special values
for pos are null if we have not yet seen any occurrence in this second pass, and proceed if we have
already started replacing it. We now scan T and use H to identify pairs that must be replaced. If
pair ab is in H and its pos value is null, then this is its first occurrence, whose position we now
record in pos (that is, we do not immediately replace the first occurrence, but wait to be sure there
will be at least two occurrences to replace). If, on the other hand, its pos value is proceed, we just
replace ab by sz in T , where s is the new symbol for pair ab and z is an invalid symbol. Finally,
if pair ab already has a first position recorded in pos, we read this position in T and if it still
contains ab (after possible replacements that occurred since we saw that position), then we make
both replacements and set the pos value to proceed. Otherwise, we set the pos value of pair ab to
the current occurrence we are processing (i.e., its new first position). This method ensures that we
create no new symbols s that will appear just once in T . It takes O(|T |) = O(n) time on average.

Step 4 (compacting T and enlarging H) We compact T by deleting all the z entries, and
restart the process. As now T is smaller, we can have a larger hash table of size |H| = min(M −
|T |, 2|T |). The traversal of T , regarded as a circular array, will now start at the point where we
stopped inserting pairs in H in Step 1 of the previous pass, to favor a uniform distribution of the
replacements. This step takes O(|T |) = O(n) time.

3.2 Analysis.

The following analysis helps understand the accuracy/time tradeoff involved in the choice of k. As-
sume the exact method creates |R| new symbols. The approximate method can also consider |R| re-
placements (achieving hopefully similar compression, since these need not be the same replacements
of the exact method) in p = ⌈|R|/k⌉ passes, which take overall average time O(⌈|R|/k⌉ n log k).
Thus we can trade time for accuracy by tuning k. The larger k, the faster the algorithm (as there
is an O(log(k)/k) factor in its time complexity), but the less similar the result compared to the
exact method. Note that the algorithm considers carrying out |R| replacements, but some can be
disregarded after taking into account the impact of other simultaneous replacements. Thus the
final number of rules can be less than the number |R| initiall considered.

Note that even k = 1 does not guarantee that the algorithm works exactly as Re-Pair, as we
might not have space to store all the different pairs in H. In this respect, it is interesting that the
algorithm becomes more accurate (thanks to a larger H) in its later stages, as by that time the
frequency distribution is flatter and more precision is required to identify the best pairs to replace.

8



3.3 Running on Disk

The process described above also works well if T is too large to fit in main memory. In this case
we maintain T on disk and table H occupies almost all the main memory, |H| ≈ M < |T |. We
must also reserve sufficient main memory for the heap of k elements. To avoid random accesses to
T in Step 1, we do not store anymore in H the position of pairs ab, but instead ab explicitly. Thus
Step 1 carries out a sequential traversal of T . Step 2 runs entirely in main memory. Step 4 involves
another sequential traversal of T .

Step 3 is, again, the most complicated part. In principle, a sequential traversal of T is carried
out. However, when a pos value changes to proceed, we make two replacements: one at its first
occurrence (at value pos) and one at the current position in the traversal of T . The first involves a
random access to T . Yet, this occurs only when we make the first replacement of an occurrence of
a pair ab. This occurs at most k times per pass. However, checking that the first position pos still
contains ab and has not been overwritten, involves another random access to T , and these cannot
be bounded.

To carry out Step 3 efficiently, we note that there are at most k positions in T needing random
access at any time, namely, those containing the pos ( 6∈ {null, proceed}) values of the k pairs to
be replaced. We maintain those k disk pages cached in main memory. Those must be replaced
whenever value pos changes. This replacement does not involve reading a new page, because the
new pos value always corresponds to the current traversal position (whose block is also cached in
main memory). Thus cached pages not pointed anymore from any pos values are simply discarded
(hence an elementary reference counting mechanism is necessary), and the current page of T might
be retained in main memory if, after processing it, some pos values now point to it.

As explained, most changes to T are done at the current traversal position, hence it is sufficient
to write back the current page of T after processing it to handle those changes. The exceptions
are the cases when one writes at some old position pos. In those cases the pages we have cached
in main memory must be written back to disk. Yet, as explained, this occurs at most k times per
pass. (Note that using a dirty bit for the cached pages might avoid some of those write-backs, as
the dirty page could be modified several times before being abandoned by all the pairs.)

Thus the worst-case I/O cost of this algorithm, if p passes are carried out, is O(p · (n/B + k)),
where B is the disk block size. That is, the algorithm is almost I/O optimal with respect to its
main memory version. Indeed, it is asymptotically I/O optimal if k ≤ n/B, which for large graphs
is a reasonable limit.

4 A Compressed Graph Representation using Re-Pair

Let G = (V,E) be the graph we wish to compress and navigate. Let V = {v1, v2, . . . , vn} be the
set of nodes in arbitrary order, and adj(vi) = {vi,1, vi,2, . . . vi,ai} the set of neighbors of node vi.
Finally, let vi be an alternative identifier for node vi. We represent G by the following sequence:

T = T (G) = v1 v1,1 v1,2 . . . v1,a1 v2 v2,1 v2,2 . . . v2,a2 . . . vn vn,1 vn,2 . . . v1,an

so that vi,j < vi,j+1 for any 1 ≤ i ≤ n, 1 ≤ j < ai. This is essentially the concatenation of all the
adjacency lists with separators that indicate the node each list belongs to, and where we impose
that all the elements listed inside an adjacency list must be sorted by their id. Figure 1 shows an
example graph, and Figure 2 illustrates the construction of the structure using the original Re-Pair
algorithm.

9



Figure 1: An example graph.

Figure 2: The result of compressing the text representing the graph of Figure 1. We show the
resulting text after three replacements and then we remove the delimiters. Just below the resulting
sequence we show the pointers to each adjacency list and the corresponding bitmaps obtained when
we remove to those pointers to improve the space. This last idea is explained in Section 4.1. Values
v̄ are represented as −v.

The application of Re-Pair to T (G) has several important properties:

• Re-Pair permits fast local decompression, as it is a matter of extracting successive symbols
from C (the compressed T ) and expanding them using the dictionary of rules R. Moreover,
Re-Pair handles well large alphabets, |V | in our case.

• This works also very well if T (G) must be anyway stored in secondary memory because the
accesses to C are local and sequential, and moreover we access fewer disk blocks because it
is a compressed version of T . This requires, however, that R (the set of rules) fits in main
memory. This can be enforced at compression time, at the expense of losing some compression
ratio, by preempting the compression algorithm when |R| reaches the memory limit.

• As the symbols vi are unique in T , they will not be replaced by Re-Pair. This guarantees
that the beginning of the adjacency list of each vi will start at a new symbol in C, so that we
can decompress it in optimal time O(|adj(vj)|) without decompressing unnecessary symbols.

• If there are similar adjacency lists, Re-Pair will spot repeated pairs, therefore capturing them
into shorter sequences in C. Actually, assume adj(vi) = adj(vj). Then Re-Pair will end up
creating a new symbol s which, through several rules, will expand to adj(vi) = adj(vj). In
C, the text around those nodes will read visvi+1 . . . vjsvj+1. Even if those symbols do not

10



appear elsewhere in T (G), the compression method for R [GN07] (Section 3) will represent R
using |adj(vi)| numbers plus 1+ |adj(vi)| bits. Therefore, in practice we are paying almost the
same as if we referenced one adjacency list from the other. Thus we achieve, with a uniform
technique, the result achieved by [BV04a] by explicit techniques such as looking for similar
lists in an interval of nearby nodes.

• Even when the adjacency lists are not identical, Re-Pair can take partial advantage of their
similarity. For example, if we have abcde and abde, Re-Pair can transform them to scs′ and
ss′, respectively. Again, we obtain automatically what [BV04a] achieve by explicitly encoding
the differences using gaps, bitmaps, and other tools.

• The locality property (i.e., the fact that most outgoing links from each page point within the
same domain) is not exploited by Re-Pair, unless its translates into similar adjacency lists.
This, however, makes our technique independent of the numbering. In the work of [BV04a]
it is essential to be able of renumbering the nodes according to site locality. Despite this is
indeed a clever numbering for other reasons, it is possible that renumbering is forbidden if
the technique is used inside another application. However, we show next a way to exploit
locality.

The representation T (G) we have described is useful for reasoning about the compression per-
formance, but it does not give an efficient method to know where a list adj(vi) begins. For this sake,
after compressing T (G) with Re-Pair, we remove all the symbols vi from the compressed sequence
C (as explained, those symbols remain unaltered in C). Using essentially the same space we have
gained with this removal, we create a table that, for each node vi, stores a pointer to the beginning
of the representation of adj(vi) in C. With it, we can obtain adj(vi) in optimal time for any vi.
Integers in C are stored using the minimum bits required to store the maximum value in C.

4.1 Improvements

We describe now several possible improvements over the basic scheme. Some can be combined,
some not. Several possible combinations are explored in the experiments.

Differential encoding If we are allowed to renumber the nodes, we can exploit the locality
property in a subtle way. We let the nodes be ordered and numbered by their URL lexicographic
order, and encode every adjacency list using differential encoding. The first value is absolute and
the rest represents the difference to the previous value. For example the list 4 5 8 9 11 12 13 is
encoded as 4 1 3 1 2 1 1.

Differential encoding is usually a previous step to represent small numbers with fewer bits. We
do not want to do this as it hampers decoding speed (in contrast, [BC08] use ζ-coding to reduce
space). Our main idea to exploit differential encoding is that, if many nodes tend to have local
links, there will be many small differences we could exploit with Re-Pair, say pairs like (1, 1), (1, 2),
(2, 1), etc. The price is slightly slower decompression due to the need of adding up differences.
Figure 3 shows the differential encoding of the graph shown in Figure 1.

Reordering lists Since the adjacency list does not need to be output in any particular order,
we can alter the original order to spot more global similarities. Consider the lists 1, 2, 3, 4, 5 and

11



Figure 3: Differential encoding of the graph shown in Figure 1.

1, 2, 4, 5. Re-Pair can replace 1, 2 by 6 and 4, 5 by 7, but the common subsequence 1, 2, 4, 5 cannot
be fully exploited because the first list has a 3 in between. If we sort both adjacency lists after
compressing we get 3, 6, 7 and 6, 7, and then we can replace 6, 7, thus exploiting global regularities
in both adjacency lists. The method is likely to improve compression ratios. The compression
process is slightly slower: it works almost as in the original version, except that the lists are sorted
after each pass of Re-Pair, so we cannot combine this method with differences. Decompression
and traversal, on the other hand, are not affected at all. The experimental results show that this
approach achieves better compression ratios than applying Re-Pair without differences. Note that
this reordering is just a heuristic, and one could aim to finding the optimal ordering. However,
similar problems have been studied for differential encoding of inverted lists, and they have been
found to be hard [FV99, SCSC03]. Indeed, the whole point of the work of [BC08] is to develop
heuristics to find good subsequences efficiently.

Removing pointers It might be advantageous, for relatively sparse graphs, to remove the need
to spend a pointer for each node (to the beginning of its adjacency list in C). We can replace
the pointers by two bitmaps. The first one, B1[1, n], marks in B1[i] whether node vi has a non-
empty adjacency list. The second bitmap, B2[1, c] (where c = |C| ≤ m), marks the positions
in C where adjacency lists begin. Hence the starting position of the list for node vi in C is
select(B2, rank(B1, i)) if B1[i] = 1 (otherwise the list is empty). The list extends up to the next
1 in B2. The space is n + c + o(n + c) bits, instead of n log c needed by the pointers. When n
is significant compared to c, space reduction is achieved at the expense of slower access to the
adjacency lists. See Figure 2 for an example on the values assigned in B1 and B2.

5 Lempel-Ziv Compression of Web Graphs

The Lempel-Ziv compression family [ZL77, ZL78] achieves compression by replacing repeated se-
quences found in the text by a pointer to a previous occurrence thereof. In particular, the LZ78
variant [ZL78] stands as a plausible alternative candidate to Re-Pair for our goals: it detects du-
plicate lists of links in the adjacency lists, handles well large alphabets, and permits fast local
decompression. Moreover, LZ78 admits efficient compression without requiring approximations.

5.1 The LZ78 Compression Algorithm

LZ78 compresses the text by dividing it into phrases. Each phrase is built as the concatenation of
the longest previous phrase that matches the prefix of the text yet to be compressed and an extra
character which makes this phrase different from all the previous ones. The algorithm is as follows:

1. It starts with a dictionary S of known phrases, containing initially the empty string.

2. It finds the longest prefix Ti,j of the text Ti,n yet to be processed, which matches an existing
phrase. Let p be that phrase number.

12



3. It adds a new phrase to S, with a fresh identifier, and content (p, tj+1).

4. It returns to Step 2, to process the rest of the text Tj+2,n.

In order to carry out Step 2 efficiently, S is organized as a trie data structure. The output of
the compressor is just the sequence of pairs (p, tj+1). The phrase identifier is implicitly given by
the position of the pair in the sequence.

The text of any phrase in the compressed text can be obtained backwards in optimal time.
Let p0 the phrase we wish to expand. We read the p0-th pair in the compressed sequence and get
(p1, c0). Then c0 is the last character of the phrase. Now we read the p1-th pair and get (p2, c1),
thus c1 precedes c0. We continue until reaching pi = 0, which denotes the empty phrase. In i
constant-time steps we obtained the content ci−1ci−2 . . . c1c0.

Just as Re-Pair, this extraction can be made I/O-optimal if we limit the creation of phrases to
what can be maintained in main memory. After that point, the process continues identically but
no new phrases are inserted into S (hence not all the phrase contents will be different).

5.2 Using LZ78 for Graph Compression

For a graph G = (V,E), where V = {v1, v2, . . . , vn} and adj(vi) = {vi1, vi2, . . . , viai} is the set of
neighbors of node vi, the textual representation used for LZ78 compression is slightly different from
that of Section 4:

T = T ′(G) = v11v12v13 . . . v1a1v21v22 . . . v2a2 . . . vn1vn2 . . . vnan ,

where we note that the special symbols vi have been removed. The reason is that removing them
later is not as easy as for Re-Pair. To ensure that adjacency lists span an integral number of
phrases (and therefore can be extracted in optimal time O(|adj(vi)|)), we run a variant of LZ78
compression. In this variant, when we look for the longest phrase Ti,j in Step 2, we never cross
a list boundary. More precisely, the character tj+1 to be appended to the new phrase must still
belong to the current adjacency list. This might produce repeated phrases in the compressed text,
which of course are not inserted into S.

Like C, the array of pointers and symbols added are stored using the minimum number of bits
required by the largest pointer and symbol, respectively.

In addition, we store a pointer to every beginning of an adjacency list in the compressed se-
quence, just as for Re-Pair. Some of the improvements in Section 4.1 can be applied as well:
differential encoding (which will have a huge impact with LZ78) and replacing pointers by bitmaps.

6 Experimental Results

We carried out several experiments to measure the compression and time performance of our graph
compression techniques, comparing them to the state of the art. We downloaded four Web crawls
from the WebGraph project [BV04a], http://law.dsi.unimi.it. Table 1 shows their main char-
acteristics. The last column shows the size required by a plain adjacency list representation using
4-byte integers. For larger graphs 4 bytes per node id would not suffice, and we would spend even
more space per edge in a plain representation. Later on we introduce a larger graph to study the
scalability of our approach.

13



Crawl Nodes Edges Edges/Nodes Plain size (MB)

EU (2005) 862,664 19,235,140 22.30 77
Indochina (2004) 7,414,866 194,109,311 26.18 769
UK (2002) 18,520,486 298,113,762 16.10 1,208
Arabic (2005) 22,744,080 639,999,458 28.14 2,528

Table 1: Some characteristics of the fours crawls used in our experiments.

6.1 Compression Performance

Our compression algorithm is parameterized by M , k, and α. Those parameters yield a tradeoff
between compression time and compression effectiveness. In this section we study those tradeoffs.
As there are several possible variants of our method, we stick in this section to the one called
Re-Pair Diffs CDict NoPtrs in Section 6.3. The machine used in this section is a 2GHz Intel Xeon
(8 cores) with 16 GB RAM and 580 GB Disk (SATA 7200rpm), running Ubuntu GNU/Linux with
kernel 2.6.22-14 SMP (64 bits). The code was compiled with g++ using the -Wall, -O9 and -m32

options. The space is measured in bits per edge (bpe), dividing the total space of the structure by
the number of edges in the graph.

Parameter α (the maximum load ratio of the hash table H before we stop inserting new pairs)
turns out to be not too relevant, as its influence on the results is negligible for a wide range of
reasonable choices. We set α = 0.6 for all of our experiments.

Value M is related to the amount of extra memory we require on top of T . Our first experiment
aims at demonstrating that we obtain competitive results using very little extra memory. Table 2
shows the compression ratios achieved with different values of M (as a percentage over the size of
T ). As it can be seen, we gain little compression by using more than 5% over |T |, which is extremely
modest (the linear-time exact Re-Pair algorithm [LM00] uses at the very least 200% extra space).
The rest of our experiments are run using 3% extra space5.

Graph 1% 3% 5% 10% 50%

EU 4.68 4.47 4.47 4.47 4.47
Indochina 2.53 2.53 2.53 2.52 2.52
UK 4.23 4.23 4.23 4.23 4.23
Arabic 3.16 3.16 3.16 3.16 3.16

Table 2: Compression ratios (in bpe) achieved when using different amounts of extra memory for H
(measured in percentage over the size of the sequence to compress). In all cases we use k = 10, 000.

We now study the effect of parameter k in our time/quality compression tradeoff. Table 3 shows
the time and compression ratio achieved for different k on our crawls. For the smaller crawls we
also run the exact algorithm (using a relatively compact implementation [GN07] that requires 260
MB total space for EU and 2.4 GB for Indochina). It can be seen that our approximate method
is able of getting very close to the exact result while achieving reasonable performance (around 1
MB/sec). Lempel-Ziv compression is much faster but compresses far less.

5That is, in the beginning. As the text is shortened along the compression process we enlarge the hash table and

14



EU

k time (min) bpe

exact 86.15 4.40

10,000 1.77 4.47
25,000 1.03 4.70
50,000 0.83 4.74
75,000 0.72 4.76
100,000 0.73 4.79
250,000 0.62 4.91
500,000 0.62 4.95

1,000,000 0.67 4.95

LZ Diffs 0.07 7.38

Indochina

k time (min) bpe

exact 5,230.67 2.50

10,000 52.97 2.53
25,000 20.73 2.53
50,000 12.68 2.54
75,000 8.70 2.54
100,000 7.75 2.54
250,000 4.85 2.56
500,000 4.07 2.59

1,000,000 3.77 2.62

LZ Diffs 0.53 4.89

UK

k time (min) bpe

10,000 341.32 4.23
25,000 142.57 4.24
50,000 74.20 4.25
75,000 49.08 4.25
100,000 38.22 4.25
250,000 20.45 4.26
500,000 14.23 4.27

1,000,000 10.60 4.29

LZ Diffs 1.32 8.56

Arabic

k time (min) bpe

10,000 1,034.53 3.16
25,000 370.08 3.18
50,000 191.60 3.19
75,000 132.72 3.19
100,000 102.55 3.19
250,000 53.77 3.20
500,000 30.48 3.21

1,000,000 24.57 3.23

LZ Diffs 2.72 6.11

Table 3: Time for compressing different crawls with different k values. For the smaller graphs we
also include the exact method. We also include the results of our LZ variants for the four crawls.
The LZ version was compiled without the -m32 flag, since our implementation requires more than
4 GB of RAM for the larger graphs.

It is interesting to notice that, as k doubles, compression time is almost halved (especially for
small k). This is related to the fact that we cannot guarantee that all the k pairs chosen are actually
replaced. Table 4 measures the number of replacements actually done by our algorithm on crawls EU
and Indochina. As it can be seen, for k up to 10,000, more than 85% of the planned replacements
are actually carried out, and this improves for larger graphs. Note also that the number of passes
made by the algorithm is rather reasonable. This is relevant for secondary memory, as it means for
example that with k = 10, 000 we expect to do about 60 passes over the (progressively shrinking)
text on disk for the EU crawl, and 263 for the Indochina crawl.

For the rest of the experiments we use k = 10, 000.

keep using the absolute space originally allowed.

15



EU

k Passes Total Pairs Pairs/pass % of k

5,000 108 497,297 4,604 92.08
10,000 58 502,530 8,664 86.64
20,000 33 513,792 15,569 77.85
50,000 19 543,417 28,600 57.20
100,000 14 576,706 41,193 41.19
500,000 12 676,594 56,382 11.28

1,000,000 12 676,594 56,382 5.64

Indochina

k Passes Total Pairs Pairs/pass % of k

10,000 263 2,502,880 9,516 95.16
20,000 136 2,502,845 18,403 92.02
50,000 60 2,503,509 41,725 83.45
100,000 34 2,528,530 74,368 74.37
500,000 16 2,772,091 173,255 34.65

1,000,000 14 2,994,149 213,867 21.39
5,000,000 14 3,240,351 231,453 4.63
10,000,000 14 3,240,351 231,453 2.31

Table 4: Number of pairs created by approximate Re-Pair over two crawls.

6.2 Limiting the Dictionary

As explained, we can preempt Re-Pair compression at any pass in order to limit the size of the
dictionary. This is especially interesting when the graph, even in compressed form, does not fit in
main memory. In this case, we can take advantage of the locality of accesses to C to speed up the
access to the graph: If we are able of compressing T (G) by a factor c, then access to long adjacency
lists can be speeded up by a factor up to c. However, some Re-Pair structures need random access,
and those must reside in RAM. This includes the dictionary, but also the structure that tells us
where each adjacency list starts in C. The latter could still be kept on disk at the cost of one extra
disk access per list, whereas the former definitely needs to lie in main memory.

Figure 4 shows the tradeoffs achieved between the size of the main sequence C and that of
the RAM structures, as we modify the preemption point. It is interesting to notice that the main
memory usage has a minimum, due to the fact that, as compression progresses, the dictionary
grows but the width of the pointers to C decreases6.

At those optima, the overall size of C plus RAM data is not the best possible one, but rather
close. In our graphs, the optimum space in RAM is from 0.2 to 0.4 bpe. This means, for example,
that just 15 MB of RAM is needed for our largest graph, Arabic. If we extrapolate to the 4 TB graph
of the whole indexed Web mentioned in the Introduction, we get that we could handle it in secondary
memory while using 20–45 GB of RAM (64 GB RAM servers are becoming commonplace). If the

6In the variant NoPtrs we use a bitmap of |C| bits, which produces the same effect.

16



compression would stay at about 3 bpe (as in our largest graph, Section 6.5), this would mean that
access to the compressed Web graph would be up to 10 times faster than in uncompressed form,
on disk.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

s
p
a
c
e
 
f
o
r
 
p
o
i
n
t
e
r
s
 
p
l
u
s
 
d
i
c
t
i
o
n
a
r
y
 
(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

EU

App. Re-Pair

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10  12

s
p
a
c
e
 
f
o
r
 
p
o
i
n
t
e
r
s
 
p
l
u
s
 
d
i
c
t
i
o
n
a
r
y
 
(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

Indochina

App. Re-Pair

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16

s
p
a
c
e
 
f
o
r
 
p
o
i
n
t
e
r
s
 
p
l
u
s
 
d
i
c
t
i
o
n
a
r
y
 
(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

UK

App. Re-Pair

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16

s
p
a
c
e
 
f
o
r
 
p
o
i
n
t
e
r
s
 
p
l
u
s
 
d
i
c
t
i
o
n
a
r
y
 
(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

Arabic

App. Re-Pair

Figure 4: Space used by the sequence versus the dictionary plus the pointers, all measured in bits
per edge.

6.3 Compressed Graph Size and Access Time

We now study the space versus access time tradeoffs of our graph compression proposals based on
Re-Pair and LZ78. From all the possible combinations of improvements7 depicted in Sections 4
and 5 we have chosen the following, which should be sufficient to illustrate what can be achieved
(see in particular Section 4.1).

• Re-Pair: Normal Re-Pair.

• Re-Pair Diffs: Re-Pair with differential encoding.

7We can devise 16 combinations of Re-Pair and 8 combinations of LZ78 variants.

17



• Re-Pair Diffs NoPtrs: Re-Pair with differential encoding and with pointers to C replaced by
bitmaps.

• Re-Pair Diffs CDict NoPtrs: Re-Pair with differential encoding and a compacted dictionary.
In the other implementations, every element of the dictionary is stored as an integer in order
to speed up the access. This version stores every value using the required number of bits and
not 32 by default. It also replaces the pointers to C by bitmaps.

• Re-Pair Reord: Normal Re-Pair with list reordering.

• Re-Pair Reord CDict: Re-Pair with list reordering and compacted dictionary.

• LZ: Normal LZ78.

• LZ Diffs: LZ78 on differential encoding.

For each of those variants, we measured the size needed by the structure versus the time required
to access random adjacency lists. Structures that offer a space/time tradeoff will appear as a line in
this plot, otherwise they will appear as points. The time is measured by extracting full adjacency
lists and then computing the time per extracted element in adj(vi). More precisely, we generate
a random permutation of all the nodes in the graph and sum the user time of recovering all the
adjacency lists (in random order). The time per edge is this total time divided by the number of
edges in the graph. This is a sort of worst-case situation for real traversals, which might exhibit
some locality; we explore DFS and BFS traversals in Section 6.5.

These experiments were run on a Pentium IV 3.0 GHz with 4 GB of RAM using Ubuntu
GNU/Linux 8.10 with kernel 2.6.27-16 and g++ with -O9 and -DNDEBUG options.

We compared to the implementation by [BV04a], run on our machine, with various space/time
tradeoffs. The implementation of Boldi and Vigna gives a size measure that is consistent with the
sizes of the generated files (and with their paper [BV04a]). This is the space we report, despite the
process (in Java8) actually needs more memory to run. The times we show are obtained with the
garbage collector disabled and sufficient RAM to let the process achieve maximum speed. Although
our own code is in C++, the Java compiler achieves very competitive results9.

We also show, in a second plot, a comparison of our variants with plain adjacency list rep-
resentations. One representation, called “plain”, uses 32-bit integers for nodes and pointers. A
second one, called “compact”, uses ⌈log2 n⌉ bits for node identifiers and ⌈log2m⌉ for pointers to
the adjacency list.

Figure 5 shows the results for the four Web crawls. The different variants of LZ achieve the
worst compression ratios (particularly without differences), but they are the fastest (albeit for a
very little margin). The normal Re-Pair achieves a competitive result both in time and space. The
other variants achieve different competitive space/time tradeoffs. The most space-efficient variant
is Re-Pair Diffs CDict NoPtrs.

Node reordering usually achieves better compression without any time penalty, yet it cannot
be combined with differential encoding.

A similar time/space tradeoff shown between Re-Pair Diffs and Re-Pair Diffs NoPtrs can be
achieved with the other representations that use Re-Pair, since the pointers are the same for all

8Using the Sun Java virtual machine provided by Ubuntu 8.10 default packaging system, v1.6.0 14.
9See http://www.idiom.com/∼zilla/Computer/javaCbenchmark.html or http://www.osnews.com/story/5602.

18



of them. The time/space tradeoff between compacting the dictionary or not should be almost the
same for the other Re-Pair implementations too.

Two lines display the best current tradeoffs offered within the WebGraph project, which is the
state of the art for Web graphs. These are labeled BV, which is the current release in their site
(version 2.4.3), and BSV [BSV09], a variant that uses another node ordering, called shbhGray, to
achieve better tradeoffs (available within the same release).

From a pure compression standpoint, our results are not competitive with those of WebGraph
(except on the small EU graph). However, when we consider the time to access the graphs, it turns
out that WebGraph needs significantly more space than the minimum in order to provide reasonable
navigation times. In particular, it is still 1.5–2 times slower than our representations when using
the same amount of space. In addition, some of our versions (those that do not use differential
encoding) do not impose any particular node numbering.

Compared to an uncompressed graph representation, our method is also a very interesting
alternative. It is 3–10 times smaller than the compact version and 2–4 times slower than it; and it
is 5–13 times smaller than the plain version and 4–8 times slower.

No traversal times are reported by [BC08] for their “virtual node mining” (VNM) approach.
However, we can distinguish two stages in VNM compression: (1) identifying bi-cliques and replac-
ing them by virtual nodes; (2) ζ-encoding the resulting adjacency lists. Our results in Figure 5
indicate that our extraction is currently so fast that even the use of differential encoding (that is,
we have to add the current number to the previous one before reporting it) makes a noticeable dif-
ference in performance. Thus decoding a ζ-encoded bitstream is likely to make the VNM approach
considerably slower than ours. Our encoding is just a plain sequence of integers (all using a fixed
number of bits). On the other hand, if VNM omitted stage (2) and used a plain sequence of integers,
the access time of both approaches should be very similar, as both have to (recursively) expand
virtual nodes (or nonterminals, in our case) until obtaining the final list of real nodes (terminals,
in our case).

Therefore, we divide the comparison into two parts. In this section we test how would both
methods compare in space if VNM omitted stage (2) in order to reach the speed of our method. In
Section 6.4 we consider how to achieve further space reduction in our method and compare with
the full VNM approach.

Table 5 shows the compression ratios of the methods measured in number of integers of the
adjacency lists before and after grammar compression. For VNM we use the data [BC08] give
in their Figure 3 (left), which accounts for all the edges in the graph before and after replacing
bi-cliques by virtual nodes. For our method, we present a plain approach (Plain) where we add
the length (in integers) of sequence C (the adjacency list after compression) plus two integers per
nonterminal, which corresponds to a plain representation of the dictionary R. Interpreted in terms
of virtual nodes, this corresponds to the fact that our “virtual nodes” (nonterminals) have always
outdegree 2. We also present the more realistic approach where we add the length of C and the
integers in our compressed representation of dictionary R. Again interpreted in terms of virtual
nodes, this acknowledges the fact that, despite we use Re-Pair, which creates nonterminals as pairs
of other symbols, one could unroll part of the recursion and rewrite nonterminals as sequences
of nodes (this is what is done, implicitly, in the dictionary compression technique of [GN07]).
Furthermore, we show versions Diff and Reord. Note the former deviates from the model of virtual
nodes (as its nonterminals are differences rather than node identifiers, and this has no metaphor
in terms of graph nodes) and the latter is able of detecting noncontiguous subsequences thanks to

19



 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  2  4  6  8  10  12  14

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  5  10  15  20  25  30  35

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  1  2  3  4  5  6  7  8  9

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  5  10  15  20  25  30  35

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  2  4  6  8  10  12

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  5  10  15  20  25  30  35

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  2  4  6  8  10

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  5  10  15  20  25  30  35

t
i
m
e
 
(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

Figure 5: Space and time to find neighbors for different graph representations, over the four crawls.

20



the reordering. Note that in all cases we are ignoring the cost of the vector of pointers from nodes
to adjacency lists.

Graph Ours Ours Ours Ours VNM
Plain Diff Plain Reord Diff Reord

EU 21% 24% 20% 20% 22%
Indochina 11% 14% 10% 12%
UK 17% 22% 15% 19% 20%
Arabic 13% 15% 11% 13% 14%

Table 5: Compression ratios (in percentage) achieved by different grammar compression methods,
before any further encoding of the sequences.

From the table we can conclude that, if we consider the variant of our grammar compression
that can most easily be identified as a mechanism to add virtual nodes to the graph in order to
factor out edges, that is, our Plain Reord variant, the result is 7% to 10% worse than VNM. Note
that Reord does capture common subsequences as well, but VNM does it better. However, our
model is not exactly like that of creating virtual nodes, and so the comparison is not only “who
finds better virtual nodes”. Our non-Plain variants take advantage of the hierarchical structure of
our nonterminals to represent them using fewer integers, and our Reord variant already improves
upon VNM by 5% to 14%. Furthermore, Diffs totally deviates from the virtual nodes model, as
explained. In non-Plain form, it takes 9% to 25% less space than VNM, yet it could be slightly
slower due to the need of adding up the differences.

To summarize: If we take only the grammar-compression aspect of VNM, and encode its ad-
jacency lists as a sequence of integers using a fixed number of bits, both techniques are likely to
achieve similar speeds, yet ours would take up to 14% less space (if we consider variant Reord, as
Diff is slightly slower). Actually, VNM produces fewer virtual nodes than we produce nonterminals,
and thus their integers use potentially fewer bits. In the tested graphs, however, this only makes a
difference of 2% on Arabic, yet Reord is still 4% smaller.

As explained, VNM achieves further space reduction via ζ-coding. In the next section we
consider how we can also our space at the expense of higher access time, and up to which point
can we match the space achieved by VNM.

6.4 Further Compression

Our experiments indicate that our technique offers a good space/time tradeoff, yet it is unable to
achieve the best compression ratios reached by alternative methods [BSV08, BSV09, BC08]. We
explore now how far can we reach in terms of compression ratio, even if sacrificing access time.

As explained, compressed sequence C is stored with fixed-length integers, and possibly amenable
of further compression. The techniques used in other schemes, such as ζ-encoding the differences, do
not work well after Re-Pair factors out common pairs of differences ((1,1), (1,2), etc.). Nevertheless,
it turns out that the zero-order entropy of C is low enough to permit compression: After applying
Re-Pair, every pair of symbols in C is unique, yet individual symbols are not.

Yet, it is not immediate how to apply a zero-order compressor to such sequence, because its
alphabet is very large. For example, applying Huffman would be impractical because of the need
to store the table (i.e., at least the symbol permutation in decreasing frequency order). Instead,

21



one could consider approximations such as that of [HT71], which does not permute the symbols
and thus needs only to store the tree shape. Hu-Tucker achieves less than 2 bits over the entropy.

To get a rough idea of what could be achieved, we estimated the space needed by Huffman and
Hu-Tucker methods on our graphs, for the version Re-Pair Diffs. Let us call Σ the alphabet of C,
and σ its size (n ≤ σ ≤ n+ |R|), and say that ni is the number of occurrences of the symbol i in C.
We lower bound the maximum size that Huffman can achieve as: Huffman ≥ σ log σ+

∑

i∈Σ ni log
n
ni
,

where we have optimistically bounded its output with the zero-order entropy and also assumed that
the tree shape information is free (it is indeed almost free when using canonical Huffman codes,
and the entropy estimation is at most 1 bit per symbol off, so the lower bound is rather tight).

Since Hu-Tucker achieves more competitive results, we lower and upper bound its performance:

2σ +
∑

i∈Σ ni log
n
ni

≤ HT ≤ 2σ +
∑

i∈Σ ni

(

log n
ni

+ 2
)

, where the term 2σ arises because we have

to represent an arbitrary binary tree of σ leaves, so the tree has 2σ−1 nodes and we need basically
2σ − 1 bits to represent it (e.g., using 1 for internal nodes and 0 for leaves).

Table 6 shows the compresion ratio bounds for C (i.e., not considering the other structures).
As expected, Huffman compression is not promising, because just storing the symbol permutation
offsets any possible gains. Yet, Hu-Tucker stands out as a promising alternative to achieve further
compression. However, because of the bit-wise output of these zero-order compressors, the pointers
to C must be wider10. Table 7 measures the size of the whole data structure with and without Hu-
Tucker (we use the lower bound estimation for the latter). It can be seen that compression is not
attractive at all, and in addition we will suffer from increased access time due to bit manipulations.

Graph Huffman Hu-Tucker Hu-Tucker
lower bound lower bound upper bound

EU 145.68% 84.65% 94.18%
Indochina 161.57% 82.11% 90.44%
UK 168.87% 82.94% 90.64%
Arabic 162.96% 82.81% 90.51%

Table 6: Compression ratio bounds for C, using Re-Pair Diffs. We measure the compressed C size
as a percentage of the uncompressed C size.

Graph Hu-Tucker Hu-Tucker Original
(Diff NoPtrs) (Diff)

EU 6.61 4.89 4.47
Indochina 3.64 3.13 2.53
UK 6.14 5.33 4.23
Arabic 4.01 3.14 3.16

Table 7: Total space required by our original structures and the result after applying Hu-Tucker
(lower-bound estimation).

An alternative, more sophisticated, approach to achieve zero-order entropy is to represent C
using a wavelet tree where the bitmaps are compressed using the technique described in Section 2.2.

10In the NoPtrs case this is worse, as we now need to spend one extra bit per bit of C, not per number in C.

22



This guarantees zero-order entropy (plus some sublinear terms for accessing the sequence), and it
can take even less because each small chunk of around 16 entries of C is compressed to its own
zero-order entropy. The sum of those zero-order entropies add up to at most the zero-order entropy
of the whole sequence, but it can be significantly less if there are local biases of symbols (as it could
perfectly be the case in Web graphs due to local references).

Our wavelet tree implementation [CN08] uses a sampling method that permits accessing the
compressed sequences at arbitrary points. The sparser the sampling, the slower the access but the
lower the space. Table 8 shows some results on the achievable space. We note that, because we can
still refer to entry offsets (and not bit offsets) in C, our pointers to C do not need to change (nor
the NoPtrs bitmap). We achieve impressive space reductions, to 70%–75% of the original space,
and for Indochina we largely break the 2 bpe barrier.

In exchange, symbol extraction from C becomes rather slow. We measured the access time per
link for the Arabic crawl using a sample of 32, and found that this approach is 22 times slower
than our smallest (and slowest) version based on Re-Pair. For a samplig of 128 the slowdown is 43.

This can be alleviated by extracting all the symbols from an adjacency list at once, as no new
rank operations are needed once we go through the same wavelet tree node again. In the worst
case, we pay O(k(1 + log σ

k
)) time, instead of O(k log σ), to extract k symbols. This improvement

can only be applied when the symbols can be retrieved in any order, so it could not be combined
with differences.

Graph Orig. WT(8) WT(32) WT(128) WT(∞) BV(∞) VNM VNM(∞)

EU 4.47 4.59 3.71 3.49 3.42 4.38 4.07 2.90
Indochina 2.53 2.52 1.97 1.84 1.79 1.47
UK 4.23 4.36 3.40 3.16 3.08 1.70 3.75 1.95
Arabic 3.16 3.34 2.60 2.42 2.36 1.99 2.91 1.81

Table 8: Total space, measured in bpe, achieved when using compressed wavelet trees to represent
C, with different sampling rates. We also show the best results of WebGraph, and those of virtual
node mining, with and without direct access.

The 7th column of Table 8 shows the best result reported in the WebGraph site. It beats
our best results except on EU, but that representation does not support direct access. The last
two columns of Table 8 show the results reported by [BC08], first adding (VNM) and second not
adding (VNM(∞)) the space of their pointers array. The compression ratios of VNM(∞) are also
unreachable for us, but again this variant does not provide direct access. The ratios VNM achieves
with direct access, instead, are between our WT(8) and WT(32). It is likely that VNM, even with
ζ-codes, will be faster than our wavelet-tree-based variants. Tradeoffs between VNM and VNM(∞)
can be achieved by sampling the array of pointers (for example, storing some absolute values and
then differentially encoding the subsequent ones). Moreover, one could consider combinations such
as compressing the VNM adjacency lists with wavelet trees, for example, and then use our NoPtrs
variants.

Considering the results of the previous section, we note that the merit of the VNM approach
is not that it finds a smaller grammar than ours (it usually does not, as shown), but in that
its resulting sequence seems to be more compressible. On the other hand, we have proposed
compression techniques (like using wavelet trees) that do not affect the width of the pointers, and

23



thus could offer different space/time tradeoffs to VNM.

6.5 Scalability

A disadvantage of our method is that Re-Pair compression is offline, thus we cannot process the
graph incrementally as for example [BV04a]. In case of a large graph we can resort to secondary
memory as described in Section 3.3, yet compression will require multiple passes on disk (recall
Table 4). In this section we explore an alternative solution, which is also relevant for a distributed
processing scenario. We propose a simple heuristic that exploits the locality of reference: We
partition the graph into pieces of the maximum size we can handle in main memory and compress
them separately, considering them as independent graphs. We will call each part of the graph a
subgraph, even when formally they are not, as some of them point to nodes that are not in the
subgraph.

Our compression method does not require the node identifiers to be in a given range. Rather,
it regards the lists as generic sequences, so it does not matter if a node in a subgraph points to a
non-existing identifier. Therefore, we do not rename the nodes in the adjacency lists inside each
subgraph. As a consequence, when we obtain the adjacency list of a node, no mapping is required.

Our final graph representation is an array of subgraphs represented using our technique and an
array of offsets, offs, containing the absolute node identifier of the first adjacency list represented
in each subgraph. For retrieving the neighbors of a node v, we search for the largest index i such
that offs[i] ≤ v. Then we retrieve the (v − offs[i] + 1)-th list of the i-th subgraph.

We tested this approach on the uk-union-2006-06-2007-05 graph (uk-union from now on),
the largest crawl available at the WebGraph site. It has 133, 633, 040 nodes and 5, 507, 679, 822
edges (41.21 edges/node). Its plain adjacency list representation requires 22 GB of memory.

We partitioned the graph into 9 pieces. The first eight were cut just before passing the 650M
edges barrier, and the last was the remainder. The first eight pieces are 2.5 GB in size, the last
one is 1.2 GB. We compressed the graph using Re-Pair Diffs CDict NoPtrs, our smallest practical
variant.

We achieved 2.91 bpe for uk-union using k = 100, 000 and 3% extra space on top of each
sequence when compressing. The final result requires just less than 2 GB for operating the whole
graph, which can be handled in main memory by most commodity PCs.

We compare our technique with BV, which performed best on our previous experiments. This
time, instead of giving the average time to retrieve each neighbor from a random node, we opt for
demonstrating the performance when carrying out the two most typical graph traversals: depth-
first-search (DFS) and breadth-first-search (BFS).

Even when our implementation was perfectly capable of running both algorithms in the original
machine using less than 3 GB11, the overhead imposed by the Java virtual machine on B(S)V
made it impossible to execute the process within that space. So for this experiment we switched
to an Intel(R) Xeon(R) CPU running at 2 GHz, with 8 cores and 16 GB of RAM, running Ubuntu
GNU/Linux (Server) with kernel 2.6.24-27 in 64-bit mode. For both traversals we implemented a
similar queue/stack [CLRS01] using arrays, to make sure that the STL and the Java API were not
altering the performance results.

Table 9 shows the time for the two traversals, including the space required by each represen-
tation, and displaying two tradeoff points for BV. The situation is as for all previous experiments:

11That is, the memory limit for a process on the GNU/Linux kernel on 32-bit machines.

24



Method bpe DFS(sec) BFS(sec)

Ours 2.91 632 636
BV 2.58 1, 194 1, 168
BV 3.22 740 722

Table 9: Time and space tradeoffs obtained for uk-union when running BFS and DFS traversals.

BV is able of achieving less space than our representation, but ours is faster when both use the
same amount of space (or BV uses even more, as in this case).

It is interesting to note that, using the wavelet tree, we achieve as little as 2.17 bpe, less than
the best space reported in WebGraph. Still retaining the current access times, our representation
could still achieve better space by choosing a smaller k, as shown in Table 3. Another interesting
point to mention is that B(S)V include some caches in their code to speed up recently decompressed
lists. This is quite relevant for the traversals, given the locality of references and the fact that, in
their method, nearby lists have to be decompressed to obtain the desired list. We could aim at
doing something similar with frequent nonterminals, yet this requires serious further study as it
has a price in terms of extra memory.

Finally, we remark that, since our representations work with any node ordering, we could use
orderings suitable for running external memory algorihtms [Vit06] so that our reduction of space
on disk would translate into reduced execution times, in case the compressed graph does not fit in
RAM. We could also refine our partitioning technique by using separators [BBK03] to reduce the
amount of external links, which may miss some compression opportunities, or use techniques to
merge the dictionaries of the different partitions [Wan03].

7 Conclusions and Future Work

We have presented a graph compression method that exploits the similarities between adjacency
lists by using grammar-based compressors such as Re-Pair [LM00] and LZ78 [ZL78]. Our results
demonstrate that those similarities account for most of the compressibility of Web graphs, on which
our technique performs particularly well. Our experiments over different Web crawls demonstrate
that our method, although unable to match the compression ratios of WebGraph [BV04a, BSV08,
BSV09] (the state of the art), is 1.5–2 times faster to navigate the compressed graph when both
structures are given the same amount of space to operate. Compared to a plain adjacency list
representation, our compressed graphs can be 5 to 13 times smaller, at the price of a 4- to 8-fold
traversal slowdown (this has to be compared to the hundred to thousand times slowdown caused
by running on secondary memory).

This makes our representation a very attractive choice to maintain graphs all the time in
compressed form, without the need of a full decompression in order to access them. As a result,
graph algorithms that are designed for main memory can be run over much larger graphs, by
maintaining them in compressed form. In cases the graphs do not fit in main memory even in
compressed form, our scheme adapts well to secondary memory, where it can make fewer accesses
to disk and/or shorter seeks than its uncompressed counterpart for navigation.

As a byproduct, we developed an efficient approximate version of Re-Pair, which can work
within very limited space and also works well on secondary memory. This can be of independent

25



interest given the large amount of memory required by the exact Re-Pair compression algorithm.
Our technique is not particularly tailored to Web graphs (more than trying to exploit similarities

in adjacency lists). This could make it suitable to compress other types of graphs, whereas other
approaches which are too tailored to Web graphs could fail.

Recent work [BC08] confirms that grammar-based compression is indeed an extremely promising
avenue for future research. Unlike our representation, theirs achieve better compression ratios
than WebGraph. Although their access time is not clear, our limited experiments show that the
techniques achieve comparable space/time tradeoffs and, more importantly, that some techniques
could be combined to achieve an improved representation.

Another line of research focuses on adding more functionality to the compact representations,
further than retrieving the neighbors of a node. For example, some sampling algorithms on the
Web [KKR+99, Kle99] require access to the nodes pointing to the current one, that is, reverse
navigation. There has been some progress on providing bidirectional navigation, within space
that is more than those shown in this paper for simple forward navigation, but less than that of
representing the original and the transposed graph [BKM+00, BLN09, CN10]. Their main problem
is that, due to their non-local access pattern, they succeed only if the graph fits in main memory.

Acknowledgements

We thank Rodrigo Paredes for pointing out that reordering the adjacency lists would allow us to
exploit more regularities.

References

[ACL00] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Proc.
32th ACM Symposium on Theory of Computing (STOC), pages 171–180, 2000.

[AM01] M. Adler and M. Mitzenmacher. Towards compressing Web graphs. In Proc. 11th
Data Compression Conference (DCC), pages 203–212, 2001.

[AMN08] Y. Asano, Y. Miyawaki, and T. Nishizeki. Efficient compression of Web graphs. In
Proc. 14th Conference on Computing and Combinatorics (COCOON), LNCS 5092,
pages 1–11, 2008.

[BBH+98] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubramanian. The
Connectivity Server: Fast access to linkage information on the Web. In Proc. 7th
World Wide Web Conference (WWW), pages 469–477, 1998.

[BBK03] D. Blandford, G. Blelloch, and I. Kash. Compact representations of separable graphs.
In Proc. 14th Symposium on Discrete Algorithms (SODA), pages 579–588, 2003.

[BBYRNZ01] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani. Distributed query pro-
cessing using partitioned inverted files. In Proc. 8th International Symposium on
String Processing and Information Retrieval (SPIRE), pages 10–20, 2001.

[BC08] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to Web graph
compression with communities. In Proc. International Conference on Web Search
and Web Data (WSDM), pages 95–106, 2008.

26



[BKM+00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the Web. Journal of Computer
Networks, 33(1–6):309–320, 2000.

[Bla06] D. Blandford. Compact data structures with fast queries. PhD thesis, School of
Computer Science, Carnegie Mellon University, 2006. Also as TR CMU-CS-05-196.

[BLN09] N. Brisaboa, S. Ladra, and G. Navarro. K2-trees for compact Web graph representa-
tion. In Proc. 16th International Symposium on String Processing and Information
Retrieval (SPIRE), LNCS 5721, pages 18–30. Springer, 2009.

[BSV08] P. Boldi, M. Santini, and S. Vigna. A large time-aware web graph. SIGIR Forum,
42(2):33–38, 2008.

[BSV09] P. Boldi, M. Santini, and S. Vigna. Permuting Web graphs. In Proc. 6th Workshop
on Algorithms and Models for the Web Graph (WAW), pages 116–126, 2009.

[BV04a] P. Boldi and S. Vigna. The WebGraph framework I: compression techniques. In
Proc. 13th World Wide Web Conference (WWW), pages 595–602, 2004.

[BV04b] P. Boldi and S. Vigna. The WebGraph framework II: Codes for the world-wide web.
In Proc. 14th Data Compression Conference (DCC), page 528, 2004.

[CGH+98] R. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact encodings of planar
graphs with canonical orderings and multiple parentheses. In LNCS 1443, pages
118–129, 1998.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[CLL+05] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press and McGraw-Hill, 2nd edition, 2001.

[CN07] F. Claude and G. Navarro. A fast and compact Web graph representation. In
Proc. 14th International Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 4726, pages 105–116, 2007.

[CN08] F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences. In
Proc. 15th International Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 5280, pages 176–187, 2008.

[CN10] Francisco Claude and Gonzalo Navarro. Extended compact web graph representa-
tions. In Tapio Elomaa, Heikki Mannila, and Pekka Orponen, editors, Algorithms
and Applications, volume 6060 of Lecture Notes in Computer Science, pages 77–91.
Springer, 2010.

27



[CPMF04] D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos. Fully automatic
cross-associations. In Proc. ACM Special Interest Group on Knowledge Discovery
and Data Mining (SIGKDD), 2004.

[DL98] N. Deo and B. Litow. A structural approach to graph compression. In Proc. of the
23th MFCS Workshop on Communications, pages 91–101, 1998.

[DLL+06] D. Donato, L. Laura, S. Leonardi, U. Meyer, S. Millozzi, and J.F. Sibeyn. Algorithms
and experiments for the Webgraph. Journal of Graph Algorithms and Applications,
10(2):219–236, 2006.

[FMMN07] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

[FV99] A. Fink and S. Voß. Applications of modern heuristic search methods to pattern
sequencing problems. Computers & Operations Research, 26:17–34, 1999.

[GGV03] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
841–850, 2003.

[GMR06] A. Golynski, I. Munro, and S. Rao. Rank/select operations on large alphabets: a
tool for text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 368–373, 2006.

[GN07] R. González and G. Navarro. Compressed text indexes with fast locate. In Proc. 18th
Symposium on Combinatorial Pattern Matching (CPM), LNCS 4580, pages 216–227,
2007.

[HKL00] X. He, M.-Y. Kao, and H.-I. Lu. A fast general methodology for information-
theoretically optimal encodings of graphs. SIAM Journal on Computing, 30:838–846,
2000.

[HT71] T. Hu and A. Tucker. Optimal computer-search trees and variable-length alphabetic
codes. SIAM Journal of Applied Mathematics, 21:514–532, 1971.

[Jac89] G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon Univer-
sity, 1989.

[KKR+99] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The Web
as a graph: Measurements, models, and methods. In Proc. 5th Annual International
Conference on Computing and Combinatorics (COCOON), LNCS 1627, pages 1–17,
1999.

[Kle99] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604–632, 1999.

[KRRT99] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large scale
knowledge bases from the Web. In Proc. 25th Conference on Very Large Data Bases
(VLDB), pages 639–650, 1999.

28



[LM00] J. Larsson and A. Moffat. Off-line dictionary-based compression. Proceedings of the
IEEE, 88(11):1722–1732, 2000.

[MR97] I. Munro and V. Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. In Proc. 38th Symposium on Foundations of Computer
Science (FOCS), pages 118–126, 1997.

[Mun96] I. Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), LNCS 1180, pages 37–42, 1996.

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1):article 2, 2007.

[RGM03] S. Raghavan and H. Garcia-Molina. Representing Web graphs. In Proc. 19th Inter-
national Conference on Data Engineering (ICDE), page 405, 2003.

[RRR02] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In ACM-SIAM 13th Symposium
on Discrete Algorithms (SODA), pages 233–242, 2002.

[RSWW01] K. Randall, R. Stata, R. Wickremesinghe, and J. Wiener. The LINK database:
Fast access to graphs of the Web. Technical Report 175, Compaq Systems Research
Center, Palo Alto, CA, 2001.

[Ryt03] W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science, 302(1-3):211–222, 2003.

[Sak05] H. Sakamoto. A fully linear-time approximation algorithm for grammar-based com-
pression. Journal of Discrete Algorithms, 3(2-4):416–430, 2005.

[SCSC03] W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted file compression through docu-
ment identifier reassignment. Information Processing & Management, 39(1):117–131,
2003.

[STKA07] H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara. A large-scale study of link
spam detection by graph algorithms. In Proc. 3rd International Workshop on Ad-
versarial Information Retrieval on the Web (AIRWeb). ACM Press, 2007.

[SY01] T. Suel and J. Yuan. Compressing the graph structure of the Web. In Proc. 11th
Data Compression Conference (DCC), pages 213–222, 2001.

[TGM93] A. Tomasic and H. Garcia-Molina. Performance of inverted indices in shared-nothing
distributed text document information retrieval systems. In Proc. 2nd International
Conference on Parallel and Distributed Information Systems (PDIS), pages 8–17,
1993.

[Vit06] J. S. Vitter. Algorithms and data structures for external memory. Foundations and
Trends in Theoretical Computer Science, 2(4):305–474, 2006.

[Wan03] R. Wan. Browsing and Searching Compressed Documents. PhD thesis, Dept. of
Computer Science and Software Engineering, University of Melbourne, 2003.

29



[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transaction on Information Theory, 23:337–343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24(5):530–536, 1978.

30


