Paraphrasing Reference Models and Transformations*

Andrés Vignaga

MaTE, Department of Computer Science, Universidad de Chile

avignaga@dcc.uchile.cl

Abstract

Textual descriptions in natural language of models are often used as a comple-
ment to graphical notations or source code for documentation purposes. In this
work we discuss our experiments on paraphrasing two variants of the abstract no-
tion of model, as defined by the Global Model Management (GMM) approach. We
use model transformations for paraphrasing reference models and transformation
models.

1 Introduction

Models are mostly expressed using graphical notations. However, graphical forms are
usually complemented by a textual description in natural language. The main purpose
of this is enhancing understandability for human readers. In fact, descriptions in natural
language are not as amenable as models for mechanical treatment. Textual descriptions
thus focus on documentation.

Although documentation is an important aspect of a product, these textual descrip-
tions are usually produced by humans. That process is time consuming and the result
may be of little value if it is not carried out properly. Maintaining documentation is also
costly because the text and the model it describes must be synchronized. It is a common
situation to find outdated descriptions or no descriptions at all.

In this work, we address the automatic generation of textual descriptions of models.
We transform models to descriptions of them in natural language. A model transfor-
mation first produces a model of a simplified natural language containing the full text
of the description. A simple model extractor then generates the actual text from that
intermediate model.

The transformation that produces the intermediate textual model naturally relies on
the language used for expressing the model to be described. This means that for each
language we need a specific transformation for processing the corresponding models.
Based on the classification of model types introduced by Global Model Management
(GMM) [4], which is partially illustrated in Fig. 1, we focus on the ReferenceMetamodel
and TransformationModel variants. Specifically, the languages that we address in this
work are KM3 [3] for reference models and ATL [6] for transformation models.

The rest of this work is structured as follows. Section 2 provides an overview of the
prototype we developed for this experiment. Section 3 describes the metamodels involved
in the implementation. The paraphrasing of KM3 metamodels is discussed in Sect. 4,
while the paraphrasing of ATL transformation models is discussed in Sect. 5. In Sect. 6
we illustrate the application of both prototypes with concrete examples. Section 6 refers
to the implementation of the prototype. Section 7 concludes.

*This work was carried out in collaboration with the AtlanMod team (INRIA and EMN), and was
funded by CONICYT Chile and Universidad de Chile.

conformsTo

ReferenceModel

TerminalModel

Metametamodel| | Metamodel | | TransformationModel |

context Metametamodel inv: self.conformsTo = self
context Metamodel inv: self.conformsTo.ocllsKindOf(Metametamodel)
context TerminalModel inv: self.conformsTo.ocllsKindOf(Metamodel)

Figure 1: Partial Global Model Management extension of AM3Core metamodel with
constraints

«gmm atl module type» «gmm atl module type»
M:KM3— SimpleLanguage (A—B)—SimpleLanguage
«source» IN «target» ouT ouT «target» IN «source»
«gmm metametamodel» «gmm metamodel» «gmm atl module type»
KM3 SimpleLanguage A—B
«base»
«source»

«defines» «source» «target»
«gmm referencemodel» «gmm tcs extraction type» «gmm type» «gmm type»
i M SimpleLanguage— Text(SimpleLanguage) i P :

«target»
«gmm text type»

Text(SimpleLanguage)

Figure 2: Types of entities involved in paraphrasing transformations

2 Overview

Our solution is composed of two model-to-text chains of transformations; the first is
called ParaphrasingReferenceModels and the second is called ParaphrasingTransforma-
tions. Both chains are composed of a model-to-model transformation and a model-to-text
transformation (i.e. an extractor). While the model-to-model transformations are spe-
cific for each chain, they share the second component. Figure 2 illustrates the types of
the entities involved in both chains.

The first component of the ParaphrasingReferenceModels chain is a model-to-model
ATL transformation called KM32SL. It transforms a KM3 reference model to a model of
a simplification of the natural language. The second component of the chain is a model-
to-text transformation (i.e., a TCS extractor [5]) called SLExtractor. It transforms the
intermediate model produced by KM32SL to a text file. Figure 3 shows these entities,
along with the entities involved in the application of PraphrasingReferenceModels to the
KM3 metamodel itself. Such an application is further discussed in Sect. 6.1. The KM3
metamodel conforms to itself and is used as the source of KM32SL by appropriately
binding parameter M to KM3. Transformation KM32SL produces a terminal model tmp
which conforms to SimpleLanguage. This model is in turn the source for the extractor
SLExtractor, which finally produces the KM3Text textual entity.

The types of the entities involved in Paraphrasing Transformations is similar and can
be seen also in Fig. 2. Its first component is a HOT model-to-model ATL transformation

«bind» <M—KM3>

«gmm atl module» «gmm tcs model»
KM32SL : M:KM3— SimpleLanguage SLExtractor : SimpleLanguage— Text(SimpleLanguage

«gmm metametamodel» «gmm terminal model» «gmm textual entity»
KM3 : KM3 tmp : SimpleLanguage KM3Text : Text(SimpleLanguage)

Figure 3: An application of ParaphrasingReferenceModels

«gmm atl module» «gmm tcs model»
ATL2SL : (A—B)— SimpleLanguage SLExtractor : SimpleLanguage— Text(SimpleLanguage)

«bind» <A—Families,B— Persons>

ouT
«gmm atl module» «gmm terminal model» «gmm textual entity»
Families2Persons : Families— Persons tmp : SimpleLanguage F2PText : Text(SimpleLanguage

Figure 4: An application of ParaphrasingTransformations

called ATL2SL. This transformation generates a model of our simplified natural language
from another ATL transformation model. The second component of this chain is the
same extractor described before. The application of this chain to the Famililes2Persons
transformation is illustrated in Fig. 4 and is discussed in Sect. 6.2. In this case, the
ATL transformation model Families2Persons is the source of ATL2SL by instantiating
parameters A and B to Families and Persons respectively. Note that since the result does
not depend on parameters A and B, their instantiation is only important for making sure
that this is a valid application. The result of ATL2SL is the terminal model tmp which
conforms to the SimpleLanguage metamodel as before. This model is then transformed
to the F2PText textual entity using the SLExtractor extractor.

In the next sections both transformation chains are described in detail. An example
of the application of both chains is also provided.

3 Metamodels

The sources for ParaphrasingReferenceModels and Paraphrasing Transformations are mod-
els which conform to KM3 and ATL metamodels respectively. The target of both chains
is a plain text file. As an intermediate result, in both cases a model of a simplified natural
language is produced. Therefore, three metamodels are involved in these chains: KMS3,
ATL, and SimpleLanguage. Note that the description in Sect. 3.3 is actually quite sim-
ilar to that produced by ParaphrasingReferenceModels when applied to the metamodel
of SimpleLanguage.

3.1 KM3

The KM3 metamodel used in the ParaphrasingReferenceModels transformation chain as
the source of KM32SL is the standard one [2] and will not be discussed in detail in this
document. However, as part of the example in Sect. 6.1, such a metamodel is expressed
in KM3 syntax.

3.2 ATL

The ATL metamodel used in the ParaphrasingTransformations transformation chain as
the source of ATL2SL is the standard one [2] and will not be discussed in this document.

LocatedElement

location

commentsBefore

commentsAfter
Word 0.* WordGroup Text 0.* Sentence
value words sentences [activeVoice
{ordered} Zﬁ {ordered} ’

VerbGroup NounPhrase |1

subject
verbGroup | 1 complement | 1

Figure 5: SimpleLanguage metamodel

3.3 SimpleLanguage

The metamodel of SimpleLanguage is illustrated in Fig. 5. A Text is composed of a
sequence of Sentences, which is composed of a subject, a verb group and a complement. A
Sentence may be expressed in active voice or in passive voice; the difference is the order in
which its components should be considered for obtaining an actual English sentence. In
turn, every component of a Sentence contains a sequence of Words. A Word has a string
value which represents the word itself.

4 Paraphrasing Reference Models

This section describes the rationale and design of each step of ParaphrasingReference-
Models.

4.1 From KM3 to SimpleLanguage

The first step in ParaphrasingReferenceModels transforms a KM3 reference model to a
model of our simplified natural language. Transformation KM32SL is purely syntactical,
in the sense that it does not try to guess the purpose or meaning of elements in the source
model. This would go beyond the scope of this experiment.

4.1.1 Strategy

Transformation model MK32SL defines a fixed set of “template sentences”. Each template
is instantiated for obtaining an actual sentence, using to that end specific information
taken from elements in the source model. Each class of source element has associated a
number of templates. Depending on the information held by concrete instances of a class,
some, all or even none of the templates may be used for producing sentences in the target
model. For example, an instance of Class may induce up to four different sentences: (a)
one for describing its attributes, (b) one for describing its component classes, (¢) one for
describing its subclasses, and (d) one for describing its associated classes. Which of these
four sentences will actually occur and what would be their specific words will depend on
the elements within the particular reference model.

In what follows we express a mapping between elements in a KM3 reference model
and their corresponding templates. We highlight the component parts of a sentence using

colors. The part colored in blue is the subject of the sentence, the part in green is the
verb group, and the part in red is the complement.

Metamodel
T1: “This metamodel contains packages PName;, PName,, ... and PName,”

Where PName; are the names of the packages contained in the metamodel.

Package
T2: “Package PName contains the following classes”

Where PName is the name of the package. A sentence generated from this template is
followed by a number of sentences generated from the classes contained in the package.

T3: “Additionally, package PName contains the following enumerations”

Where PName again is the name of the package. If a sentence is to be generated from this
template, it will be followed by the sentences generated from the enumerations contained
in the package. Additionally, if the package contains no classes and thus a sentence from
this template is the first to be generated, the “Additionally” at the beginning of the
sentence is removed. This applies to all similar cases from now on.

T4: “Finally, package PName contains data type DTName;, DTNames, ... and
DTName,,”

Where PName is the name of the package, and DTName; are the names of the data types
contained in the package.

Class

T5: “A[n] CName [is an abstract entity that] defines the AName;, AName,, ... and
AName,,”

Where CName is the name of the class, and AName; are the names of the attributes
owned by the class.

T6: “A[n] CName [is an abstract entity, and] is composed of a[n] [(set of | sequence of)]
TName; [which play[s] the role of RName;], a[n] [(set of | sequence of)] TName,
[which plays the role of RNames], ... and a[n] [(set of | sequence of)] TName,,
[which plays the role of RName,)”

Where CName is the name of the class, TName; is the name of the opposite class and
RName; is its corresponding role name. The “set of” and “sequence of” parts of this
template depend on the upper, isUnique and isOrdered values of the corresponding feature
of the class. The role name is omitted from the sentence when it matches the name of
the opposite class.

T7: “A[n] CName [is an abstract entity, and] (can | must) be a[n] SName;, SNames,,
. or SName,,”

Where CName is the name of the class and SName; are the names of its direct subclasses.
If the class is concrete its instances can also be instances of any subclasses, but if the
class is abstract then its instances must be also instances of one of the subclasses.

T8: “A[n] CName [is an abstract entity, and] (can have | has) [a[n]] RName; which
correspond|s] to OName;, and [a[n]] RNamey which correspond[s] to ONames,
.. and [a[n]] RName,, which correspond[s] to OName,,”

Start of the metamodel

Package P, Package P,
A A
- N\ N
T1,T2,T5 76, T7, T8, T5, T6, T7, T8, T3, T9, T9, T9, T4, T2, T5, T6, T5, T8, T3, T9, T4, ...
A\ ~ J - ~ J \ J
Class C; Class C, Enumerations

within P within P, within P,

Start of enumerations Data types

within P; within P;

Figure 6: Sequence of sentences in target model

Where CName is the name of the class, RName; is the opposite role name, and OName;
is the name of the opposite class. The “can have” and “has” parts are resolved depending
on the lower value of the corresponding feature.

Enumeration
T9: “Enumeration EName defines enumeration literals LName;, LName,, ... and
LName,,”

Where EName is the name of the enumeration, and LName; are the names of its literals.

Note that not every concrete class maps to one or more templates. However, infor-
mation included in instances of other concrete classes such as DataType, EnumLiteral,
Attribute or Reference is used in one of the templates expressed above and thus not lost.
For example, the names of data types are used in T4, and information of references is
expressed in T6 and T8.

4.1.2 Design

In this section some noteworthy details about the realization of KM32SL are explained.
The form of the output is first described. This sets the basis for better describing the
design of the transformation.

The result essentially contains one single instance of Text which in turn contains
a sequence of Sentence elements, each of them generated from one of the templates
described above. The structure of such a sequence is illustrated in Fig. 6.

The first sentence must be generated from template T1 in every case. After that, a
sequence of sequences of sentences comes. Each of these sequences describes the contents
of a package, and is any non empty subsequence of {T2, T3, T4}. If T2 occurs, it must
be followed by a sequence of non empty subsequences of {T5, T6, T7, T8}, each of them
describing a class. If T3 occurs, it must be followed by at least one sentence generated
from T9.

It is clear that the sequence described above is the result of flattening some of the
elements contained in the source reference model. To that end, a series of flatten()
helpers is defined on such elements. In Metamodel, flatten() just concatenates the results
of flatten() called on each contained package.

The implementation of flatten() for Package uses the output elements (all of type
Sentence) of the rules that transform Package elements. In fact, if the package contains
classes, enumerations and data types, it will be transformed by a rule which produces
three sentences; one corresponding to T2, one corresponding to T3 and other correspond-
ing to T4. These sentences are accessed within flatten() via the resolveTemp() operation.
In case the package to be transformed contains classes and data types only, then it will

be transformed by a rule that produces just two sentences; the first corresponding to T2
and the second corresponding to T4. Therefore, there are as many rules that transform
a Package as combinations of non empty subsequences of {T2, T3, T4}, which totals an
amount of seven rules. For being complete, this implementation of flatten() must flatten
all classes (if exist) and all enumerations (if exist), and place the results in the proper
position among the sentences already discussed. Flattening enumerations is straightfor-
ward, since there are no dependencies among them. Therefore they are just linearized in
any order.

Flattening classes is more complicated, since classes may depend on other classes,
and thus their order is important for a sequential reading by a human. We decided that
presenting classes by level in their generalization hierarchies, starting from the root to
the leaves, is appropriate. In other words, classes in hierarchies are visited following
a Depth First Search (DFS) approach, processing first a node (class) and then all its
adjacent (subclasses). As there may be several parallel hierarchies, there may be several
root classes. Helper getRootClasses() finds them, and the flatten() version corresponding
to Class is called on each class in the result of that call.

The implementation of this latter version of flatten() just realizes the DFS approach;
first the “self” class, and then the result of a recursive call to some of its subclasses.
Two issues arise here; first why just “some” of the subclasses are included in the search,
and second, which is the order of them? The first issue is simple; no leaf class without
attributes and navigable associations are interesting to be described per se. The second
issue concerns the sorting of “interesting” subclasses before making the recursive call.
Given classes A and B, if any ancestor or descendant of B depends in any way (i.e.,
composes or has a navigable association to) on any descendant of A, then class A must be
described before class B. This provides a comparison criterion for sorting sibling classes,
which is implemented in the qSort() helper. Note that the root classes described before
are sorted using this algorithm too; the order in the roots determines which hierarchy
will be described first in the resulting text.

Analogously to the case of Package, the number and contents of sentences produced
after a class depend on the form of the class (i.e. weather it owns attributes or not, and
so on). Therefore, there are as many rules that transform a Class as combinations of non
empty subsequences of {T5, T6, T7, T8}, which totals an amount of fifteen rules.

Finally, a series of helpers is defined for implementing the templates. Unless a com-
ponent of a template is fixed, which makes a helper unnecessary, there are typically three
helpers per template; one for producing the subject, one for producing the verb group,
and another for producing the complement.

4.2 From SimpleLanguage to Text

The current implementation slExt of the extractor is quite straightforward. It simply
outputs the sentences in the order they appear. Each sentence is formed by concate-
nating its components and ended with a period symbol. Each component is formed by
concatenating its component words, and for each word its value is printed. The complete
TCS code of the extractor is given in Fig. 7.

There is a final consideration though. Sentences are usually expressed in active voice,
however in some specific cases they may be formed using a variant of passive voice, in
which the verb group and the complement are swapped.

5 Paraphrasing Transformations

This section describes the rationale and design of each step of ParaphrasingTransforma-
tions and discusses current limitations and possible paths of evolution.

template Text main
[sentences]

template Sentence
subject (activeVoice ?
verbGroup complement : complement verbGroup)

template WordGroup abstract

template NounPhrase
words

template VerbGroup
: words

template Word
value{as = identifier}

Figure 7: Class templates of extractor

5.1 From ATL to SimpleLanguage

The first step in ParaphrasingTransformations transforms an ATL transformation model
to a model of our simplified natural language. Transformation ATL2SL is purely syn-
tactical; it literally paraphrases the source transformation without acknowledging the
purpose or semantics of pieces of code (e.g., helpers), which goes beyond the scope of
this experiment.

5.1.1 Strategy

As before, transformation model ATL2SL defines a set of “template sentences”. These
templates are associated to classes of source elements. In what follows we provide a
mapping between elements in an ATL transformation model and the corresponding tem-
plates. The same font color scheme is used again here for highlighting the component
parts of a sentence.

Module

T1: “Transformation TName produces a[n] OutMM; model, aln] OutMM, model,
and a[n] OutMM,, model from a[n] InMM; model, a[n] InMM;, model, ...
and a[n] InMM,,, model”

This kind of sentence occurs once in the text and describes the signature of the source
transformation. TName corresponds to the source transformation name, InMM; cor-
respond to source reference model names, and OutMM,; correspond to target reference
model names.

MatchedRule

T2: “For each InPatternElem instance, ajn] DefOutPatternElem instance has to be
created”

This kind of sentence is expressed in passive voice and occurs once per rule in the text. It is
used for describing the signature of a rule. InPatternElem is the type of the source pattern
element, and DefOutPatternElem is the type of the default target pattern element.

Header of the transformation

Rule R, Rule R,
A
s N N\
T1, T2, T3, T5, T5, T5, T2, T5, T5 T4, T5, T4, T5, ...
W_J

Initialization of Initialization of
properties of properties of
default target default target

element element
Non default
Guard condition target elements
for Ry

Figure 8: Sequence of sentences in target model

InPattern
T3: “The InPatternElem must be FilterCondition”

This kind of sentence occurs once per rule, and is used for expressing the guard condition
(if applicable) of a rule. InPatternElem again is the type of the source pattern element,
and FilterCondition expresses the predicate that constitutes the filter.

SimpleOutPatternElement
T4: “A NonDefOutPatternElem instance has to be created”

This kind of sentence occurs once for each non-default target pattern element of each
rule. It is used for expressing the creation of target elements other than the default one.
NonDefOutPatternElem is the type of the target pattern element.

Binding
T5: “The OutPatternElemProp is BindingExp”

This kind of sentence is used for expressing the way in which properties of target el-
ements are initialized. If a sentence of this kind follows a sentence of kind T2, then
OutPatternElemProp is the name of a property of DefOutPatternElem. If it follows a
sentence of kind T4, OutPatternElemProp is the name of a property of the corresponding
NonDefOutPatternElem. In either case, BindingExp expresses the initialization of the

property.

5.1.2 Design

Not every source element will lead to a sentence in the resulting text. For this reason
the transformation first selects the proper source elements that will be transformed.
Moreover, selected source elements are flattened in a sequence conveniently so that the
order of the elements matches the expected order of the corresponding sentences of the
final text. The ordering that is currently implemented is shown in Fig. 8.

The selection (and ordering) process is achieved by a series of helpers named flatten().
If the elements to be selected, and/or their order, is to be altered then new flatten()
helpers, or the modification of existing ones, would be required.

Only the type of elements mentioned in the mapping presented before will be con-
tained in the resulting sequence. As a consequence, the transformation will define

matched rules only for them. Additionally, note that there is a one-to-one correspon-
dence between rules and template sentences. In particular, each template prescribes how
the sentence needs to be formed within the rule. Finally, OCL expressions that repre-
sent a filter condition or a binding value are transformed by a series of helpers named
process(), each returning a string. A specific process() helper is then required for every
variant of OclExpression. The returned string represents the expression in text, and is
built using local information of the expression and information of subexpressions as well.
The transformation of the filter property of an InPattern and the value property of a
Binding lead to FilterCondition and BindingExp, which are the complement of templates
T3 and T5 respectively.

5.2 Limitations

In its current state, the implemented prototype is limited on the structure of transforma-
tions it can process. In the next section we describe concrete actions to overcome such
limitations, and also possible directions for evolving the prototype.

1. Only matched rules are addressed.
2. Source patterns have one single element.

Filter conditions apply to that source element only.

- w

Only simple target elements are addressed.
No local variables are supported.

No imperative block is supported.

N o

Only a subset of OCL expressions can be processed.

8. Only a few operator and operation calls within OCL expressions can be processed.

Additionally, the prototype does not generate text from the helpers within the source
transformation. In principle, the prototype assumes that the name of a helper suffices for
expressing its intention, and a syntactical description may not provide useful information.
However, more detailed experiments should be conducted for clarifying this point.

5.3 Evolution

With respect to the limitations expressed above the prototype may be evolved as follows:

1. Supporting more kinds of rules in a source transformation requires the definition of
new rules (e.g., CalledRule2Sentence) and therefore the definition of new templates,
and also the update of the flatten() algorithms.

2. Supporting more than one element in source patterns requires the update of rule
MatchedRule2Sentence, and therefore the update of the structure of template T2.

3. Supporting a more general filter condition requires the update of InPattern2Sentence
and therefore the update of template T3.

4. Supporting iterative target patterns elements requires the modification of rule
MatchedRule2Sentence (for handling the case in which the default target pattern
element is iterative), and the definition of a new rule (e.g., ForEachOutPatternEle-
ment2Sentence) and therefore the definition of a new template.

10

5. Supporting variable declarations requires the definition of a new rule (e.g., RuleVari-
ableDeclaration2Sentence). As each variable is declared and initialized, they deserve
a sentence for its own. Therefore the definition of a corresponding template is
required.

6. Supporting imperative blocks requires the definition of new rules (e.g., Action-
Block2Sentence for opening the corresponding text fragment, and a rule for each
variant of Statement) and the corresponding templates.

7. Supporting more OCL expressions requires the definition of new process() helpers.

8. Supporting calls to specific operators and operations requires the addition of more
cases in the process() helpers associated to OperatorCallExp and OperationCallExp
respectively.

As a further improvement, the first step of Paraphrasing Transformations may be
split into two consecutive substeps. Instead of generating a SimpleLanguage model at
once, a first substep may produce a model where only the information to be contained
in sentences which is variable is maintained. The associated metamodel could define
specific elements, each matching a template. For example, a metaclass for holding the
information which will be used for producing a sentence from T1, another metaclass
for template T2, and so on. Using such a model, a second substep would produce the
expected SimpleLanguage model.

The benefits of this approach are two. First, extraction of the chunks of information
from the source transformation is kept separated from the generation of the sentences.
Second, dictionaries may be used during the second substep for producing variants of
the textual representation of the same template. For example, when generating a sen-
tence from T5 it is possible to choose from one of these concrete forms: “The Out-
PatternElemProp is BindingExp”, “The OutPatternElemProp is initialized with
BindingExp”, or even “The OutPatternElemProp has to be set to BindingExp”.
This would make the reading of the resulting text much more pleasant for the human
reader.

6 Examples

In this section we show the result of applying ParaphrasingReferenceModels and Para-
phrasing Transformations to the KM3 metamodel and Families2Persons transformation as
introduced in Sect. 2. In both cases we present the source models and show the textual
result.

6.1 Example of Paraphrasing Reference Models

The following example illustrates the operation of ParaphrasingReferenceModels. In this
case, the source metamodel is the KM3 metamodel itself. Figure 9 shows the KM3
definition of the KM3 metamodel [2]. The resulting text shown in Fig. 10 corresponds to
the KM3Text textual entity, and is conveniently formatted with line breaks for the sake
of readability. The prototype actually outputs sentences one right after the other.

6.2 Example of Paraphrasing Transformations

The following example illustrates the operation of Paraphrasing Transformations. In this
case, the source transformation is the Families2Persons transformation model from the
ATL Transformation Zoo [1]. Figure 11 shows its ATL source code. The resulting text,
shown in Fig. 12, corresponds to the F2PText textual entity and is again conveniently
formatted for the sake of readability.

11

package KM3 {
abstract class LocatedElement {
attribute location : String;

abstract class ModelElement extends LocatedElement {
attribute name : String;
reference “package” : Package oppositeOf contents;

class Classifier extends ModelElement { }
class DataType extends Classifier { }
class Enumeration extends Classifier {
reference literals[*] ordered container : EnumlLiteral oppositeOf enum;

class EnumLiteral extends ModelElement {
reference enum : Enumeration oppositeOf literals;

class Class extends Classifier {
attribute isAbstract : Boolean;
reference supertypes[*] : Class;
reference structuralFeatures[*] ordered container : StructuralFeature oppositeOf owner;

class TypedElement extends ModelElement {
attribute lower : String;
attribute upper : String;
attribute isOrdered : Boolean;
attribute isUnique : Boolean;
reference type : Classifier;

class StructuralFeature extends TypedElement {
reference owner : Class oppositeOf structuralFeatures;

class Attribute extends StructuralFeature { }

class Reference extends StructuralFeature {
attribute isContainer : Boolean;
reference opposite[0-1] : Reference;

class Package extends ModelElement {
reference contents[x] ordered container : ModelElement oppositeOf “package”;
reference metamodel : Metamodel oppositeOf contents;

class Metamodel extends LocatedElement {
reference contents[x] ordered container : Package oppositeOf metamodel;

}

package PrimitiveTypes {
datatype Boolean;
datatype Integer;
datatype String;

Figure 9: KM3 definition of KM3 metamodel

7 Implementation

Our prototype was implemented using ATL and TCS following the ideas depicted in
Figs. 3 and 4 and using the extractor of Fig. 7. An Eclipse workspace containing all source
files is available at http://mate.dcc.uchile.cl/research/tools/paraphrasing. A
megamodel containing all the assets involved in this work, which follows the structure
illustrated in Figs. 2, 3 and 4, is also included in the workspace.

8 Conclusions

Textual descriptions of models play an important role in documentations. Such descrip-
tions complement (semi) formal notations with information expressed in natural language,
which is understandable by a wider range of human readers. For being effective, the gen-
eration of text from models should be carried out properly. The information required to
that end is in possession of the authors of the models themselves. This process is often

12

This metamodel contains packages KM3 and PrimitiveTypes.

Package KM3 contains the following classes only. A LocatedElement is an abstract entity
that defines the location attribute. A LocatedElement must be a ModelElement or a
Metamodel. A Metamodel is composed of a sequence of Package elements which play the
role of contents. A ModelElement is an abstract entity that defines the name attribute.
A ModelElement must be a Classifier, an EnumlLiteral, a TypedElement or a Package.
A Package is composed of a sequence of ModelElement elements which play the role of
contents.

A Classifier can be a DataType, an Enumeration or a Class. An Enumeration is composed
of a sequence of EnumLiteral elements which play the role of literals. A Class defines the
isAbstract attribute. A Class is composed of a sequence of StructuralFeature elements. A
Class may have supertypes which correspond to Class elements.

A TypedElement defines the lower, upper, isOrdered and isUnique attributes. A Type-
dElement can be a StructuralFeature. A TypedElement has a type which corresponds to
a Classifier element.

A StructuralFeature can be an Attribute or a Reference. A Reference defines the isCon-
tainer attribute. A Reference may have an opposite which corresponds to a Reference
element.

Package PrimitiveTypes only contains data type Boolean, Integer and String.

Figure 10: Resulting text from applying ParaphrasingReferenceModels to the KM3 meta-
model

neglected in practice due to its high cost. Therefore, the automatic generation of these
descriptions can relieve modelers from the burden of both creating and maintaining them.
In this work we presented a prototype of two model transformations which paraphrase
two different types of models: KM3 reference models and ATL transformation models.

The prototype consists of two transformation chains realized as two separate ATL
transformations composed with one TCS extractor. If models of another language are to
be considered for paraphrasing then a new chain must be created. The extractor may be
reused, but a new specific transformation must be provided for the new language.

The complexity of the main transformation of each chain, as expected, depends on the
size and complexity of the metamodel of the model to be paraphrased. ATL’s metamodel
is larger and more complex of that of KM3. In fact, KM32SL was completely implemented,
while with the same effort, the implementation of ATL2SL supports a limited number of
cases only.

The complexity of those transformations also was affected by the sequential order-
ing of the generated sentences. As in declarative transformations source elements are
processed in an arbitrary order, special care was required for arranging sentences in
the appropriate order. This was achieved by flattening source elements into a sequence
and rearranging them before processing, leading to complex algorithms as in the case of
KM32SL. Furthermore, some source elements that may produce a sentence of their own
are optional in a concrete source model (e.g., a rule may not have a guard condition).
This caused an increase in the number of rules, since different combinations of similar
patterns of source elements needed to be handled.

The value of a textual description of a model relies on the ability to express infor-
mation which is not straightforwardly extracted from the model, or even information
which is not present in it. This information involves the semantics of the model and is
usually captured as the intent of some of its elements. That intent is hard to guess from
the syntax of a model, and our implementation does not try to do it. For example, it

13

module Families2Persons;
create OUT : Persons from IN : Families;

helper context Families!Member def: familyName : String =
if not self.familyFather.ocllsUndefined() then
self.familyFather.lastName
else
if not self.familyMother.ocllsUndefined() then
self.familyMother.lastName
else
if not self.familySon.ocllsUndefined() then
self.familySon.lastName
else
self.familyDaughter.lastName
endif
endif
endif;

helper context Families!Member def: isFemale() : Boolean =
if not self.familyMother.ocllsUndefined() then
true
else
if not self.familyDaughter.ocllsUndefined() then
true
else
false
endif
endif;

rule Member2Male {
from
s : Families!Member (not s.isFemale())
to
t : Persons!Male (
fullName <- s.firstName + ' ' + s.familyName
)

}
rule Member2Female {
from
s : Families!Member (s.isFemale())
to
t : Persons!Female (
fullName <- s.firstName + ‘' + s.familyName
)
}

Figure 11: ATL source code of transformation Families2Persons

could be possible to describe the algorithm of the isFemale() helper in Fig. 8, but a text
describing its purpose would be of more interest in the context of this experiment. In
our prototypical implementation we rely on proper element names in such cases.

Our prototype needs to be improved for handling more cases of source transformation
models. In Sects. 5.2 and 5.3 we provided a complete list of the current limitations and
concrete actions for overcoming them. Additionally, the usability of our proposal can
be enhanced if more semantic information about source models could be included in the
resulting text. Possible directions for this include the use of annotations in source models,
and also the recognition of patterns of source elements. Finally, splitting the specific
transformation into two separate substeps, as discussed in Sect. 5.3, could improve the
quality of the resulting text, since different forms of the same template may be more
easily used. We think that this improves the quality of the text because it becomes less
repetitive. Moreover, although each chain ends up containing three substeps instead of
two, each step is conceptually simpler since the concern of extracting information from the
source model is separated from the concern of constructing the sentences. The resulting
text is currently plain and is presented as a sequence of sentences. Another way to
improve it is adding some form of formatting as in the examples in Sect. 6. This could be
done by modifying the SimpleLanguage metamodel, and thus all involved transformation,
or by modifying the SLExtractor extractor.

14

Transformation Families2Persons produces a Persons model, from a Families model.

For each Member instance, a Male instance has to be created. The Member must be not
female.

e The full name is the first name summed to ‘ ' summed to the family name.

For each Member instance, a Female instance has to be created. The Member must be
female.

e The full name is the first name summed to ‘ ' summed to the family name.

Figure 12: Resulting text from applying ParaphrasingTransformations to Fami-
lies2Persons

References

1]

[2]

ATL Transformations Zoo. Internet: http://www.eclipse.org/m2m/atl/
atlTransformations/, 2009.

Atlantic Zoo. Internet: http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/,
20009.

J. Bézivin and F. Jouault. KM3: a DSL for Metamodel Specification. In 8th IFIP,
pages 171-185, 2006.

J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large and
Modeling in the Small. In U. Alimann, M. Aksit, and A. Rensink, editors, MDAFA,
volume 3599 of Lecture Notes in Computer Science, pages 33—46. Springer, 2004.

F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. In S. Jarzabek, D. C. Schmidt, and T. L.
Veldhuizen, editors, GPCE, pages 249-254. ACM, 2006.

F. Jouault and I. Kurtev. Transforming Models with ATL. In J.-M. Bruel, editor,
MoDELS Satellite Events, volume 3844 of Lecture Notes in Computer Science, pages
128-138. Springer, 2005.

15

