Space-Efficient Construction of Lempel-Ziv Compressed Teildndexes*

Diego Arroyuelo*™ and Gonzalo Navarrdo* *

Dept. of Computer Science, Universidad de Chile, Blancaalauta 2120, Santiago, Chile.
{darroyue, gnavarro}@icc. uchile.cl

Abstract. A compressed full-text self-indéxa data structure that replaces a text and in addition ghdexed
access to it, while taking space proportional to the conga@$ext size. This is very important nowadays, since one
can accommodate the index of very large texts entirely immaemory, avoiding the slower access to secondary
storage. In particular, the LZ-index [G. Navarro, JournfiDiscrete Algorithms, 2004] stands out for its good
performance at extracting text passages and locatingrpaiteurrences. Given a teft[1..u] over an alphabet

of sizeo, the LZ-index requireduH(T") + o(ulog o) bits of space, wheréf,, (T') is the k-th order empirical
entropy ofT". Although in practice the LZ-index needs 1.0-1.5 times thé &ize, its construction requires much
more main memory (around 5 times the text size), which lirtgsapplicability only to not so large texts. In
this paper we present an space-efficient algorithm to caectstine LZ-index inO(u(log o 4 loglog)) time and
requiringduHy (T)+o(ulog o) bits of space. Our experimental results show that our meathefficient in practice,
needing an amount of memory close to that of the final inded,@anperforming by far the construction time of
other compressed indexes. We also adapt our algorithm ®ircmh some recent reduced versions of the LZ-index,
showing that these can also be built without using extraespadop of that required by the final index.

We study an alternative model in which we are given only atkahiamount of main memory to carry out the
indexing process (less than that required by the final ind&%)show how to build all the LZ-index alternatives in
O(u(log o + loglog u)) time, and withinuH} (1) + o(u log o) bits of space.

1 Introduction and Previous Work

Text searchings a classical problem in Computer Science. Given a sequaregmbolsT'[1..u] (the text)
over an alphabet’ of size o, and given another (short) sequeneél..m| (the search patterj over X,

the full-text search problentonsists of finding (counting or reporting) all thec occurrences of? in T'.
Nowadays, much information is stored in the form of (usukdhge) texts, e.g. biological sequences such as
DNA and proteins, XML data, MIDI pitch sequences, digithtéiries, program code, etc. Usually, these texts
need to be searched for patterns of interest, and therdferfuli-text search problem plays a fundamental
role in modern computer applications.

Text Compression and Indexing. Despite that there has been some work on space-efficiemténviedexes

for natural language texts [67, 58] (able of finding whole dgand phrases), until one decade ago it was
believed that any general index for text searching (sucha@setthat we are considering in this paper) would
need much more space. In practice, the smallest indexemaeaivere the suffix arrays [47], requiring
wlog v bits to index a text ofu symbols. Since the text requiredog o bits to be represented, this index
is usually much larger than the text (typically 4 times thd téze). With the huge texts available nowadays
(e.g., the Human Genome consists of abdut 10° base pairs), one solution is to store the indexes on

* A preliminary partial version of this paper appearedPinc. ISAAC 2005pp. 1143-1152.
** Funded by CONICYT PhD Fellowship Program, Chile. Most ofthiork was done while the author was in the David Cheriton
School of Computer Science, University of Waterloo.
*** Funded by Fondecyt Grant 1-080019 and by Millennium Instifar Cell Dynamics and Biotechnology, Grant ICM P05-0Q1-F
Mideplan, Chile.
! log = means[log,] in this paper.

secondary memory. However, this has a significant impadi@mnunning time of an application, as accesses
to secondary memory are orders of magnitude slower.

Several attempts to reduce the space of the suffix trees ftfays have been made [36, 40, 1], focusing
on good engineering to reduce the space. A parallel trackRB 43, 63,17, 26, 55, 44, 18, 62] focused on
compressed indexingvhich takes advantage of the regularities of the text toapen space proportional
to that of the compressed text (e.g., 3 times the zero-omtenm@y of the text). Especially, in some of those
works [63, 17, 26, 27, 55, 44, 18] the indexeplacethe text and, using little space (sometimes even less
than the original text), provide indexed access. This feagiknown aself-indexing since the index allows
one to search and retrieve any part of the text without gydhe text itself. Taking space proportional to the
compressed text, replacing it, and providing efficient kettkaccess to it, is an unprecedented breakthrough.

As with text compression, using compressed indexes inesepeocessing time. However, given the
relation between main and secondary memory access timegri¢ferable to handle compressed indexes
entirely in main memory, to handling them in uncompressenhfim secondary storage.

The main families of compressed self-indexes [57]@oenpressed Suffix Array€SA for short) [29,
63, 26], indexes based dtackward searcfil7, 44, 18] (which are alternative ways to compress suffiaya,
and known as th&M-indexfamily), and the indexes based on thempel-Zivcompression algorithm [68]
(LZ-indexes for short) [37, 55, 17, 62].

We are particularly interested in LZ-indexes, since thexelshown to be effective in practice for extract-
ing text, displaying occurrence contexts, and locatingotmurrences, outperforming other compressed in-
dexes at these tasks [55, 56]. What characterizes theydartitche of LZ-indexes is th@ (uH(T')) space
combined withO(log u) theoretical worst-case time per located occurrence. Meredn practice many
pattern occurrences can be actually found in constant tieneopcurrence, which makes the LZ-indexes
competitive, for example, to search for short patterns.drigular, we will be interested in Navarro’s LZ-
index [55, 56].

Compressed Congtruction of Sdlf-Indexes. Many works on compressed full-text self-indexes do not con-
sider the space-efficient construction of the indexes. thet, aspect becomes crucial when implementing
the index in practice. For example, the original constorctf Compressed Suffix Arrag8SA) [29, 63] and
FM-index[17] involves building first the suffix array of the text, ugifor example the algorithm of Larsson
and Sadakane [42] or the one by Manzini and Ferragina [48]il&ly, Navarro’s LZ-index is constructed
over a non-compressed intermediate representation [®Bjoth cases one needs in practice about 5 times
the text size (in the case of CSA and the FM-index, by usingléep-shallow algorithm [49]). For example,
the Human Genome may fit in less than 1 GB of main memory usiegetindexes (and thus it can be oper-
ated entirely in RAM on a desktop computer), but 15 GB of maenrory are needed to build the indexes!
Using secondary memory for the construction is nowadaysib&t practical alternative [15].

Another research path is to try building the suffix array disein compressed space in main memory.
Hon et al. [33] present an algorithm to construct suffix asrgand also suffix trees) using(u log o) bits of
storage, iND(uloglog o) = o(ulogu) time for suffix arrays, and (ulog® u) time for suffix trees, where
0 < e < 1. Thus, we have an alternative algorithm to construct the @8d\the FM-index usin@ (u log o)
bits of storage an@(u log log o) time, in the case of FM-index assumiig; o = o(log u). However, the
space requirement to construct the CSA is still bigger thahieeded by the final index.

The works of Lam et al. [41] and Hon et al. [31, 32] deal with sipace (and time) efficient construction
of CSA. The former presents an algorithm that u@ed8,(7") + 1+ ¢)u+ o(u log o) bits of space to build the
CSA, where: is any positive constant; the construction timé&igru log), which is good enough for small
alphabets (as for DNA sequences), but may be impracticdafger alphabets such as Oriental languages.

2

The second work [32] addresses this problem by requitiig(T")+2+¢)u-+o(u log o) bits of space and
O(ulogu) time to build the CSA. Also, they show how to build the FM-irndeom CSA using negligible
extra space irO(u) time. In practice they are able to build the CSA for the Human@ne in about 24
hours and requiring about 3.6 GB of main memory [30], on a 1Hz@PU. The FM-index can be built
from the CSA in about 4 extra hours, for a total of about 28 kour

Finally, Na and Park [54] construct the CSAGNu log alog}fg3 2 u) bits of space and(u) time. This
is the most space-efficient linear-time algorithm for camsing the CSA. They leave open, however, the
question of whether the CSA can be constructed in linear éinterequiringO (u log o) bits of space.

Thus, many works study the space-efficient constructiom®f@SA and the FM-index. However, the
space-efficient construction of LZ-indexes has not beemesddd in the literature. Since LZ-indexes are
competitive in practice for locating pattern occurrenceg extracting text substrings [56, 5] (which is very
important for self-indexes), the space-efficient consitomcof LZ-indexes is also an important issue.

Our Contribution. We present a practical and efficient algorithm to construmtdyro’s LZ-index [55, 56]
using little space. Our idea is to replace, at constructioe tthe (space-inefficient) intermediate representa-
tions of the tries that conform the index by space-efficieninterparts. Basically, we define an intermediate
representation for the tries, supporting fast incremeartastruction directly from the text and requiring little
space compared with the traditional (pointer-based) sgmtation. The resulting intermediate data structure
consists of a tree whose nodes are small connected comparfehe original trie, oblocks These small
tries are represented succinctly in order to require Iggace. Notice also that the blocks are easier and
cheaper to update, since they are small. The idea is inspirdng work of Clark and Munro [13], yet ours
differs in numerous aspects (structuring inside the blpokerflow management policies, etc.).

Our algorithm builds the LZ-index i@ (ulog o) time, while requiringduH(T") 4+ o(ulog o) bits of
space. This is the same space the final LZ-index requiresdoatgp At the time of the preliminary ver-
sion of this work [4], this was thérst construction algorithm for a compressed self-index reéagispace
proportional toH(7T') instead ofH,(7"). Recently, however, a construction algorithm for the stedaAl-
phabet FriendlyFM-index (AF-FMI) [18] has appeared, requiring?;.(T") + o(ulog o) bits of space, and
O(ulogulog o) time [46], and everO(ulog ulog’ﬁ)‘g’u) time [25]. The time obtained in the present paper
also improves upon th@(cu) worst-case time of [4].

We show how the reduced versions of LZ-index [6, 5, 7] can mstacted within little space. We also
present an alternative model to construct the indexes, inhwlie assume that the available main memory
to carry out the indexing process is smaller than the spagairesl by the final index. This model has
applications in cases where the indexing process must beataut in a computer that is not so powerful so
as to maintain the whole index in main memory, leaving a mokegsful equipment exclusively to answer
user queries. We show that, under this model, the LZ-indeaasbe constructed withifl + ¢)uHy(T") +
o(ulog o) bits of space, for an§ < ¢ < 1, in O(u(log o +log log w)) time. This means that the LZ-indexes
can be built within slightly more space (in some cases theey#iman that required by the compressed text.

We implement and test in practice a simplification of our &athm, and demonstrate that in many
practical scenarios the indexing space requirement isthlssame as that of the final index. Thus, we
conclude that wherever the LZ-index can be used, we can liulMde show how our algorithm is able to
build the LZ-index for the Human Genome in less than 5 houra 8nGhz CPU, and requiring 3.5 GB of
main memory, showing that this work can be carried out in aroodity PC. Notice that our algorithm is
many times faster than the algorithm for constructing th&3]. Under the reduced-memory scenario,
our experimental results show that the LZ-index for the HaiG@&nome can be constructed within 1.6 GB
of main memory, which is about half of the space required lgyuhcompressed genome (assuming the
symbols are represented by bytes).

Table 1 summarizes the results obtained in this paper anga@® with existing approaches.

Table 1.Comparison of different algorithms for constructing texdéxes. The reduced LZ-index versions can be constructadhwi

the same space required by the final indexes.

Index Indexing space (in bits) Indexing time
Suffix Arrays (SA) [33] O(ulogo) (*) O(uloglog o)
SA[21] ulogu O(ulogu)
CSA[32] u(Ho(T) + 2+ €) + o(ulog o) () O(ulogu)

CSA [54] O(ulog o logs u) (1) O(u)

AF-FMI [25] wHy(T) + o(ulog o) (8) O(ulogu(l + o))
LZ-index [4] (4 4+ €)uHy(T) + o(ulog o) () O(ou)

LZ-index (this paper) 4uHR(T) + o(ulog o)

Reduced LZ-indexa (this paper) (14 e)uHk(T) + o(ulog o)
Reduced LZ-indeb (this paper) (24 €)uHk(T) + o(ulog o)
Reduced LZ-index (this paper) (34 €)uHi(T) + o(ulog o)

O(u(log o + log log u
O(u(log o + log log u
O(u(log o + log log u
O(u(log o + log log u

NN NG

)
)
)
)

(*) this is o(u log u) bits forlog o = o(log). () this isO(u log o) bits of space, in the worst casg) {or e = log, 2. Agalin, the
space i (u log u) bits forlog o = o(log u). (f) for any0 < e < 1 andk = o(log,, u), applies to all LZ-index variantsg) for any
k < alog, v and any constart < a < 1.

2 Preliminary Concepts
2.1 Model of Computation

We assume the standarrd RAM model of computation, in which we can access any memonghebw
bits, such thatv = ©(logu), in constant time. Standard arithmetic and logical openatiare assumed to
take constant time under this model. We measure the sizerafada structures in bits.

Usually, after an indexing algorithm builds a text index inimmemory, the index is stored on disk along
with the text database, for persistence purposes. In theeafasompressed self-indexes, the index by itself
represents the database. At query time, the index is loadediain memory in order to answer (many) user
queries. Thus, by saving the index the (usually costly)ximde process is amortized over several queries.
Yet, in other scenarios, one builds the index in main memodyanswers queries on the fly.

We will initially assume that there is enough main memorydtathe final index. Later we will consider
reduced-main-memory scenarios, where we will resort torsgary memory to hold the intermediate results.
In this case, we will assume that there is enough secondamyomyeto hold the index we build.

Since, depending on the scenario, we might or might not havead the text from disk, and we might
or might not have to write the final index to disk, and becah®sd costs are fixed, we will not mention
them. Yet, in the reduced-main-memory scenarios we willthsedisk to read/write intermediate results,
and in this case we will also consider the amount of extra lédfgpmed. When accessing the disk, we
assume the standard model [65] where a disk page bits is transferred to/from secondary storage with
each access. Finally, the space required by the text is notiated for in the space required by the indexing
algorithms. If it resides on disk one can process it seqaknto it does not require any significant main
memory. Moreover, in most of our algorithms one could erbedeéxt at an early stage of the construction.

2.2 Empirical Entropy

A concept related to text compression is that of kg order empirical entropy of a sequence of symbols
T over an alphabet of size, denoted byH(T) [48]. The valueuH(T) provides a lower bound to the

4

number of bits needed to compréBaising any compressor that encodes each symbol consideringhe
context ofk symbols that precede it if.

2.3 Lempel-Ziv Compression

The Lempel-Ziv compression algorithm of 1978 (usually ndmh&78 [68]) is based on dictionary of
phrasesin which we add every newhrasecomputed. At the beginning of the compression, the dictipna
contains a single phradg of length O (i.e., the empty string). The current step of tbenpression is as
follows: If we assume that a prefik[1..j] of T has been already compressed into a sequence of phrases
Z = b...b,, all of them in the dictionary, then we look for the longesefpr of the rest of the text
T[j + 1..u] which is a phrase of the dictionary. Once we have found thiageh say; of length/;, we
construct a new phrage ., = (s,T[j + ¢s + 1]), write the pair at the end of the compressed flei.e.
Z =by...bb.11, and add the phrase to the dictionary.

We will call B; the string represented by phrasethusB,. .1 = BsT[j+ {5+ 1]. In the rest of the paper
we assume that the tekthas been compressed using the LZ78 algorithmnntd phrases] = By ... By,
such thatBy = ¢ (the empty string). We say thais thephrase identifiecorresponding td3;, for 0 < ¢ < n.

Property 1. For all1 < t < n, there existd < t andc € X such thatB; = By - c.

That is, every phras®; (exceptB,) is formed by a previous phrade, plus a symbok at the end. This
implies that the set of phrasespeefix closegdmeaning that any prefix of a phragk is also an element of
the dictionary. Hence, a natural way to represent the sétinfis By, . . ., B, is a trie, which we calLZTrie.

Property 2. Every phraseB;, 0 < i < n, represents a different text substring.

The only exception to this property is the last phrase We deal with the exception by appendinglia
special symbol “$’¢ X, assumed to be smaller than any other symbol in the alph@betlast phrase will
contain this symbol and thus will be unique too.

In Fig. 1 we show the LZ78 phrase decomposition for our rugr@rample texfl” ="al abar _a_l a
_al abar da_par a_apal abr ar | a”, where for clarity we replace blanks by, which is assumed to be
lexicographically larger than any other symbol in the al@taWe show the phrase identifiers above each
corresponding phrase in the parsing. In Fig. 3(a) we showctiheespondind_ZTrie. Inside eacH.-ZTrie
node we show the corresponding phrase identifier.

123 4 56 7 89 10 11 12 13 14 15 16 17
al abar _ a_la _alab ard ap ara _ap al abr arl a$

Fig. 1. LZ78 phrase decomposition for the running example text
T ="al abar _a_l a_al abar da_par a_apal abrar | a”, and the corresponding phrase identifiers.

The compression algorithm @(«) time in the worst case and efficient in practice provided wethe
LZTrie, which allows rapid searching of the new text prefix (for eagimbol ofT" we move once in the trie).

Property 3 ([68]).It holds that,/u < n < *—. This implieslogn = O(logu) andnlogu < ulogo.

og,u”

We shall use the following result of Kosaraju and Manzini][@8bound the output of the LZ78 parsing
of text’I" in terms of thek-th order empirical entropy df'.

5

Lemma 1 ([39]). It holds thatn log n = uwHj,(T) + O(u%) for any k.
In our work we assumé = o(log, u) (and hencdogo = o(logu) to allow for & > 0, i.e. higher order
compression); so thatlogn = uH(T) + o(ulog o).

2.4 Succinct Representations of Sequences and Permutatfon

A succinct data structureequires space close to the information-theoretic lowenowhile supporting the
corresponding operations efficiently. We review some tesui succinct data structures, which are needed
in our work.

Data Structures for rank and select Given a bit vectorB[1..n], we define the operatiorunky(B, i)
(similarly rank;) as the number of Os (1s) occurring up to tkt position of B. The operatiorselecty(B, i)
(similarly selecty) is defined as the position of thieh 0 (i-th 1) in B. We assume thatlect, (B, 0) always
equals O (similarly foselect,). These operations can be supported in constant time andirepn + o(n)
bits [51], or evem Hy(B) + o(n) bits [60].

There exist a number of practical data structures suppprtink andselect, like the one by Gonzalez
et al. [24], Kim et al. [38], Okanohara and Sadakane [59], &toong these, the first [24] is very (perhaps
the most) efficient in practice to computenk, requiring little space on top of the sequence itself. Ojamna
select is implemented by binary searching the directory built fpe@tionrank, and thus without requiring
any extra space for that operation (yet, the timestdect becomesD (log n)).

Given a sequenc#|[l..u] over an alphabet’, we generalize the above definition tank.(S,) and
select.(S,i) for anyc € X. If 0 = O(polylog(u)), the solution of [18] allows one to compute both
rank. and select. in constant time and requiringH(S) + o(u) bits of space. Otherwise the time is
O(log’igu) and the space i8H,(S) + o(ulog o) bits. The representation of Golynski et al. [23] requires
n(log o+ o(log o)) = O(nlog o) bits of space [8], allowing us to compugelect. in O(1) time, andrank,
and access t§[i] in O(loglog o) time.

Data Structures for Searchable Partial SumsGiven an arrayA[1..n] of n integers oft’ bits each, a data
structure for searchable partial sums allows one to rettigv] and supports operatiort&um (A, i), which
computeszj.zl A[j]; Search(A, 1), which finds the smallegt such thatSum(A, j') > i; Update(A, i,),
which setsA[i] < A[i]+0; Insert(A,i,e), which adds a new elemeato the set between element§ —1]
and A[i]; and Delete(4, j), which deletesA[j].

The data structure of [46] supports all these operatior3(ing n) worst-case time, and requires’ +
o(nk’) bits of space. For us, it is interesting that the space canaseni’ + O(n) bits.

Succinct Representation of PermutationsThe problem here is to represent a permutatiaf {1, ..., n},
such that we can compute bottfi) and its inverser—!(j) in constant time and using as little space as
possible. A natural representation fols to store the values(i), i = 1,...,n, in an array ofn log n bits.
The brute-force solution to the problem computes () looking for j sequentially in the array representing
7. If j is stored at position, i.e. 7(i) = j, then7—!(j) = 4. Although this solution does not require any
extra space to compute !, it takesO(n) time in the worst case.

A more efficient solution is based on thgcle notation of a permutatiofhe cycle for the-th element
of = is formed by elements 7 (i), w(7(i)), and so on until is found again. Notice that every element occurs
in one and only one cycle of. For example, the cycle notation for permutatioiz of Fig. 2(a) is shown
in Fig. 2(b). So, we compute —!(j) looking for j only in its cycle:7~!(j) is just the value “pointing”

6

to j in the diagram. To computels—!(13) in our example, we start at position 13, then move to position
ids(13) = 7, then to positionds(7) = 12, then toids(12) = 2, then toids(2) = 17, and asids(17) = 13

we conclude thatds~1(13) = 17. Since there are no bounds for the size of a cycle, this t@kes time in

the worst case. Yet, it can be improved for a more efficientmaation ofr—1(j).

i
idsli]

1234567 89 10 11 12 13 14 15 16 (17
11731514 4121016 6 11 2 7 9 5 8 (13
(

a) An example of permutatioials.

6 goa 008 goae0aFos

(b) Cycle notation of permutatiofls.

Fig. 2. Cycle representation for a given permutatidn. Each solid arrow — j in the diagram meanils(i) = j. Dashed arrows
represent backward pointers.

Given0 < e < 1, we create subcycles of size(1/¢) by adding abackward pointerout of O(1/¢)
elements in each cycle af. Dashed arrows in Fig. 2(b) show backward pointersifer= 2. To compute
7! we follow the cycles as before, yet now we follow a backwarth{ew as soon as possible. We store the
backward pointers compactly in an arrayeaflog n bits. We mark the elements having a backward pointer
by using a bit vector supportingink queries, which also help us to find the backward pointer spaeding
to a given element (see [52] for details). Overall, this 8oturequires(1 + €)nlog n + n + o(n) bits.

Next we present a result which shall be useful later for ouppses of constructing the LZ-index for a
textT'. Our result states that any permutationan be inverted in-place in linear time and using anlgxtra
bits of space. This can be seen as a particular casmaafanging a permutatiof20], where we are given
an array and a permutation, and want to rearrange the arcaydaeg to the permutation.

Lemma 2. Given a permutation of {1,...,n} represented by an array usinglog n bits of space, we can
compute on the same array the inverse permutatiohin O(n) time and requiringz bits of extra space.

Proof. Let A, [1..n] be an auxiliary bit vector requiring bits of storage, which is initialized with all zeros
(this is just the raw bit vector, no additional data struetior rank and select is added). Letr be the
array representing the permutation, usinig » bits of space. The idea to construct! is to use the cycle
structure ofr to reverse the “arrows” conforming the cycles (i.e.,~ j” in a cycle of r, which means
n[i] = j, now becomesi‘« j”, which meansr—![j] = 7). So, the main idea is to regard the cyclesrof
as “linked lists”. Thus, constructing™' is a matter of reversing the pointers in the lists, and tlogesive
shall need three auxiliary pointers to do that job. We foltbe cycles ofr, using A, to mark with al those
positions which have been already visited during this gsce

We start with the cycle at position« 1, and traverse it from positiop < m[a]. We then seb «— «[p],
m[p] < a (i.e., we store the positiom which brings us to the current one), aAd [p] < 1. Then we move
to positiona < p, setp < b, and repeat the process again, stopping as soon as wefimd.4,. Then we
try with the cycle starting at position+ 1, which is the next one after the position that started theipos
cycle, and follow it just if the corresponding bit i is 0.

Thus, each element in the permutation is visited twice: el@sistarting a cycle are visited at the be-
ginning and at the end of the cycle, while elements in the faidfla cycle are visited when traversing the

7

cycle to which they belong, and when trying to start a cyatenfithem. Thus, the overall time ¢3(n), and
we usen extra bits on top of the space of and the Lemma follows. O

2.5 Succinct Representation of Trees

Given a tree witm nodes, there exist a number of succinct representationsrirgg)2n + o(n) bits, which
is close to the information-theoretic lower bound of atteas— O (log n) bits.

Balanced ParenthesesThe problem of representing a sequence of balanced pasestiehighly related
to the succinct representation of trees [53]. Given a sempjeay of 2n balanced parentheses, we want to
support the following operations gmr: findclose(par, i), which given an opening parenthesis at position
i, finds the position of the matching closing parenthegisidopen(par, j), which given a closing paren-
thesis at positior, finds the position of the matching opening parenthesisess(par, i), which yields the
difference between the number of opening and closing pageet up to positioft and enclose(par, i),
which given a parentheses pair whose opening parenthegtipdsition, yields the position of the opening
parenthesis corresponding to the closest matching pasggipair enclosing the one at position

Munro and Raman [53] show how to compute all these operationsnstant time and requirir@y +
o(n) bits of space. They also show one of the main applications ahtaining a sequence of balanced
parentheses: the succinct representation of general tuitbsthe so-calledsp representation. Among the
practical alternatives, we have the representation of Ysetal. [22] and the one by Navarro [55, Section
6.1]. The latter has shown to be very effective for reprasgrtZ-indexes [56].

DFUDS Tree Representation To get this representation [9] we perform a preorder tralerns the tree, and
for every node reached we write its degree in unary usingylaeses. For example, a node of degree 3 reads
“((()’ under this representation. Notice that a leaf is represkhy) *. What we get is almost a balanced
parentheses representation: we only need to add a fictljoas the beginning of the sequence. A node of
degreed is identified by the position of the first of the+ 1 parentheses representing the node.

This representation requir@s + o(n) bits, and supports operatioparent(x) (which gets the parent
of nodex), child(x,i) (which gets the-th child of nodez), subtreesize(x) (which gets the size of the
subtree of node, includingz itself), degree(x) (which gets the degree, i.e. the number of children, of node
x), childrank(z) (which gets the rank of node within its siblings [35]), ancincestor(x,y) (which tell
us whether node is an ancestor of nodg), all in O(1) time. If we assume thatar represents therFubs
sequence of the tree, then we have:

parent(z) = select, (par, rank, (par, findopen(par,x —1))) + 1
child(x,1) = findclose(par, select, (par, rank, (par,x) + 1) —i) + 1

Operationdepth(x) (which gets the depth of nodein the tree) can be also computed in constant time on
DFUDS by using the approach of Jansson et al. [35], requisifig extra bits.

Given a node in this representation, say at positjots preorder position can be computed by counting
the number of closing parentheses before positidn other wordspreorder(xz) = rank, (par,z — 1).
Given a preorder positiop, the corresponding node is computedsa¥ectnode(p) = select, (par,p) + 1.

Representingr-ary Trees withbFubs For cardinal trees (i.e., trees where each node has atandsil-
dren, each child labeled by a symbol in the §kt. .. ,0}) we use theoFuDS sequencear plus an array
letts[1..n] storing the edge labels according toruDS traversal of the tree: we traverse the tree in depth-
first preorder, and every time we reach a nedee write the symbols labeling the childrenaafin this way,

8

the labels of the children of a given node are all stored gomtisly inletts, which will allow us to compute
operationchild(z, o) (which gets the child of node with labela € {1,...,c}) efficiently. In Fig. 3(c) we
show theDFuUDS representation dfZTrie for our running example.

We support operationhild(x,«) as follows. Suppose that nodehas positionp within the bFuUDS
sequencear, and letp’ = rank (par,p) — 1 be the position inletts for the symbol of the first child
of . Letn, = ranky(letts,p’ — 1) be the number ofvs up to positionp’ — 1 in letts, and leti =
selectq(letts,n, + 1) be the position of thén, + 1)-th a in letts. If i lies between positiong’ and
p’ + degree(x) — 1, then the child we are looking for isvild(z,i — p’ + 1), which, as we said before, is
computed in constant time ovetir; otherwiser has not a child labeled. We can also retrieve the symbol
by whichz descends from its parent withtts[rank (par, parent(x)) — 1+ childrank(z) — 1], where the
first term stands for the position iatts corresponding to the first symbol of the parent of nede

Thus, the time for operatioshild(x, «) depends on the representation we usertotk, andselect,,
queries [18, 23]. Notice thathild(x, «) could be supported in a straightforward way by binary seagch
the labels of the children of, in O(log o) worst-case time and not using any extra space on top of array
letts. The scheme we have presented to reprekent is slightly different to the original one [9], which
achievesO(1) time for child(x, o) for any o. However, our method is simpler to build, since the original
one is based on perfect hashing, which is expensive to cmhstr

3 The LZ-index Data Structure

3.1 Definition of the Data Structures

Assume that the tex®’[1..u] has been compressed using the LZ78 algorithm inte 1 phrasesl’ =
By ... B,, as explained in Section 2.3. The data structures that oonf@-index are [55, 56]:

1. LZTrie is the trie formed by all phraséds, . .. B,,. Given the properties of LZ78 compression, this trie
has exactly» + 1 nodes, each one corresponding to a phiase

2. RevTrie is the trie formed by all the reverse strin§§ . .. B;,. In this trie there could be internal nodes
not representing any phrase. We call these nedgsty

3. Node: is a mapping from phrase identifiers to their nodé& #rie.

4. Range s a data structure for two-dimensional searching in treesf) ... n| x [0...n]|. We store the
points{(revpreorder(t), preorder(t+1)),t € 0...n — 1} in this structure, whereevpreorder(t) is
the RevTriepreorder of node for phraggconsidering only non-empty nodes in the preorder enumera-
tion), andpreorder(t+1) is theLZTrie preorder for phrase+ 1. For each such point, the corresponding
t value is stored.

3.2 Succinct Representation of the Data Structures

The data structures that compose the LZ-index are built emebsented as follows.

LZTrie. For the construction dfZTrie we traverse the text and at the same time build a trie repiiagehe
Lempel-Ziv phrases, spending (as usual) one pointer penpahild relation. At step (assumes; = By-c),
we read the text that follows and step down the trie until wenoé continue. At this point we create a new
trie leaf (child of the trie node of phrage by symbolc, and assigning the leaf phrase numbego to the
root again, and go on with stept 1 to read the rest of the text. The process completes whendhphease
finishes with the text terminator “$”. In Fig. 3(a) we show thempel-Ziv trie for the running example,

9

using pointers. After we build the trie, we can erase the d@ext is not anymore necessary, since we have
now enough information to build the remaining index compuse

Then we build the final succinct representatiorL@fTrie, essentially using the parentheses representa-
tion of Munro and Raman [53], yet newer versions of the LZex@6] use theDFuDS representation [9].
Arraysids andletts are also created at this stage.

Node. Once thelL.ZTrie is built, we free the space of the pointer-based trie andilMilde. This is just an
array with then nodes olLZTrie. If the i-th position of theds array corresponds to theth phrase identifier
(i.e.,ids[i] = j), then thej-th position of Node stores the position of theth node within the balanced
parentheses. As there & parenthesesyVode requiresn log 2n bits.

RevTrie. To constructRevTriewe traverseLZTrie in preorder, generating each LZ78 phrdsgestored in
LZTriein constant time, and then inserting it intdree of reversed stringgrepresented with pointers). For
simplicity, empty unary paths are not compressed in thetpolvased trie. When we finish, we traverse the
trie and represent the trie topology REvTrieand the phrase identifiers in arregs. Empty unary nodes
are removed only at this step, and so the final number of nodee\Trieis n < n’ < 2n.

Notice that if we use:’ log n bits for therids array, then in the worst casgevTrierequires2uHy(T) +
o(ulog o) bits of storage, and the whole index requised?;(7") + o(u log o) bits. Instead, we can represent
therids array withn log n bits (i.e., only for the non-empty nodes), plus a bitma@of-o(n) bits supporting
rank queries inO(1) time [51]. Thej-th bit of the bitmap isl if the node represented by thieth opening
parenthesis is not an empty node, otherwise the it iBherids index corresponding to thgth opening
parenthesis isank(j). Using this representatioRevTrierequiresuHy(T) + o(ulog o) bits of storage.
This was unclear in the original LZ-index paper [55, 56].

Range. For Range, the data structure of Chazelle [12] permits two-dimergisange searching in a grid
of n pairs of integers in the rangé..n| x [0..n]. This data structure can be represented withg n +
O(nloglogn) bits of space [45] as follows. We assume first that the poirghtained from pairing two
permutations of 1,...,n}, i.e., there is exactly one point with first coordinatfler any0 < i < n, and one
point with second coordinatgfor any0 < j < n.

To constructRange we sort the set by the second coordingtand then we divide the set according to
the first coordinate, to form a perfect binary tree where each node handles awahiaf the first coordinate
1, and thus knows only the points whose first coordinate falteat interval. The root handles the points with
first coordinate withir{1..n] (i.e., all), and the children of a node handling the intefval’] are associated
to [i..[(i +4")/2]] and[| (i +) /2] + 1../']. Leaves handle intervals of the forfin.].

Every tree node is then represented with a bit vectBy, indicating for each point handled bywhether
the point belongs to the left or right child. In other words,[r] = 0 iff the r-th point handled by node (in
the order given by the second coordingtéelongs to the left child. Every level of the tree is reprded as
a single bit vector of: bits, using data structures for constant-timek andselect [51], which are needed
to support the search (as well as, given a node, finding threggmonding starting position within the level,
see [45] for more details). Thus, we only né@og n) pointers to represent the levels of the tree, avoiding
in this way to store the pointers that represent the balatreed

This data structure supports counting the number of poirdslte within a two-dimensional range in
O(log n) time, as well as reporting the:c points inside the search range@{(1 + occ) log n) time [45].
Since in our case is the number of LZ78 phrases of tékftheO(n log log n) term in the space requirement
of the data structure is justu log o) bits, and thus the space requirement #$;(7") + o(ulog o) bits.

RNode. In the practical implementation of LZ-index [55, 56], tiRangedata structure is replaced by
RNode, which is a mapping from phrase identifiers to their nod&kevTrie After we free the space of

10

the pointer-based reverse trie, we buRdNode from rids in the same way thaWode is built fromids. It is
important to note that, by usinB Node instead ofRange, the LZ-index cannot provide worst-case guaran-
tees at search time, bust just average-case guaranteesvétpiiis approach has shown to be effective in
practice since it has a good average-case search time [56].

Overall Space Requirementsing those succinct representations, each of the fourtates that conform
LZ-index requires: log n + o(ulog o) bits of space, which according to Lemma kil (T") + o(ulog o)
bits, for k = o(log, u). Hence, the final size of the LZ-index 4s.H(T) + o(ulog o) bits, for anyk =
o(log, u). The LZ-index can be built i® (u log o) time [55].

3.3 Experimental Indexing Space

A large amount of storage is needed to construct the LZ-ifi@8k mainly because of the pointer repre-
sentation of the tries used at construction time. In the éx@nts of the original LZ-index [56], the largest
extra space needed to bull@Trieis that of the pointer-based trie, which is 1.7-2.0 timegéhésize [56].

On the other hand, the indexing space for the pointer-besenisdrie is, in some cases, 4 times the text
size. This is, mainly, because of the empty unary nodes. gase dictates the maximum indexing space
of the algorithm. The overall indexing space was 4.8-5.&¢irthe text size for English text, and 3.4-3.7
times the text size for DNA. As a comparison, the constructiba plain suffix array without any extra data
structure requires 5 times the text size [49]

3.4 Reduced Versions of the LZ-index

New versions of the LZ-index have been introduced recer@ly [5], which require less space than the
original LZ-index, in some cases also improving the searetiopmance of the original LZ-index. One
of the approaches introduced to reduce the space is thelled-cavigational-schemepproach, which
consists in regarding the original LZ-index (the versiomgsk Node instead ofRange, see Section 3.2) as
a navigation structure which allows us moving among the hdek components (i.e.ZTrie nodes | ZTrie
preorders, phrase identifieRRevTrienodes, andRevTriepreorders).

Thus, the original LZ-index has the schendéide : phrase identifie— LZTrie node; R Node : phrase
identifier — RevTrienode;ids : LZTrie preorder— phrase identifier; andids : RevTriepreorder—
phraseidentifier. As we have seen in Section 2.5 fobtheD s representation, trie nodes and the correspond-
ing preorders are “connected” by meangpoéorder andselectnode operations, so we have a navigation
scheme that allows us moving back and forth from any indexpmrant to any other.

This approach allows us to study the redundancy introdugetéboriginal index. Several new reduced
schemes have been introduced [5], allowing the same naiggtt requiring less space.

Scheme 2The so-called Scheme 2 of LZ-index [5] is as folloviss : LZTrie preorden— phrase identifier;
rids~! : phrase identifier— RevTriepreorder; and? : RevTriepreorder— LZTrie preorder. Thus, the
space requirement B.Hy (T') + o(ulog o) bits of space. Though this scheme does not provide worst-cas
guarantees at search time, it has shown to be efficient itigeaoutperforming competing indexes in many
real-life scenarios [5]. Thus, we are also interested irsjtace-efficient construction in order to extend
its applicability. There exists another alternative reiggi the same space as Scheme 2, called Scheme 1.
However, Scheme 2 outperforms it in most practical casegff] thus we disregard Scheme 1 in this paper.

11

Scheme 3 This LZ-index variant has the following schemigls : LZTrie preorder— phrase identifier;
ids~! : phrase identifier— LZTrie preorder;rids : RevTriepreorder— phrase identifier; andids~! :
phrase identifie— RevTriepreorder. The space requirementas+ e)uHy (1) + o(ulog o) bits of space,
since arraysds andrids are represented with the data structure for permutationdwfro et al. [52].
This scheme has also shown to be efficient in practice, doipeing competing indexes in many real-life
scenarios and being able to require less space than Schgrat @ifen requiring the same space, Scheme
2 outperforms Scheme 3 in many cases).

Scheme 4This scheme of LZ-index represents the following défa:: LZTrie preorden— phrase identifier;
ids~! : phrase identifier— LZTrie preorder;R : RevTriepreorder— LZTrie preorder; andR~! : LZTrie
preorder— RevTriepreorder. The space requirement is al8ct ¢)uH(T) + o(ulog o) bits of space,
since the inverse permutations are represented by thetdattuse of [52]. Though Scheme 3 outperforms
Scheme 4 in most practical scenarios [5], Scheme 4 is iniiegeBy itself since its space can be reduced
even more, achieving interesting theoretical results.

The idea is to replace arra by a data structure allowing us to compute ay|, yet requiring less
than then log n bits required by the original array. Thus, for evé&gvTriepreorderl < ¢ < n we define
functiony such thatp(i) = R~!(parent;.(R[i])), andp(0) = 0 (operationparent;, is the parent operation
in LZTrie, yet working on preorders instead of on nodes as originafineéd). This function works as a suffix
link in RevTrie[6]: given aRevTrienode with preordef representing stringz (for a« € X,z € X*), the
RevTrienode with preorder(i) represents string. An important result is thak[:] can be computed by
means of functionp [6]. We also samplen values ofR in such a way that the computation &fi]| (by
means ofp) takesO(1/¢) time in the worst case.

Functiony has the same properties as functibrof Compressed Suffix Arrays [28, 63], thus this can
be also compressed @(nlog o) = o(ulog o) bits of space. The computation & is supported also in
O(1/¢) time, by reverting the process used to comphte-or this, functiony’ is defined asVeiner links
[66] in RevTrie The space requirementds logn + o(u log o) bits. Thus we have:

Lemma 3 ([6, 7]). There exists a Lempel-Ziv compressed full-text self-imdguiring (1 + e)uHy(T) +
o(ulog o) bits of space, for any = o(log, v) and any0 < e < 1, which is able to locate (and count)
the occ occurrences of a patter®[1..m] in text7[1..u] in O(mT2 + —i7z) average time, which i@(mTQ) if
m > 2log, u.

Thus the LZ-index can be represented with almost optimatespander the model of the empirical entropy
H(T)), yet we cannot provide worst-case guarantees at searehwtithin this space.

We can get such worst-case guarantees at search time bygatdiRangedata structure, the two-
dimensional range search data structure as defined forithiealiLZ-index. This requires log n+o(ulog o)
extra bits of space, and thus we get:

Lemma 4 ([6, 7]). There exists a Lempel-Ziv compressed full-text self-imdguiring (2 + €)uHy(T) +
o(ulog o) bits of space, for any: = o(log,) and any0 < e < 1, which is able to: locate thecc
occurrences of a patter?[1..m] in textT'[1..u] in O(mT2 + (m + occ) log u) worst-case time; count the
number of pattern occurrences in tirﬁt{m?2 + mlog u + occ); and determine whether patter exists in
Pin O(mT2 + mlogu) time.

Finally, we add theAlphabet-Friendly FM-index18] of text T" to this index, to get:

Lemma5 ([7]). There exists a Lempel-Ziv compressed full-text self-indeuiring (3 + e)uH(T) +
o(ulog o) bits of space, for any: = o(log, u) and any0 < e < 1, which is able to: locate thecc

12

occurrences of a patter#[1..m] in textT'[1..u] in O((m + %) log u) worst-case time; count the number
of pattern occurrences i®(m) time; and determine whether pattefhexists inP in O(m) time.

4 Space-Efficient Construction of the LZ-index

The LZ-index is a compressed full-text self-index, and afistiallows large texts to be indexed and stored
in main memory. However, the construction process requrEsge amount of main memory, mainly to
support the pointer-based tries used to build the final @essofLZTrie and RevTrie(recall Section 3.3).
So our problem is: given a teft[1..u] over an alphabet of size, we want to construct the LZ-index far
using as little space as possible and within reasonable Weeaim at an efficient algorithm to build those
tries in little memory, by replacing the pointer-baseddneth space-efficient data structures that support
insertions. These can be seen as hybrids between poirged-wdes and the final succinct representations.

The space-efficient construction algorithm for LZ-indexegented in [4] has a construction time of
the formO(ou). This makes the construction algorithm impractical for eradely-large alphabets. In the
sequel we shall achiev@(u(log o + log log w)) time by using an improved dynamic representation.

In Sections 4.1 to 4.5 we assume that we have enough main meamstore the final LZ-index. In
Section 4.6 we study how to manage the memory dynamicallighwl an important aspect fot dynamic data
structures, using a standard model [61] of memory allonatio Section 4.7, we shall adapt our algorithm
to the cases in which there is no enough space to store the\fihal index in main memory.

We show next how to space-efficiently construct the LZ-indemponents. From now on we assume
o > 2, as otherwise the whole indexing problem is trivial.

4.1 Space-Efficient Construction ofL ZT'rie

The space-efficient constructionldf Trieis based on a compact representation supporting a fasimectal
construction as we traverse the text. In eithersh@ndbFUDS representations, the insertion of a new node
at any position of the sequence implies to rebuild the sempéom scratch, which is expensive. To avoid
this we define aiierarchical representationsuch that we rebuild only a small part of the entire original
sequence upon the insertion of a new node.

We incrementally cut the trie into disjoibtockssuch that every block stores a subset of nodes represent-
ing a connected component of the whole trie. We arrange thlesks in a tree by adding sonirger-block
pointers, and thus the entire trie is represented by a trboks.

If a nodex is a leaf of a blockp, but is not a leaf of the whole trie, then nodestores an inter-block
pointer to the representation of its subtree. Let us saythigpointer is pointing to block. We say thay
is a child block ofp. In our representation, nodeis also stored in blocl, as a fictitious root node. Thus,
every block is a tree by itself, which shall simplify the ngaiion as well as the management of each block.

To summarize, every such nogdas two representations: (1) as a leaf in blpci) as the root node of
block ¢. Note that the number of extra nodes introduced by duptigatiodes equals the number of blocks
in the representation (minus one), and also that we are@népthat every node is stored in the same block
of its children, which also means that sibling nodes aretatksl in the same block.

Rather than using a static representation for the trie slddk which are rebuilt from scratch upon
insertions, this time we represent each block by using dymdata structures, which can be updated in time
less than linear in the block size. We adapt the approach ing&] to represent succinct dynamicary
trees: We first reduce the size of the problem by dividing tieeiito small blocks, and then represent every
block (i.e., smaller trie) with a dynamic data structurevoid the total rebuilding of blocks upon updates.

13

Defining Block Sizes We divide thelLZTrie into blocks of N nodes each, wherd,, < N < Ny, for
minimum block sizeV,,, = @(10g2 u) nodes and maximum block si2é,; > 20 N,,, nodes. We also need
Ny = (ologu)®®, for exampleN,; = O(olog?u) (we do not show the roundings, but it should be
clear that these must be integers). Hence, notice that wehghva one inter-block pointer out of at least
N,, nodes. Since each pointer is represented With, bits, and since we hawenodes in the tree, we have
~- logu = O(n/logu) bits overall for inter-block pointers. The definition &fy;, on the other hand, is
such that it ensures that a bloglhas room to store at least the potentiathildren of the block root (recall
that sibling nodes must be stored all in the same block). Ald®n a block overflows we should be able to
split the block into two blocks, each of size at lea&t,. By defining Na; as we do, in the worst case (i.e.,
the case where the overflown block has the smallest possielethe root of the block has some child with
at leastN,, nodes, asVy; > 1 + oN,,. Thus, upon an overflow, we can create a new block of size st lea
N,,, from such subtree, requiring little space for inter-blodinpers and maintaining the properties of our
data structure. The stricter factor 2 shall be useful foramortized analysis of block partitioning, whereas

the polylog upper bound is necessary to ensure short enaugters within blocks.

Defining the Block Layout Each blockp of N nodes consists of:

— The representatioff, of the topology of the block, using any suitable tree represn.

— A bit-vector F,,[1..N] (theflag9 such thatF,[j] = 1 iff the j-th node ofT}, (in preorder) has associated
an inter-block pointer. We shall representwith a data structure farank andselect queries.

— log Ny bits to count the current numbér of nodes stored in the block.

— The sequenceds,[1..N] of LZ78 phrase identifiers for the nodes Bf, in preorder. Except for the
LZTrieroot, every block root is replicated as a leaf in its pareathk] as explained. In that case we store
the corresponding phrase identifier only in the leaf of theepiablock. That is, fictitious roots in each
block do not store phrase identifiers. We Wiseu bits per phrase identifier, instead of usileg » bits
as in the final representation @fs. This is because before constructing the LZ78 parsing ofetkieve
do not known, the number of phrase identifiers.

— The symbolsletts,) labeling the edges in the block (the order of the symboledds on the represen-
tation used fof7},, recall Section 2.5). Each symbol udeg o bits of space.

— A variable number of inter-block pointers, stored in dataigure ptr,. The number of inter-block
pointers varies frond to IV, and it corresponds to the numlds in F,.

In Fig. 3(b) we show an example of hierarchical represamtadif LZTrie for the running example text,
assuming thasp is used to represent the trie topology of each block. If tHetree of thej-th node (in
preorder) of bloclp is stored in blocky, theng is a child block ofp and thej-th flag inp has the valud.. If
the number of flags with valug before thej-th flag inp is h, then theh-th inter-block pointer op points
to ¢. Note thath can be computed asinky (£}, j).

Since blocks are tries by themselves, inside a blogke use the traditional trie-like descent process,
using operatiorehild,(x, o) onT,. From now on we use the subscrjptvith the trie operations, to indicate
operations which are local to a blogki.e., disregarding the inter-block structure (epggorder, computes
the preorder of a node within blogk and not within the whole trie, and so on). When we reach akbloc
leaf (with preorder; inside the block), we check theth flag inp. If F,[j] = 1 holds in that block, then
we computeh = ranki (F), j) and follow theh-th inter-block pointer irp to reach the corresponding child
block ¢. Then we follow the descent insideas before. Otherwise, #,[j] = 0, then we are in a leaf of the
whole trie, and we cannot descend anymore.

We represent the above components for bloak the following way.

14

0 (OO0
L 12 5813
o D 2 (@oo0n (o)
17 3 14 4 6 7 8 173144 6 79
R I Ol iy
15 12 10 16 11 9 13 /O T~
{(C)(OXOX0) ()
15 1210 16
r ad |

(a) Lempel-Ziv Trie [ZTrie), represented in the traditional (pointer-based) way. (b) Hierarchical representatlon of
LZTrie, usingBP inside the blocks.
Duplicate nodes are shown outside
the blocks.

012345678910 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28020 B2 33 34 35

par(((()((((())()))((())))())()())()())
ids: 173 1514 4 1210166 112 7 95 13

letts: al._ $b|r_ r ad| p a b a p
(c) bFuDSrepresentation dfZTrie. The phrase identifiers are stored in preorder, and the sym-
bols labeling the edges of the trie are stored according®un s traversal.

Fig. 3. Different representations of the Lempel-Ziv trie and rethtlata structures for the running example.

Representation of the Trie Topology, T}, To represent the trie topology of blopkve use the data structure
for dynamic balanced parentheses of [11] to represermth®s [9] of the block. The main idea of Chan et
al. is to divide the original parentheses sequence into satgfi; of O(log N) bits, which in our case also
meansO(log N) nodes per segment (by identifying each node with its firstpiduesis). Every segmeAt

is stored in the leaves of a balanced binary fgesuch that concatenating the leaves from left to right gives
us back the original sequen@g. Some information is stored in the internal nodefpfn order to support
the operations on the parentheses sequence, as well astdnppdions and deletions phirs of matching
parenthesesAll the operations of Section 2.5 are supportedifiog V') time by navigatindl;. In addition,
we store in every internal node @1’) the number of opening parentheses within the left subtejedl as
the total number of parentheses within the left subtred) asan [46], in order to support operationsnk,
ranky, select , andselect, overT), in O(log N) time.

All these operations on the sequence of parentheses alldw sigpport thebFuDS operations (recall
Section 2.5)parent,, childy(z,1), subtreesize,, degreey, preorder,, selectnode,, etc., all of them in
O(log N) = O(log Njr) time. As we shall explain later in this section, the insertaf a new node in
DFUDS can be simulated by inserting a new pair of matching parsetha/},, and thus we can handle itin
a straightforward way with the data structure of [11]. Diele$ of leaves are handled in a similar way. The
space requirement (V) bits per block, which adds up 0(n) = o(u) bits overalf.

Representation of the FlagsF,, We represent the flags of blogkin preorder and using a dynamic data
structure forrank andselect over a binary sequence [46]. This data structure supparig, select, and
updates or¥}, in O(log N') worst-case time, and requiréé + o(N') bits of space. This data structure can
be connected witlT}, via operationgreorder, andselectnode,: Given a noder in p, the corresponding
flag is F,[preordery,(z)]. Given F,[j], on the other hand, the corresponding nod&jiis selectnode,(j).

2 The space requirement of the trie topology can be reduced te o(n) bits overall, see [3]. Howeve€)(n) bits is sufficient
for our purposes.

15

When we insert a new node 1), we insert a new flag (with valu@ because the new node is inserted with
no related inter-block pointer) at the corresponding pasigiven bypreordery). This data structure adds
n+o(n) = o(u) extra bits to our representation. Arroyuelo [3] gives a movelved representation far,,,
requiringo(n) bits, yet the one we are using here is simpler yet adequataufgourposes.

Representation of the Symbolsietts,, We represent the symbols labeling the edges of the blockdiogp
to aDFUDS traversal orl}, (see Section 2.5), yet this time we store them in differéridiam, except for
the symbol of the first child of every node, which is represdrin absolute form. We then represent this
sequence alV integers oft’ = log o bits each with the dynamic data structure for searchabli@apanms of
[46], which supports all the operations (including insars and deletions) i®(log V) time, and requiring
NE' + O(N) = Nlogo + O(N) bits of space, adding overalllog o + O(n) = o(ulog o) bits of space.

We can connecletts, with T}, by usingrank, overT,. Given a noder in T}, the subsequendetts,
[rank (Tp, x)..rank (T, z) + degree,(x) — 1] stores the symbols labeling the childrenzofTo support
operationchild, (z, o), which shall be used to descend in the trie at constructiog,tive first compute «—
rank (T}, =) to obtain the position ifetts, for the first child ofz. We then compute «— Sum(letts,,i —
1), which is the sum of the symbols ifetts, up to positioni — 1 (i.e., the sum before the first child
of). To compute the position of symbael within the symbols of the children of node we perform
Jj < Search(lettsy, s +). Thus, the node we are looking for is the— i + 1)-th child of 2, which can
be computed byhild,(z,j — i + 1), in O(log N) time overall. To make surgis a valid answer, we use
operationdegree,(x) to check whethey — i 4 1 is smaller or equal to the degreeaafand then we check
whetherSum(letts,,j — i+ 1) — s = a actually holds.

Representation of the Phrase Identifiersids, To store the phrase identifiers of the trie nodes, we define
alinked list L4, for block p, storing the identifiers in preorder. Given a new insertedienoin 7;,, we must
insert the corresponding phrase identifier at posifioeorder,(z) within L;q,,, SO we must support the
efficient search of this position. The linked-list functaity is easily achieved by simplifying, for example,
a dynamic partial sums data structure [46], so that only ssmeand insertions are permitted. For a list of
N elements, this data structure is a balanced tree storioglairarrays o (log N) list elements at the
leaves, and subtree sizes at internal nodes. It carrieslldheaoperations irO(log V) time and poses an
extra space overhead Of(V) bits.

We needN log v+ O(N) bits of space to maintain the identifiers, which adds up leg v + O(n) bits
overall. This isuH(T) + o(ulog o) bits of space according to Lemma 1. Recall that= O(Ny,) in our
case, and therefore the time to manipulate the li§t(log o + log log u) per operation.

Representation of the Inter-Block Pointers,ptr,, For the inter-block pointers, we use also a linked list
Lytr,, managed in a similar way as fdé,;,. Since blocks have at leat,, nodes, we have a pointer out of
(at least)d (log? u) nodes, which add®(n/logn) = o(u/ log u) bits overall.

Construction Process The construction oEZTrie proceeds as explained in Section 3.2, using the symbols
in the text to descend in the trie, until we cannot descendnang. This indicates that we have found the
longest prefix of the rest of the text that equals a phidsalready in the LZ78 dictionary. Thus, we form a
new phrase3; = By - ¢, wherec is the next symbol in the text, and then insert a new leaf esgéng this
phrase. However, this time the nodes are inserted in oualaigicalLZTrie, instead of a pointer-based trie.

The insertion of a new node for the LZ78 phraBgin the trie implies to update only the blogkin
which the insertion is carried out. Assume that the new leagtrbecome thg-th node (in preorder) within
the blockp, and that the new leaf is a new child of nad@é block p (i.e., noder represents phrade,). We
explain next how to carry out the insertion of the new leahwitheDFuDs of 7).

16

We must insert a new(* within the representation of (which simulates the increase of the degree of
nodex, because of the insertion of the new child), and insertiisg al new) ' to represent the new leaf
we are inserting. Assume that the new leaf will become thertwchild of nodez. Therefore the new(”
must be inserted to the right of the opening parenthesis@rat position’ = = + degree(x) — i (recall
from Section 2.5 how operatiothild(zx, i) uses the opening parentheses defining nottedescend to the
i-th child). Then, the new)” must be inserted at positioff = findclose(T),, + 1), shifting to the right
the last) ’ in the subtree of thé: — 1)-th child of z, which now becomes the new leaf. As a result, the
two inserted parentheses form a matching pair, which carabdléd in a straightforward way with the data
structure of [11]. See Fig. 4 for an illustration.

Then, we add a new fla@ at position; in F},. Also, c is inserted at the corresponding position within
letts,, andt is inserted at positiog within the identifiers of blocl (since these are stored in preorder). All
this takesO(log Njs) = O(log o + log log u) time.

(() 1st child) 2nd child) 3{,‘5@,) 4th child)
e —— R N
(a) A nodex of degree 4 and its corresponding subtree intheDbsrepresen-

tation of theLZTrie. Notice the relation among the four opening parentheses in
the definition ofr and the subtrees of the children of nade

(b) Insertion of a new child of node. The new leaf is inserted as the new fourth
child of z, and thus it is represented by the new bold pair of matchimgntheses.
Notice how the degree af is increased to 5 with the new opening parenthesis. The

last closing parenthesis in the subtree of the third child isfshifted to the right and
now represents the new inserted leaf.

Fig. 4. lllustration of the insertion of a new leaf node in theubs representation dfZTrie.

Managing Block Overflows A block overflowoccurs when, at construction time, the insertion of a new
node must be carried out within a bloglof N;; nodes. In such a case, we need to make roomfar the
new node by selecting a subset of nodes to be copied to a ndhvbdbick (of p) and then will be deleted
from p. We explain this procedure in detail.

First we select a nodein p whose local subtree (along withtself) will be copied to a new child block.
In this way we ensure that a node and its children (and thexefib sibling nodes) are always stored in the
same block (recall that a copy of as a leaf, will be kept ip).

Suppose that we have selected in this way the subtree gftih@ode (in preorder) in the block. Both
the selected nodeand its subtree are copied to a new blgtkvia insertions iril},. We must also copy to
p' the flagsF, [preordery(z) + 1..preorder,(z) + subtreesize,(z) — 1] (via insertions inF,) as well as
the corresponding inter-block pointers within the subtéthe selected node, which are stored in array
ptry, from positionrank; (F,, preorder,(z)) + 1 up torank; (Fy, preordery(z) + subtreesize,(z) — 1).

Next we add inp a pointer tgy’. The new pointer belongs tg the j-th opening parenthesis jn(because
we selected its subtree). We compute the position for thepummter as-ank; (F), j), adding the pointer at
this position inL,;,,, and then we set th the j-th flag in F},, updating accordingly theank /select data

17

structure forF;, (the portion copied td),, must be deleted fronk;). Finally, we delete irp the subtree of
(via deletions irl},), leavingz as a leaf inp.

Thus, the reinsertion process can be performed in time ptiopal to the size of the reinserted subtree
(timesO(log Nyy)), by using the insert and delete operations on the correspgrdynamic data structures
that conform a block. However, we must be careful with thea@n of nodez, which can be performed in
two different ways: upon a block overflow, we traverse blpdk select node, which takesD(N,,) time in
the worst case, or looking farin advance to overflows, as we perform the insertion of neveaddsing the
insertion path to look for possible candidates). We chobeddtter option, since in this way we can obtain
a good amortized cost for updates, as we will see later in alysis.

To quickly select node, we maintain in each blockacandidate listC), [3], storing the local preorders
of the nodes that can be copied to a new child blgakpon block overflow. Withselectnode we can obtain
the candidate node corresponding to such a preorder. Aesuirtust have size at least,, to be considered
a candidate. Thus, after a number of insertions we will fired ghnode (within the insertion path) becomes
a candidate. Let us think for a moment that we only maintaiaraliclate per block, and not a list of them.
It can be the case that a few children of the block root haveived (almost) all the insertions, so we have a
few large subtrees within the block. When blgeckverflows, we reinsert the only candidate to a new child
block, so we have no candidate anymore gokVe have to use the next insertions in order to find a new
one. However, it can be also the case that different childféhe root ofp receive the new insertions, and
hence blocky could overflow again within a few insertions, without findiaghew subtree large enough so
as to be considered a candidate (recall that we just use $ketion path to look for candidates). Thus, by
maintaining a list of candidates in each block, instead afigue candidate per block, we can keep track of
all the nodes irp whose subtree is large enough, avoiding this problem.

Since the preorder of a node within a blggkan change after the insertion of a new nodg,iwe must
updateC), in order to reflect these changes. In particular, we musttepitie preorders stored i, for
all candidate nodes whose preorder is greater than thateafew inserted node. To perform these updates
efficiently, we represent’, using a searchable partial sum data structure [46]. Thesotiginal preorder
Cy[i] is obtained by performingum(Cy,) in O(log N) time. Letz be the new inserted node. Then, with
j = Search(Cy, preordery(x)) we find the first candidate (in preorder) whose preorder mestdalated,
and we perform operatiobtipdate(Cp, 7, 1). In this way, we are increasing,[j] by 1, automatically updat-
ing all the preorders i@, that have changed after the insertionzofn O(log V) time overall.

If we keep track of every candidate of size at lest, then every time overflows there will be already
candidate blocks. The reason is, again, thgt > 1+ 0 V,,,, and thus that at least one of the children of the
root must have size at leadt,,. Since we use the descent process to look for candidatesjliad/them
as soon as their subtrees become large enough. In other,whedsubtree of a node becomes larger as we
descend through the node many times to insert new nodekevatitually finding a candidate.

We must also ensure that, requires little space (so we cannot have too many candjddtes size of
the local subtree (i.e., only considering the descendaesistored in block) of every candidate must be
at leastV,,,. Also, we enforce that no candidate node descends from emoémdidate, in order to bound
the number of candidates. To maintdi}), every time we descend in the trie to insert a new LZ78 phrase,
we maintain the last nodein the path such thatubtreesizey,(z) > N,,. When we find the insertion point
of the new noder, say at blockp, before adding to C), we first performp; = Search(C,, preordery(z)),
and thenpy = Search(C,, preordery,(z) + subtreesizey(z)). Then,z is added taC), whenever: (1) is
not the root of blocky, and (2) there is no other candidate in the subtree(tfiat is,p; = p2 holds).

If we find a candidate nod€ which is an ancestor of the prospective candidatihen after inserting
z to C}, we deletez’ from C,. Thus, we keep the lowest possible candidates, avoidirigthieasubtree of

18

a candidate becomes too large after inserting 'jin which would not guarantee a fair partition into two
blocks of size betweedV,,, and V,,. Because of Condition (2) above, there are one candidatefdat
least) V,, nodes; thus, the total space f0f is 1~ log Nas + O(n) bits, which iso(n/ log u).

The reinsertion cost is in this way proportional to the siizg’ gsince finding node now takegO (log Nj/)
time (because of the partial-sum data structure used teseptC),). Notice that the first time a node is
reinserted, the reinsertion cost amortizes with the cogtt@briginal insertion. Unfortunately, there are no
bounds on the number of reinsertions for a given node. Homvexee shall show that multiple reinsertions
of a node over time amortize with the insertion of other noilés use the followingaccounting argument
[14] to prove the amortized cost of insertions. Eet 2 be the amortized cost of normal insertions (without
overflows), being: = 1 the actual cost of an insertion Therefore, every insertjgends one unit for the
insertion itself, and reserves the remaining unit for fatimore costly) operations. Let us think that we have
separate reserves, one per block of the data structure. &llepstive that every time a block overflows, it
has enough reserves so as to pay for the costly operatiomegrégng a set of nodes.

In particular, every time a block overflows, its reserveMNig; — I, wherel was the initial number of
nodes for the blockl{ = 0 holdsonly for the root block). Letl’ be the number of nodes of the new block
p’. Then we must prove that,, — I > I’ always holds, that isy,; > I + I’. We need to prove:

Lemma 6. For every candidate nodein blockp, it holds thatsubtreesize,(x) < oNy,.

Proof. By maintaining the lowest possible candidates, we find thallest possible ones. If a node cannot
be chosen as a candidate, this means that its subtree sizalisrghanV,,, nodes (another possibility is that
there is another candidate within the subtree, yet this isaset interesting here). Therefore, the smallest
subtree that can be chosen as a candidate may have\4p to1 nodes in each children, and hence its total
sizeisat most + o(N,,, — 1) < o Np,. 0

Because of this, blocks are created with! < oNN,, nodes. As we have choseW,; > 20N,,, it
follows that Ny, > I + I'. This means that every reinsertion of a node has been alpaidyby some
node at insertion timé Thus, the insertion cost 3(log Njs) amortized. Aftem insertions, the overall cost
amortizes ta)(nlog Nys) = O(n(log o + loglog u)).

Once we solved the overflow, the insertion of the new noderisechout either inp’ or in p, depending
whether the insertion point lies within the moved subtreeair respectively. Notice that there is room for
the new node in either block.

Hierarchical LZTrie Construction Analysis As the trie has: nodes, we need(n) + (n + o(n)) +
(nlogo+0(n))+(nlogu+0O(n))+o(n/logn)+o(n/logn) bits of storage to represent the trie topology,
flags, symbols, identifiers, inter-block pointers, and adaug lists, respectively. Because of Lemma 1, the
space requirement isHy (T") + o(u log o) bits, for anyk = o(log,, u).

When constructind-ZTrie, the navigational costper symbol of the text i€)(log Nys) = O(logo +
log log u), for a total worst-case timé@(u(logo + loglogw)). On the other hand, the cost of rebuilding
blocks after an insertion i©(log Nj;) amortized, and therefore the total cost amortize®ta(log o +
loglogu)) = o(u(log o + loglog u)). Therefore, the total construction time@u(log o + loglog u)).

Representing the FinalLZTrie Once we construct the same hierarchical representatiohZdrie, we
delete the text since this is not anymore necessary, anduseithe hierarchicdlZTrie to build the final
version ofLZTriein O(n(log o + log log u)) time. We perform a preorder traversal on the hierarchies, tr

% More generally we could have sétyy > (1 + a)oN,, for any constantx > 0, and the analysis would have worked with
é=1+1/a.

19

transcribing the nodes to a linear representation. Everg tve copy a node, we check the corresponding
flag, and then decide whether to descend to the correspoanlilaigblock or not. We also allocatelog o =
o(ulog o) bits of space for the final arrdytts, andn log n bits for arrayids.

Thus, the maximum amount of space usegi#l;(7") + o(ulog o), since at some point we store both
the hierarchical and final versions bETrie. We then free the hierarchicalZTrie, thus we end up with a
representation requiringH(T') + o(ulog o) bits. Thus, we have proved:

Lemma 7. There exists an algorithm to construct the LZTrie for a fEjt..«) over an alphabet of sizeand
with k-th order empirical entropy;(T'), in O(u(log o 4+ loglog w)) time and usin@QuHj, (1) + o(ulog o)
bits of space, for an§ = o(log,, u).

4.2 Space-Efficient Construction ofRevT rie

For the space-efficient construction RevTrie we use the technique of Section 4.1, to represent not the
original reverse trie but itPatricia tree[50], which compressesmptyunary paths, yielding an important
saving of space. As we still maintain empty non-unary notfesnumber of nodes iRevTrieis n’ < 2n.

Throughout the construction process we store in the noddweakverse trie pointers taZTrie nodes,
instead of the corresponding block identifiefigls stored by the finaRevTrie Each pointer usekg 2n
bits, since thd_ZTrie parentheses representation Baspositions (either irBP or DFUDS representations,
recall thatLZTrie is already in final static form). We store these pointer&Zdrie in the same way as for
arrayids,, in Section 4.1, in preorder accordingRevTrieand spending)(1) extra bits per element for the
linked list functionality. The aim is to obtain the text oktlphrase represented byRavTrienode, since we
are compressing empty-unary paths and the string repessbgta node is not available otherwise (unlike
what happens with the traditional Patricia trees). Thisneation is given byNode in the final LZ-index.
However, at construction time we avoid accessivgle when building the reverse trie, so we can build
Node after both tries have been built, thus reducing the maximmdexing space.

Empty non-unary nodes are marked by storing in each hiagkit vectorB,, (represented in the same
way asFj,, with a data dynamic structure supportingnk andselect queries). We store pointers k& Trie
nodes only for non-emptiRevTrienodes, so we stone of them. This shall reduce the indexing space of the
preliminary definition of the algorithm [4], which shall beseful later when constructing reduced versions
of LZ-index, yet introducing some additional problems im cepresentation, as we shall see below.

As we compress empty-unary paths, the trie edges are labvéledtrings instead of single symbols. The
Patricia tree stores only the first symbol of the edge labsisg the same partial sum approach a$.ffrie.

We store the Patricia-tree skips of every trie node in a tinlkgt skips,, in preorder and using a linked list
as forids, in LZTrie, usinglog log v bits per node. To enforce this limit, we insernptyunary nodes when
the skip exceed®kg u. Hence, one out diog u empty unary nodes could be explicitly represented. In the
worst case there ax@(u) empty unary nodes, of whiaf? (=) can be explicitly represented. This means

lo;

O(+=%-(0(1) + loglog u + log o)) = o(ulog o) extra bits overall in the hierarchical representations(thi

logu

for the space of},, F,,, B,, skips,, andrletts,, plus their overheads). Since we use a linked listfops,,
it takesO(log N)s) time to find the skip corresponding to a given node.

Construction Process To construct the reverse trie we traverse the firélrie in depth-first order, gener-
ating each LZ78 phrasB; stored inLZTrie, and then inserting its reverde] into the reverse trie.

When searching for a given stringin RevTrie we descend in the trie checking only the first symbols
stored in the trie edges, using the skips to know which symbelto use at each node. When the longest
possible prefix of string is thus consumed, say upon arriving at ned®f RevTrie we must compare the

20

string represented by, againsts, in order to determine whether the prefix is actually pregeevTrie
or not. To compute the string corresponding to nogdeve use the connection with theZTrie: we follow
the pointer to the corresponding Trie node, and follow the upward path kZ Trie to extract the symbols.
However, we are storing some empty hodeRavTrie for which we do not store pointers kX Trie.

Assume that node, in block p is empty, and represents strinfy Since every descendant of has
s' as a suffix, if we map t&.ZTrie from any of these descendants we would find strihglso by reading
the upward path in.ZTrie (we know the length of the string we are looking for, so we knelen to stop
going up inLZTrie). Notice that there exists at least one non-empty descénfla v, sinceRevTrieleaves
cannot be empty (because they always correspond to an LA&8g)h So we can use th&Trie pointer of
vl to find s’. Since we only store pointers for non-empty nodes, the poioitv!. can be found at position
rank; (B, preordery(v,)) + 1 within the pointer array.

However, there exists an additional problem: the localregbdf nodev, can be exclusively formed by
empty nodes, in which case finding the non-empty ngdis not as straightforward as explained, sinte
is stored in a descendant block. This problem comes fromatietiiat, upon a block overflow in the past,
we might have chosen empty nodedescending fromy,., whose subtrees were reinserted into new blocks.

To solve this problem, we store in every blogka pointer toLZTrie, which is representative for the
nodes stored in the blogk If a block is created from a non-empty node, then we can st@reointer of
that node. In case of creating a new blgékrom an empty node, if the new blogK is going to be a leaf
in the tree of blocks, then it will contain at least a non-gmpbde. Thus, we associate withthe pointer
to LZTrie of this non-empty node. If, otherwisg), is created as an internal node in the tree of blocks, then
it can be the case that all of the nodeg’irare empty. In this case, we choose any of the descendantssbloc
of p’ and copy its pointer tp’. This pointer has been “inherited” (in one or several stéosh a leaf block,
thus this corresponds to a non-empgvTrienode. Thus, in case that the local subtree,ak formed only
by empty nodes, we take one of the blocks descending frofsay the first in preorder) and use thé&Trie
pointer associated to that block, in order to compute stsing

An important difference with theZTrie construction is that ilRevTriewe do not necessarily insert new
leaves: there are cases where we insert a new non-ampaty internal node (corresponding to the phrase
we are inserting irRevTrig. A unary node is represented &9 ‘ in DFUDS, which is a matching pair and
hence the insertion can be handled by the data structurelpflfAve insert the new node as the parent of
an existing node;, then the insertion point is just before the representaifonin the bDFUDS sequence.

Hierarchical RevTrie Construction Analysis The hierarchical representation of the reverse trie requir
o)+ (0’ +o(n)) + (n' +o(n)) + (nlog2n + O(n)) + (n'log o + O(n')) + (n’loglog u + O(n’)) +
o(n'/logn’) + o(n’/logn') bits of storage to represent the trie topology, flags, bitoreaf empty nodes,
pointers toLZTrie stored in the nodes, symbols, skips, pointers (both intarkband extraLZTrie pointers
associated to each block), and candidates, respectivelyvédcompress empty unary paths,< n’ <
2n holds, and thus, the space is upper boundea g n + o(ulog o), which according to Lemma 1 is
uH,(T) + o(ulog o) bits of space, for an¥ = o(log, u).

For each reverse phradg/ to be inserted in the reverse trie,< ¢ < n, the navigational cost is
O(|B!'|1log Njs) (this subsumes th&(|B]|) time needed to extract the string fronZTrie, in order to
do the final check in the Patricia tree). Sing&"_, |B!| = w, the total navigational cost to construct the
hierarchicalRevTrieis O(ulog Nys). Since the number of node insertionsnis= O(n), the total cost is
O(u(log o + loglog u)), just as forLZTrie.

Constructing the Final RevTrie After we construct the hierarchical reverse trie, we camcstRevTrie
directly from it in O(n’log Njs) = o(ulog o) time, replacing the pointers 1aZTrie by the corresponding

21

phrase identifiersr{ds). This raises the space 3aH(T) + o(ulog o) bits. We then free the hierarchical
trie, dropping the space @uHy(T') + o(ulog o) bits. Thus, we have proved:

Lemma 8. Given the LZTrie for a texi’[1..u] over an alphabet of size and with k-th order empirical
entropyHy(T'), there exists an algorithm to construct the correspondiegRie inO(u(log o + log log u))
worst-case time and using a total spaceofi (T + o(ulog o) bits of space on top of the space required
by the final LZTrie, for any: = o(log,,).

4.3 Space-Efficient Construction ofRange

To construct theRangedata structure, recall that for every LZ78 phrdseof 1" we must store the point
(preorder, (v,), preorder;,(v;,)), wherev, is theRevTrienode corresponding tB;, andv;, is theLZTrie
node corresponding to phragk, ;. We allocate memory space for a temporary aR&y[1..n] of nlogn
bits, storing the points to be representedRBnge Array R(Q is initially sorted by the first coordinates of
the points. Notice that since there is a point for every fimgirdinatel < ¢ < n, the first coordinate of
every point is represented simply by the index of arRy, thus saving space. In other word®Q)[i] = j
represents the poirtt, j). Notice also thaR(Q is a permutation of0, ..., n}.

To generate the points, we first notice that fdRevTriepreorderi = 0,...,n (corresponding only to
non-empty nodes) representing the reverse phigseve can obtain the corresponding phrase identifier
t = rids[i], and then with the inverse permutatiofs —![t + 1] we obtain the_ZTrie preorder for the node
corresponding to phras®;, ;. Thus, we defineRQ[i] = ids~'[rids[i] + 1].

Therefore, we start by computings—* on the same space éfs, using the algorithm of Lemma 2,
requiring O(n) time andn extra bits of space. Then, we allocatéog n bits for array R(), and traverse
RevTriein preorder. For every non-empty node with preordee setR(Q as defined above. The total space
is thus raised t8uH(T) + o(ulog o) bits. Next, we recoveids fromids~!, using again Lemma 2.

After building RQ, to constructRange we must sort the points iRQ by the second coordinate (recall
Section 3.2), which in our space-efficient representatidhepoints means using the second coordinates as
array indexes, and storing the first coordinates as arrays4l This means sorting the current values stored
in array RQ). However, since these values along with the corresponditay andexes represent points, after
sorting the points we must recall the original array indenefeery value, so as to store that value in the array.
This is straightforward if we store both coordinates of thents, requiring2n log n bits of space. However,
we are trying to reduce the indexing space, and thereforamséternative approach.

Notice that sinceRQ[i] = j represents the poirit, j), RQ~'[j] = i shall also represent the point
(i,7), yet the points in the inverse permutati®@f) ! are sorted by their second coordinate (i.e.Rif)~*
the second coordinates are used as array indexes). Thussembal algorithm of Lemma 2 to construct
RQ~! on top of the space foRQ, in O(n) time and requiring: extra bits of space. Now, we can finally
build Range from RQ~'. We allocate space faog n bit vectors ofn bits each, requiring log n extra bits,
thus raising the space usagettoH(7') + o(ulog o) bits. Then, we construdRange just as explained in
Section 3.2 and using the points representedyy . This takesO(n log n) time, which in the worst case
is O(19%1) — O(ulog o). We then freeRQ ™!, dropping the space tuH;(T) + o(ulog o) bits.

log,, u

Lemma 9. Given a textI'[1..u] over an alphabet of size and withk-th order empirical entropyi(T),
and given the correspondingZTrie and RevTrie data structures, there exists an algorithm to construct

4 We could choose to definQ in a different way, storing the first coordinate of the poiatal using the second coordinate as
array index. However, by using our approach we can constimiay R(Q) with a sequential scan over arrayigls and R itself.
The importance of this fact shall be made clear later in thitisn.

22

the Range data structure requiring a maximum total spaceafi,(T") + o(u log o) extra bits on top of the
space forL ZT'rie and RevT'rie, and takesD(u log o) time in the worst case.

4.4 Construction of the Node Mapping and Remaining Data Structures

After building RevTrie we proceed to construct théode mapping as follows: we traverdeZTrie in pre-
order, and for every node with LZ78 identifieri, we store inNodel[i] the node position within the corre-
sponding parentheses sequence. This increases the @atal gruirement tduH(T') + o(ulog o) bits,
which is the final space required by the LZ-index. The processbe carried out i®(n) time.

As we said in Section 3.2, in a practical implementation R@ngedata structure is replaced by the
RNode mapping [56]. This is built fronrids in the same way a®ode is built from ids. The process
explained in Section 4.3 is not carried out in such a case.

The original LZ-index is able to report the pattern occucemin the formaflt, offset], wheret is
the phrase number where the occurrence startspdfikt is the distance between the beginning of the
occurrence and the end of the phrase. To map these occisrietcéext positions, Arroyuelo et al. [6] add
a bit vectorTPos marking the phrase beginnings, which is then representdtdandata structure farank
and select and requiringo(u log o) bits of space [60], see [7] for details. A more practical aggh [5]
consists in sampling the starting positions of some phras®s then representing the starting position of
every other phrase as an offset from the previous sampleselithus saving space). With high probability,
the space requirement of this alternative approach is O(nloglogu) = o(ulogo) bits of space by
properly choosing the sample rates. See [5] for detailsh Blata structures can be constructed without
requiring any extra space, and thus to simplify we omit theitinis paper.

4.5 The Whole Compressed Indexing Process
The whole compressed construction of LZ-index is summdrizehe following steps:

We build the hierarchical ZTrie from the text. We can then erase the text.

We build L ZT'rie from its hierarchical representation. We then free theanaical L ZT'rie.
We build the hierarchical representation of the revaisdrom LZT'rie.

We build RevT'rie from its hierarchical representation, and then free theahihical RevTrie.
We build Range.

We build Node from ids.

2B A

In Table 2 we show the total space and time requeriment at&aph The meaning of the third column in
the table shall be made clear later in Section 4.7.

Table 2. Space and time requirements of each step in the whole cosgut@sdexing process. We assuine: o(log,, u), and that
the tree topology of blocks is represented wituDS.

Indexing step Maximum total space Maximum main-memory spac Indexing time

1 uHk(T) 4+ o(ulogo) uH(T) + o(ulogo) O(u(log o + loglog u))
2 2uHE(T) + o(ulogo) uHi(T) + o(ulogo) O(u(log o + log log u))
3 2uHE(T) + o(ulogo) uHk(T) + o(ulogo) O(u(log o + loglog u))
4 3uH(T) + o(ulogo) uHi(T) + o(ulogo) O(u(log o + loglog u))
5 duHE(T) + o(ulogo) uHi(T) + o(ulogo) O(ulog o)

6 duHE(T) + o(ulogo) uHy(T) + o(ulogo) O(u/log, u)

23

4.6 Managing Dynamic Memory

The model of memory allocation is a fundamental issue ofisatdynamic data structures, since we must
be able to manage the dynamic memory fast and without regumiuch extra memory space due to memory
fragmentation [61]. We assume a standard model where theomyeisregarded as an array, with words
numbered) up to2¥ — 1. The space usage of an algorithm at a given time is the highestory word
currently in use by the algorithm. This corresponds to theated Mz memory model [61], which is the
most restrictive one. Note = logn + o(log n), as we nee®(n log n) bits of space to build our indéx

We manage the memory of every trie block separately, eachdardiguous” memory space. However,
trie blocks are dynamic as we insert of new nodes, hence thmonyespace for trie blocks must grow
accordingly. If we use akxtendible Array(EA) [10] to manage the memory of a given block, we end up
with a collection of at mosD(n/N,,) = O(n/log? u) EAs, which must be maintained under the operations:
create, which creates a new empty EA in the collectidrstroy, which destroys an EA from the collection;
grow(A), which increases the size of arrayby one;shrink(A), which shrinks the size of array by one;
andaccess(A, i), which access théth item in arrayA.

Raman and Rao [61] show how operatiattess can be supported i®(1) worst-case timegreate,
grow andshrink in O(1) amortized time, andestroy in O(s’/w) time, wheres’ is the nominal size (in bits)
of array A to be destroyed. The whole space requirementisO(a*w + v/sa*w) bits, wherea* is the
maximum number of EAs that ever existed simultaneously,sasdhe nominal size of the collection.

To simplify the analysis we store every component of a blodflifferent EA collections (i.e., we have a
collection forT}s, a collection foietts,s, and so on). The memory ftts,, I, Cp, Ty, Ligs,, €tC. inside
the corresponding EAs is managed as in the original work [46]

Thus, we use operatiogrow on the corresponding EA every time we insert a node in the and
operationcreate to create a new block upon block overflows, botldifl) amortized time. Operaticshrink,
on the other hand, is used by our representation after weertithe subtree upon block overflow,i1)
amortized time. Finally, operatiotestroy over the blocks is used when destroying the whole hieraathic
trie. As the cost to build the trie i©(log Njs) per element inserted, which adéglog) bits to the data
structure, the cost per bit inserted§ 257 L8181) The cost fordestroy is justO(1/w) = O(;) per
bit, which is subsumed by the earlier construction cost.

Let us analyze the space overhead due to EAs for the cd$e $ince we only insert nodes into our tries,
we have that the maximum number of blocks that we ever hawé is O(n/N,,). As the nominal size of

the EA collection forT}, is O(n) bits, the EA require®)(n) + O({> +n, /) = O(n) bits of space [61].
A similar analysis can done for the collections supportifygandC;,. The nominal size of the collection for

lettsy isnloga + O(n), and thus we havelogo + O(n) + O(§~ +n %ﬁ”) = nlogo + O(n) bits

overall. For the collection supportirigs, we obtainn log u+0(n)+O(§ +n4/ %j“) =nlogn+0(n)
bits of space. In general, the whole space overhead due t@rgenanagement i®(n) bits.

To complete the definition of our memory allocation modeteinains to say that we can store the EAs
representing the block components within a unique EA. Ig thise, the number of EAs in the collection is
a* = O(1), since we have a constant number of block components. Theabsize of the whole collection
is s = nlogu + nlogo + O(n) bits (where the)(n) term includes the space for the collectionslpf F,,
etc., as well as the space overhead due to the EA memory nraeagef these collections). Hence, the total
space overhead @(w + v/wnlog u) bits, which isO(y/nlogu) = O(y/nlogn) = o(n) bits.

Now that we have defined our memory allocation model, we cagclade:

® Note this is consistent with our earlier = ©(log ©) assumption for the RAM model, dsg v = O(logn).

24

Theorem 1. There exists an algorithm to construct the LZ-index for & Te..u] over an alphabet of size

o and withk-th order empirical entropy(T"), using4uHy (T') + o(u log o) bits of space an@ (u(log o +

log logw)) time. This holds for any = o(log, u). The space and time bounds are valid in the standard
modelM g of memory allocation.

4.7 Constructing the LZ-index in Reduced-Memory Scenarios

We assume next a model where we have restrictions in the anobumain memory available, such that
we cannot maintain the whole index in main memory. So, we dime@ucing as much as possible the
main memory usage of our algorithms. We shall prove that théndex can be constructed as long as the
available memory is.H(T') + o(ulog o) bits (i.e., the compressed text can be stored in main memory)
This has applications, for instance, in text search engiwvbgre we can use a less powerful computer to
carry out the indexing process, devoting a more powerfultoraswer user queries.

Since we have assumed that we have enough secondary stpeagess as to store the final index (see
Section 2.1), we will use that space to temporarily store ish dertain LZ-index components which will
not be needed in the next indexing step, and then possildyngahem back to main memory when needed.
This does not mean that the index is built on secondary stokad that in certain cases we use the available
secondary memory to store an index component which is noémwily needed, thus reducing the peak of
main memory usage. However, and as we have seen before tiogugection 4, our indexing algorithm is
independent of this fact, and we can choose not to use thetikwvhen enough main memory is available.

In the following, we show how to adapt our original algorittimthis scenario. At every step we will
show the space requirement in two ways:eximum amount of main memarsed at that step and ttatal
amount of memorysed at that step (main-memory plus secondary-memory spdue latter corresponds
to the amount of main memory used at every step if we do nothesdisk along the construction process.

Step (1) We build the hierarchical.ZTrie from the text. We can then erase the text. The total and main-
memory space i8 H;(T') + o(ulog o) bits.

Step (2) We build LZT'rie from its hierarchical representation. To construct thel fidaarray while trying
to reduce the maximum main-memory space, we do not allogeeesfor it at once. Since this array is
indexed by preorder, and since we perform a preorder tralvers the trie, the values in arrayls are
produced by a linear scan. Thus, we only allocate main-mgsqace for a constant number of components
of the array (e.g., a constant number of disk pages), whiektared on disk upon filling them. This process
performs(n log n)/B (sequential) disk accesses. The symbbist§) and the trie topology are maintained
in main memory for the next step, requirig + nlog o + o(nlog o) = o(ulog o) bits of space.

Thus, the maximum main-memory space s (1") + o(u log o) bits, while the maximum total amount
of space iQuH(T') + o(ulog o) bits, since we store the hierarchi¢d Triein main memory and arrayls
on disk. We then free the hierarchidall/ T'rie, ending up with a representation requirin@: log o) bits of
main-memory space, and a totalfl (T") + o(u log o) bits.

Step (3) We build the hierarchical representation of the revergeftdm LZTrie. Recall that every non-
emptyRevTrienode stores a pointer to the correspondizrie node. This raises the total space require-
ment to2uHy(T') + o(ulog o) bits of space. The maximum main-memory usagef&, (1) + o(ulog o)
bits of space (recall that arrays is on disk).

Step (4) We build RevT'rie from its hierarchical representation as follows. We stheegointers td.ZTrie
associated witfRevTrienodes in a linear array, in the same way as done in Step (2)rimy @ls in LZTrie.
In this way we do not need extra main-memory space on top ohidrrchicalRevTrie After storing

25

the pointers on disk and representing the remaining commpere RevTrie the total space is raised to
3uH(T) + o(ulog o) bits, since we have at the same time the finATrie (arrayids is on disk), the
hierarchicalRevTrie(in main memory), and the fin&evTrie(pointers ta_ZTrie are on disk). Then, we free
the hierarchicaRevTrie thus reducing the total and main-memory space.

Then, we proceed to replace the pointers by the corresppmtirase identifiers. We first load array
ids to main memory (leaving a copy of it on disk, for further uselen, we perform a sequential scan on
the array of pointers, bringing to main memory just a cortstaimber of disk pages, then following these
pointers toLZTrie to get the phrase identifier storediis (note this means that the accessesdtoare at
random, hence we neéds in main memory) and storing these identifiers in the sameesphihe pointers,
writing them to disk and loading the next portion of the pemarray. Finally, we leave a copy of arrajs
in main memory (this shall be useful for the next step).

The maximum main-memory space needed along this stef/ig7") + o(ulog o) bits, which corre-
sponds to the space of the hierarchiBavTrie and we end up with a representation requiriridy (7") +
o(ulog o) bits of main memory, an@uH;(T") + o(ulog o) bits overall. The number of disk accesses per-
formed is(4nlogn)/B.

Step (5) We build Range, basically using the procedure of Section 4.3, yet with saim&nges in the
memory management in order to reduce the peak of memory uShgesfore, we computgls—! on the
same space required bys, using the algorithm of Lemma 2, requirin@(n) time andn extra bits of
space. Then, we traversigs in preorder and for every non-empty node with preordere setRQ[i] «—
ids~'[rids[i] + 1]. Notice that both arraysids and RQ) are accessed sequentially, which means that we can
maintain just a constant number of components of thesesaimayain memory. Arrayds—", on the other
hand, is accessed randomly, so we maintain it in main menhomis way, the maximum main-memory
space needed along this process i, (') + o(ulog o) bits.

When this process finishes, the total space is raiséd i), (T") + o(u log o) bits, and then we free array
ids~! (recall that we have a copy of the original arrals still on disk), dropping the space 8a.H},(T') +
o(ulog o) bits of space, and the main-memory space(olog o) bits, since we maintain just the trie
topology and symbols of bothZTrie andRevTrie This process taked(n) time overall.

After building RQ), to constructRange we must sort the points iR by the second coordinate, by
means of constructinggQ . Thus, we bringR@ to main memory (and delete it on disk), and use the
algorithm of Lemma 2 to construétQ —! on top of the space faR(Q, in O(n) time and requiring: extra bits
of space on top aRQ . To build Range from RQ~!, instead of allocating memory for theg » bit vectors
of n bits each, which would requirelog n extra bits of space on top @tQ !, we just allocate memory
level per level (i.e., we allocate justbits per level), construct that level froRQ !, just as explained in
Section 3.2, and then we save that level to disk. Thus, thamemw main-memory space requirement to
constructRange is nlogn + o(ulog o) = uHy(T') + o(ulog o) bits of space. The maximum total space
is 2nlogn + o(ulog o) = 2uH(T) + o(ulog o) extra bits on top of the space f&ZTrie andRevTrie
which means a total space ©f.H(T) + o(ulog o) bits. The construction process tak@én log n) time,
which in the worst case i@(?olg"gg) = O(ulog o). After getting Range, we free arrayRQ~' and we are
done in this step with a partial Fepresentation of LZ-indeqquiring3uH (T') + o(u log o) bits. The number
of disk accesses iglnlogn)/B.

Step (6) We build Node from ids, by traversingLZTrie in preorder. In this way, arrayis is sequentially
traversed, whiléVode is randomly accessed. Thus, we allocateg 2n bits of space folNode, and maintain
it in main memory. Arrayids, on the other hand, is brought by parts to main memory, atwproh a
sequential scan. Finally, we safde to disk. The number of disk accesses$ls logn)/B.

26

Thus, we need onlyHy(T') + o(ulog o) bits of main-memory space to constru€bde, and this in-
creases the total space requirementdd; (7') + o(ulog o) bits, which is the final space required by the
LZ-index. The process can be carried out(hin) time. We use the same procedure in case of using the
RNodedata structure instead éfange.

In the third column of Table 2 we show the maximum main-menspgce requirement at each step. The
overall number of disk accesseqidnlogn)/B = (11uH(T) 4+ o(ulog o))/B. Thus, we have proved:

Theorem 2. There exists an algorithm to construct the LZ-index for & ¥&X..u] over an alphabet of size

o, using a maximum main-memory spacei@f{1’) + o(u log o) bits andO(u(log o + log log u)) time. The
algorithm performg7uH(T') + o(ulog o))/ B disk accesses, plus those to write the final index. This holds
for any k = o(log, u). The total space used by the algorithmtisH. (T') + o(ulog o) bits. The space and
time bounds are valid in the standard mo@él of memory allocation.

5 Space-Efficient Construction of Reduced LZ-indexes

There exist new reduced versions of LZ-index, some of whighadble to replace the original LZ-index
in many practical scenarios [6, 5]. Henceforth, in this isectve show how to adapt our space-efficient
algorithm to build these new indexes.

Throughout this section we assume that the final tries anesepted wittbFuUDS, just as in [6, 7].
We also assume the reduced-memory scenario as in SectioRekdll that we present the space usage of
our algorithms in two ways: the total maximum main-memorgicgand the maximum total space (main-
memory plus secondary-memory space) at every step.

5.1 Space-Efficient Construction of Scheme 2

We perform the following steps to build Scheme 2 of LZ-indeecéll its definition in Section 3.4).

1. We build the hierarchicdlZTrie from the text. This take®(u(log o + loglogu)) time, and the maxi-
mum space requirementddi(1") + o(ulog o) bits.

2. We derive the finalLZTrie from the hierarchical one, which is then freed. T&Trie stores the trie
topology par, the symboldetts, and the phrase identifieigs, requiringuH(T') + o(ulog o) extra
bits. This take®) (u(log o +log log u)) time because of the traversals on the hierarchizdlrie. We use
the approach of Section 4.7 to construct, without requiring extra asymptotic space. The total space
usage iQuH(T) + o(ulog o) bits, while the maximum main-memory usage:(T") + o(ulog o)
bits. The main-memory space after freeing the hierarchi@ls o(u log o) bits. The resulting number
of I/0s is(uH(T) + o(ulog o))/ B, because of the construction of arriaj.

3. We build the hierarchicdRevTriefrom theLZTrie, as in Section 4.2. This také¥u(log o + log log u))
time. The total space usage is raise@4d{;(7") + o(ulog o) bits. The maximum main-memory space
isuHy(T) + o(ulog o) bits.

4. We build the finalRevTriefrom the hierarchical one, storing the trie topologyar, the Patricia-tree
skips, the symbolsrietts, and bit vectorB marking the empty nodes, requiring’ + ﬁ)(i& +
loglog u+log o) = o(ulog o) extra bits of space. In order to reduce the indexing spacay aids ! is
built later. ArrayR is built from the pointers th.ZTrie, replacing them by the correspondibgTrie pre-
order (recall that we applyank onpar to get theLZTrie preorder of a node). We construgtby using
the same approach as for artdy in Step (2), performinduHy (T')+o(ulog o)) /B extra l/Os. The total
time isO(u(log o + log log u)). We then free the space of the hierarchiahTrie The maximum total

27

space iSuH(T) + o(ulog o) bits, while the maximum main-memory space.fy,(T) + o(ulog o)
bits. We end up using(u log o) bits of main-memory space.

5. To space-efficiently construct arrayds—!, we first construct-ids in the following way: we start by
loading arrayids to main memory and erasing it from disk. Then, for every nowpy RevTrienode
with preorder; we storerids[j] < ids|[R[j]]. In this way, arrays-ids and R are traversed sequentially,
for increasing values of. Then, we can store/load them to/from disk by parts (resgg}, without
requiring extra main-memory space. After we buitdls, the total space has raised 3o Hy(T') +
o(ulog o) bits. We then store arrayls to disk, and free its main-memory space (hence dropping the
total space). Finally, we loagids to main memory, and use the procedure of Lemma 2 to construct
rids~1 on top ofrids, to finally storerids—' on disk. The overall time i©)(n). The maximum total
space iSuH(T) + o(ulog o) bits, while the maximum main-memory space.l;,(T) + o(ulog o)
bits. The total number of disk accesses performed by thisge®ig6uH(T) + o(ulogo))/B.

This is a practical version of the LZ-index, and thus we dogtote Range. Thus, we conclude:

Theorem 3. There exists an algorithm to construct the Scheme 2 of thmdl& for a textl'[1..u] over
an alphabet of size, and withk-th order empirical entropyH.(7'), using a total space dSuH(T) +
o(ulog o) bits andO(u(log o + loglog u)) time, for anyk = o(log,, u). The maximum main-memory space
used at any time to construct Scheme 2 can be reduceH 161")+o(u log o) bits, in such a case performing
(buHy(T') 4+ o(ulog o))/ B disk accesses, plus those to write the final index. The spatéime bounds
are valid in the standard modélz of memory allocation.

5.2 Space-Efficient Construction of Scheme 3

To build Scheme 3 of LZ-index, we first build th& Triein O (u(log o + log log w)) time, storingpar, letts,
andids. This requires a maximum @fuH(T') + o(ulog o) bits of space, and ends up with a representation
requiringuHy(T) + o(ulog o) bits. The maximum main-memory space:if(7T") + o(ulog o) bits, using
the same procedure as in Section 4.7, Step (2). This requifés(7") + o(ulog o))/ B disk accesses.

We then construct the hierarchicBevTrie storing pointers td_ZTrie nodes for connectivity among
tries. Thus, the space requirement raise8uél;, (1) + o(ulog o) bits. We build the finaRevTriestoring
justrpar, skips, andrletts, and discard the pointers k& Trie, temporarily losing the connectivity between
tries. We then free the hierarchiddevTrie which drops the space usedudl(T") + o(ulog o) bits.

Next we allocate memory space for arrayls[1..n], requiringn log n extra bits. We traverse theZ Trie
in preorder, and generate every phrésestored in it (assuming thatis the preorder of the corresponding
LZTrie node). We then look foB; in the RevTrie Recall that at this point we do not have the connectivity
between tries, which is generally used to search inRbeTrie However, since this string exists for sure
in RevTrie(because it exists as an LZ78 phrasd_&ilrie), we only need to descend in tiRevTrieusing
the skips, up to consuming; . At this point we have arrived at the node fBf, which has preordey in
RevTrie without the need of accessing th&Trie to extract the string. Then we setis[j] < ids[i] (notice
the sequential scan ads, which is brought to main memory by parts). Then, we storayarids on disk,
and free its main memory space. This requit@sH(T') + o(ulog o))/ B extra disk accesses.

Now, we go on to compute the inverse permutationsderandrids arrays. We first loadds from disk,
performing(uHy(T') + o(ulog o))/ B extra disk acceses, and construct on it the data structy&2hfin
order to support the computation @afs—'. This requiresn log n + O(n) extra space, fob < ¢ < 1, and
takesO(n) time if we use the following procedure.

Let A,45[1..n] be an auxiliary bit vector, and Id8;,5[1..n] be a bit vector marking which elements of
ids have an associated backward pointer. Both bit vectors diaiezed to all zeros.

28

We start from the first position afis, and follow the cycles of the permutation. We mark everytedi
position: of the permutation asl;s[i] < 1. We also mark one out df/e elements when following the
cycles, by setting td the appropriate position iB;,5. We stop following the current cycle upon arriving to
a position;j such that4,;;[j] = 1; then, we move sequentially from positigrto the next positiorj’ such
that A;45[j'] = 0, and repeat the previous process.

Each element irids is visited twice in this process (this is similar to the prexzeone in the proof of
Lemma 2), thus this first scan takegn) time.

Then, we go on a second scan on the cycleglef We setA; 4, to all zeros again, and allocate array
Bwd of enlog n bits of space, which shall store the backward pointers optrenutation. We preprocess
array B, 4, With data structures to support operatiaink [51]. We start from the first element and follow
the cycles once again. Visited elements are marked jp, as before. Every time we reach a positioin
the permutation such tha;,;[:] = 1, we store a backward pointer to the previously visited pwsij in
the cycle, such thaB;;,[j] = 1 (this means that there at¢e elements between these two positions within
the cycle). In other words, we sBwd|rank; (B;is,)] < j.

This second scan takes aléqn) time, thus the overall process tak@$n) time. We finally free the
space of4,4, and maintain bit vectoB; ;s as a marker of the positions storing the backward pointers.

Then, we storéds and the data structure fads—' on disk, and free its main-memory space. This yields
(1 + e)uH(T) + o(ulog o))/ B disk accesses. Finally, we build ofids the data structure of [52], to
support the efficient computation ofds~!, with ((2 + €)uHy(T) + o(ulogc))/B extra disk accesses.
Thus, we conclude:

Theorem 4. There exists an algorithm to construct the Scheme 3 of thimdl&x for a textl’[1..u| over an
alphabet of size, andk-th order empirical entropyHy.(7T'), using(2 + €)uH(T') + o(u log o) bits of space
andO(u(log o + loglog u)) time. This holds for ang < ¢ < 1 and anyk = o(log,, u). The main-memory
space used at any time to construct Scheme 3 can be redu¢éd-te)uHy(T') + o(ulog o) bits, in such

a case performing5uHy(T') + o(ulog o))/ B disk accesses, plus those to write the final index. The space
and time bounds are valid in the standard mod&t of memory allocation.

5.3 Space-Efficient Construction of Index of Lemma 3 and Relaves

To construct the LZ-index of Lemma 3 without (asymptotigallequiring extra space, we will need two
passes over the text, and several traversals overZfieie and RevTrie(yet the number of traversals is a
constant). This is because we must be careful not to surhaseduced space requirement of this index,
(14 €)uHE(T) + o(ulog o) bits. We carry out the following steps in order:

1. We build the hierarchicalZTrie, just storing the trie topolog¥,, and the symbolgtts,,, without storing
the phrase identifierals,, in each trie blocky. This requiresO(n log o) = o(ulog o) bits of space, and
takesO(u(log o + loglog u)) time. We cannot yet erase the text, as we need it at a later step

2. We build the finaLZTrie from its hierarchical representation, @ u(log o + loglogw)) time and re-
quiring extraO(n log o) bits of space. Recall that we do not store the phrase idestifis. We then
free the hierarchicdlZTrie.

3. We traverseé_ZTrie in preorder, generating each LZ78 phrdsein constant time per string, and insert
B! into a hierarchicaRevTrie We store pointers thZTrie nodes in thdRevTrienodes, just as in Section
4. This requires a maximum affH(T") + o(u log o) bits of space after the hierarchidaévTrieis built,
and take)(u(log o + loglog u)) time.

4. We build the finaRevTriefrom its hierarchical representation, storing just the ti@ologyrpar, the
Patricia-tree skips, and the symbolk:tts, requiring o(ulog o) extra bits of space. The pointers to

29

10.

LZTrie nodes are not stored, but these were used just to provideotirectivity between tries while
constructingRevTrie We then free the hierarchicB®evTrie This takesO(u(log o + loglogu)) time.
The maximum space requirementif (1) + o(ulog o) bits (before freeing the hierarchicBevTrig,
and we end up with a representation using jfstlog o) bits.

. We allocate memory for arrag[1..n], of nlogn bits of space, which is constructed as follows. We

traverse th& ZTriein preorder, and for every phragg, we look for B in RevTrig which exists for sure
and therefore we do not need the connection between trieslér to search. This take3(| B} |log o)
time. Letuv;, be theLZTrienode corresponding t8;. Then we store?[preorder(v,)] < preorder(uv,).
The overall work oL ZTrieis O(n log o), since each string is generatedlog o) time (because of the
data structure used to represéits). For theRevTrig on the other hand, we have tha}’ , | B/ | = u,
and thus the overall time 9 (u log o). We then samplen values ofR, as explained in [7].

. We allocate space for array%, and .Sy [7], which are used to compute functigrt in RevTrie This

addsO(nlog o) = o(ulog o) extra bits. We traverse thHeevTriein preorder, and for every non-empty
node with preordei we map toLZTrie using R[i], and then write sequentially the degreeRJf] in
unary inVyy, and the symbols labeling the children Bfi] in Sy . This takesO(n) time overall. Then
we preproces¥y andSy with data structures to suppotink andselect on them.

. We build onR the data structure for inverse permutations of [52], udiregsame procedure as in Section

5.2, raising the overall space requirementlte- €)uHy (1) + o(u log o) bits. This takes)(n) time. We
then samplen values ofR~!, as explained in [7].

. We reuse the space allocated for arfayo build the uncompressed representation of functiodust

as in Step (5), we do not need the connection between triaslér to navigate th®evTrie and hence
we do not need the information of arrdy. Recall from [6] thaty acts as a suffix link irRevTrie
and we only store suffix links for the non-empty nodes. Henceforth, we traverse againLthigrie
in preorder, and generate each phrase= xa in O(log o) time, forz € ¥*, anda € X. Then we
search foraz” and z" in RevTrie obtaining non-empty nodes. and /. respectively. Thus, we store
p[preorder(v,)] < preorder(v.), and go on with the next phraseliZ Trie.

Thus, the work for phras®; = za takesO((Jaz"| + |2"|)log o) = O(|B]|log o) time, and thus the
overall time isO(>_" , |B!'|logo) = O(ulog o).

. We build the compressed versionfrequiring only extraO(n log o) = o(ulog o) bits for the final

compressed representation @f The representation af is as follows, profiting from the fact thas
can be divided into (up toy strictly increasing subsequences. Rather than stasilg we store the
0-code [16] of the differenceg[i] — ¢[i — 1] whenever the-th string of RevTrie(in preorder, i.e., in
lexicographic order) starts with the same symbol as thdtefit— 1)-th string. Otherwise, we store the
0-code ofy[i]. In order to accesg|i] in constant time, absolute valuesofire inserted everg (logn)
bits, which add€)(n) extra bits. See [6, 7] for more details. We then free the upressedy.

We could alternatively use the approach of [11] to constgyawhich is originally defined to construct
function¥ of Compressed Suffix Arrays [29, 63] @ (u log u) time and requiring only) (u log o) bits
of space. In the case of constructing= R~ (parent,.(R][i])), for everyRevTriepreorderi = 1,. .., n,
with this alternative approach this would takinlogn + %) = O(ulogo + le(‘jg;’) time, for any

0 < e < 1, requiring no asymptotic extra space (just tlie log o) bits for ¢). In our case, however, we
have previously allocated space for arfaywhich we use to construgt much faster. At the end of this
step we drop the space requirementdd?;. (1) + o(ulog o) bits.

We finally allocate memory for arrays|1..n]|, and set it with all zeros. We also set- 1. We perform

a second pass dh to enumerate the LZ78 phrases (this yielddog o)/ B extra disk accesses in case
the text is stored on disk), descending in t&lrie with the symbols off". Every time we reach a node
vy, In LZTrie, we check whetheids[preorder(v;,)] is O or not. In the affirmative case, this means that

30

the corresponding phrase has not yet been enumerated, endi¢hstoreds|preorder(v;,)] < i and
seti < i+ 1. We go back to th&ZTrieroot and go on with the next symbol @f. In case we arrive at a
nodew;, with ids[preorder(v;,)] # 0, then we continue the descent from this node, since its pliras
been already enumerated. This tak&3: log o) time provided the.ZTrie is represented witbFuDS.
Finally, we can erase the text.

Theorem 5. There exists an algorithm to construct the LZ-index of Ler3nfar a text7[1..u] over an
alphabet of sizer, and withk-th order empirical entropyH(T"), using(1 + €)uHy(T) + o(ulog o) bits of
space and)(u(log o +loglog u)) time. This holds for ang < e < 1 and anyk = o(log,, u). The algorithm
performs two passes over tékt thus requiring(u log o)/ B disk accesses in addition to those for writing
the final index. The space and time bounds are valid in thedstahmodelM g of memory allocation.

We can use this algorithm to construct the LZ-index of LemmavHich only adds théRangedata
structure, which in turn can be constructed with the samegahore used in Section 4.7, Step (5). Since
this requireRuHy (T) + o(ulog o) bits of space to be constructed, we buRdngebefore Step (5) of the
previous algorithm. Thus we conclude:

Corollary 1. There exists an algorithm to construct the LZ-index of Lerdnfiar a text7'[1..u] over an
alphabet of sizer, and withk-th order empirical entropyH(T"), using(2 + €)uHy(T) + o(ulog o) bits of
space and)(u(log o +loglog u)) time. This holds for ang < e < 1 and anyk = o(log,, u). The algorithm
requires(ulog o + 2uHy(T) + o(ulog o))/ B disk accesses in addition to those to write the final index to
disk. The space and time bounds are valid in the standard hidgeof memory allocation.

Finally, the LZ-index of Lemma 5 adds tidphabet-Friendly FM-index18], which according to [25]

can be constructed withH(T") + o(u log o) bits of space irO(ulog u(1 + log’ﬁ)‘gu)) time. Then, we have:

Corollary 2. There exists an algorithm to construct the LZ-index of Lerdnfiar a text7'[1..u] over an
alphabet of sizer, and withk-th order empirical entropyH (T"), using(3 + €)uHy(T) + o(ulog o) bits of
space and(ulog u(1+ blolgo‘g’u)) time. This holds for ang < e < 1 and anyk = o(log,, u). The algorithm

requires(ulog o + qu(Tﬁ +o(ulog o))/ B disk accesses, in addition to those to write the final indee. T
space and time bounds are valid in the standard madglof memory allocation.

6 Experimental Results

We implemented a simplification of the algorithm presentedection 4, which shall be tested in this
section. We run our experiments on an Intel(R) Pentium(RJpégssor at 3 GHz, 4 GB of RAM and 1MB
of L2 cache, running version 2.6.13-gentoo of Linux kerkiét. compiled the code withcc 3. 3. 6 using
full optimization. Times were obtained using 10 repetition

6.1 A Practical Implementation of Hierarchical Tries

We implement our construction algorithms for Scheme 2 arfe®e 3, and use a simpler representation
for the hierarchical trie, just as defined in our original twft]. In this simpler representation, every block
in the tree uses contiguous memory space, which storesedidick components. We define different block
capacitiesV,, < Ns... < Ny, and say that a block of siz¥; is able to store up t&V; nodes. When we
want to insert a node in a blogkof size N; < Nj; which is already full, we first create a new block of size
N;.1, copy the content op to the new one, and then insert the new node within this blbis is called

a grow operation. If the full blockp is of size N, we say thap overflows. In such a case we proceed as

31

explained in Section 4.1, with the only difference that thbteee to be reinserted is searched by traversing
the whole block (we choose the subtree of maximum size na&eshingN,, /2 nodes, just as in [4]).

To ensure a minimum fill rati@ < « < 1 in the trie blocks, thus controlling the wasted space, wendefi
N; = Ni—1/a, fori =2,..., M, and1 < N,, < 1/a. Notice that parameter allows us for time/space
trade-offs: smaller values af yield a poor utilization of blocks, yet they trigger a smalteimber ofgrow
operations (which are expensive) as we insert new nodesofjpasite occurs for large values @f

The block representation is completely static: the whabelbis rebuilt from scratch upon insertions, or
upon block overflows. We do not store information to quickivigate the parentheses within each block.
So, we navigate them by brute force (using precomputeddablavoid a bit-per-bit scan, just as for the
balanced parentheses data structure by Navarro [56])idmidy, navigations can be a little bit slower, yet
we save space and time reconstructing these data struetitee®very insertion. We will show, however,
that this is a very efficient representation for our interratdtries, achieving competitive results in practice.

We use the following parameters throughout our experime¥its = 2, Ny; = 1024, anda = 0.95,
according to the preliminary results obtained in [4]. Weuass the reduced-memory model presented in
Section 4.7. We also show the results for the model in whidh m@in memory is used, where in most cases
the maximum total space coincides with the size of the finaindex. We use theenusage application
by Ulrich Dreppef to measure the peaks of main memory usage. Since our algsriteed to use the disk
to store intermediate partial results, we measure the imserplus the system time of our algorithms.

We show the results only for Scheme 2 and Scheme 3, sincedheslee most competitive in practice
[5], and also because the most critical points along thexindealgorithm (i.e., the construction of the
hierarchical tries) is the same for all schemes (includheydriginal LZ-index). For Scheme 3, we choose
parameterd /e = 1 and1/e = 15 for the inverse-permutation data structures. These reptée extreme
cases (both for time and space requirements) tested innigfmediate values offer interesting results as
well. Note that wheri /e = 1 the space requirement of Scheme 3 is the same as that of direabtiZ-index.

6.2 Indexing English Texts

For the experiments with English texts we use the 1-GB fileidex in thePizza&Chili Corpug19], down-
loadable fromht t p: // pi zzachi li.dcc. uchile.cl/texts/nlang/english.1024MB. gz.

In Table 3(a) we show the results for English text. As it carsben, the most time-consuming tasks
along the construction process are that of building theahohical representations of the tries. E&Trie,
the construction rate is about 1.01 MB/sec, whileRavTriethe result is about 0.39 MB/sec. ThiggvTrie
is much slower thahZTrie to be built. The overall average indexing rate is 0.29 MBfse&cheme 2, 0.29
MB/sec for Scheme 31(e = 1), and 0.28 MB/sec for Scheme B/g¢ = 15). As it can be seen, the sample
rate of the inverse permutations in Scheme 3 does not affechitine indexing speed.

For Scheme 2, the maximum main-memory peak is reached aBSteql it is of about 548 MB. This
means about 0.54 times the size of the original text neededrtstruct the Scheme 2 for the English text.
This is 0.59 times the space of the final Scheme 2. When congptre space required by the hierarchical
trie representations with that required by the final trierespntations, we have 411,928,076 bytes for the
hierarchicalLZTrieand 408,876,348 bytes for the hierarchiRalvTrie versus 410,873,083 bytes foZ Trie
and 309,412,004 bytes fétevTrie This means that the hierarchidaZ Trie requires about 1.01 times the
size of the finaLZTrie, while the hierarchicaRevTrierequires about 1.32 times the size of the fiRal/ Trie
The bigger difference betwedRevTrierepresentations comes from the fact that the hierarcitealTrie
stores the symbols labeling the arcs, while in practice tied RevTriedoes not. Table 4(a) summarizes.

Shttp://pizzachili.dcc.uchile.cl/utils/nenusage/ menusage-2.2.2.tar. gz

32

Table 3. Experimental results for English text and Human Genome. bamnin boldface indicate the final index size in every case.

(a) English Text.

(b) Human Genome.

Index Indexing Main-memory Total space Time Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs step space (bytes) (bytes) secs
Scheme 2 1 411,928,076 411,928,076 909.3Bcheme?2 1 1,233,336,206 1,233,336,206 2,440.33
2 505,729,592 822,801,159 17.55 2 1,428,595,278 2,442,409,424 51.73
3 574,548,639 819,749,431 2,554.07 3 1,677,938,853 2,467,406,392 13,966.22
4 454,026,216 883,576,755 15.01 4 1,405,350,330 2,665,257,752 45.00
5&6 491,169,360 965,869,767 52.19 5&6 1,579,033,69€,985,958,274 181.96
Total 574,548,639 965,869,767 3,549.20 Total 1,677,938,853 2,985,958,274 16,685.28
Scheme 3 1 411,928,076 411,928,076 898.4(6Bcheme 3 1 1,233,336,206 1,233,336,206 2,443.83
1l/e=1 2 505,729,592 822,801,159 17511/e=1 2 1,428,595,278 2,442,409,424 51.98
3 574,548,639 819,749,431 2,590.78 3 1,677,938,853 2,467,406,392 13,791.08
4 454,026,216 883,576,755 14.86 4 1,405,350,330 2,665,257,752 44.93
5&6 491,169,3601,204,608,375 62.00 5&6 1,579,033,698,775,475,122 211.81
Total 574,548,639 1,204,608,375 3,583.56 Total 1,677,938,853 3,775,475,122 16,543.63
Scheme 3 1 411,928,076 411,928,076 896.8&cheme 3 1 1,233,336,206 1,233,336,206 2,445.02
1/e=15 2 505,729,592 822,801,159 17.461/c =15 2 1,428,595,278 2,442,409,424 51.61
3 574,548,639 819,749,431 2,588.83 3 1,677,938,853 2,467,406,392 13,812.29
4 454,026,216 883,576,755 14.81 4 1,405,350,330 2,665,257,752 44.92
5&6 274,463,684 771,197,007 102.80 5&6 841,516,932,300,440,426 365.18
Total 574,548,639 883,576,755 3,620.87 Total 1,677,938,853 2,665,257,752 16,719.02

The results are very similar for Scheme 3 dnd = 1. For1/e = 15, however, the peak of memory
usage when considering the total indexing space at eaclisstepched at Step 4, and it is slightly greater
than the space needed by the final Scheme 3 (more precisEtirhes the size of the final Scheme 3).

As a comparison, we indexed a 500-MB prefix of this text with thiginal construction algorithm of
Scheme 2, using an approach similar to that used in [56], motitspace-efficient intermediate represen-
tation for the tries. The peak of main memory is 1,566 MB (thisans 3.13 times the size of the original
text) /, with an indexing rate of about 1.29 MB/sec (see Table 4{fH)js means that our indexing algorithm
is 4.60 times slower than the original indexing algorithrag€olumn “Slowdown” in Table 4(b)), yet we
require 5.80 times less memory (see column “Space redugticrable 4(b)). The intermediateZTrie re-
quired 751,817,455 bytes (extrapolating, this is 3.66 site size of our hierarchicalZTrie, see column
“IntermediateLZTrie” in Table 4(b)), while the intermediateevTrierequired 1,185,969,250 bytes (extrap-
olating, this is 5.79 times the size of our hierarchiBavTrie see column “IntermediatBevTri€ in Table
4(b)). Note the bigger difference amoRgvTrierepresentations. This is because we are not only using a
space-efficient representation, but also because we angressing empty unary paths at reverse-trie con-
struction time. Thus, we can conclude that our space-gffitiee representations are effective to reduce the
indexing space of LZ-index schemes. The price is, on ther ¢itwed, a slower construction.

6.3 Indexing the Human Genome

For the test on DNA data we indexed the Human Gerfpwiose size is about 3,182MB. In Table 3(b)
we show the results obtained with our construction algoritithe indexing rate for the hierarchidaZ Trie

" Itis important to note that the original algorithm uses justin memory to construct Scheme 2
8http://hgdownl oad. cse. ucsc. edu/ gol denPat h/ hg18/ bi gZi ps/ est . f a. gz.

33

Table 4. Some statistics for

our construction algorithms.

(a) Statistics for our space-efficient indexing algoritton $cheme 2. The results for

Scheme 3 are similar.

Text Main-memory Size hierarchical Size hierarchical
peak LZTrie (bytes) RevTrie(bytes)

English 0.54 times text size 411,928,076 309,412,004
0.59 times size of final (1.01 times size of (1.32 times size of
Scheme 2 finalZTrie) final RevTrig

Human Genome 0.50 times text size 1,233,336,206 1,202,033,

0.44 times size of final

(1.02 times size of (1.27 times size of

Scheme 2 finalZTrie) final RevTrig

XML 0.40 times text size 90,563,835 84,591,900
0.61 times size of final (1.07 times size of (1.29 times size of
Scheme 2 findlZTrie) final RevTrig

Proteins 1.05 times text size 839,446,471 807,660,745
0.51 times size of final (0.99 times size of (1.28 times size of
Scheme 2 finalZTrie) final RevTrig

(b) Main statistics for the construction of Scheme 2 versigsrion-space-efficient original

algorithm.
Text Main-memory Indexing rate Slowdown Space Intermedidhtermediate
peak (MB/secs) reduction LZTrie RevTrie
English 1,566 MB 1.29 4.60 5.80 3.66 5.74
(500 MB) (3.13x text)
Genome 1,275 MB 1.86 9.78 5.10 3.22 5.95
(500 MB) (2.55x text)
XML 862 MB 231 5.25 7.50 2.68 9.02
(3.02 x text)
Proteins 1,781 MB 1.82 9.58 3.39 241 3.04

(500 MB) (3.56x text)

is about 1.30 MB/sec, while fdRevTrieit is about 0.23 MB/sec. The total indexing time (user timespl
system time) is about 4.63 hours, which means and overadking rate of about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory pédkeoalgorithm, as well as a compari-
son between intermediate and final trie representatiors.T8kle 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefithe Human Genome.

Table 5 shows the practical results for the best indexingralgns we know of. The results have been
taken from the original papers indicated in the table. Asmmgarison, W.-K. Hon et al. [31, 30] index the
Human Genome with the CSA in about 24 hours, using a Pentiuprd¢essor at 1.7 GHz with 512 KB
of L2 cache, and 4 GB of main memory, running Solaris 9 opegatiystem. Despite the difference in CPU
rate of our machine compared to Hon et al.’s, the differendadexing time suggests us that the LZ-index
can be space-efficiently constructed in much less time tBAsSCHonN et al. also construct the FM-index
in about 4 extra hours, for a total of about 28 hours. The #lyorof [15], on the other hand, indexes the
Human Genome in about 8.52 hours, using secondary storagestira constant amount of main memory.

34

Ours is a relevant practical result, specifically for biatadi research, since it demonstrates that it is feasible
to index the Human Genome within less than 5 hours and in tlie memory of a desktop computer.

Table 5. Comparison of indexing algorithms to construct an indextf@ Human Genome. For suffix trees, Kurtz estimated the
indexing time on his machine, whose CPU is 10 times slower thas. In case of suffix arrays, we estimate the indexingespac
according to the space used with other texts; we do not heneedstimations for these. In both cases the indexing algositare
probably faster than our algorithms for the LZ-index (pd®d they have the given amount of main memory available).

Index Construction Indexing Maximum
algorithm time indexing
space (RAM)
Suffix tree [40] < 9 hours (¥) 45.31 GB
Suffix array [42] — 27.96 GB
Suffix array [49] — 18.64 GB
Suffix array [15] 8.52 hours sec. storage
CSA [30] 24 hours 3.60 GBY))
FM-index [30] 28 hours 3.60 GB
Scheme 2 of LZ-index This paper 4.63 hours 2.78 GB

Scheme 2 (reduced-memoy model) This paper 4.63 hours 1.56)GB

(*) On a Sun-UltraSparc 300 MHz, 192 MB of main memory, undela8is 2.) Hon [30] reported a size of 2.88 GB for the
Human Genome, whereas ours is of size 3.11 GB. They use a 1z70OBH.) Just regarding main-memory space.

6.4 Indexing XML Data

Another relevant application is that of compressing andctiag XML texts. Nowadays many applica-
tions handle text data in XML format, which are automaticgienerated in large amounts. It is interesting
therefore to be able to compress the data, while at the sameebiing able to search and extract any part
of the text, since XML data is usually queried and navigatgdther applications. We indexed the file
http://pizzachili.dcc.uchile.cl/texts/xm/dblp.xm . gz of about 285 MB provided

in the Pizza&Chili Corpus. This text is highly compressible.

In Table 6(a) we show the results for XML text. The indexingeréor LZTrie is about 1.43 MB/sec,
while for RevTrieit is about 0.65 MB/sec. The overall indexing rate is abodddMB/sec. See Table 4(a)
for statistics regarding the memory peak of the algorithenyall as a comparison between intermediate and
final trie representations. See Table 4(b) for a comparigtdmtive original construction algorithm.

6.5 Indexing Proteins

Another interesting application of text-indexing toolshiological research is that of indexing proteins.
We indexed the texhtt p: // pi zzachili.dcc.uchile.cl/texts/protein/proteins.gz
of about 1 GB provided in thBizza&Chili Corpus. This is a not so compressible text.

In Table 6(b) we show the results for proteins. The indexatg for the hierarchicdlZTrieis about 0.92
MB/sec, while forRevTrieit is about 0.24 MB/sec. The indexing rate fRevTrieis much slower than for
other texts. This could be mainly because proteins are ncbispressible, and then the tries have a greater
number of nodes to be inserted, making the process sloweroVédrall indexing rate is about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory pédkeoalgorithm, as well as a compari-
son between intermediate and final trie representatiores . T8kele 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefiProteins.

35

Table 6. Experimental results for XML text and proteins. Numbers aidface indicate the final index size in every case.

(a) XML text.

(b) Proteins.

Index Indexing Main-memory Total space Time Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs step space (bytes) (bytes) secs
Scheme 2 1 90,563,835 90,563,835 199.745cheme 2 1 839,446,471 839,446,471 1,087.58

2 111,467,467 175,009,211 3.82 2 1,018,660,027 1,681,050,175 33.82
3 120,592,538 169,037,276 435.20 3 1,133,180,292 1,649,264,449 4,105.11
4 98,337,536 185,878,936 3.23 4 895,675,465 1,766,181,601 27.83
5&6 97,231,032198,518,068 9.29 5&6 1,032,374,1441,990,895,000 112.75
Total 120,592,538 198,518,068 651.28 Total 1,133,180,292 1,990,895,000 5,374.88
Scheme 3 1 90,563,835 90,563,835 201.435cheme 3 1 839,446,471 839,446,471 1,095.56
1l/e=1 2 111,467,467 175,009,211 3.881/e=1 2 1,018,660,027 1,681,050,175 33.49
3 120,592,538 169,037,276 441.91 3 1,133,180,292 1,649,264,449 4,113.27
4 98,337,536 185,878,936 3.24 4 895,675,465 1,766,181,601 27.55
5&6 97,231,032245,871,260 11.02 5&6 1,032,374,144,502,718,500 134.72
Total 120,592,538 245,871,260 661.41 Total 1,133,180,292 2,502,718,500 5,404.62
Scheme 3 1 90,563,835 90,563,835 200.91Scheme 3 1 839,446,471 839,446,471 1,097.09
1/e=15 2 111,467,467 175,009,211 3.791/e=15 2 1,018,660,027 1,681,050,175 33.86
3 120,592,538 169,037,276 441.34 3 1,133,180,292 1,649,264,449 4,117.30
4 98,337,536 185,878,936 3.20 4 895,675,465 1,766,181,601 27.62
5&6 54,641,864160,692,920 18.66 5&6 575,948,0721,589,866,364 232.25
Total 120,592,538 185,878,936 667.91 Total 1,133,180,292 1,766,181,601 5,508.14

7 Conclusions and Future Work

The space-efficient construction of compressed full-teXtiadexes is a very important aspect regarding
their practicality. In this paper we proposed a space-efiicalgorithm to construct Navarro’s LZ-index [55].
Given the data structures that conform the LZ-index, thsbfam is highly related to the representation
of succinct dynamicr-ary trees. Thus, the basic idea is to construct the triesZeindex using space-
efficient intermediate representations supporting fagemental insertion of nodes. Our algorithm requires
asymptotically the same space as the final LZ-index4iuéd,(T') + o(ulog o) bits, to construct the LZ-
index for a textI'[1..u] in O(ulog o) time, beingo the alphabet size anH},(T") the k-th order empirical
entropy ofT". We also show that all LZ-index variants presented in [7 & be constructed within the same
space needed by the final index. These smaller indexes adal#place the original LZ-index in many
practical scenarios [5], hence the importance to spacaesffly construct them.

We defined an alternative model in which we have a reduced anhwdumain memory to perform the
indexing process (perhaps less memory than that neededdmatodate the whole index). We show that
the LZ-indexes can be constructed withiff;(T") + o(ulog o) bits of space, irO(u(log o + loglogu))
time. This means that the LZ-indexes can be constructednntsymptotically the same space than that
required to store the compressed text.

Our experimental results indicate that all LZ-index vensi@an be constructed in practice within the
same amount of memory as needed by the final index. Underdbieed-memory scenario, we have that the
LZ-index versions can be constructed requiring 0.40 — 1r@B4 the size of the original text, depending on
the compressibility of the text. This means about 3.39 — WrB6s less space as that needed by the original
construction algorithm (which works assuming that therensugh memory to store the whole index in
main memory). Our indexing rate is about 0.19 — 0.44 MB/sghich is 4.60 — 9.58 times slower than the
original construction algorithm. In conclusion, our algom requires much less memory than the original

36

one, in exchange for a slower construction algorithm. Hexeour indexing algorithm is still competitive
with existing indexing technologies. For example, we arke &b construct the LZ-index for the Human
Genome in less than 5 hours, while Dementiev et al. [15] and étaal. [32] require 8.5 and 24 hours to
construct the suffix array and Compressed Suffix Array foHbeman Genome, respectively.

An interesting application of our indexing algorithm is imetconstruction of the LZ78 parsing of a
text T'. Grossi and Sadakane [64] define an alternative represemfar the LZ78 parsing, which has the
nice property of supporting optimal time to access any tekisging. The parsing consists basically of
the LZTrie (the trie topology and array of edge symbols), plus an arfay, ffor any phrase identifier
stores the preorder of the correspondirgTrie node. Using our notation, the latter is just arrals .

Jansson et al. [34] propose an algorithm to construct th&rmmam O(logiu%) time and requiring
uH,(T) + o(ulog o) bits of space. The algorithm, however, needs two passestloaext, which means
(ulog o)/ B extra disk accesses if it is stored on disk, which can be estpenWe can reduce the number

of disk accesses as follows, mainly when the text is comjinless

— We construct the hierarchichlZTrie for 7', storing the phrase identifier for each node. We can éfase
since it is not anymore necessary. This takés (log o + loglog u)) time.

— We build the finalLZTrie, storing arrayids on disk, as it was explained in Section 4.7. This takes extra
O(u(log o + loglog u)) time, and perform$uHy(T") + o(ulog o))/ B extra disk accesses.

— We then free the hierarchichlTrie and load arrayds back to main memory, performing.H (7)) +
o(ulog o))/ B extra disk accesses.

— We computeids~! in place, using the algorithm of Lemma 2, and this way we cetepthe representa-
tion for the LZ78 parsing of text'.

As seen, we exchange thelog o)/ B extra disk accesses of [34] §9uH(T') + o(ulogo))/B. This can
be much better, specifically in the case of large compressgiats. The total time i© (u(log o +loglog u)),
and the maximum main-memory space usedi& (T") + o(ulog o) bits.

We think that our methods could be extended to build relatédnidexes [17, 62] within limited space.

References

1. M. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exairigs matching based on suffix arrays. Pnoc. 9th International
Symposium on String Processing and Information RetriesBIRE) LNCS 2476, pages 31-43, 2002.

2. A Apostolico. The myriad virtues of subword trees.Gombinatorial Algorithms on Word&NATO ISI Series, pages 85-96.
Springer-Verlag, 1985.

3. D. Arroyuelo. An improved succinct representation fonamick-ary trees. IrProc. 19th Annual Symposium on Combinato-
rial Pattern Matching (CPM)LNCS 5029, pages 277-289, 2008.

4. D. Arroyuelo and G. Navarro. Space-efficient construct LZ-index. InProc. 16th Annual International Symposium on
Algorithms and Computation (ISAAQ)NCS 3827, pages 1143-1152. Springer, 2005.

5. D. Arroyuelo and G Navarro. Practical approaches to redthe space requirement of Lempel-Ziv-based com-
pressed text indices. Technical Report TR/DCC-2008-9, tDep Computer Science, University of Chile, 2008.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/smallerlzpract. ps.gz.Submitted.

6. D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing theepequirement of LZ-index. IRroc. 17th Annual Symposium
on Combinatorial Pattern Matching (CPMILNCS 4009, pages 319-330, 2006.

7. D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lédpe based compressed text index-
ing. Technical Report TR/DCC-2008-2, Dept. of Computer eSce, University of Chile, 2008.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/smallerl zi ndex. ps. gz. Submitted.

8. J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct ingléxestrings, binary relations and multi-labeled treesPtac.
18th Annual ACM-SIAM Symposium on Discrete Algorithms (&Dpages 680—-689, 2007.

9. D. Benoit, E. Demaine, J. |. Munro, R. Raman, V. Raman, arf8l Rao. Representing trees of higher degfdgorithmica
43(4):275-292, 2005.

37

10.

11.

12.

13.

14.
15.

16.
17.
18.
19.

20.
21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

A. Brodnik, S. Carlsson, E. Demaine, J. . Munro, and Rigéwick. Resizable arrays in optimal time and spaceProrc.
WADS LNCS 1663, pages 37-48. Springer, 1999.

H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Corsgee indexes for dynamic text collectio®sCM Transactions
on Algorithms 3(2):article 21, 2007.

B. Chazelle. A functional approach to data structuresi@ruse in multidimensional searchinglAM Journal on Computing
17(3):427-462, 1988.

D. Clark and J. I. Munro. Efficient suffix trees on secogdaorage. IrProc. 7th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA)pages 383-391, 1996.

T. Cormen, C. Leiserson, R. Rivest, and C. Sthitroduction to AlgorithmsPrentice—Hall, second edition, 2001.

R. Dementiev, J. Karkkainen, J. Mehnert, and P. Sand&etter external memory suffix array constructiodournal of
Experimental Algorithmics (JEA)L2:1-24, article 3.4, 2008.

P. Elias. Universal codeword sets and representationiegfers.|IEEE Trans. on Information Theor21(2):194—-203, 1975.

P. Ferragina and G. Manzini. Indexing compressed dexirnal of the ACM54(4):552-581, 2005.

P. Ferragina, G. Manzini, V. Makinen, and G. Navarrompoessed representations of sequences and full-textesdacM
Transactions on Algorithm$(2):article 20, 2007.

P. Ferragina and G Navarro. Pizza&Chili Corpus — Congmés indexes and their testbeds, 2005.
http://pizzachili.dcc.uchile.cl.

F. Fich, J. I. Munro, and P. Poblete. Permuting in pl&@&M Journal on Computing®4(2):266-278, 1995.

G. Franceschini and S. Muthukrishnan. In-place suffitirep In Proc. of 34th International Colloquium on Automata,
Languages and Programming (ICALRINCS 4596, pages 533-546, 2007.

R. Geary, N. Rahman, R. Raman, and V. Raman. A simple aptiepresentation for balanced parenthes€heoretical
Computer Science68(3):231-246, 2006.

A. Golynski, J. I. Munro, and S. S. Rao. Rank/select dpmra on large alphabets: A tool for text indexing. Pnoc. 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SOPages 368—373, 2006.

R. Gonzalez, S. Grabowski, V. Makinen, and G. NavaPmactical implementation of rank and select queried2dster Proc.
Vol. of 4th Workshop on Experimental and Efficient Algorgi®VEA) pages 27—-38. CTI Press and Ellinika Grammata, 2005.
R. Gonzalez and G. Navarro. Improved dynamic rankeselgropy-bound structures. Rroc. 8th Latin American Symposium
on Theoretical Informatics (LATINLNCS 4957, pages 374-386, 2008.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropgnpressed text indexes.Pnoc. 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODApages 841-850, 2003.

R. Grossi, A. Gupta, and J. S. Vitter. When indexing exjgampression: experiments with compressing suffix arrags a
applications. IrProc. 15th Annual ACM-SIAM Symposium on Discrete AlgotiBODA) pages 636—645, 2004.

R. Grossi and J. S. Vitter. Compressed suffix arrays dfffiet tnees with applications to text indexing and string niaing. In
Proc. 32nd Annual ACM Symposium on Theory of Computing (3Tg2ges 397—-406, 2000.

R. Grossi and J. S. Vitter. Compressed suffix arrays affik stees with applications to text indexing and string nimig).
SIAM Journal on Computing5(2):378—-407, 2005.

W.-K. Hon.On the construction and application of Compressed texbiagdd’hD thesis, University of Hong Kong, 2004.

W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Consitngatompressed suffix arrays with large alphabetsPrioc.
14th Annual International Symposium on Algorithms and Qaaton (ISAAC)LNCS 2906, pages 240-249, 2003.

W. K. Hon, T. W. Lam, K. Sadakane, W.-K. Sung, and M. Yiu.pase and time efficient algorithm for constructing compedss
suffix arrays.Algorithmicg 48(1):23-36, 2007.

W. K. Hon, K. Sadakane, and W. K. Sung. Breaking a timespate barrier in constructing full-text indices. Rroc. 44th
Annual Symposium on Foundations of Computer Science (F@a@§s 251-260, 2003.

J. Jansson, K. Sadakane, and W.-K. Sung. Compressenhidytnaes with applications to LZ-compression in sublingare
and space. [1”27th Int. Conf. on Foundations of Software Technology aneofdtical Computer Science (FSTTCRages
424-435, 2007.

J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-suagpotsentation of ordered trees. Rroc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODgages 575-584, 2007.

J. Karkkainen. Suffix cactus: a cross between suffexamed suffix array. IfProc. 6th Annual Symposium on Combinatorial
Pattern Matching (CPM)LNCS 937, pages 191-204, 1995.

J. Karkkainen and E. Ukkonen. Lempel-Ziv parsing araieear-size index structures for string matchingPmc. 3rd South
American Workshop on String Processing (W$Rpes 141-155, 1996.

D. Kim, J. Na, J. Kim, and K. Park. Efficient implementatiaf rank and select functions for succinct representatiofroc.
4th Workshop on Experimental and Efficient Algorithms (WpAjes 315-327. LNCS 3503, 2005.

R. Kosaraju and G. Manzini. Compression of low entropygs with Lempel-Ziv algorithmsSIAM Journal on Computing
29(3):893-911, 1999.

38

40.
41.

42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.

S. Kurtz. Reducing the space requeriments of suffix tréeftware Practice and Experienc29(13):1149-1171, 1999.

T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A spacetiamne efficient algorithm for constructing compressed suffix
arrays. InProc. 8th Annual International Conference on Computing &uwanbinatorics (COCOONpages 401-410, 2002.
J. Larsson and K. Sadakane. Faster suffix sorfiilhgoretical Computer Sciencg87(3):258—-272, 2007.

V. Makinen. Compact suffix array - a space-efficientfakt index. Fundamenta Informaticaé6(1-2):191-210, 2003.

V. Makinen and G. Navarro. Succinct suffix arrays baseduo-length encodingNordic J. of Computing12(1):40-66, 2005.
V. Makinen and G. Navarro. Rank and select revisitedexteinded Theoretical Computer Sciencg87(3):332—347, 2007.

V. Makinen and G. Navarro. Dynamic entropy-compresssgiences and full-text indexesCM Transactions on Algorithms
4(3):article 32, 2008.

U. Manber and G. Myers. Suffix arrays: A new method forian-ktring searchesSIAM Journal on Computing2(5):935—
948, 1993.

G. Manzini. An analysis of the Burrows-Wheeler transfodournal of the ACM48(3):407—-430, 2001.

G. Manzini and P. Ferragina. Engineering a lightweiglffixsarray construction algorithmAlgorithmica 40(1):33-50, 2004.
D. R. Morrison. Patricia — practical algorithm to ref@enformation coded in alphanumeridournal of the ACM15(4):514—
534, 1968.

J. I. Munro. Tables. Iroc. 16th Conference on Foundations of Software Techyodmgl Theoretical Computer Science
(FSTTCS)LNCS 1180, pages 37-42, 1996.

J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinceseptations of permutations. Rroc. 30th International
Colloquium on Automata, Languages and Computation (ICALRLCS 2719, pages 345-356, 2003.

J. I. Munro and V. Raman. Succinct representation ofrioaié parentheses and static tre€6AM Journal on Computing
31(3):762-776, 2001.

J. Na and K. Park. Alphabet-independent linear-timesttantion of compressed suffix arrays usis@ log n)-bit working
space.Theoretical Computer Sciencgg85:127-136, 2007.

G. Navarro. Indexing text using the Ziv-Lempel trdournal of Discrete Algorithms (JDAR(1):87-114, 2004.

G. Navarro. Implementing the LZ-index: Theory versuscfice. ACM Journal of Experimental Algorithmics
(JEA), 2008. To appear. Also as Technical Report TR/DCC-2003-€ptDof Computer Science, University of Chile.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/jlzindex.ps.gz.

G. Navarro and V. Makinen. Compressed full-text indexX¢CM Computing Survey89(1):article 2, 2007.

G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Ba¥a#es. Adding compression to block addressing invertdeias.
Information Retrieval3(1):49-77, 2000.

D. Okanohara and K. Sadakane. Practical entropy-casgderank/select dictionary. Rroc. Workshop on Algorithm Engi-
neering and Experiments (ALENEXpges 60-70, 2007.

R. Raman, V. Raman, and S. S. Rao. Succinct indexablerticies with applications to encodirigary trees and multisets.
In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algosti&ODA) pages 233-242, 2002.

R. Raman and S. S. Rao. Succinct dynamic dictionariedraed. InProc. 30th International Colloquium on Automata,
Languages and Computation (ICALRNCS 2719, pages 357-368, 2003.

L. Russo and A. Oliveira. A compressed self-index usidgyd.empel dictionary.Information Retrieval5(3):501-513, 2007.
K. Sadakane. New Text Indexing Functionalities of thenpressed Suffix Arraysl. of Algorithms 48(2):294-313, 2003.

K. Sadakane and R. Grossi. Squeezing Succinct Datat@®adnto Entropy Bounds. IRroc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODgages 1230-1239, 2006.

J. S. VitterAlgorithms and Data Structures for External Memo8eries on Foundations and Trends in Theoretical Computer
Science, now Publishers, 2008.

P. Weiner. Linear pattern matching algorithmsPtac. 14th Annual Symposium on Foundations of Computen&ei@-OCS)
pages 1-11, 1973.

I. Witten, A. Moffat, and T. BellManaging GigabytesMorgan Kaufmann Publishers, second edition, 1999.

J. Ziv and A. Lempel. Compression of individual sequendgea variable-rate codinglEEE Transactions on Information
Theory 24(5):530-536, 1978.

39

