
Space-Efficient Construction of Lempel-Ziv Compressed Text Indexes?

Diego Arroyuelo?? and Gonzalo Navarro? ? ?

Dept. of Computer Science, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile.
{darroyue, gnavarro}@dcc.uchile.cl

Abstract. A compressed full-text self-indexis a data structure that replaces a text and in addition givesindexed
access to it, while taking space proportional to the compressed text size. This is very important nowadays, since one
can accommodate the index of very large texts entirely in main memory, avoiding the slower access to secondary
storage. In particular, the LZ-index [G. Navarro, Journal of Discrete Algorithms, 2004] stands out for its good
performance at extracting text passages and locating pattern occurrences. Given a textT [1..u] over an alphabet
of sizeσ, the LZ-index requires4uHk(T) + o(u log σ) bits of space, whereHk(T) is thek-th order empirical
entropy ofT . Although in practice the LZ-index needs 1.0-1.5 times the text size, its construction requires much
more main memory (around 5 times the text size), which limitsits applicability only to not so large texts. In
this paper we present an space-efficient algorithm to construct the LZ-index inO(u(log σ + log log u)) time and
requiring4uHk(T)+o(u log σ) bits of space. Our experimental results show that our methodis efficient in practice,
needing an amount of memory close to that of the final index, and outperforming by far the construction time of
other compressed indexes. We also adapt our algorithm to construct some recent reduced versions of the LZ-index,
showing that these can also be built without using extra space on top of that required by the final index.
We study an alternative model in which we are given only a limited amount of main memory to carry out the
indexing process (less than that required by the final index). We show how to build all the LZ-index alternatives in
O(u(log σ + log log u)) time, and withinuHk(T) + o(u log σ) bits of space.

1 Introduction and Previous Work

Text searchingis a classical problem in Computer Science. Given a sequenceof symbolsT [1..u] (the text)
over an alphabetΣ of size σ, and given another (short) sequenceP [1..m] (the search pattern) over Σ,
the full-text search problemconsists of finding (counting or reporting) all theocc occurrences ofP in T .
Nowadays, much information is stored in the form of (usuallylarge) texts, e.g. biological sequences such as
DNA and proteins, XML data, MIDI pitch sequences, digital libraries, program code, etc. Usually, these texts
need to be searched for patterns of interest, and therefore the full-text search problem plays a fundamental
role in modern computer applications.

Text Compression and Indexing. Despite that there has been some work on space-efficient inverted indexes
for natural language texts [67, 58] (able of finding whole words and phrases), until one decade ago it was
believed that any general index for text searching (such as those that we are considering in this paper) would
need much more space. In practice, the smallest indexes available were the suffix arrays [47], requiring
u log u bits1 to index a text ofu symbols. Since the text requiresu log σ bits to be represented, this index
is usually much larger than the text (typically 4 times the text size). With the huge texts available nowadays
(e.g., the Human Genome consists of about3 × 109 base pairs), one solution is to store the indexes on

? A preliminary partial version of this paper appeared inProc. ISAAC 2005, pp. 1143–1152.
?? Funded by CONICYT PhD Fellowship Program, Chile. Most of this work was done while the author was in the David Cheriton

School of Computer Science, University of Waterloo.
? ? ? Funded by Fondecyt Grant 1-080019 and by Millennium Institute for Cell Dynamics and Biotechnology, Grant ICM P05-001-F,

Mideplan, Chile.
1 log x meansdlog2 xe in this paper.

secondary memory. However, this has a significant impact on the running time of an application, as accesses
to secondary memory are orders of magnitude slower.

Several attempts to reduce the space of the suffix trees [2] orarrays have been made [36, 40, 1], focusing
on good engineering to reduce the space. A parallel track [37, 29, 43, 63, 17, 26, 55, 44, 18, 62] focused on
compressed indexing, which takes advantage of the regularities of the text to operate in space proportional
to that of the compressed text (e.g., 3 times the zero-order entropy of the text). Especially, in some of those
works [63, 17, 26, 27, 55, 44, 18] the indexesreplacethe text and, using little space (sometimes even less
than the original text), provide indexed access. This feature is known asself-indexing, since the index allows
one to search and retrieve any part of the text without storing the text itself. Taking space proportional to the
compressed text, replacing it, and providing efficient indexed access to it, is an unprecedented breakthrough.

As with text compression, using compressed indexes increases processing time. However, given the
relation between main and secondary memory access times, itis preferable to handle compressed indexes
entirely in main memory, to handling them in uncompressed form in secondary storage.

The main families of compressed self-indexes [57] areCompressed Suffix Arrays(CSA for short) [29,
63, 26], indexes based onbackward search[17, 44, 18] (which are alternative ways to compress suffix arrays,
and known as theFM-indexfamily), and the indexes based on theLempel-Zivcompression algorithm [68]
(LZ-indexes for short) [37, 55, 17, 62].

We are particularly interested in LZ-indexes, since they have shown to be effective in practice for extract-
ing text, displaying occurrence contexts, and locating theoccurrences, outperforming other compressed in-
dexes at these tasks [55, 56]. What characterizes the particular niche of LZ-indexes is theO(uHk(T)) space
combined withO(log u) theoretical worst-case time per located occurrence. Moreover, in practice many
pattern occurrences can be actually found in constant time per occurrence, which makes the LZ-indexes
competitive, for example, to search for short patterns. In particular, we will be interested in Navarro’s LZ-
index [55, 56].

Compressed Construction of Self-Indexes. Many works on compressed full-text self-indexes do not con-
sider the space-efficient construction of the indexes. Yet,this aspect becomes crucial when implementing
the index in practice. For example, the original construction ofCompressed Suffix Arrays(CSA) [29, 63] and
FM-index[17] involves building first the suffix array of the text, using for example the algorithm of Larsson
and Sadakane [42] or the one by Manzini and Ferragina [49]. Similarly, Navarro’s LZ-index is constructed
over a non-compressed intermediate representation [55]. In both cases one needs in practice about 5 times
the text size (in the case of CSA and the FM-index, by using thedeep-shallow algorithm [49]). For example,
the Human Genome may fit in less than 1 GB of main memory using these indexes (and thus it can be oper-
ated entirely in RAM on a desktop computer), but 15 GB of main memory are needed to build the indexes!
Using secondary memory for the construction is nowadays themost practical alternative [15].

Another research path is to try building the suffix array directly in compressed space in main memory.
Hon et al. [33] present an algorithm to construct suffix arrays (and also suffix trees) usingO(u log σ) bits of
storage, inO(u log log σ) = o(u log u) time for suffix arrays, andO(u logε u) time for suffix trees, where
0 < ε < 1. Thus, we have an alternative algorithm to construct the CSAand the FM-index usingO(u log σ)
bits of storage andO(u log log σ) time, in the case of FM-index assuminglog σ = o(log u). However, the
space requirement to construct the CSA is still bigger than that needed by the final index.

The works of Lam et al. [41] and Hon et al. [31, 32] deal with thespace (and time) efficient construction
of CSA. The former presents an algorithm that uses(2H0(T)+1+ε)u+o(u log σ) bits of space to build the
CSA, whereε is any positive constant; the construction time isO(σu log u), which is good enough for small
alphabets (as for DNA sequences), but may be impractical forlarger alphabets such as Oriental languages.

2

The second work [32] addresses this problem by requiring(H0(T)+2+ε)u+o(u log σ) bits of space and
O(u log u) time to build the CSA. Also, they show how to build the FM-index from CSA using negligible
extra space inO(u) time. In practice they are able to build the CSA for the Human Genome in about 24
hours and requiring about 3.6 GB of main memory [30], on a 1.7 GHz CPU. The FM-index can be built
from the CSA in about 4 extra hours, for a total of about 28 hours.

Finally, Na and Park [54] construct the CSA inO(u log σ log
log3 2
σ u) bits of space andO(u) time. This

is the most space-efficient linear-time algorithm for constructing the CSA. They leave open, however, the
question of whether the CSA can be constructed in linear timeand requiringO(u log σ) bits of space.

Thus, many works study the space-efficient construction of the CSA and the FM-index. However, the
space-efficient construction of LZ-indexes has not been addressed in the literature. Since LZ-indexes are
competitive in practice for locating pattern occurrences and extracting text substrings [56, 5] (which is very
important for self-indexes), the space-efficient construction of LZ-indexes is also an important issue.

Our Contribution. We present a practical and efficient algorithm to construct Navarro’s LZ-index [55, 56]
using little space. Our idea is to replace, at construction time, the (space-inefficient) intermediate representa-
tions of the tries that conform the index by space-efficient counterparts. Basically, we define an intermediate
representation for the tries, supporting fast incrementalconstruction directly from the text and requiring little
space compared with the traditional (pointer-based) representation. The resulting intermediate data structure
consists of a tree whose nodes are small connected components of the original trie, orblocks. These small
tries are represented succinctly in order to require littlespace. Notice also that the blocks are easier and
cheaper to update, since they are small. The idea is inspiredin the work of Clark and Munro [13], yet ours
differs in numerous aspects (structuring inside the blocks, overflow management policies, etc.).

Our algorithm builds the LZ-index inO(u log σ) time, while requiring4uHk(T) + o(u log σ) bits of
space. This is the same space the final LZ-index requires to operate. At the time of the preliminary ver-
sion of this work [4], this was thefirst construction algorithm for a compressed self-index requiring space
proportional toHk(T) instead ofH0(T). Recently, however, a construction algorithm for the so-called Al-
phabet FriendlyFM-index (AF-FMI) [18] has appeared, requiringuHk(T) + o(u log σ) bits of space, and
O(u log u log σ) time [46], and evenO(u log u log σ

log log u
) time [25]. The time obtained in the present paper

also improves upon theO(σu) worst-case time of [4].
We show how the reduced versions of LZ-index [6, 5, 7] can be constructed within little space. We also

present an alternative model to construct the indexes, in which we assume that the available main memory
to carry out the indexing process is smaller than the space required by the final index. This model has
applications in cases where the indexing process must be carried out in a computer that is not so powerful so
as to maintain the whole index in main memory, leaving a more powerful equipment exclusively to answer
user queries. We show that, under this model, the LZ-indexescan be constructed within(1 + ε)uHk(T) +
o(u log σ) bits of space, for any0 < ε < 1, in O(u(log σ +log log u)) time. This means that the LZ-indexes
can be built within slightly more space (in some cases the same) than that required by the compressed text.

We implement and test in practice a simplification of our algorithm, and demonstrate that in many
practical scenarios the indexing space requirement is alsothe same as that of the final index. Thus, we
conclude that wherever the LZ-index can be used, we can buildit. We show how our algorithm is able to
build the LZ-index for the Human Genome in less than 5 hours ona 3 Ghz CPU, and requiring 3.5 GB of
main memory, showing that this work can be carried out in a commodity PC. Notice that our algorithm is
many times faster than the algorithm for constructing the CSA [30]. Under the reduced-memory scenario,
our experimental results show that the LZ-index for the Human Genome can be constructed within 1.6 GB
of main memory, which is about half of the space required by the uncompressed genome (assuming the
symbols are represented by bytes).

3

Table 1 summarizes the results obtained in this paper and compares with existing approaches.

Table 1.Comparison of different algorithms for constructing text indexes. The reduced LZ-index versions can be constructed within
the same space required by the final indexes.

Index Indexing space (in bits) Indexing time

Suffix Arrays (SA) [33] O(u log σ) (*) O(u log log σ)
SA [21] u log u O(u log u)
CSA [32] u(H0(T) + 2 + ε) + o(u log σ) (¶) O(u log u)
CSA [54] O(u log σ logε

σ u) (†) O(u)

AF-FMI [25] uHk(T) + o(u log σ) (§) O(u log u(1 + log σ
log log u

))

LZ-index [4] (4 + ε)uHk(T) + o(u log σ) (‡) O(σu)
LZ-index (this paper) 4uHk(T) + o(u log σ) O(u(log σ + log log u))
Reduced LZ-indexa (this paper) (1 + ε)uHk(T) + o(u log σ) O(u(log σ + log log u))
Reduced LZ-indexb (this paper) (2 + ε)uHk(T) + o(u log σ) O(u(log σ + log log u))
Reduced LZ-indexc (this paper) (3 + ε)uHk(T) + o(u log σ) O(u(log σ + log log u))

(*) this is o(u log u) bits for log σ = o(log u). (¶) this isO(u log σ) bits of space, in the worst case. (†) for ε = log3 2. Again, the
space iso(u log u) bits for log σ = o(log u). (‡) for any0 < ε < 1 andk = o(logσ u), applies to all LZ-index variants. (§) for any
k 6 α logσ u and any constant0 < α < 1.

2 Preliminary Concepts

2.1 Model of Computation

We assume the standardword RAM model of computation, in which we can access any memory word of w
bits, such thatw = Θ(log u), in constant time. Standard arithmetic and logical operations are assumed to
take constant time under this model. We measure the size of our data structures in bits.

Usually, after an indexing algorithm builds a text index in main memory, the index is stored on disk along
with the text database, for persistence purposes. In the case of compressed self-indexes, the index by itself
represents the database. At query time, the index is loaded into main memory in order to answer (many) user
queries. Thus, by saving the index the (usually costly) indexing process is amortized over several queries.
Yet, in other scenarios, one builds the index in main memory and answers queries on the fly.

We will initially assume that there is enough main memory to hold the final index. Later we will consider
reduced-main-memory scenarios, where we will resort to secondary memory to hold the intermediate results.
In this case, we will assume that there is enough secondary memory to hold the index we build.

Since, depending on the scenario, we might or might not have to read the text from disk, and we might
or might not have to write the final index to disk, and because those costs are fixed, we will not mention
them. Yet, in the reduced-main-memory scenarios we will usethe disk to read/write intermediate results,
and in this case we will also consider the amount of extra I/O performed. When accessing the disk, we
assume the standard model [65] where a disk page ofB bits is transferred to/from secondary storage with
each access. Finally, the space required by the text is not accounted for in the space required by the indexing
algorithms. If it resides on disk one can process it sequentially so it does not require any significant main
memory. Moreover, in most of our algorithms one could erase the text at an early stage of the construction.

2.2 Empirical Entropy

A concept related to text compression is that of thek-th order empirical entropy of a sequence of symbols
T over an alphabet of sizeσ, denoted byHk(T) [48]. The valueuHk(T) provides a lower bound to the

4

number of bits needed to compressT using any compressor that encodes each symbol considering only the
context ofk symbols that precede it inT .

2.3 Lempel-Ziv Compression

The Lempel-Ziv compression algorithm of 1978 (usually named LZ78 [68]) is based on adictionary of
phrases, in which we add every newphrasecomputed. At the beginning of the compression, the dictionary
contains a single phraseb0 of length 0 (i.e., the empty string). The current step of the compression is as
follows: If we assume that a prefixT [1..j] of T has been already compressed into a sequence of phrases
Z = b1 . . . br, all of them in the dictionary, then we look for the longest prefix of the rest of the text
T [j + 1..u] which is a phrase of the dictionary. Once we have found this phrase, saybs of length`s, we
construct a new phrasebr+1 = (s, T [j + `s + 1]), write the pair at the end of the compressed fileZ, i.e.
Z = b1 . . . brbr+1, and add the phrase to the dictionary.

We will call Bi the string represented by phrasebi, thusBr+1 = BsT [j +`s +1]. In the rest of the paper
we assume that the textT has been compressed using the LZ78 algorithm inton+1 phrases,T = B0 . . . Bn,
such thatB0 = ε (the empty string). We say thati is thephrase identifiercorresponding toBi, for 0 6 i 6 n.

Property 1. For all1 6 t 6 n, there exists̀ < t andc ∈ Σ such thatBt = B` · c.

That is, every phraseBt (exceptB0) is formed by a previous phraseB` plus a symbolc at the end. This
implies that the set of phrases isprefix closed, meaning that any prefix of a phraseBt is also an element of
the dictionary. Hence, a natural way to represent the set of stringsB0, . . . , Bn is a trie, which we callLZTrie.

Property 2. Every phraseBi, 0 6 i < n, represents a different text substring.

The only exception to this property is the last phraseBn. We deal with the exception by appending toT a
special symbol “$”6∈ Σ, assumed to be smaller than any other symbol in the alphabet.The last phrase will
contain this symbol and thus will be unique too.

In Fig. 1 we show the LZ78 phrase decomposition for our running example textT =“alabar a la
alabarda para apalabrarla”, where for clarity we replace blanks by ‘’, which is assumed to be

lexicographically larger than any other symbol in the alphabet. We show the phrase identifiers above each
corresponding phrase in the parsing. In Fig. 3(a) we show thecorrespondingLZTrie. Inside eachLZTrie
node we show the corresponding phrase identifier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
a l ab ar a la a lab ard a p ara ap al abr arl a$

Fig. 1. LZ78 phrase decomposition for the running example text
T =“alabar a la alabarda para apalabrarla”, and the corresponding phrase identifiers.

The compression algorithm isO(u) time in the worst case and efficient in practice provided we use the
LZTrie, which allows rapid searching of the new text prefix (for eachsymbol ofT we move once in the trie).

Property 3 ([68]).It holds that
√

u 6 n 6
u

logσ u
. This implieslog n = Θ(log u) andn log u 6 u log σ.

We shall use the following result of Kosaraju and Manzini [39] to bound the output of the LZ78 parsing
of textT in terms of thek-th order empirical entropy ofT .

5

Lemma 1 ([39]). It holds thatn log n = uHk(T) + O(u1+k log σ
logσ u

) for anyk.

In our work we assumek = o(logσ u) (and hencelog σ = o(log u) to allow for k > 0, i.e. higher order
compression); so thatn log n = uHk(T) + o(u log σ).

2.4 Succinct Representations of Sequences and Permutations

A succinct data structurerequires space close to the information-theoretic lower bound, while supporting the
corresponding operations efficiently. We review some results on succinct data structures, which are needed
in our work.

Data Structures for rank and select Given a bit vectorB[1..n], we define the operationrank0(B, i)
(similarly rank1) as the number of 0s (1s) occurring up to thei-th position ofB. The operationselect0(B, i)
(similarly select1) is defined as the position of thei-th 0 (i-th 1) inB. We assume thatselect0(B, 0) always
equals 0 (similarly forselect1). These operations can be supported in constant time and requiring n + o(n)
bits [51], or evennH0(B) + o(n) bits [60].

There exist a number of practical data structures supporting rank andselect, like the one by González
et al. [24], Kim et al. [38], Okanohara and Sadakane [59], etc. Among these, the first [24] is very (perhaps
the most) efficient in practice to computerank, requiring little space on top of the sequence itself. Operation
select is implemented by binary searching the directory built for operationrank, and thus without requiring
any extra space for that operation (yet, the time forselect becomesO(log n)).

Given a sequenceS[1..u] over an alphabetΣ, we generalize the above definition torankc(S, i) and
selectc(S, i) for any c ∈ Σ. If σ = O(polylog(u)), the solution of [18] allows one to compute both
rankc and selectc in constant time and requiringuH0(S) + o(u) bits of space. Otherwise the time is
O(log σ

log log u
) and the space isuH0(S) + o(u log σ) bits. The representation of Golynski et al. [23] requires

n(log σ+o(log σ)) = O(n log σ) bits of space [8], allowing us to computeselectc in O(1) time, andrankc

and access toS[i] in O(log log σ) time.

Data Structures for Searchable Partial SumsGiven an arrayA[1..n] of n integers ofk′ bits each, a data
structure for searchable partial sums allows one to retrieve A[i] and supports operationsSum(A, i), which
computes

∑i
j=1 A[j]; Search(A, i), which finds the smallestj′ such thatSum(A, j′) > i; Update(A, i, δ),

which setsA[i]← A[i]+δ; Insert(A, i, e), which adds a new elemente to the set between elementsA[i−1]
andA[i]; andDelete(A, j), which deletesA[j].

The data structure of [46] supports all these operations inO(log n) worst-case time, and requiresnk′ +
o(nk′) bits of space. For us, it is interesting that the space can be madenk′ + O(n) bits.

Succinct Representation of PermutationsThe problem here is to represent a permutationπ of {1, . . . , n},
such that we can compute bothπ(i) and its inverseπ−1(j) in constant time and using as little space as
possible. A natural representation forπ is to store the valuesπ(i), i = 1, . . . , n, in an array ofn log n bits.
The brute-force solution to the problem computesπ−1(j) looking forj sequentially in the array representing
π. If j is stored at positioni, i.e. π(i) = j, thenπ−1(j) = i. Although this solution does not require any
extra space to computeπ−1, it takesO(n) time in the worst case.

A more efficient solution is based on thecycle notation of a permutation. The cycle for thei-th element
of π is formed by elementsi, π(i), π(π(i)), and so on untili is found again. Notice that every element occurs
in one and only one cycle ofπ. For example, the cycle notation for permutationids of Fig. 2(a) is shown
in Fig. 2(b). So, we computeπ−1(j) looking for j only in its cycle:π−1(j) is just the value “pointing”

6

to j in the diagram. To computeids−1(13) in our example, we start at position 13, then move to position
ids(13) = 7, then to positionids(7) = 12, then toids(12) = 2, then toids(2) = 17, and asids(17) = 13
we conclude thatids−1(13) = 17. Since there are no bounds for the size of a cycle, this takesO(n) time in
the worst case. Yet, it can be improved for a more efficient computation ofπ−1(j).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ids[i] 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

(a) An example of permutationids.

2 17 13 7 12 4 15 5 14 9 16 8 10 6 1131

(b) Cycle notation of permutationids.

Fig. 2. Cycle representation for a given permutationids. Each solid arrowi → j in the diagram meansids(i) = j. Dashed arrows
represent backward pointers.

Given 0 < ε < 1, we create subcycles of sizeO(1/ε) by adding abackward pointerout of O(1/ε)
elements in each cycle ofπ. Dashed arrows in Fig. 2(b) show backward pointers for1/ε = 2. To compute
π−1 we follow the cycles as before, yet now we follow a backward pointer as soon as possible. We store the
backward pointers compactly in an array ofεn log n bits. We mark the elements having a backward pointer
by using a bit vector supportingrank queries, which also help us to find the backward pointer corresponding
to a given element (see [52] for details). Overall, this solution requires(1 + ε)n log n + n + o(n) bits.

Next we present a result which shall be useful later for our purposes of constructing the LZ-index for a
textT . Our result states that any permutationπ can be inverted in-place in linear time and using onlyn extra
bits of space. This can be seen as a particular case ofrearranging a permutation[20], where we are given
an array and a permutation, and want to rearrange the array according to the permutation.

Lemma 2. Given a permutationπ of {1, . . . , n} represented by an array usingn log n bits of space, we can
compute on the same array the inverse permutationπ−1 in O(n) time and requiringn bits of extra space.

Proof. Let Aπ[1..n] be an auxiliary bit vector requiringn bits of storage, which is initialized with all zeros
(this is just the raw bit vector, no additional data structure for rank and select is added). Letπ be the
array representing the permutation, usingn log n bits of space. The idea to constructπ−1 is to use the cycle
structure ofπ to reverse the “arrows” conforming the cycles (i.e., “i → j” in a cycle of π, which means
π[i] = j, now becomes “i ← j”, which meansπ−1[j] = i). So, the main idea is to regard the cycles ofπ
as “linked lists”. Thus, constructingπ−1 is a matter of reversing the pointers in the lists, and therefore we
shall need three auxiliary pointers to do that job. We followthe cycles ofπ, usingAπ to mark with a1 those
positions which have been already visited during this process.

We start with the cycle at positiona← 1, and traverse it from positionp← π[a]. We then setb← π[p],
π[p] ← a (i.e., we store the positiona which brings us to the current one), andAπ[p] ← 1. Then we move
to positiona← p, setp← b, and repeat the process again, stopping as soon as we find a1 in Aπ. Then we
try with the cycle starting at positionp + 1, which is the next one after the position that started the previous
cycle, and follow it just if the corresponding bit inAπ is 0.

Thus, each element in the permutation is visited twice: elements starting a cycle are visited at the be-
ginning and at the end of the cycle, while elements in the middle of a cycle are visited when traversing the

7

cycle to which they belong, and when trying to start a cycle from them. Thus, the overall time isO(n), and
we usen extra bits on top of the space ofπ, and the Lemma follows. ut

2.5 Succinct Representation of Trees

Given a tree withn nodes, there exist a number of succinct representations requiring 2n + o(n) bits, which
is close to the information-theoretic lower bound of at least 2n−Θ(log n) bits.

Balanced ParenthesesThe problem of representing a sequence of balanced parentheses is highly related
to the succinct representation of trees [53]. Given a sequence par of 2n balanced parentheses, we want to
support the following operations onpar: findclose(par, i), which given an opening parenthesis at position
i, finds the position of the matching closing parenthesis;findopen(par, j), which given a closing paren-
thesis at positionj, finds the position of the matching opening parenthesis;excess(par, i), which yields the
difference between the number of opening and closing parentheses up to positioni; andenclose(par, i),
which given a parentheses pair whose opening parenthesis isat positioni, yields the position of the opening
parenthesis corresponding to the closest matching parentheses pair enclosing the one at positioni.

Munro and Raman [53] show how to compute all these operationsin constant time and requiring2n +
o(n) bits of space. They also show one of the main applications of maintaining a sequence of balanced
parentheses: the succinct representation of general trees, with the so-calledBP representation. Among the
practical alternatives, we have the representation of Geary et al. [22] and the one by Navarro [55, Section
6.1]. The latter has shown to be very effective for representing LZ-indexes [56].

DFUDS Tree Representation To get this representation [9] we perform a preorder traversal on the tree, and
for every node reached we write its degree in unary using parentheses. For example, a node of degree 3 reads
‘((()’ under this representation. Notice that a leaf is represented by ‘)’. What we get is almost a balanced
parentheses representation: we only need to add a fictitious‘(’ at the beginning of the sequence. A node of
degreed is identified by the position of the first of thed + 1 parentheses representing the node.

This representation requires2n + o(n) bits, and supports operationsparent(x) (which gets the parent
of nodex), child(x, i) (which gets thei-th child of nodex), subtreesize(x) (which gets the size of the
subtree of nodex, includingx itself), degree(x) (which gets the degree, i.e. the number of children, of node
x), childrank(x) (which gets the rank of nodex within its siblings [35]), andancestor(x, y) (which tell
us whether nodex is an ancestor of nodey), all in O(1) time. If we assume thatpar represents theDFUDS

sequence of the tree, then we have:

parent(x) ≡ select)(par, rank)(par, findopen(par, x − 1))) + 1

child(x, i) ≡ findclose(par, select)(par, rank)(par, x) + 1)− i) + 1

Operationdepth(x) (which gets the depth of nodex in the tree) can be also computed in constant time on
DFUDS by using the approach of Jansson et al. [35], requiringo(n) extra bits.

Given a node in this representation, say at positioni, its preorder position can be computed by counting
the number of closing parentheses before positioni; in other words,preorder(x) ≡ rank)(par, x − 1).
Given a preorder positionp, the corresponding node is computed byselectnode(p) ≡ select)(par, p) + 1.

Representingσ-ary Trees withDFUDS For cardinal trees (i.e., trees where each node has at mostσ chil-
dren, each child labeled by a symbol in the set{1, . . . , σ}) we use theDFUDS sequencepar plus an array
letts[1..n] storing the edge labels according to aDFUDS traversal of the tree: we traverse the tree in depth-
first preorder, and every time we reach a nodex we write the symbols labeling the children ofx. In this way,

8

the labels of the children of a given node are all stored contiguously inletts, which will allow us to compute
operationchild(x, α) (which gets the child of nodex with labelα ∈ {1, . . . , σ}) efficiently. In Fig. 3(c) we
show theDFUDS representation ofLZTrie for our running example.

We support operationchild(x, α) as follows. Suppose that nodex has positionp within the DFUDS

sequencepar, and letp′ = rank((par, p) − 1 be the position inletts for the symbol of the first child
of x. Let nα = rankα(letts, p′ − 1) be the number ofαs up to positionp′ − 1 in letts, and leti =
selectα(letts, nα + 1) be the position of the(nα + 1)-th α in letts. If i lies between positionsp′ and
p′ + degree(x) − 1, then the child we are looking for ischild(x, i − p′ + 1), which, as we said before, is
computed in constant time overpar; otherwisex has not a child labeledα. We can also retrieve the symbol
by whichx descends from its parent withletts[rank((par, parent(x))−1+ childrank(x)−1], where the
first term stands for the position inletts corresponding to the first symbol of the parent of nodex.

Thus, the time for operationchild(x, α) depends on the representation we use forrankα andselectα
queries [18, 23]. Notice thatchild(x, α) could be supported in a straightforward way by binary searching
the labels of the children ofx, in O(log σ) worst-case time and not using any extra space on top of array
letts. The scheme we have presented to representletts is slightly different to the original one [9], which
achievesO(1) time for child(x, α) for anyσ. However, our method is simpler to build, since the original
one is based on perfect hashing, which is expensive to construct.

3 The LZ-index Data Structure

3.1 Definition of the Data Structures

Assume that the textT [1..u] has been compressed using the LZ78 algorithm inton + 1 phrasesT =
B0 . . . Bn, as explained in Section 2.3. The data structures that conform LZ-index are [55, 56]:

1. LZTrie: is the trie formed by all phrasesB0 . . . Bn. Given the properties of LZ78 compression, this trie
has exactlyn + 1 nodes, each one corresponding to a phraseBi.

2. RevTrie: is the trie formed by all the reverse stringsBr
0 . . . Br

n. In this trie there could be internal nodes
not representing any phrase. We call these nodesempty.

3. Node: is a mapping from phrase identifiers to their node inLZTrie.
4. Range: is a data structure for two-dimensional searching in the space[0 . . . n] × [0 . . . n]. We store the

points{(revpreorder(t), preorder(t + 1)), t ∈ 0 . . . n− 1} in this structure, whererevpreorder(t) is
theRevTriepreorder of node for phraset (considering only non-empty nodes in the preorder enumera-
tion), andpreorder(t+1) is theLZTriepreorder for phraset+1. For each such point, the corresponding
t value is stored.

3.2 Succinct Representation of the Data Structures

The data structures that compose the LZ-index are built and represented as follows.

LZTrie. For the construction ofLZTriewe traverse the text and at the same time build a trie representing the
Lempel-Ziv phrases, spending (as usual) one pointer per parent-child relation. At stept (assumeBt = B` ·c),
we read the text that follows and step down the trie until we cannot continue. At this point we create a new
trie leaf (child of the trie node of phrasè, by symbolc, and assigning the leaf phrase numbert), go to the
root again, and go on with stept + 1 to read the rest of the text. The process completes when the last phrase
finishes with the text terminator “$”. In Fig. 3(a) we show theLempel-Ziv trie for the running example,

9

using pointers. After we build the trie, we can erase the textas it is not anymore necessary, since we have
now enough information to build the remaining index components.

Then we build the final succinct representation ofLZTrie, essentially using the parentheses representa-
tion of Munro and Raman [53], yet newer versions of the LZ-index [6] use theDFUDS representation [9].
Arraysids andletts are also created at this stage.

Node. Once theLZTrie is built, we free the space of the pointer-based trie and build Node. This is just an
array with then nodes ofLZTrie. If the i-th position of theidsarray corresponds to thej-th phrase identifier
(i.e., ids[i] = j), then thej-th position ofNode stores the position of thei-th node within the balanced
parentheses. As there are2n parentheses,Node requiresn log 2n bits.

RevTrie. To constructRevTriewe traverseLZTrie in preorder, generating each LZ78 phraseBi stored in
LZTrie in constant time, and then inserting it into atrie of reversed strings(represented with pointers). For
simplicity, empty unary paths are not compressed in the pointer-based trie. When we finish, we traverse the
trie and represent the trie topology ofRevTrieand the phrase identifiers in arrayrids. Empty unary nodes
are removed only at this step, and so the final number of nodes in RevTrieis n 6 n′ 6 2n.

Notice that if we usen′ log n bits for therids array, then in the worst caseRevTrierequires2uHk(T) +
o(u log σ) bits of storage, and the whole index requires5uHk(T)+o(u log σ) bits. Instead, we can represent
therids array withn log n bits (i.e., only for the non-empty nodes), plus a bitmap of2n+o(n) bits supporting
rank queries inO(1) time [51]. Thej-th bit of the bitmap is1 if the node represented by thej-th opening
parenthesis is not an empty node, otherwise the bit is0. Therids index corresponding to thej-th opening
parenthesis isrank(j). Using this representation,RevTrierequiresuHk(T) + o(u log σ) bits of storage.
This was unclear in the original LZ-index paper [55, 56].

Range. For Range, the data structure of Chazelle [12] permits two-dimensional range searching in a grid
of n pairs of integers in the range[0..n] × [0..n]. This data structure can be represented withn log n +
O(n log log n) bits of space [45] as follows. We assume first that the points are obtained from pairing two
permutations of{1, . . . , n}, i.e., there is exactly one point with first coordinatei for any0 6 i 6 n, and one
point with second coordinatej for any0 6 j 6 n.

To constructRange, we sort the set by the second coordinatej, and then we divide the set according to
the first coordinatei, to form a perfect binary tree where each node handles an interval of the first coordinate
i, and thus knows only the points whose first coordinate falls in that interval. The root handles the points with
first coordinate within[1..n] (i.e., all), and the children of a node handling the interval[i..i′] are associated
to [i..b(i + i′)/2c] and[b(i + i′)/2c + 1..i′]. Leaves handle intervals of the form[i..i].

Every tree nodev is then represented with a bit vectorBv indicating for each point handled byv whether
the point belongs to the left or right child. In other words,Bv[r] = 0 iff the r-th point handled by nodev (in
the order given by the second coordinatej) belongs to the left child. Every level of the tree is represented as
a single bit vector ofn bits, using data structures for constant-timerank andselect [51], which are needed
to support the search (as well as, given a node, finding the corresponding starting position within the level,
see [45] for more details). Thus, we only needO(log n) pointers to represent the levels of the tree, avoiding
in this way to store the pointers that represent the balancedtree.

This data structure supports counting the number of points that lie within a two-dimensional range in
O(log n) time, as well as reporting theocc points inside the search range inO((1 + occ) log n) time [45].
Since in our casen is the number of LZ78 phrases of textT , theO(n log log n) term in the space requirement
of the data structure is justo(u log σ) bits, and thus the space requirement isuHk(T) + o(u log σ) bits.

RNode. In the practical implementation of LZ-index [55, 56], theRangedata structure is replaced by
RNode, which is a mapping from phrase identifiers to their node inRevTrie. After we free the space of

10

the pointer-based reverse trie, we buildRNode from rids in the same way thatNode is built from ids. It is
important to note that, by usingRNode instead ofRange, the LZ-index cannot provide worst-case guaran-
tees at search time, bust just average-case guarantees. However, this approach has shown to be effective in
practice since it has a good average-case search time [56].

Overall Space Requirement.Using those succinct representations, each of the four structures that conform
LZ-index requiresn log n + o(u log σ) bits of space, which according to Lemma 1 isuHk(T) + o(u log σ)
bits, for k = o(logσ u). Hence, the final size of the LZ-index is4uHk(T) + o(u log σ) bits, for anyk =
o(logσ u). The LZ-index can be built inO(u log σ) time [55].

3.3 Experimental Indexing Space

A large amount of storage is needed to construct the LZ-index[56], mainly because of the pointer repre-
sentation of the tries used at construction time. In the experiments of the original LZ-index [56], the largest
extra space needed to buildLZTrie is that of the pointer-based trie, which is 1.7–2.0 times thetext size [56].

On the other hand, the indexing space for the pointer-basedreversetrie is, in some cases, 4 times the text
size. This is, mainly, because of the empty unary nodes. Thisspace dictates the maximum indexing space
of the algorithm. The overall indexing space was 4.8–5.8 times the text size for English text, and 3.4–3.7
times the text size for DNA. As a comparison, the construction of a plain suffix array without any extra data
structure requires 5 times the text size [49]

3.4 Reduced Versions of the LZ-index

New versions of the LZ-index have been introduced recently [6, 7, 5], which require less space than the
original LZ-index, in some cases also improving the search performance of the original LZ-index. One
of the approaches introduced to reduce the space is the so-called navigational-schemeapproach, which
consists in regarding the original LZ-index (the version using RNode instead ofRange, see Section 3.2) as
a navigation structure which allows us moving among the LZ-index components (i.e.,LZTrienodes,LZTrie
preorders, phrase identifiers,RevTrienodes, andRevTriepreorders).

Thus, the original LZ-index has the scheme:Node : phrase identifier7→ LZTrienode;RNode : phrase
identifier 7→ RevTrienode;ids : LZTriepreorder 7→ phrase identifier; andrids : RevTriepreorder 7→
phraseidentifier. As we have seen in Section 2.5 for theDFUDS representation, trie nodes and the correspond-
ing preorders are “connected” by means ofpreorder andselectnode operations, so we have a navigation
scheme that allows us moving back and forth from any index component to any other.

This approach allows us to study the redundancy introduced by the original index. Several new reduced
schemes have been introduced [5], allowing the same navigation yet requiring less space.

Scheme 2The so-called Scheme 2 of LZ-index [5] is as follows:ids : LZTriepreorder7→ phrase identifier;
rids−1 : phrase identifier7→ RevTriepreorder; andR : RevTriepreorder 7→ LZTriepreorder. Thus, the
space requirement is3uHk(T) + o(u log σ) bits of space. Though this scheme does not provide worst-case
guarantees at search time, it has shown to be efficient in practice, outperforming competing indexes in many
real-life scenarios [5]. Thus, we are also interested in itsspace-efficient construction in order to extend
its applicability. There exists another alternative requiring the same space as Scheme 2, called Scheme 1.
However, Scheme 2 outperforms it in most practical cases [5], and thus we disregard Scheme 1 in this paper.

11

Scheme 3 This LZ-index variant has the following scheme:ids : LZTriepreorder 7→ phrase identifier;
ids−1 : phrase identifier7→ LZTriepreorder;rids : RevTriepreorder 7→ phrase identifier; andrids−1 :
phrase identifier7→ RevTriepreorder. The space requirement is(2 + ε)uHk(T) + o(u log σ) bits of space,
since arraysids and rids are represented with the data structure for permutations ofMunro et al. [52].
This scheme has also shown to be efficient in practice, outperforming competing indexes in many real-life
scenarios and being able to require less space than Scheme 2 (yet, when requiring the same space, Scheme
2 outperforms Scheme 3 in many cases).

Scheme 4This scheme of LZ-index represents the following data:ids : LZTriepreorder7→ phrase identifier;
ids−1 : phrase identifier7→ LZTriepreorder;R : RevTriepreorder 7→ LZTriepreorder; andR−1 : LZTrie
preorder 7→ RevTriepreorder. The space requirement is also(2 + ε)uHk(T) + o(u log σ) bits of space,
since the inverse permutations are represented by the data structure of [52]. Though Scheme 3 outperforms
Scheme 4 in most practical scenarios [5], Scheme 4 is interesting by itself since its space can be reduced
even more, achieving interesting theoretical results.

The idea is to replace arrayR by a data structure allowing us to compute anyR[i], yet requiring less
than then log n bits required by the original array. Thus, for everyRevTriepreorder1 6 i 6 n we define
functionϕ such thatϕ(i) = R−1(parentlz(R[i])), andϕ(0) = 0 (operationparentlz is the parent operation
in LZTrie, yet working on preorders instead of on nodes as originally defined). This function works as a suffix
link in RevTrie[6]: given aRevTrienode with preorderi representing stringax (for a ∈ Σ,x ∈ Σ∗), the
RevTrienode with preorderϕ(i) represents stringx. An important result is thatR[i] can be computed by
means of functionϕ [6]. We also sampleεn values ofR in such a way that the computation ofR[i] (by
means ofϕ) takesO(1/ε) time in the worst case.

Functionϕ has the same properties as functionΨ of Compressed Suffix Arrays [28, 63], thus this can
be also compressed toO(n log σ) = o(u log σ) bits of space. The computation ofR−1 is supported also in
O(1/ε) time, by reverting the process used to computeR. For this, functionϕ′ is defined asWeiner links
[66] in RevTrie. The space requirement isεn log n + o(u log σ) bits. Thus we have:

Lemma 3 ([6, 7]). There exists a Lempel-Ziv compressed full-text self-indexrequiring (1 + ε)uHk(T) +
o(u log σ) bits of space, for anyk = o(logσ u) and any0 < ε < 1, which is able to locate (and count)
theocc occurrences of a patternP [1..m] in textT [1..u] in O(m2

ε
+ u

εσm/2) average time, which isO(m2

ε
) if

m > 2 logσ u.

Thus the LZ-index can be represented with almost optimal space (under the model of the empirical entropy
Hk(T)), yet we cannot provide worst-case guarantees at search time within this space.

We can get such worst-case guarantees at search time by adding the Rangedata structure, the two-
dimensional range search data structure as defined for the original LZ-index. This requiresn log n+o(u log σ)
extra bits of space, and thus we get:

Lemma 4 ([6, 7]). There exists a Lempel-Ziv compressed full-text self-indexrequiring (2 + ε)uHk(T) +
o(u log σ) bits of space, for anyk = o(logσ u) and any0 < ε < 1, which is able to: locate theocc
occurrences of a patternP [1..m] in text T [1..u] in O(m2

ε
+ (m + occ) log u) worst-case time; count the

number of pattern occurrences in timeO(m2

ε
+ m log u + occ); and determine whether patternP exists in

P in O(m2

ε
+ m log u) time.

Finally, we add theAlphabet-Friendly FM-index[18] of textT to this index, to get:

Lemma 5 ([7]). There exists a Lempel-Ziv compressed full-text self-indexrequiring (3 + ε)uHk(T) +
o(u log σ) bits of space, for anyk = o(logσ u) and any0 < ε < 1, which is able to: locate theocc

12

occurrences of a patternP [1..m] in textT [1..u] in O((m + occ
ε

) log u) worst-case time; count the number
of pattern occurrences inO(m) time; and determine whether patternP exists inP in O(m) time.

4 Space-Efficient Construction of the LZ-index

The LZ-index is a compressed full-text self-index, and as such it allows large texts to be indexed and stored
in main memory. However, the construction process requiresa large amount of main memory, mainly to
support the pointer-based tries used to build the final versions ofLZTrie andRevTrie(recall Section 3.3).
So our problem is: given a textT [1..u] over an alphabet of sizeσ, we want to construct the LZ-index forT
using as little space as possible and within reasonable time. We aim at an efficient algorithm to build those
tries in little memory, by replacing the pointer-based tries with space-efficient data structures that support
insertions. These can be seen as hybrids between pointer-based tries and the final succinct representations.

The space-efficient construction algorithm for LZ-index presented in [4] has a construction time of
the formO(σu). This makes the construction algorithm impractical for moderately-large alphabets. In the
sequel we shall achieveO(u(log σ + log log u)) time by using an improved dynamic representation.

In Sections 4.1 to 4.5 we assume that we have enough main memory to store the final LZ-index. In
Section 4.6 we study how to manage the memory dynamically, which is an important aspect fot dynamic data
structures, using a standard model [61] of memory allocation. In Section 4.7, we shall adapt our algorithm
to the cases in which there is no enough space to store the whole final index in main memory.

We show next how to space-efficiently construct the LZ-indexcomponents. From now on we assume
σ > 2, as otherwise the whole indexing problem is trivial.

4.1 Space-Efficient Construction ofLZTrie

The space-efficient construction ofLZTrie is based on a compact representation supporting a fast incremental
construction as we traverse the text. In either theBP andDFUDS representations, the insertion of a new node
at any position of the sequence implies to rebuild the sequence from scratch, which is expensive. To avoid
this we define ahierarchical representation, such that we rebuild only a small part of the entire original
sequence upon the insertion of a new node.

We incrementally cut the trie into disjointblockssuch that every block stores a subset of nodes represent-
ing a connected component of the whole trie. We arrange theseblocks in a tree by adding someinter-block
pointers, and thus the entire trie is represented by a tree ofblocks.

If a nodex is a leaf of a blockp, but is not a leaf of the whole trie, then nodex stores an inter-block
pointer to the representation of its subtree. Let us say thatthis pointer is pointing to blockq. We say thatq
is a child block ofp. In our representation, nodex is also stored in blockq, as a fictitious root node. Thus,
every block is a tree by itself, which shall simplify the navigation as well as the management of each block.

To summarize, every such nodex has two representations: (1) as a leaf in blockp; (2) as the root node of
block q. Note that the number of extra nodes introduced by duplicating nodes equals the number of blocks
in the representation (minus one), and also that we are enforcing that every node is stored in the same block
of its children, which also means that sibling nodes are all stored in the same block.

Rather than using a static representation for the trie blocks [4], which are rebuilt from scratch upon
insertions, this time we represent each block by using dynamic data structures, which can be updated in time
less than linear in the block size. We adapt the approach usedin [3] to represent succinct dynamicσ-ary
trees: We first reduce the size of the problem by dividing the trie into small blocks, and then represent every
block (i.e., smaller trie) with a dynamic data structure to avoid the total rebuilding of blocks upon updates.

13

Defining Block Sizes We divide theLZTrie into blocks ofN nodes each, whereNm 6 N 6 NM , for
minimum block sizeNm = Θ(log2 u) nodes and maximum block sizeNM > 2σNm nodes. We also need
NM = (σ log u)O(1), for exampleNM = Θ(σ log3 u) (we do not show the roundings, but it should be
clear that these must be integers). Hence, notice that we shall have one inter-block pointer out of at least
Nm nodes. Since each pointer is represented withlog u bits, and since we haven nodes in the tree, we have

n
Nm

log u = O(n/ log u) bits overall for inter-block pointers. The definition ofNM , on the other hand, is
such that it ensures that a blockp has room to store at least the potentialσ children of the block root (recall
that sibling nodes must be stored all in the same block). Also, when a block overflows we should be able to
split the block into two blocks, each of size at leastNm. By definingNM as we do, in the worst case (i.e.,
the case where the overflown block has the smallest possible size) the root of the block has some child with
at leastNm nodes, asNM > 1 + σNm. Thus, upon an overflow, we can create a new block of size at least
Nm from such subtree, requiring little space for inter-block pointers and maintaining the properties of our
data structure. The stricter factor 2 shall be useful for ouramortized analysis of block partitioning, whereas
the polylog upper bound is necessary to ensure short enough pointers within blocks.

Defining the Block Layout Each blockp of N nodes consists of:

– The representationTp of the topology of the block, using any suitable tree representation.
– A bit-vectorFp[1..N] (theflags) such thatFp[j] = 1 iff the j-th node ofTp (in preorder) has associated

an inter-block pointer. We shall representFp with a data structure forrank andselect queries.
– log NM bits to count the current numberN of nodes stored in the block.
– The sequenceidsp[1..N] of LZ78 phrase identifiers for the nodes ofTp, in preorder. Except for the

LZTrie root, every block root is replicated as a leaf in its parent block, as explained. In that case we store
the corresponding phrase identifier only in the leaf of the parent block. That is, fictitious roots in each
block do not store phrase identifiers. We uselog u bits per phrase identifier, instead of usinglog n bits
as in the final representation ofids. This is because before constructing the LZ78 parsing of thetext we
do not known, the number of phrase identifiers.

– The symbols (lettsp) labeling the edges in the block (the order of the symbols depends on the represen-
tation used forTp, recall Section 2.5). Each symbol useslog σ bits of space.

– A variable number of inter-block pointers, stored in data structureptrp. The number of inter-block
pointers varies from0 to N , and it corresponds to the number1s inFp.

In Fig. 3(b) we show an example of hierarchical representation of LZTrie for the running example text,
assuming thatBP is used to represent the trie topology of each block. If the subtree of thej-th node (in
preorder) of blockp is stored in blockq, thenq is a child block ofp and thej-th flag inp has the value1. If
the number of flags with value1 before thej-th flag inp is h, then theh-th inter-block pointer ofp points
to q. Note thath can be computed asrank1(Fp, j).

Since blocks are tries by themselves, inside a blockp we use the traditional trie-like descent process,
using operationchildp(x, α) onTp. From now on we use the subscriptp with the trie operations, to indicate
operations which are local to a blockp, i.e., disregarding the inter-block structure (e.g.,preorderp computes
the preorder of a node within blockp, and not within the whole trie, and so on). When we reach a block
leaf (with preorderj inside the block), we check thej-th flag inp. If Fp[j] = 1 holds in that block, then
we computeh = rank1(Fp, j) and follow theh-th inter-block pointer inp to reach the corresponding child
block q. Then we follow the descent insideq as before. Otherwise, ifFp[j] = 0, then we are in a leaf of the
whole trie, and we cannot descend anymore.

We represent the above components for blockp in the following way.

14

0

0

1

1

17

2
$

3

3

15

4
r

b

14

5
l

4

6

12

7
a

10

8
d

16

9
l

r

6

10

11

11

p

a

2

12

7

13

9

14
b

a

l

5

15

8

16

13

17

p

a

1

(a) Lempel-Ziv Trie (LZTrie), represented in the traditional (pointer-based) way.

() () ((()))

() () () () ()

1 2 5 8
a l _ a p

17 3 4
$ b l _r

() () () ()
15
r

12 10 16
a d l

()
11
p

(())
7 9
a b

13

14 6
) (()

() (()

)(

)

(b) Hierarchical representation of
LZTrie, usingBP inside the blocks.
Duplicate nodes are shown outside
the blocks.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

par: (((() ((((()) ())) ((()))) ()) () ()) () ())
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a l $ b l r r a d l p a b a p
(c) DFUDS representation ofLZTrie. The phrase identifiers are stored in preorder, and the sym-
bols labeling the edges of the trie are stored according to aDFUDS traversal.

Fig. 3. Different representations of the Lempel-Ziv trie and related data structures for the running example.

Representation of the Trie Topology,Tp To represent the trie topology of blockp we use the data structure
for dynamic balanced parentheses of [11] to represent theDFUDS [9] of the block. The main idea of Chan et
al. is to divide the original parentheses sequence into segmentsSi of O(log N) bits, which in our case also
meansO(log N) nodes per segment (by identifying each node with its first parenthesis). Every segmentSi

is stored in the leaves of a balanced binary treeT ′

p, such that concatenating the leaves from left to right gives
us back the original sequenceTp. Some information is stored in the internal nodes ofT ′

p in order to support
the operations on the parentheses sequence, as well as support insertions and deletions ofpairs of matching
parentheses. All the operations of Section 2.5 are supported inO(log N) time by navigatingT ′

p. In addition,
we store in every internal node ofT ′

p the number of opening parentheses within the left subtree, as well as
the total number of parentheses within the left subtree, such as in [46], in order to support operationsrank(,
rank), select(, andselect) overTp in O(log N) time.

All these operations on the sequence of parentheses allow usto support theDFUDS operations (recall
Section 2.5):parentp, childp(x, i), subtreesizep, degreep, preorderp, selectnodep, etc., all of them in
O(log N) = O(log NM) time. As we shall explain later in this section, the insertion of a new node in
DFUDS can be simulated by inserting a new pair of matching parentheses inTp, and thus we can handle it in
a straightforward way with the data structure of [11]. Deletions of leaves are handled in a similar way. The
space requirement isO(N) bits per block, which adds up toO(n) = o(u) bits overall2.

Representation of the Flags,Fp We represent the flags of blockp in preorder and using a dynamic data
structure forrank andselect over a binary sequence [46]. This data structure supportsrank, select, and
updates onFp in O(log N) worst-case time, and requiresN + o(N) bits of space. This data structure can
be connected withTp via operationspreorderp andselectnodep: Given a nodex in p, the corresponding
flag isFp[preorderp(x)]. GivenFp[j], on the other hand, the corresponding node inTp is selectnodep(j).

2 The space requirement of the trie topology can be reduced to2n + o(n) bits overall, see [3]. However,O(n) bits is sufficient
for our purposes.

15

When we insert a new node inTp, we insert a new flag (with value0 because the new node is inserted with
no related inter-block pointer) at the corresponding position (given bypreorderp). This data structure adds
n + o(n) = o(u) extra bits to our representation. Arroyuelo [3] gives a moreinvolved representation forFp,
requiringo(n) bits, yet the one we are using here is simpler yet adequate forour purposes.

Representation of the Symbols,lettsp We represent the symbols labeling the edges of the block according
to a DFUDS traversal onTp (see Section 2.5), yet this time we store them in differential form, except for
the symbol of the first child of every node, which is represented in absolute form. We then represent this
sequence ofN integers ofk′ = log σ bits each with the dynamic data structure for searchable partial sums of
[46], which supports all the operations (including insertions and deletions) inO(log N) time, and requiring
Nk′ + O(N) = N log σ + O(N) bits of space, adding overalln log σ + O(n) = o(u log σ) bits of space.

We can connectlettsp with Tp by usingrank(overTp. Given a nodex in Tp, the subsequencelettsp

[rank((Tp, x)..rank((Tp, x) + degreep(x) − 1] stores the symbols labeling the children ofx. To support
operationchildp(x, α), which shall be used to descend in the trie at construction time, we first computei←
rank((Tp, x) to obtain the position inlettsp for the first child ofx. We then computes← Sum(lettsp, i−
1), which is the sum of the symbols inlettsp up to positioni − 1 (i.e., the sum before the first child
of x). To compute the position of symbolα within the symbols of the children of nodex, we perform
j ← Search(lettsp, s + α). Thus, the node we are looking for is the(j − i + 1)-th child of x, which can
be computed bychildp(x, j − i + 1), in O(log N) time overall. To make surej is a valid answer, we use
operationdegreep(x) to check whetherj − i + 1 is smaller or equal to the degree ofx, and then we check
whetherSum(lettsp, j − i + 1)− s = α actually holds.

Representation of the Phrase Identifiers,idsp To store the phrase identifiers of the trie nodes, we define
a linked listLidsp for blockp, storing the identifiers in preorder. Given a new inserted nodex in Tp, we must
insert the corresponding phrase identifier at positionpreorderp(x) within Lidsp , so we must support the
efficient search of this position. The linked-list functionality is easily achieved by simplifying, for example,
a dynamic partial sums data structure [46], so that only accesses and insertions are permitted. For a list of
N elements, this data structure is a balanced tree storing circular arrays ofΘ(log N) list elements at the
leaves, and subtree sizes at internal nodes. It carries out all the operations inO(log N) time and poses an
extra space overhead ofO(N) bits.

We needN log u + O(N) bits of space to maintain the identifiers, which adds up ton log u + O(n) bits
overall. This isuHk(T) + o(u log σ) bits of space according to Lemma 1. Recall thatN = O(NM) in our
case, and therefore the time to manipulate the list isO(log σ + log log u) per operation.

Representation of the Inter-Block Pointers,ptrp For the inter-block pointers, we use also a linked list
Lptrp , managed in a similar way as forLidsp . Since blocks have at leastNm nodes, we have a pointer out of
(at least)Θ(log2 u) nodes, which addsO(n/ log n) = o(u/ log u) bits overall.

Construction ProcessThe construction ofLZTrieproceeds as explained in Section 3.2, using the symbols
in the text to descend in the trie, until we cannot descend anymore. This indicates that we have found the
longest prefix of the rest of the text that equals a phraseB` already in the LZ78 dictionary. Thus, we form a
new phraseBt = B` · c, wherec is the next symbol in the text, and then insert a new leaf representing this
phrase. However, this time the nodes are inserted in our hierarchicalLZTrie, instead of a pointer-based trie.

The insertion of a new node for the LZ78 phraseBt in the trie implies to update only the blockp in
which the insertion is carried out. Assume that the new leaf must become thej-th node (in preorder) within
the blockp, and that the new leaf is a new child of nodex in blockp (i.e., nodex represents phraseB`). We
explain next how to carry out the insertion of the new leaf within theDFUDS of Tp.

16

We must insert a new ‘(’ within the representation ofx (which simulates the increase of the degree of
nodex, because of the insertion of the new child), and inserting also a new ‘)’ to represent the new leaf
we are inserting. Assume that the new leaf will become the newi-th child of nodex. Therefore the new ‘(’
must be inserted to the right of the opening parenthesis already at positioni′ = x + degree(x) − i (recall
from Section 2.5 how operationchild(x, i) uses the opening parentheses defining nodex to descend to the
i-th child). Then, the new ‘)’ must be inserted at positioni′′ = findclose(Tp, i

′ + 1), shifting to the right
the last ‘)’ in the subtree of the(i − 1)-th child of x, which now becomes the new leaf. As a result, the
two inserted parentheses form a matching pair, which can be handled in a straightforward way with the data
structure of [11]. See Fig. 4 for an illustration.

Then, we add a new flag0 at positionj in Fp. Also, c is inserted at the corresponding position within
lettsp, andt is inserted at positionj within the identifiers of blockp (since these are stored in preorder). All
this takesO(log NM) = O(log σ + log log u) time.

)1st child 2nd child
3rd
child 4th child)(((()))

(a) A nodex of degree 4 and its corresponding subtree in theDFUDS represen-
tation of theLZTrie. Notice the relation among the four opening parentheses in
the definition ofx and the subtrees of the children of nodex.

1st child 2nd child
3rd
child))(((()()) 5th child)

(b) Insertion of a new child of nodex. The new leaf is inserted as the new fourth
child of x, and thus it is represented by the new bold pair of matching parentheses.
Notice how the degree ofx is increased to 5 with the new opening parenthesis. The
last closing parenthesis in the subtree of the third child ofx is shifted to the right and
now represents the new inserted leaf.

Fig. 4. Illustration of the insertion of a new leaf node in theDFUDS representation ofLZTrie.

Managing Block Overflows A block overflowoccurs when, at construction time, the insertion of a new
node must be carried out within a blockp of NM nodes. In such a case, we need to make room inp for the
new node by selecting a subset of nodes to be copied to a new child block (of p) and then will be deleted
from p. We explain this procedure in detail.

First we select a nodez in p whose local subtree (along withz itself) will be copied to a new child block.
In this way we ensure that a node and its children (and therefore all sibling nodes) are always stored in the
same block (recall that a copy ofz, as a leaf, will be kept inp).

Suppose that we have selected in this way the subtree of thej-th node (in preorder) in the block. Both
the selected nodez and its subtree are copied to a new blockp′, via insertions inTp′ . We must also copy to
p′ the flagsFp[preorderp(z) + 1..preorderp(z) + subtreesizep(z) − 1] (via insertions inFp′) as well as
the corresponding inter-block pointers within the subtreeof the selected nodez, which are stored in array
ptrp from positionrank1(Fp, preorderp(z)) + 1 up torank1(Fp, preorderp(z) + subtreesizep(z)− 1).

Next we add inp a pointer top′. The new pointer belongs toz, thej-th opening parenthesis inp (because
we selected its subtree). We compute the position for the newpointer asrank1(Fp, j), adding the pointer at
this position inLptrp , and then we set to1 the j-th flag inFp, updating accordingly therank/select data

17

structure forFp (the portion copied toFp′ must be deleted fromFp). Finally, we delete inp the subtree ofz
(via deletions inTp), leavingz as a leaf inp.

Thus, the reinsertion process can be performed in time proportional to the size of the reinserted subtree
(timesO(log NM)), by using the insert and delete operations on the corresponding dynamic data structures
that conform a block. However, we must be careful with the selection of nodez, which can be performed in
two different ways: upon a block overflow, we traverse blockp to select nodez, which takesO(NM) time in
the worst case, or looking forz in advance to overflows, as we perform the insertion of new nodes (using the
insertion path to look for possible candidates). We choose the latter option, since in this way we can obtain
a good amortized cost for updates, as we will see later in our analysis.

To quickly select nodez, we maintain in each blockp acandidate listCp [3], storing the local preorders
of the nodes that can be copied to a new child blockp′ upon block overflow. Withselectnode we can obtain
the candidate node corresponding to such a preorder. A subtree must have size at leastNm to be considered
a candidate. Thus, after a number of insertions we will find that a node (within the insertion path) becomes
a candidate. Let us think for a moment that we only maintain a candidate per block, and not a list of them.
It can be the case that a few children of the block root have received (almost) all the insertions, so we have a
few large subtrees within the block. When blockp overflows, we reinsert the only candidate to a new child
block, so we have no candidate anymore forp. We have to use the next insertions in order to find a new
one. However, it can be also the case that different childrenof the root ofp receive the new insertions, and
hence blockp could overflow again within a few insertions, without findinga new subtree large enough so
as to be considered a candidate (recall that we just use the insertion path to look for candidates). Thus, by
maintaining a list of candidates in each block, instead of a unique candidate per block, we can keep track of
all the nodes inp whose subtree is large enough, avoiding this problem.

Since the preorder of a node within a blockp can change after the insertion of a new node inp, we must
updateCp in order to reflect these changes. In particular, we must update the preorders stored inCp for
all candidate nodes whose preorder is greater than that of the new inserted node. To perform these updates
efficiently, we representCp using a searchable partial sum data structure [46]. Thus, the original preorder
Cp[i] is obtained by performingSum(Cp, i) in O(log N) time. Letx be the new inserted node. Then, with
j = Search(Cp, preorderp(x)) we find the first candidate (in preorder) whose preorder must be updated,
and we perform operationUpdate(Cp, j, 1). In this way, we are increasingCp[j] by 1, automatically updat-
ing all the preorders inCp that have changed after the insertion ofx, in O(log N) time overall.

If we keep track of every candidate of size at leastNm, then every timep overflows there will be already
candidate blocks. The reason is, again, thatNM > 1+ σNm, and thus that at least one of the children of the
root must have size at leastNm. Since we use the descent process to look for candidates, we will find them
as soon as their subtrees become large enough. In other words, the subtree of a node becomes larger as we
descend through the node many times to insert new nodes, until eventually finding a candidate.

We must also ensure thatCp requires little space (so we cannot have too many candidates). The size of
the local subtree (i.e., only considering the descendant nodes stored in blockp) of every candidate must be
at leastNm. Also, we enforce that no candidate node descends from another candidate, in order to bound
the number of candidates. To maintainCp, every time we descend in the trie to insert a new LZ78 phrase,
we maintain the last nodez in the path such thatsubtreesizep(z) > Nm. When we find the insertion point
of the new nodex, say at blockp, before addingz to Cp we first performp1 = Search(Cp, preorderp(z)),
and thenp2 = Search(Cp, preorderp(z) + subtreesizep(z)). Then,z is added toCp whenever: (1)z is
not the root of blockp, and (2) there is no other candidate in the subtree ofz (that is,p1 = p2 holds).

If we find a candidate nodez′ which is an ancestor of the prospective candidatez, then after inserting
z to Cp we deletez′ from Cp. Thus, we keep the lowest possible candidates, avoiding that the subtree of

18

a candidate becomes too large after inserting it inCp, which would not guarantee a fair partition into two
blocks of size betweenNm andNM . Because of Condition (2) above, there are one candidate outof (at
least)Nm nodes; thus, the total space forCp is n

Nm
log NM + O(n) bits, which iso(n/ log u).

The reinsertion cost is in this way proportional to the size of p′, since finding nodez now takesO(log NM)
time (because of the partial-sum data structure used to representCp). Notice that the first time a node is
reinserted, the reinsertion cost amortizes with the cost ofthe original insertion. Unfortunately, there are no
bounds on the number of reinsertions for a given node. However, we shall show that multiple reinsertions
of a node over time amortize with the insertion of other nodes. We use the followingaccounting argument
[14] to prove the amortized cost of insertions. Letĉ = 2 be the amortized cost of normal insertions (without
overflows), beingc = 1 the actual cost of an insertion Therefore, every insertion spends one unit for the
insertion itself, and reserves the remaining unit for future (more costly) operations. Let us think that we have
separate reserves, one per block of the data structure. We shall prove that every time a block overflows, it
has enough reserves so as to pay for the costly operation of reinserting a set of nodes.

In particular, every time a block overflows, its reserve isNM − I, whereI was the initial number of
nodes for the block (I = 0 holdsonly for the root block). LetI ′ be the number of nodes of the new block
p′. Then we must prove thatNM − I > I ′ always holds, that is,NM > I + I ′. We need to prove:

Lemma 6. For every candidate nodex in blockp, it holds thatsubtreesizep(x) < σNm.

Proof. By maintaining the lowest possible candidates, we find the smallest possible ones. If a node cannot
be chosen as a candidate, this means that its subtree size is smaller thanNm nodes (another possibility is that
there is another candidate within the subtree, yet this caseis not interesting here). Therefore, the smallest
subtree that can be chosen as a candidate may have up toNm− 1 nodes in each children, and hence its total
size is at most1 + σ(Nm − 1) < σNm. ut

Because of this, blocks are created withI ′, I < σNm nodes. As we have chosenNM > 2σNm, it
follows thatNM > I + I ′. This means that every reinsertion of a node has been alreadypaid by some
node at insertion time.3 Thus, the insertion cost isO(log NM) amortized. Aftern insertions, the overall cost
amortizes toO(n log NM) = O(n(log σ + log log u)).

Once we solved the overflow, the insertion of the new node is carried out either inp′ or in p, depending
whether the insertion point lies within the moved subtree ornot, respectively. Notice that there is room for
the new node in either block.

Hierarchical LZTrie Construction Analysis As the trie hasn nodes, we needO(n) + (n + o(n)) +
(n log σ+O(n))+(n log u+O(n))+o(n/ log n)+o(n/ log n) bits of storage to represent the trie topology,
flags, symbols, identifiers, inter-block pointers, and candidate lists, respectively. Because of Lemma 1, the
space requirement isuHk(T) + o(u log σ) bits, for anyk = o(logσ u).

When constructingLZTrie, the navigational costper symbol of the text isO(log NM) = O(log σ +
log log u), for a total worst-case timeO(u(log σ + log log u)). On the other hand, the cost of rebuilding
blocks after an insertion isO(log NM) amortized, and therefore the total cost amortizes toO(n(log σ +
log log u)) = o(u(log σ + log log u)). Therefore, the total construction time isO(u(log σ + log log u)).

Representing the FinalLZTrie Once we construct the same hierarchical representation forLZTrie, we
delete the text since this is not anymore necessary, and thenuse the hierarchicalLZTrie to build the final
version ofLZTrie in O(n(log σ + log log u)) time. We perform a preorder traversal on the hierarchical tree,

3 More generally we could have setNM ≥ (1 + α)σNm for any constantα > 0, and the analysis would have worked with
ĉ = 1 + 1/α.

19

transcribing the nodes to a linear representation. Every time we copy a node, we check the corresponding
flag, and then decide whether to descend to the correspondingchild block or not. We also allocaten log σ =
o(u log σ) bits of space for the final arrayletts, andn log n bits for arrayids.

Thus, the maximum amount of space used is2uHk(T) + o(u log σ), since at some point we store both
the hierarchical and final versions ofLZTrie. We then free the hierarchicalLZTrie, thus we end up with a
representation requiringuHk(T) + o(u log σ) bits. Thus, we have proved:

Lemma 7. There exists an algorithm to construct the LZTrie for a textT [1..u] over an alphabet of sizeσ and
with k-th order empirical entropyHk(T), in O(u(log σ + log log u)) time and using2uHk(T) + o(u log σ)
bits of space, for anyk = o(logσ u).

4.2 Space-Efficient Construction ofRevTrie

For the space-efficient construction ofRevTrie, we use the technique of Section 4.1, to represent not the
original reverse trie but itsPatricia tree [50], which compressesemptyunary paths, yielding an important
saving of space. As we still maintain empty non-unary nodes,the number of nodes inRevTrieis n′ 6 2n.

Throughout the construction process we store in the nodes ofthe reverse trie pointers toLZTrie nodes,
instead of the corresponding block identifiersrids stored by the finalRevTrie. Each pointer useslog 2n
bits, since theLZTrie parentheses representation has2n positions (either inBP or DFUDS representations,
recall thatLZTrie is already in final static form). We store these pointers toLZTrie in the same way as for
arrayidsp in Section 4.1, in preorder according toRevTrieand spendingO(1) extra bits per element for the
linked list functionality. The aim is to obtain the text of the phrase represented by aRevTrienode, since we
are compressing empty-unary paths and the string represented by a node is not available otherwise (unlike
what happens with the traditional Patricia trees). This connection is given byNode in the final LZ-index.
However, at construction time we avoid accessingNode when building the reverse trie, so we can build
Node after both tries have been built, thus reducing the maximum indexing space.

Empty non-unary nodes are marked by storing in each blockp a bit vectorBp (represented in the same
way asFp, with a data dynamic structure supportingrank andselect queries). We store pointers toLZTrie
nodes only for non-emptyRevTrienodes, so we storen of them. This shall reduce the indexing space of the
preliminary definition of the algorithm [4], which shall be useful later when constructing reduced versions
of LZ-index, yet introducing some additional problems in our representation, as we shall see below.

As we compress empty-unary paths, the trie edges are labeledwith strings instead of single symbols. The
Patricia tree stores only the first symbol of the edge labels,using the same partial sum approach as forLZTrie.
We store the Patricia-tree skips of every trie node in a linked list skipsp, in preorder and using a linked list
as foridsp in LZTrie, usinglog log u bits per node. To enforce this limit, we insertemptyunary nodes when
the skip exceedslog u. Hence, one out oflog u empty unary nodes could be explicitly represented. In the
worst case there areO(u) empty unary nodes, of whichO(u

log u
) can be explicitly represented. This means

O(u
log u

(O(1) + log log u + log σ)) = o(u log σ) extra bits overall in the hierarchical representation (this is
for the space ofTp, Fp, Bp, skipsp, andrlettsp, plus their overheads). Since we use a linked list forskipsp,
it takesO(log NM) time to find the skip corresponding to a given node.

Construction Process To construct the reverse trie we traverse the finalLZTrie in depth-first order, gener-
ating each LZ78 phraseBi stored inLZTrie, and then inserting its reverseBr

i into the reverse trie.
When searching for a given strings in RevTrie, we descend in the trie checking only the first symbols

stored in the trie edges, using the skips to know which symbolof s to use at each node. When the longest
possible prefix of strings is thus consumed, say upon arriving at nodevr of RevTrie, we must compare the

20

string represented byvr againsts, in order to determine whether the prefix is actually presentin RevTrie
or not. To compute the string corresponding to nodevr we use the connection with theLZTrie: we follow
the pointer to the correspondingLZTrienode, and follow the upward path inLZTrie to extract the symbols.
However, we are storing some empty nodes inRevTrie, for which we do not store pointers toLZTrie.

Assume that nodevr in block p is empty, and represents strings′. Since every descendant ofvr has
s′ as a suffix, if we map toLZTrie from any of these descendants we would find strings′ also by reading
the upward path inLZTrie (we know the length of the string we are looking for, so we knowwhen to stop
going up inLZTrie). Notice that there exists at least one non-empty descendant v′r of vr sinceRevTrieleaves
cannot be empty (because they always correspond to an LZ78 phrase). So we can use theLZTriepointer of
v′r to find s′. Since we only store pointers for non-empty nodes, the pointer of v′r can be found at position
rank1(Bp, preorderp(vr)) + 1 within the pointer array.

However, there exists an additional problem: the local subtree of nodevr can be exclusively formed by
empty nodes, in which case finding the non-empty nodev′r is not as straightforward as explained, sincev′r
is stored in a descendant block. This problem comes from the fact that, upon a block overflow in the past,
we might have chosen empty nodesz descending fromvr, whose subtrees were reinserted into new blocks.

To solve this problem, we store in every blockp a pointer toLZTrie, which is representative for the
nodes stored in the blockp. If a block is created from a non-empty node, then we can storethe pointer of
that node. In case of creating a new blockp′ from an empty node, if the new blockp′ is going to be a leaf
in the tree of blocks, then it will contain at least a non-empty node. Thus, we associate withp′ the pointer
to LZTrie of this non-empty node. If, otherwise,p′ is created as an internal node in the tree of blocks, then
it can be the case that all of the nodes inp′ are empty. In this case, we choose any of the descendants blocks
of p′ and copy its pointer top′. This pointer has been “inherited” (in one or several steps)from a leaf block,
thus this corresponds to a non-emptyRevTrienode. Thus, in case that the local subtree ofvr is formed only
by empty nodes, we take one of the blocks descending fromvr (say the first in preorder) and use theLZTrie
pointer associated to that block, in order to compute strings′.

An important difference with theLZTrieconstruction is that inRevTriewe do not necessarily insert new
leaves: there are cases where we insert a new non-emptyunary internal node (corresponding to the phrase
we are inserting inRevTrie). A unary node is represented as ‘()’ in DFUDS, which is a matching pair and
hence the insertion can be handled by the data structure of [11]. If we insert the new node as the parent of
an existing nodex, then the insertion point is just before the representationof x in theDFUDS sequence.

Hierarchical RevTrie Construction Analysis The hierarchical representation of the reverse trie requires
O(n′) + (n′ + o(n′)) + (n′ + o(n′)) + (n log 2n + O(n)) + (n′ log σ + O(n′)) + (n′ log log u + O(n′)) +
o(n′/ log n′) + o(n′/ log n′) bits of storage to represent the trie topology, flags, bit vector of empty nodes,
pointers toLZTrie stored in the nodes, symbols, skips, pointers (both inter-block and extraLZTrie pointers
associated to each block), and candidates, respectively. As we compress empty unary paths,n 6 n′ 6

2n holds, and thus, the space is upper bounded byn log n + o(u log σ), which according to Lemma 1 is
uHk(T) + o(u log σ) bits of space, for anyk = o(logσ u).

For each reverse phraseBr
i to be inserted in the reverse trie,1 6 i 6 n, the navigational cost is

O(|Br
i | log NM) (this subsumes theO(|Br

i |) time needed to extract the string fromLZTrie, in order to
do the final check in the Patricia tree). Since

∑n
i=1 |Br

i | = u, the total navigational cost to construct the
hierarchicalRevTrieis O(u log NM). Since the number of node insertions isn′ = O(n), the total cost is
O(u(log σ + log log u)), just as forLZTrie.

Constructing the Final RevTrie After we construct the hierarchical reverse trie, we construct RevTrie
directly from it in O(n′ log NM) = o(u log σ) time, replacing the pointers toLZTrie by the corresponding

21

phrase identifiers (rids). This raises the space to3uHk(T) + o(u log σ) bits. We then free the hierarchical
trie, dropping the space to2uHk(T) + o(u log σ) bits. Thus, we have proved:

Lemma 8. Given the LZTrie for a textT [1..u] over an alphabet of sizeσ and withk-th order empirical
entropyHk(T), there exists an algorithm to construct the corresponding RevTrie inO(u(log σ +log log u))
worst-case time and using a total space of2uHk(T) + o(u log σ) bits of space on top of the space required
by the final LZTrie, for anyk = o(logσ u).

4.3 Space-Efficient Construction ofRange

To construct theRangedata structure, recall that for every LZ78 phraseBt of T we must store the point
(preorderr(vr), preorderlz(vlz)), wherevr is theRevTrienode corresponding toBr

t , andvlz is theLZTrie
node corresponding to phraseBt+1. We allocate memory space for a temporary arrayRQ[1..n] of n log n
bits, storing the points to be represented byRange. Array RQ is initially sorted by the first coordinates of
the points. Notice that since there is a point for every first coordinate1 6 i 6 n, the first coordinate of
every point is represented simply by the index of arrayRQ, thus saving space. In other words,RQ[i] = j
represents the point(i, j). Notice also thatRQ is a permutation of{0, . . . , n}.

To generate the points, we first notice that for aRevTriepreorderi = 0, . . . , n (corresponding only to
non-empty nodes) representing the reverse phraseBr

t , we can obtain the corresponding phrase identifier
t = rids[i], and then with the inverse permutationids−1[t + 1] we obtain theLZTrie preorder for the node
corresponding to phraseBt+1. Thus, we defineRQ[i] = ids−1[rids[i] + 1].

Therefore, we start by computingids−1 on the same space ofids, using the algorithm of Lemma 2,
requiringO(n) time andn extra bits of space. Then, we allocaten log n bits for arrayRQ, and traverse
RevTriein preorder. For every non-empty node with preorderi we setRQ as defined above. The total space
is thus raised to3uHk(T) + o(u log σ) bits. Next, we recoverids from ids−1, using again Lemma 2.

After building RQ, to constructRange we must sort the points inRQ by the second coordinate (recall
Section 3.2), which in our space-efficient representation of the points means using the second coordinates as
array indexes, and storing the first coordinates as array values4. This means sorting the current values stored
in arrayRQ. However, since these values along with the corresponding array indexes represent points, after
sorting the points we must recall the original array index for every value, so as to store that value in the array.
This is straightforward if we store both coordinates of the points, requiring2n log n bits of space. However,
we are trying to reduce the indexing space, and therefore usean alternative approach.

Notice that sinceRQ[i] = j represents the point(i, j), RQ−1[j] = i shall also represent the point
(i, j), yet the points in the inverse permutationRQ−1 are sorted by their second coordinate (i.e., inRQ−1

the second coordinates are used as array indexes). Thus, we use the algorithm of Lemma 2 to construct
RQ−1 on top of the space forRQ, in O(n) time and requiringn extra bits of space. Now, we can finally
build Range from RQ−1. We allocate space forlog n bit vectors ofn bits each, requiringn log n extra bits,
thus raising the space usage to4uHk(T) + o(u log σ) bits. Then, we constructRange just as explained in
Section 3.2 and using the points represented byRQ−1. This takesO(n log n) time, which in the worst case
is O(u log u

logσ u
) = O(u log σ). We then freeRQ−1, dropping the space to3uHk(T) + o(u log σ) bits.

Lemma 9. Given a textT [1..u] over an alphabet of sizeσ and withk-th order empirical entropyHk(T),
and given the correspondingLZTrie andRevTrie data structures, there exists an algorithm to construct

4 We could choose to defineRQ in a different way, storing the first coordinate of the pointsand using the second coordinate as
array index. However, by using our approach we can constructarrayRQ with a sequential scan over arraysrids andR itself.
The importance of this fact shall be made clear later in this section.

22

theRange data structure requiring a maximum total space of2uHk(T)+ o(u log σ) extra bits on top of the
space forLZTrie andRevTrie, and takesO(u log σ) time in the worst case.

4.4 Construction of theNode Mapping and Remaining Data Structures

After building RevTrie, we proceed to construct theNode mapping as follows: we traverseLZTrie in pre-
order, and for every nodex with LZ78 identifieri, we store inNode[i] the node position within the corre-
sponding parentheses sequence. This increases the total space requirement to4uHk(T) + o(u log σ) bits,
which is the final space required by the LZ-index. The processcan be carried out inO(n) time.

As we said in Section 3.2, in a practical implementation theRangedata structure is replaced by the
RNode mapping [56]. This is built fromrids in the same way asNode is built from ids. The process
explained in Section 4.3 is not carried out in such a case.

The original LZ-index is able to report the pattern occurrences in the formatJt, offsetK, wheret is
the phrase number where the occurrence starts, andoffset is the distance between the beginning of the
occurrence and the end of the phrase. To map these occurrences into text positions, Arroyuelo et al. [6] add
a bit vectorTPos marking the phrase beginnings, which is then represented with a data structure forrank
andselect and requiringo(u log σ) bits of space [60], see [7] for details. A more practical approach [5]
consists in sampling the starting positions of some phrases, and then representing the starting position of
every other phrase as an offset from the previous sampled phrase (thus saving space). With high probability,
the space requirement of this alternative approach isn + O(n log log u) = o(u log σ) bits of space by
properly choosing the sample rates. See [5] for details. Both data structures can be constructed without
requiring any extra space, and thus to simplify we omit them in this paper.

4.5 The Whole Compressed Indexing Process

The whole compressed construction of LZ-index is summarized in the following steps:

1. We build the hierarchicalLZTrie from the text. We can then erase the text.
2. We buildLZTrie from its hierarchical representation. We then free the hierarchicalLZTrie.
3. We build the hierarchical representation of the reverse trie fromLZTrie.
4. We buildRevTrie from its hierarchical representation, and then free the hierarchicalRevTrie.
5. We buildRange.
6. We buildNode from ids.

In Table 2 we show the total space and time requeriment at eachstep. The meaning of the third column in
the table shall be made clear later in Section 4.7.

Table 2.Space and time requirements of each step in the whole compressed indexing process. We assumek = o(logσ u), and that
the tree topology of blocks is represented withDFUDS.

Indexing step Maximum total space Maximum main-memory space Indexing time

1 uHk(T) + o(u log σ) uHk(T) + o(u log σ) O(u(log σ + log log u))
2 2uHk(T) + o(u log σ) uHk(T) + o(u log σ) O(u(log σ + log log u))
3 2uHk(T) + o(u log σ) uHk(T) + o(u log σ) O(u(log σ + log log u))
4 3uHk(T) + o(u log σ) uHk(T) + o(u log σ) O(u(log σ + log log u))
5 4uHk(T) + o(u log σ) uHk(T) + o(u log σ) O(u log σ)
6 4uHk(T) + o(u log σ) uHk(T) + o(u log σ) O(u/ logσ u)

23

4.6 Managing Dynamic Memory

The model of memory allocation is a fundamental issue of succinct dynamic data structures, since we must
be able to manage the dynamic memory fast and without requiring much extra memory space due to memory
fragmentation [61]. We assume a standard model where the memory is regarded as an array, with words
numbered0 up to 2w − 1. The space usage of an algorithm at a given time is the highestmemory word
currently in use by the algorithm. This corresponds to the so-calledMB memory model [61], which is the
most restrictive one. Notew = log n + o(log n), as we needΘ(n log n) bits of space to build our index5.

We manage the memory of every trie block separately, each in a“contiguous” memory space. However,
trie blocks are dynamic as we insert of new nodes, hence the memory space for trie blocks must grow
accordingly. If we use anExtendible Array(EA) [10] to manage the memory of a given block, we end up
with a collection of at mostO(n/Nm) = O(n/ log2 u) EAs, which must be maintained under the operations:
create, which creates a new empty EA in the collection;destroy, which destroys an EA from the collection;
grow(A), which increases the size of arrayA by one;shrink(A), which shrinks the size of arrayA by one;
andaccess(A, i), which access thei-th item in arrayA.

Raman and Rao [61] show how operationaccess can be supported inO(1) worst-case time,create,
grow andshrink in O(1) amortized time, anddestroy in O(s′/w) time, wheres′ is the nominal size (in bits)
of arrayA to be destroyed. The whole space requirement iss + O(a∗w +

√
sa∗w) bits, wherea∗ is the

maximum number of EAs that ever existed simultaneously, ands is the nominal size of the collection.
To simplify the analysis we store every component of a block in different EA collections (i.e., we have a

collection forTps, a collection forlettsps, and so on). The memory forlettsp, Fp, Cp, Tp, Lidsp , etc. inside
the corresponding EAs is managed as in the original work [46].

Thus, we use operationgrow on the corresponding EA every time we insert a node in the tree, and
operationcreate to create a new block upon block overflows, both inO(1) amortized time. Operationshrink,
on the other hand, is used by our representation after we reinsert the subtree upon block overflow, inO(1)
amortized time. Finally, operationdestroy over the blocks is used when destroying the whole hierarchical
trie. As the cost to build the trie isO(log NM) per element inserted, which addsΘ(log u) bits to the data
structure, the cost per bit inserted isO(log σ+log log u

log u
). The cost fordestroy is justO(1/w) = O(1

log u
) per

bit, which is subsumed by the earlier construction cost.
Let us analyze the space overhead due to EAs for the case ofTp. Since we only insert nodes into our tries,

we have that the maximum number of blocks that we ever have isa∗ = O(n/Nm). As the nominal size of

the EA collection forTp is O(n) bits, the EA requiresO(n)+ O(nw
Nm

+ n
√

w
Nm

) = O(n) bits of space [61].

A similar analysis can done for the collections supportingFp andCp. The nominal size of the collection for

lettsp is n log σ + O(n), and thus we haven log σ + O(n) + O(nw
Nm

+ n
√

w log σ
Nm

) = n log σ + O(n) bits

overall. For the collection supportingidsp we obtainn log u+O(n)+O(nw
Nm

+n
√

w log u
Nm

) = n log n+O(n)

bits of space. In general, the whole space overhead due to memory management isO(n) bits.
To complete the definition of our memory allocation model, itremains to say that we can store the EAs

representing the block components within a unique EA. In this case, the number of EAs in the collection is
a∗ = O(1), since we have a constant number of block components. The nominal size of the whole collection
is s = n log u + n log σ + O(n) bits (where theO(n) term includes the space for the collections ofTp, Fp,
etc., as well as the space overhead due to the EA memory management of these collections). Hence, the total
space overhead isO(w +

√
wn log u) bits, which isO(

√
n log u) = O(

√
n log n) = o(n) bits.

Now that we have defined our memory allocation model, we can conclude:

5 Note this is consistent with our earlierw = Θ(log u) assumption for the RAM model, aslog u = Θ(log n).

24

Theorem 1. There exists an algorithm to construct the LZ-index for a text T [1..u] over an alphabet of size
σ and withk-th order empirical entropyHk(T), using4uHk(T)+o(u log σ) bits of space andO(u(log σ+
log log u)) time. This holds for anyk = o(logσ u). The space and time bounds are valid in the standard
modelMB of memory allocation.

4.7 Constructing the LZ-index in Reduced-Memory Scenarios

We assume next a model where we have restrictions in the amount of main memory available, such that
we cannot maintain the whole index in main memory. So, we aim at reducing as much as possible the
main memory usage of our algorithms. We shall prove that the LZ-index can be constructed as long as the
available memory isuHk(T) + o(u log σ) bits (i.e., the compressed text can be stored in main memory).
This has applications, for instance, in text search engines, where we can use a less powerful computer to
carry out the indexing process, devoting a more powerful oneto answer user queries.

Since we have assumed that we have enough secondary storage space so as to store the final index (see
Section 2.1), we will use that space to temporarily store on disk certain LZ-index components which will
not be needed in the next indexing step, and then possibly loading them back to main memory when needed.
This does not mean that the index is built on secondary storage, but that in certain cases we use the available
secondary memory to store an index component which is not currently needed, thus reducing the peak of
main memory usage. However, and as we have seen before throughout Section 4, our indexing algorithm is
independent of this fact, and we can choose not to use the diskat all when enough main memory is available.

In the following, we show how to adapt our original algorithmto this scenario. At every step we will
show the space requirement in two ways: themaximum amount of main memoryused at that step and thetotal
amount of memoryused at that step (main-memory plus secondary-memory space). The latter corresponds
to the amount of main memory used at every step if we do not use the disk along the construction process.

Step (1) We build the hierarchicalLZTrie from the text. We can then erase the text. The total and main-
memory space isuHk(T) + o(u log σ) bits.

Step (2)We buildLZTrie from its hierarchical representation. To construct the final ids array while trying
to reduce the maximum main-memory space, we do not allocate space for it at once. Since this array is
indexed by preorder, and since we perform a preorder traversal on the trie, the values in arrayids are
produced by a linear scan. Thus, we only allocate main-memory space for a constant number of components
of the array (e.g., a constant number of disk pages), which are stored on disk upon filling them. This process
performs(n log n)/B (sequential) disk accesses. The symbols (letts) and the trie topology are maintained
in main memory for the next step, requiring2n + n log σ + o(n log σ) = o(u log σ) bits of space.

Thus, the maximum main-memory space isuHk(T)+ o(u log σ) bits, while the maximum total amount
of space is2uHk(T)+ o(u log σ) bits, since we store the hierarchicalLZTrie in main memory and arrayids
on disk. We then free the hierarchicalLZTrie, ending up with a representation requiringo(u log σ) bits of
main-memory space, and a total ofuHk(T) + o(u log σ) bits.

Step (3) We build the hierarchical representation of the reverse trie fromLZTrie. Recall that every non-
emptyRevTrienode stores a pointer to the correspondingLZTrie node. This raises the total space require-
ment to2uHk(T) + o(u log σ) bits of space. The maximum main-memory usage isuHk(T) + o(u log σ)
bits of space (recall that arrayids is on disk).

Step (4)We buildRevTrie from its hierarchical representation as follows. We store the pointers toLZTrie
associated withRevTrienodes in a linear array, in the same way as done in Step (2) for array ids in LZTrie.
In this way we do not need extra main-memory space on top of thehierarchicalRevTrie. After storing

25

the pointers on disk and representing the remaining components of RevTrie, the total space is raised to
3uHk(T) + o(u log σ) bits, since we have at the same time the finalLZTrie (array ids is on disk), the
hierarchicalRevTrie(in main memory), and the finalRevTrie(pointers toLZTrieare on disk). Then, we free
the hierarchicalRevTrie, thus reducing the total and main-memory space.

Then, we proceed to replace the pointers by the corresponding phrase identifiers. We first load array
ids to main memory (leaving a copy of it on disk, for further use).Then, we perform a sequential scan on
the array of pointers, bringing to main memory just a constant number of disk pages, then following these
pointers toLZTrie to get the phrase identifier stored inids (note this means that the accesses toids are at
random, hence we needids in main memory) and storing these identifiers in the same space of the pointers,
writing them to disk and loading the next portion of the pointer array. Finally, we leave a copy of arrayids
in main memory (this shall be useful for the next step).

The maximum main-memory space needed along this step isuHk(T) + o(u log σ) bits, which corre-
sponds to the space of the hierarchicalRevTrie, and we end up with a representation requiringuHk(T) +
o(u log σ) bits of main memory, and3uHk(T) + o(u log σ) bits overall. The number of disk accesses per-
formed is(4n log n)/B.

Step (5) We build Range, basically using the procedure of Section 4.3, yet with somechanges in the
memory management in order to reduce the peak of memory usage. Therefore, we computeids−1 on the
same space required byids, using the algorithm of Lemma 2, requiringO(n) time andn extra bits of
space. Then, we traverserids in preorder and for every non-empty node with preorderi we setRQ[i] ←
ids−1[rids[i]+1]. Notice that both arraysrids andRQ are accessed sequentially, which means that we can
maintain just a constant number of components of these arrays in main memory. Arrayids−1, on the other
hand, is accessed randomly, so we maintain it in main memory.In this way, the maximum main-memory
space needed along this process isuHk(T) + o(u log σ) bits.

When this process finishes, the total space is raised to4uHk(T)+o(u log σ) bits, and then we free array
ids−1 (recall that we have a copy of the original arrayids still on disk), dropping the space to3uHk(T) +
o(u log σ) bits of space, and the main-memory space too(u log σ) bits, since we maintain just the trie
topology and symbols of bothLZTrieandRevTrie. This process takesO(n) time overall.

After building RQ, to constructRange we must sort the points inRQ by the second coordinate, by
means of constructingRQ−1. Thus, we bringRQ to main memory (and delete it on disk), and use the
algorithm of Lemma 2 to constructRQ−1 on top of the space forRQ, in O(n) time and requiringn extra bits
of space on top ofRQ−1. To buildRange from RQ−1, instead of allocating memory for thelog n bit vectors
of n bits each, which would requiren log n extra bits of space on top ofRQ−1, we just allocate memory
level per level (i.e., we allocate justn bits per level), construct that level fromRQ−1, just as explained in
Section 3.2, and then we save that level to disk. Thus, the maximum main-memory space requirement to
constructRange is n log n + o(u log σ) = uHk(T) + o(u log σ) bits of space. The maximum total space
is 2n log n + o(u log σ) = 2uHk(T) + o(u log σ) extra bits on top of the space forLZTrie andRevTrie,
which means a total space of4uHk(T) + o(u log σ) bits. The construction process takesO(n log n) time,
which in the worst case isO(u log u

logσ u
) = O(u log σ). After gettingRange, we free arrayRQ−1 and we are

done in this step with a partial representation of LZ-index requiring3uHk(T)+o(u log σ) bits. The number
of disk accesses is(4n log n)/B.

Step (6) We build Node from ids, by traversingLZTrie in preorder. In this way, arrayids is sequentially
traversed, whileNode is randomly accessed. Thus, we allocaten log 2n bits of space forNode, and maintain
it in main memory. Arrayids, on the other hand, is brought by parts to main memory, according to a
sequential scan. Finally, we saveNode to disk. The number of disk accesses is(2n log n)/B.

26

Thus, we need onlyuHk(T) + o(u log σ) bits of main-memory space to constructNode, and this in-
creases the total space requirement to4uHk(T) + o(u log σ) bits, which is the final space required by the
LZ-index. The process can be carried out inO(n) time. We use the same procedure in case of using the
RNodedata structure instead ofRange.

In the third column of Table 2 we show the maximum main-memoryspace requirement at each step. The
overall number of disk accesses is(11n log n)/B = (11uHk(T) + o(u log σ))/B. Thus, we have proved:

Theorem 2. There exists an algorithm to construct the LZ-index for a text T [1..u] over an alphabet of size
σ, using a maximum main-memory space ofHk(T) + o(u log σ) bits andO(u(log σ + log log u)) time. The
algorithm performs(7uHk(T)+ o(u log σ))/B disk accesses, plus those to write the final index. This holds
for anyk = o(logσ u). The total space used by the algorithm is4uHk(T) + o(u log σ) bits. The space and
time bounds are valid in the standard modelMB of memory allocation.

5 Space-Efficient Construction of Reduced LZ-indexes

There exist new reduced versions of LZ-index, some of which are able to replace the original LZ-index
in many practical scenarios [6, 5]. Henceforth, in this section we show how to adapt our space-efficient
algorithm to build these new indexes.

Throughout this section we assume that the final tries are represented withDFUDS, just as in [6, 7].
We also assume the reduced-memory scenario as in Section 4.7. Recall that we present the space usage of
our algorithms in two ways: the total maximum main-memory space and the maximum total space (main-
memory plus secondary-memory space) at every step.

5.1 Space-Efficient Construction of Scheme 2

We perform the following steps to build Scheme 2 of LZ-index (recall its definition in Section 3.4).

1. We build the hierarchicalLZTrie from the text. This takesO(u(log σ + log log u)) time, and the maxi-
mum space requirement isuHk(T) + o(u log σ) bits.

2. We derive the finalLZTrie from the hierarchical one, which is then freed. TheLZTrie stores the trie
topologypar, the symbolsletts, and the phrase identifiersids, requiringuHk(T) + o(u log σ) extra
bits. This takesO(u(log σ+log log u)) time because of the traversals on the hierarchicalLZTrie. We use
the approach of Section 4.7 to constructids, without requiring extra asymptotic space. The total space
usage is2uHk(T) + o(u log σ) bits, while the maximum main-memory usage isuHk(T) + o(u log σ)
bits. The main-memory space after freeing the hierarchicaltrie is o(u log σ) bits. The resulting number
of I/Os is(uHk(T) + o(u log σ))/B, because of the construction of arrayids.

3. We build the hierarchicalRevTriefrom theLZTrie, as in Section 4.2. This takesO(u(log σ + log log u))
time. The total space usage is raised to2uHk(T) + o(u log σ) bits. The maximum main-memory space
is uHk(T) + o(u log σ) bits.

4. We build the finalRevTriefrom the hierarchical one, storing the trie topologyrpar, the Patricia-tree
skips, the symbolsrletts, and bit vectorB marking the empty nodes, requiring(n′ + u

log u
)(3 +

log log u+log σ) = o(u log σ) extra bits of space. In order to reduce the indexing space, arrayrids−1 is
built later. ArrayR is built from the pointers toLZTrie, replacing them by the correspondingLZTriepre-
order (recall that we applyrank onpar to get theLZTriepreorder of a node). We constructR by using
the same approach as for arrayids in Step (2), performing(uHk(T)+o(u log σ))/B extra I/Os. The total
time isO(u(log σ + log log u)). We then free the space of the hierarchicalRevTrie. The maximum total

27

space is3uHk(T) + o(u log σ) bits, while the maximum main-memory space isuHk(T) + o(u log σ)
bits. We end up usingo(u log σ) bits of main-memory space.

5. To space-efficiently construct arrayrids−1, we first constructrids in the following way: we start by
loading arrayids to main memory and erasing it from disk. Then, for every non-empty RevTrienode
with preorderj we storerids[j]← ids[R[j]]. In this way, arraysrids andR are traversed sequentially,
for increasing values ofj. Then, we can store/load them to/from disk by parts (respectively), without
requiring extra main-memory space. After we buildrids, the total space has raised to3uHk(T) +
o(u log σ) bits. We then store arrayids to disk, and free its main-memory space (hence dropping the
total space). Finally, we loadrids to main memory, and use the procedure of Lemma 2 to construct
rids−1 on top ofrids, to finally storerids−1 on disk. The overall time isO(n). The maximum total
space is3uHk(T) + o(u log σ) bits, while the maximum main-memory space isuHk(T) + o(u log σ)
bits. The total number of disk accesses performed by this process is(6uHk(T) + o(u log σ))/B.

This is a practical version of the LZ-index, and thus we do notstoreRange. Thus, we conclude:

Theorem 3. There exists an algorithm to construct the Scheme 2 of the LZ-index for a textT [1..u] over
an alphabet of sizeσ, and withk-th order empirical entropyHk(T), using a total space of3uHk(T) +
o(u log σ) bits andO(u(log σ + log log u)) time, for anyk = o(logσ u). The maximum main-memory space
used at any time to construct Scheme 2 can be reduced touHk(T)+o(u log σ) bits, in such a case performing
(5uHk(T) + o(u log σ))/B disk accesses, plus those to write the final index. The space and time bounds
are valid in the standard modelMB of memory allocation.

5.2 Space-Efficient Construction of Scheme 3

To build Scheme 3 of LZ-index, we first build theLZTrie in O(u(log σ+log log u)) time, storingpar, letts,
andids. This requires a maximum of2uHk(T)+o(u log σ) bits of space, and ends up with a representation
requiringuHk(T) + o(u log σ) bits. The maximum main-memory space isuHk(T) + o(u log σ) bits, using
the same procedure as in Section 4.7, Step (2). This requires(uHk(T) + o(u log σ))/B disk accesses.

We then construct the hierarchicalRevTrie, storing pointers toLZTrie nodes for connectivity among
tries. Thus, the space requirement raises to2uHk(T) + o(u log σ) bits. We build the finalRevTriestoring
justrpar, skips, andrletts, and discard the pointers toLZTrie, temporarily losing the connectivity between
tries. We then free the hierarchicalRevTrie, which drops the space used touHk(T) + o(u log σ) bits.

Next we allocate memory space for arrayrids[1..n], requiringn log n extra bits. We traverse theLZTrie
in preorder, and generate every phraseBt stored in it (assuming thati is the preorder of the corresponding
LZTrie node). We then look forBr

t in theRevTrie. Recall that at this point we do not have the connectivity
between tries, which is generally used to search in theRevTrie. However, since this string exists for sure
in RevTrie(because it exists as an LZ78 phrase inLZTrie), we only need to descend in theRevTrieusing
the skips, up to consumingBr

t . At this point we have arrived at the node forBr
t , which has preorderj in

RevTrie, without the need of accessing theLZTrie to extract the string. Then we setrids[j]← ids[i] (notice
the sequential scan onids, which is brought to main memory by parts). Then, we store array rids on disk,
and free its main memory space. This requires(2uHk(T) + o(u log σ))/B extra disk accesses.

Now, we go on to compute the inverse permutations forids andrids arrays. We first loadids from disk,
performing(uHk(T) + o(u log σ))/B extra disk acceses, and construct on it the data structure of[52], in
order to support the computation ofids−1. This requiresεn log n + O(n) extra space, for0 < ε < 1, and
takesO(n) time if we use the following procedure.

Let Aids[1..n] be an auxiliary bit vector, and letBids[1..n] be a bit vector marking which elements of
ids have an associated backward pointer. Both bit vectors are initialized to all zeros.

28

We start from the first position ofids, and follow the cycles of the permutation. We mark every visited
position i of the permutation asAids[i] ← 1. We also mark one out of1/ε elements when following the
cycles, by setting to1 the appropriate position inBids. We stop following the current cycle upon arriving to
a positionj such thatAids[j] = 1; then, we move sequentially from positionj to the next positionj′ such
thatAids[j

′] = 0, and repeat the previous process.
Each element inids is visited twice in this process (this is similar to the process done in the proof of

Lemma 2), thus this first scan takesO(n) time.
Then, we go on a second scan on the cycles ofids. We setAids to all zeros again, and allocate array

Bwd of εn log n bits of space, which shall store the backward pointers of thepermutation. We preprocess
arrayBids with data structures to support operationrank [51]. We start from the first element and follow
the cycles once again. Visited elements are marked inAids, as before. Every time we reach a positioni in
the permutation such thatBids[i] = 1, we store a backward pointer to the previously visited position j in
the cycle, such thatBids[j] = 1 (this means that there are1/ε elements between these two positions within
the cycle). In other words, we setBwd[rank1(Bids, i)]← j.

This second scan takes alsoO(n) time, thus the overall process takesO(n) time. We finally free the
space ofAids and maintain bit vectorBids as a marker of the positions storing the backward pointers.

Then, we storeids and the data structure forids−1 on disk, and free its main-memory space. This yields
((1 + ε)uHk(T) + o(u log σ))/B disk accesses. Finally, we build onrids the data structure of [52], to
support the efficient computation ofrids−1, with ((2 + ε)uHk(T) + o(u log σ))/B extra disk accesses.
Thus, we conclude:

Theorem 4. There exists an algorithm to construct the Scheme 3 of the LZ-index for a textT [1..u] over an
alphabet of sizeσ, andk-th order empirical entropyHk(T), using(2+ ε)uHk(T)+o(u log σ) bits of space
andO(u(log σ + log log u)) time. This holds for any0 < ε < 1 and anyk = o(logσ u). The main-memory
space used at any time to construct Scheme 3 can be reduced to(1 + ε)uHk(T) + o(u log σ) bits, in such
a case performing(5uHk(T) + o(u log σ))/B disk accesses, plus those to write the final index. The space
and time bounds are valid in the standard modelMB of memory allocation.

5.3 Space-Efficient Construction of Index of Lemma 3 and Relatives

To construct the LZ-index of Lemma 3 without (asymptotically) requiring extra space, we will need two
passes over the text, and several traversals over theLZTrie andRevTrie(yet the number of traversals is a
constant). This is because we must be careful not to surpass the reduced space requirement of this index,
(1 + ε)uHk(T) + o(u log σ) bits. We carry out the following steps in order:

1. We build the hierarchicalLZTrie, just storing the trie topologyTp and the symbolslettsp, without storing
the phrase identifiersidsp in each trie blockp. This requiresO(n log σ) = o(u log σ) bits of space, and
takesO(u(log σ + log log u)) time. We cannot yet erase the text, as we need it at a later step.

2. We build the finalLZTrie from its hierarchical representation, inO(u(log σ + log log u)) time and re-
quiring extraO(n log σ) bits of space. Recall that we do not store the phrase identifiers ids. We then
free the hierarchicalLZTrie.

3. We traverseLZTrie in preorder, generating each LZ78 phraseBi in constant time per string, and insert
Br

i into a hierarchicalRevTrie. We store pointers toLZTrienodes in theRevTrienodes, just as in Section
4. This requires a maximum ofuHk(T) + o(u log σ) bits of space after the hierarchicalRevTrieis built,
and takesO(u(log σ + log log u)) time.

4. We build the finalRevTriefrom its hierarchical representation, storing just the tree topologyrpar, the
Patricia-tree skips, and the symbolsrletts, requiring o(u log σ) extra bits of space. The pointers to

29

LZTrie nodes are not stored, but these were used just to provide the connectivity between tries while
constructingRevTrie. We then free the hierarchicalRevTrie. This takesO(u(log σ + log log u)) time.
The maximum space requirement isuHk(T) + o(u log σ) bits (before freeing the hierarchicalRevTrie),
and we end up with a representation using justo(u log σ) bits.

5. We allocate memory for arrayR[1..n], of n log n bits of space, which is constructed as follows. We
traverse theLZTrie in preorder, and for every phraseBi, we look forBr

i in RevTrie, which exists for sure
and therefore we do not need the connection between tries in order to search. This takesO(|Br

i | log σ)
time. Letvlz be theLZTrienode corresponding toBi. Then we storeR[preorder(vr)]← preorder(vlz).
The overall work onLZTrie is O(n log σ), since each string is generated inO(log σ) time (because of the
data structure used to representletts). For theRevTrie, on the other hand, we have that

∑n
i=1 |Br

i | = u,
and thus the overall time isO(u log σ). We then sampleεn values ofR, as explained in [7].

6. We allocate space for arraysVW andSW [7], which are used to compute functionϕ′ in RevTrie. This
addsO(n log σ) = o(u log σ) extra bits. We traverse theRevTriein preorder, and for every non-empty
node with preorderi we map toLZTrie usingR[i], and then write sequentially the degree ofR[i] in
unary inVW , and the symbols labeling the children ofR[i] in SW . This takesO(n) time overall. Then
we preprocessVW andSW with data structures to supportrank andselect on them.

7. We build onR the data structure for inverse permutations of [52], using the same procedure as in Section
5.2, raising the overall space requirement to(1+ ε)uHk(T)+ o(u log σ) bits. This takesO(n) time. We
then sampleεn values ofR−1, as explained in [7].

8. We reuse the space allocated for arrayR to build the uncompressed representation of functionϕ. Just
as in Step (5), we do not need the connection between tries in order to navigate theRevTrie, and hence
we do not need the information of arrayR. Recall from [6] thatϕ acts as a suffix link inRevTrie,
and we only store suffix links for then non-empty nodes. Henceforth, we traverse again theLZTrie
in preorder, and generate each phraseBi = xa in O(log σ) time, for x ∈ Σ∗, anda ∈ Σ. Then we
search foraxr andxr in RevTrie, obtaining non-empty nodesvr andv′r respectively. Thus, we store
ϕ[preorder(vr)]← preorder(v′r), and go on with the next phrase inLZTrie.
Thus, the work for phraseBr

i = xa takesO((|axr| + |xr|) log σ) = O(|Br
i | log σ) time, and thus the

overall time isO(
∑n

i=1 |Br
i | log σ) = O(u log σ).

9. We build the compressed version ofϕ, requiring only extraO(n log σ) = o(u log σ) bits for the final
compressed representation ofϕ. The representation ofϕ is as follows, profiting from the fact thatϕ
can be divided into (up to)σ strictly increasing subsequences. Rather than storingϕ[i], we store the
δ-code [16] of the differencesϕ[i] − ϕ[i − 1] whenever thei-th string ofRevTrie(in preorder, i.e., in
lexicographic order) starts with the same symbol as that of the(i− 1)-th string. Otherwise, we store the
δ-code ofϕ[i]. In order to accessϕ[i] in constant time, absolute values ofϕ are inserted everyO(log n)
bits, which addsO(n) extra bits. See [6, 7] for more details. We then free the uncompressedϕ.
We could alternatively use the approach of [11] to constructϕ, which is originally defined to construct
functionΨ of Compressed Suffix Arrays [29, 63] inO(u log u) time and requiring onlyO(u log σ) bits
of space. In the case of constructingϕ = R−1(parentlz(R[i])), for everyRevTriepreorderi = 1, . . . , n,
with this alternative approach this would takeO(n log n + n

ε
) = O(u log σ + u log σ

ε log u
) time, for any

0 < ε < 1, requiring no asymptotic extra space (just theo(u log σ) bits forϕ). In our case, however, we
have previously allocated space for arrayR, which we use to constructϕ much faster. At the end of this
step we drop the space requirement toεuHk(T) + o(u log σ) bits.

10. We finally allocate memory for arrayids[1..n], and set it with all zeros. We also seti← 1. We perform
a second pass onT to enumerate the LZ78 phrases (this yields(u log σ)/B extra disk accesses in case
the text is stored on disk), descending in theLZTriewith the symbols ofT . Every time we reach a node
vlz in LZTrie, we check whetherids[preorder(vlz)] is 0 or not. In the affirmative case, this means that

30

the corresponding phrase has not yet been enumerated, and thus we storeids[preorder(vlz)] ← i and
seti← i + 1. We go back to theLZTrie root and go on with the next symbol ofT . In case we arrive at a
nodevlz with ids[preorder(vlz)] 6= 0, then we continue the descent from this node, since its phrase has
been already enumerated. This takesO(n log σ) time provided theLZTrie is represented withDFUDS.
Finally, we can erase the text.

Theorem 5. There exists an algorithm to construct the LZ-index of Lemma3 for a textT [1..u] over an
alphabet of sizeσ, and withk-th order empirical entropyHk(T), using(1 + ε)uHk(T) + o(u log σ) bits of
space andO(u(log σ+log log u)) time. This holds for any0 < ε < 1 and anyk = o(logσ u). The algorithm
performs two passes over textT , thus requiring(u log σ)/B disk accesses in addition to those for writing
the final index. The space and time bounds are valid in the standard modelMB of memory allocation.

We can use this algorithm to construct the LZ-index of Lemma 4, which only adds theRangedata
structure, which in turn can be constructed with the same procedure used in Section 4.7, Step (5). Since
this requires2uHk(T) + o(u log σ) bits of space to be constructed, we buildRangebefore Step (5) of the
previous algorithm. Thus we conclude:

Corollary 1. There exists an algorithm to construct the LZ-index of Lemma4 for a textT [1..u] over an
alphabet of sizeσ, and withk-th order empirical entropyHk(T), using(2 + ε)uHk(T) + o(u log σ) bits of
space andO(u(log σ+log log u)) time. This holds for any0 < ε < 1 and anyk = o(logσ u). The algorithm
requires(u log σ + 2uHk(T) + o(u log σ))/B disk accesses in addition to those to write the final index to
disk. The space and time bounds are valid in the standard model MB of memory allocation.

Finally, the LZ-index of Lemma 5 adds theAlphabet-Friendly FM-index[18], which according to [25]
can be constructed withuHk(T)+ o(u log σ) bits of space inO(u log u(1 + log σ

log log u
)) time. Then, we have:

Corollary 2. There exists an algorithm to construct the LZ-index of Lemma5 for a textT [1..u] over an
alphabet of sizeσ, and withk-th order empirical entropyHk(T), using(3 + ε)uHk(T) + o(u log σ) bits of
space andO(u log u(1+ log σ

log log u
)) time. This holds for any0 < ε < 1 and anyk = o(logσ u). The algorithm

requires(u log σ + uHk(T)+ o(u log σ))/B disk accesses, in addition to those to write the final index. The
space and time bounds are valid in the standard modelMB of memory allocation.

6 Experimental Results

We implemented a simplification of the algorithm presented in Section 4, which shall be tested in this
section. We run our experiments on an Intel(R) Pentium(R) 4 processor at 3 GHz, 4 GB of RAM and 1MB
of L2 cache, running version 2.6.13-gentoo of Linux kernel.We compiled the code withgcc 3.3.6 using
full optimization. Times were obtained using 10 repetitions.

6.1 A Practical Implementation of Hierarchical Tries

We implement our construction algorithms for Scheme 2 and Scheme 3, and use a simpler representation
for the hierarchical trie, just as defined in our original work [4]. In this simpler representation, every block
in the tree uses contiguous memory space, which stores all the block components. We define different block
capacitiesNm < N2 . . . < NM , and say that a block of sizeNi is able to store up toNi nodes. When we
want to insert a node in a blockp of sizeNi < NM which is already full, we first create a new block of size
Ni+1, copy the content ofp to the new one, and then insert the new node within this block.This is called
a grow operation. If the full blockp is of sizeNM , we say thatp overflows. In such a case we proceed as

31

explained in Section 4.1, with the only difference that the subtree to be reinserted is searched by traversing
the whole block (we choose the subtree of maximum size not exceedingNM/2 nodes, just as in [4]).

To ensure a minimum fill ratio0 < α < 1 in the trie blocks, thus controlling the wasted space, we define
Ni = Ni−1/α, for i = 2, . . . ,M , and1 6 Nm 6 1/α. Notice that parameterα allows us for time/space
trade-offs: smaller values ofα yield a poor utilization of blocks, yet they trigger a smaller number ofgrow
operations (which are expensive) as we insert new nodes. Theopposite occurs for large values ofα.

The block representation is completely static: the whole block is rebuilt from scratch upon insertions, or
upon block overflows. We do not store information to quickly navigate the parentheses within each block.
So, we navigate them by brute force (using precomputed tables to avoid a bit-per-bit scan, just as for the
balanced parentheses data structure by Navarro [56]). In this way, navigations can be a little bit slower, yet
we save space and time reconstructing these data structuresafter every insertion. We will show, however,
that this is a very efficient representation for our intermediate tries, achieving competitive results in practice.

We use the following parameters throughout our experiments: Nm = 2, NM = 1024, andα = 0.95,
according to the preliminary results obtained in [4]. We assume the reduced-memory model presented in
Section 4.7. We also show the results for the model in which only main memory is used, where in most cases
the maximum total space coincides with the size of the final LZ-index. We use thememusage application
by Ulrich Drepper6 to measure the peaks of main memory usage. Since our algorithms need to use the disk
to store intermediate partial results, we measure the user time plus the system time of our algorithms.

We show the results only for Scheme 2 and Scheme 3, since theseare the most competitive in practice
[5], and also because the most critical points along the indexing algorithm (i.e., the construction of the
hierarchical tries) is the same for all schemes (including the original LZ-index). For Scheme 3, we choose
parameters1/ε = 1 and1/ε = 15 for the inverse-permutation data structures. These represent the extreme
cases (both for time and space requirements) tested in [5]; intermediate values offer interesting results as
well. Note that when1/ε = 1 the space requirement of Scheme 3 is the same as that of the original LZ-index.

6.2 Indexing English Texts

For the experiments with English texts we use the 1-GB file provided in thePizza&Chili Corpus[19], down-
loadable fromhttp://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz.

In Table 3(a) we show the results for English text. As it can beseen, the most time-consuming tasks
along the construction process are that of building the hierarchical representations of the tries. ForLZTrie,
the construction rate is about 1.01 MB/sec, while forRevTriethe result is about 0.39 MB/sec. Thus,RevTrie
is much slower thanLZTrie to be built. The overall average indexing rate is 0.29 MB/secfor Scheme 2, 0.29
MB/sec for Scheme 3 (1/ε = 1), and 0.28 MB/sec for Scheme 3 (1/ε = 15). As it can be seen, the sample
rate of the inverse permutations in Scheme 3 does not affect much the indexing speed.

For Scheme 2, the maximum main-memory peak is reached at Step3, and it is of about 548 MB. This
means about 0.54 times the size of the original text needed toconstruct the Scheme 2 for the English text.
This is 0.59 times the space of the final Scheme 2. When comparing the space required by the hierarchical
trie representations with that required by the final trie representations, we have 411,928,076 bytes for the
hierarchicalLZTrieand 408,876,348 bytes for the hierarchicalRevTrie, versus 410,873,083 bytes forLZTrie
and 309,412,004 bytes forRevTrie. This means that the hierarchicalLZTrie requires about 1.01 times the
size of the finalLZTrie, while the hierarchicalRevTrierequires about 1.32 times the size of the finalRevTrie.
The bigger difference betweenRevTrierepresentations comes from the fact that the hierarchicalRevTrie
stores the symbols labeling the arcs, while in practice the final RevTriedoes not. Table 4(a) summarizes.

6 http://pizzachili.dcc.uchile.cl/utils/memusage/memusage-2.2.2.tar.gz

32

Table 3.Experimental results for English text and Human Genome. Numbers in boldface indicate the final index size in every case.

(a) English Text.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 411,928,076 411,928,076 909.37
2 505,729,592 822,801,159 17.55
3 574,548,639 819,749,431 2,554.07
4 454,026,216 883,576,755 15.01
5 & 6 491,169,360 965,869,767 52.19
Total 574,548,639 965,869,767 3,549.20

Scheme 3 1 411,928,076 411,928,076 898.40
1/ε = 1 2 505,729,592 822,801,159 17.51

3 574,548,639 819,749,431 2,590.78
4 454,026,216 883,576,755 14.86
5 & 6 491,169,3601,204,608,375 62.00
Total 574,548,639 1,204,608,375 3,583.56

Scheme 3 1 411,928,076 411,928,076 896.88
1/ε = 15 2 505,729,592 822,801,159 17.46

3 574,548,639 819,749,431 2,588.83
4 454,026,216 883,576,755 14.81
5 & 6 274,463,684 771,197,007 102.80
Total 574,548,639 883,576,755 3,620.87

(b) Human Genome.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 1,233,336,206 1,233,336,206 2,440.33
2 1,428,595,278 2,442,409,424 51.73
3 1,677,938,853 2,467,406,392 13,966.22
4 1,405,350,330 2,665,257,752 45.00
5 & 6 1,579,033,6962,985,958,274 181.96
Total 1,677,938,853 2,985,958,274 16,685.28

Scheme 3 1 1,233,336,206 1,233,336,206 2,443.83
1/ε = 1 2 1,428,595,278 2,442,409,424 51.98

3 1,677,938,853 2,467,406,392 13,791.08
4 1,405,350,330 2,665,257,752 44.93
5 & 6 1,579,033,6963,775,475,122 211.81
Total 1,677,938,853 3,775,475,122 16,543.63

Scheme 3 1 1,233,336,206 1,233,336,206 2,445.02
1/ε = 15 2 1,428,595,278 2,442,409,424 51.61

3 1,677,938,853 2,467,406,392 13,812.29
4 1,405,350,330 2,665,257,752 44.92
5 & 6 841,516,9322,300,440,426 365.18
Total 1,677,938,853 2,665,257,752 16,719.02

The results are very similar for Scheme 3 and1/ε = 1. For 1/ε = 15, however, the peak of memory
usage when considering the total indexing space at each stepis reached at Step 4, and it is slightly greater
than the space needed by the final Scheme 3 (more precisely, 1.15 times the size of the final Scheme 3).

As a comparison, we indexed a 500-MB prefix of this text with the original construction algorithm of
Scheme 2, using an approach similar to that used in [56], withnon-space-efficient intermediate represen-
tation for the tries. The peak of main memory is 1,566 MB (thismeans 3.13 times the size of the original
text) 7, with an indexing rate of about 1.29 MB/sec (see Table 4(b)).This means that our indexing algorithm
is 4.60 times slower than the original indexing algorithm (see column “Slowdown” in Table 4(b)), yet we
require 5.80 times less memory (see column “Space reduction” in Table 4(b)). The intermediateLZTrie re-
quired 751,817,455 bytes (extrapolating, this is 3.66 times the size of our hierarchicalLZTrie, see column
“IntermediateLZTrie” in Table 4(b)), while the intermediateRevTrierequired 1,185,969,250 bytes (extrap-
olating, this is 5.79 times the size of our hierarchicalRevTrie, see column “IntermediateRevTrie” in Table
4(b)). Note the bigger difference amongRevTrierepresentations. This is because we are not only using a
space-efficient representation, but also because we are compressing empty unary paths at reverse-trie con-
struction time. Thus, we can conclude that our space-efficient trie representations are effective to reduce the
indexing space of LZ-index schemes. The price is, on the other hand, a slower construction.

6.3 Indexing the Human Genome

For the test on DNA data we indexed the Human Genome8, whose size is about 3,182MB. In Table 3(b)
we show the results obtained with our construction algorithm. The indexing rate for the hierarchicalLZTrie

7 It is important to note that the original algorithm uses justmain memory to construct Scheme 2
8 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz.

33

Table 4.Some statistics for our construction algorithms.

(a) Statistics for our space-efficient indexing algorithm for Scheme 2. The results for
Scheme 3 are similar.

Text Main-memory Size hierarchical Size hierarchical
peak LZTrie (bytes) RevTrie(bytes)

English 0.54 times text size 411,928,076 309,412,004
0.59 times size of final (1.01 times size of (1.32 times size of
Scheme 2 finalLZTrie) final RevTrie)

Human Genome 0.50 times text size 1,233,336,206 1,209,073,218
0.44 times size of final (1.02 times size of (1.27 times size of
Scheme 2 finalLZTrie) final RevTrie)

XML 0.40 times text size 90,563,835 84,591,900
0.61 times size of final (1.07 times size of (1.29 times size of
Scheme 2 finalLZTrie) final RevTrie)

Proteins 1.05 times text size 839,446,471 807,660,745
0.51 times size of final (0.99 times size of (1.28 times size of
Scheme 2 finalLZTrie) final RevTrie)

(b) Main statistics for the construction of Scheme 2 versus the non-space-efficient original
algorithm.

Text Main-memory Indexing rate Slowdown Space Intermediate Intermediate
peak (MB/secs) reduction LZTrie RevTrie

English 1,566 MB 1.29 4.60 5.80 3.66 5.74
(500 MB) (3.13× text)

Genome 1,275 MB 1.86 9.78 5.10 3.22 5.95
(500 MB) (2.55× text)

XML 862 MB 2.31 5.25 7.50 2.68 9.02
(3.02× text)

Proteins 1,781 MB 1.82 9.58 3.39 2.41 3.04
(500 MB) (3.56× text)

is about 1.30 MB/sec, while forRevTrieit is about 0.23 MB/sec. The total indexing time (user time plus
system time) is about 4.63 hours, which means and overall indexing rate of about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory peak of the algorithm, as well as a compari-
son between intermediate and final trie representations. See Table 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefix of the Human Genome.

Table 5 shows the practical results for the best indexing algorithms we know of. The results have been
taken from the original papers indicated in the table. As a comparison, W.-K. Hon et al. [31, 30] index the
Human Genome with the CSA in about 24 hours, using a Pentium IVprocessor at 1.7 GHz with 512 KB
of L2 cache, and 4 GB of main memory, running Solaris 9 operating system. Despite the difference in CPU
rate of our machine compared to Hon et al.’s, the difference in indexing time suggests us that the LZ-index
can be space-efficiently constructed in much less time than CSAs. Hon et al. also construct the FM-index
in about 4 extra hours, for a total of about 28 hours. The algorithm of [15], on the other hand, indexes the
Human Genome in about 8.52 hours, using secondary storage and just a constant amount of main memory.

34

Ours is a relevant practical result, specifically for biological research, since it demonstrates that it is feasible
to index the Human Genome within less than 5 hours and in the main memory of a desktop computer.

Table 5. Comparison of indexing algorithms to construct an index forthe Human Genome. For suffix trees, Kurtz estimated the
indexing time on his machine, whose CPU is 10 times slower than ours. In case of suffix arrays, we estimate the indexing space
according to the space used with other texts; we do not have time estimations for these. In both cases the indexing algorithms are
probably faster than our algorithms for the LZ-index (provided they have the given amount of main memory available).

Index Construction Indexing Maximum
algorithm time indexing

space (RAM)

Suffix tree [40] < 9 hours (*) 45.31 GB
Suffix array [42] — 27.96 GB
Suffix array [49] — 18.64 GB
Suffix array [15] 8.52 hours sec. storage
CSA [30] 24 hours 3.60 GB (¶)
FM-index [30] 28 hours 3.60 GB
Scheme 2 of LZ-index This paper 4.63 hours 2.78 GB
Scheme 2 (reduced-memoy model) This paper 4.63 hours 1.56 GB(†)

(*) On a Sun-UltraSparc 300 MHz, 192 MB of main memory, under Solaris 2. (¶) Hon [30] reported a size of 2.88 GB for the
Human Genome, whereas ours is of size 3.11 GB. They use a 1.7 GHz CPU. (†) Just regarding main-memory space.

6.4 Indexing XML Data

Another relevant application is that of compressing and searching XML texts. Nowadays many applica-
tions handle text data in XML format, which are automatically generated in large amounts. It is interesting
therefore to be able to compress the data, while at the same time being able to search and extract any part
of the text, since XML data is usually queried and navigated by other applications. We indexed the file
http://pizzachili.dcc.uchile.cl/texts/xml/dblp.xml.gz of about 285 MB provided
in thePizza&Chili Corpus. This text is highly compressible.

In Table 6(a) we show the results for XML text. The indexing rate for LZTrie is about 1.43 MB/sec,
while for RevTrieit is about 0.65 MB/sec. The overall indexing rate is about 0.44 MB/sec. See Table 4(a)
for statistics regarding the memory peak of the algorithm, as well as a comparison between intermediate and
final trie representations. See Table 4(b) for a comparison with the original construction algorithm.

6.5 Indexing Proteins

Another interesting application of text-indexing tools inbiological research is that of indexing proteins.
We indexed the texthttp://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz
of about 1 GB provided in thePizza&Chili Corpus. This is a not so compressible text.

In Table 6(b) we show the results for proteins. The indexing rate for the hierarchicalLZTrie is about 0.92
MB/sec, while forRevTrieit is about 0.24 MB/sec. The indexing rate forRevTrieis much slower than for
other texts. This could be mainly because proteins are not socompressible, and then the tries have a greater
number of nodes to be inserted, making the process slower. The overall indexing rate is about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory peak of the algorithm, as well as a compari-
son between intermediate and final trie representations. See Table 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefix of Proteins.

35

Table 6.Experimental results for XML text and proteins. Numbers in boldface indicate the final index size in every case.

(a) XML text.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 90,563,835 90,563,835 199.74
2 111,467,467 175,009,211 3.82
3 120,592,538 169,037,276 435.20
4 98,337,536 185,878,936 3.23
5 & 6 97,231,032198,518,068 9.29
Total 120,592,538 198,518,068 651.28

Scheme 3 1 90,563,835 90,563,835 201.43
1/ε = 1 2 111,467,467 175,009,211 3.88

3 120,592,538 169,037,276 441.91
4 98,337,536 185,878,936 3.24
5 & 6 97,231,032245,871,260 11.02
Total 120,592,538 245,871,260 661.41

Scheme 3 1 90,563,835 90,563,835 200.91
1/ε = 15 2 111,467,467 175,009,211 3.79

3 120,592,538 169,037,276 441.34
4 98,337,536 185,878,936 3.20
5 & 6 54,641,864160,692,920 18.66
Total 120,592,538 185,878,936 667.91

(b) Proteins.

Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs

Scheme 2 1 839,446,471 839,446,471 1,087.58
2 1,018,660,027 1,681,050,175 33.82
3 1,133,180,292 1,649,264,449 4,105.11
4 895,675,465 1,766,181,601 27.83
5 & 6 1,032,374,1441,990,895,000 112.75
Total 1,133,180,292 1,990,895,000 5,374.88

Scheme 3 1 839,446,471 839,446,471 1,095.56
1/ε = 1 2 1,018,660,027 1,681,050,175 33.49

3 1,133,180,292 1,649,264,449 4,113.27
4 895,675,465 1,766,181,601 27.55
5 & 6 1,032,374,1442,502,718,500 134.72
Total 1,133,180,292 2,502,718,500 5,404.62

Scheme 3 1 839,446,471 839,446,471 1,097.09
1/ε = 15 2 1,018,660,027 1,681,050,175 33.86

3 1,133,180,292 1,649,264,449 4,117.30
4 895,675,465 1,766,181,601 27.62
5 & 6 575,948,0721,589,866,364 232.25
Total 1,133,180,292 1,766,181,601 5,508.14

7 Conclusions and Future Work

The space-efficient construction of compressed full-text self-indexes is a very important aspect regarding
their practicality. In this paper we proposed a space-efficient algorithm to construct Navarro’s LZ-index [55].
Given the data structures that conform the LZ-index, this problem is highly related to the representation
of succinct dynamicσ-ary trees. Thus, the basic idea is to construct the tries of LZ-index using space-
efficient intermediate representations supporting fast incremental insertion of nodes. Our algorithm requires
asymptotically the same space as the final LZ-index, i.e.4uHk(T) + o(u log σ) bits, to construct the LZ-
index for a textT [1..u] in O(u log σ) time, beingσ the alphabet size andHk(T) thek-th order empirical
entropy ofT . We also show that all LZ-index variants presented in [7, 5] can be constructed within the same
space needed by the final index. These smaller indexes are able to replace the original LZ-index in many
practical scenarios [5], hence the importance to space-efficiently construct them.

We defined an alternative model in which we have a reduced amount of main memory to perform the
indexing process (perhaps less memory than that needed to accommodate the whole index). We show that
the LZ-indexes can be constructed withinuHk(T) + o(u log σ) bits of space, inO(u(log σ + log log u))
time. This means that the LZ-indexes can be constructed within asymptotically the same space than that
required to store the compressed text.

Our experimental results indicate that all LZ-index versions can be constructed in practice within the
same amount of memory as needed by the final index. Under the reduced-memory scenario, we have that the
LZ-index versions can be constructed requiring 0.40 – 1.05 times the size of the original text, depending on
the compressibility of the text. This means about 3.39 – 7.50times less space as that needed by the original
construction algorithm (which works assuming that there isenough memory to store the whole index in
main memory). Our indexing rate is about 0.19 – 0.44 MB/sec.,which is 4.60 – 9.58 times slower than the
original construction algorithm. In conclusion, our algorithm requires much less memory than the original

36

one, in exchange for a slower construction algorithm. However, our indexing algorithm is still competitive
with existing indexing technologies. For example, we are able to construct the LZ-index for the Human
Genome in less than 5 hours, while Dementiev et al. [15] and Hon et al. [32] require 8.5 and 24 hours to
construct the suffix array and Compressed Suffix Array for theHuman Genome, respectively.

An interesting application of our indexing algorithm is in the construction of the LZ78 parsing of a
text T . Grossi and Sadakane [64] define an alternative representation for the LZ78 parsing, which has the
nice property of supporting optimal time to access any text substring. The parsing consists basically of
the LZTrie (the trie topology and array of edge symbols), plus an array that, for any phrase identifieri,
stores the preorder of the correspondingLZTrie node. Using our notation, the latter is just arrayids−1.

Jansson et al. [34] propose an algorithm to construct the parsing inO(u
logσ u

(log log u)2

log log log u
) time and requiring

uHk(T) + o(u log σ) bits of space. The algorithm, however, needs two passes overthe text, which means
(u log σ)/B extra disk accesses if it is stored on disk, which can be expensive. We can reduce the number
of disk accesses as follows, mainly when the text is compressible:

– We construct the hierarchicalLZTrie for T , storing the phrase identifier for each node. We can eraseT
since it is not anymore necessary. This takesO(u(log σ + log log u)) time.

– We build the finalLZTrie, storing arrayids on disk, as it was explained in Section 4.7. This takes extra
O(u(log σ + log log u)) time, and performs(uHk(T) + o(u log σ))/B extra disk accesses.

– We then free the hierarchicalLZTrie and load arrayids back to main memory, performing(uHk(T) +
o(u log σ))/B extra disk accesses.

– We computeids−1 in place, using the algorithm of Lemma 2, and this way we complete the representa-
tion for the LZ78 parsing of textT .

As seen, we exchange the(u log σ)/B extra disk accesses of [34] by(2uHk(T) + o(u log σ))/B. This can
be much better, specifically in the case of large compressible texts. The total time isO(u(log σ+log log u)),
and the maximum main-memory space used isuHk(T) + o(u log σ) bits.

We think that our methods could be extended to build related LZ-indexes [17, 62] within limited space.

References

1. M. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based on suffix arrays. InProc. 9th International
Symposium on String Processing and Information Retrieval (SPIRE), LNCS 2476, pages 31–43, 2002.

2. A Apostolico. The myriad virtues of subword trees. InCombinatorial Algorithms on Words, NATO ISI Series, pages 85–96.
Springer-Verlag, 1985.

3. D. Arroyuelo. An improved succinct representation for dynamick-ary trees. InProc. 19th Annual Symposium on Combinato-
rial Pattern Matching (CPM), LNCS 5029, pages 277–289, 2008.

4. D. Arroyuelo and G. Navarro. Space-efficient construction of LZ-index. InProc. 16th Annual International Symposium on
Algorithms and Computation (ISAAC), LNCS 3827, pages 1143–1152. Springer, 2005.

5. D. Arroyuelo and G Navarro. Practical approaches to reduce the space requirement of Lempel-Ziv-based com-
pressed text indices. Technical Report TR/DCC-2008-9, Dept. of Computer Science, University of Chile, 2008.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/smallerlzpract.ps.gz. Submitted.

6. D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of LZ-index. InProc. 17th Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 4009, pages 319–330, 2006.

7. D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lempel-Ziv based compressed text index-
ing. Technical Report TR/DCC-2008-2, Dept. of Computer Science, University of Chile, 2008.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/smallerlzindex.ps.gz. Submitted.

8. J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary relations and multi-labeled trees. InProc.
18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 680–689, 2007.

9. D. Benoit, E. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing trees of higher degree.Algorithmica,
43(4):275–292, 2005.

37

10. A. Brodnik, S. Carlsson, E. Demaine, J. I. Munro, and R. Sedgewick. Resizable arrays in optimal time and space. InProc.
WADS, LNCS 1663, pages 37–48. Springer, 1999.

11. H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for dynamic text collections.ACM Transactions
on Algorithms, 3(2):article 21, 2007.

12. B. Chazelle. A functional approach to data structures and its use in multidimensional searching.SIAM Journal on Computing,
17(3):427–462, 1988.

13. D. Clark and J. I. Munro. Efficient suffix trees on secondary storage. InProc. 7th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 383–391, 1996.

14. T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms. Prentice–Hall, second edition, 2001.
15. R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better external memory suffix array construction.Journal of

Experimental Algorithmics (JEA), 12:1–24, article 3.4, 2008.
16. P. Elias. Universal codeword sets and representation ofintegers.IEEE Trans. on Information Theory, 21(2):194–203, 1975.
17. P. Ferragina and G. Manzini. Indexing compressed text.Journal of the ACM, 54(4):552–581, 2005.
18. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences and full-text indexes. ACM

Transactions on Algorithms, 3(2):article 20, 2007.
19. P. Ferragina and G Navarro. Pizza&Chili Corpus — Compressed indexes and their testbeds, 2005.

http://pizzachili.dcc.uchile.cl.
20. F. Fich, J. I. Munro, and P. Poblete. Permuting in place.SIAM Journal on Computing, 24(2):266–278, 1995.
21. G. Franceschini and S. Muthukrishnan. In-place suffix sorting. In Proc. of 34th International Colloquium on Automata,

Languages and Programming (ICALP), LNCS 4596, pages 533–546, 2007.
22. R. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for balanced parentheses.Theoretical

Computer Science, 368(3):231–246, 2006.
23. A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: A tool for text indexing. InProc. 17th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 368–373, 2006.
24. R. González, S. Grabowski, V. Mäkinen, and G. Navarro.Practical implementation of rank and select queries. InPoster Proc.

Vol. of 4th Workshop on Experimental and Efficient Algorithms (WEA), pages 27–38. CTI Press and Ellinika Grammata, 2005.
25. R. González and G. Navarro. Improved dynamic rank-select entropy-bound structures. InProc. 8th Latin American Symposium

on Theoretical Informatics (LATIN), LNCS 4957, pages 374–386, 2008.
26. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. InProc. 14th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 841–850, 2003.
27. R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compression: experiments with compressing suffix arrays and

applications. InProc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 636–645, 2004.
28. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string matching. In

Proc. 32nd Annual ACM Symposium on Theory of Computing (STOC), pages 397–406, 2000.
29. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string matching.

SIAM Journal on Computing, 35(2):378–407, 2005.
30. W.-K. Hon.On the construction and application of Compressed text indexes. PhD thesis, University of Hong Kong, 2004.
31. W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Constructing compressed suffix arrays with large alphabets. InProc.

14th Annual International Symposium on Algorithms and Computation (ISAAC), LNCS 2906, pages 240–249, 2003.
32. W. K. Hon, T. W. Lam, K. Sadakane, W.-K. Sung, and M. Yiu. A space and time efficient algorithm for constructing compressed

suffix arrays.Algorithmica, 48(1):23–36, 2007.
33. W. K. Hon, K. Sadakane, and W. K. Sung. Breaking a time-and-space barrier in constructing full-text indices. InProc. 44th

Annual Symposium on Foundations of Computer Science (FOCS), pages 251–260, 2003.
34. J. Jansson, K. Sadakane, and W.-K. Sung. Compressed dynamic tries with applications to LZ-compression in sublineartime

and space. In27th Int. Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
424–435, 2007.

35. J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinctrepresentation of ordered trees. InProc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 575–584, 2007.

36. J. Kärkkäinen. Suffix cactus: a cross between suffix tree and suffix array. InProc. 6th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 937, pages 191–204, 1995.

37. J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string matching. InProc. 3rd South
American Workshop on String Processing (WSP), pages 141–155, 1996.

38. D. Kim, J. Na, J. Kim, and K. Park. Efficient implementation of rank and select functions for succinct representation.In Proc.
4th Workshop on Experimental and Efficient Algorithms (WEA), pages 315–327. LNCS 3503, 2005.

39. R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv algorithms.SIAM Journal on Computing,
29(3):893–911, 1999.

38

40. S. Kurtz. Reducing the space requeriments of suffix trees. Software Practice and Experience, 29(13):1149–1171, 1999.
41. T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A space andtime efficient algorithm for constructing compressed suffix

arrays. InProc. 8th Annual International Conference on Computing andCombinatorics (COCOON), pages 401–410, 2002.
42. J. Larsson and K. Sadakane. Faster suffix sorting.Theoretical Computer Science, 387(3):258–272, 2007.
43. V. Mäkinen. Compact suffix array - a space-efficient full-text index.Fundamenta Informaticae, 56(1–2):191–210, 2003.
44. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.Nordic J. of Computing, 12(1):40–66, 2005.
45. V. Mäkinen and G. Navarro. Rank and select revisited andextended.Theoretical Computer Science, 387(3):332–347, 2007.
46. V. Mäkinen and G. Navarro. Dynamic entropy-compressedsequences and full-text indexes.ACM Transactions on Algorithms,

4(3):article 32, 2008.
47. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.SIAM Journal on Computing, 22(5):935–

948, 1993.
48. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3):407–430, 2001.
49. G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.Algorithmica, 40(1):33–50, 2004.
50. D. R. Morrison. Patricia – practical algorithm to retrieve information coded in alphanumeric.Journal of the ACM, 15(4):514–

534, 1968.
51. J. I. Munro. Tables. InProc. 16th Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS), LNCS 1180, pages 37–42, 1996.
52. J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations. InProc. 30th International

Colloquium on Automata, Languages and Computation (ICALP), LNCS 2719, pages 345–356, 2003.
53. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.SIAM Journal on Computing,

31(3):762–776, 2001.
54. J. Na and K. Park. Alphabet-independent linear-time construction of compressed suffix arrays usingo(n log n)-bit working

space.Theoretical Computer Science, 385:127–136, 2007.
55. G. Navarro. Indexing text using the Ziv-Lempel trie.Journal of Discrete Algorithms (JDA), 2(1):87–114, 2004.
56. G. Navarro. Implementing the LZ-index: Theory versus practice. ACM Journal of Experimental Algorithmics

(JEA), 2008. To appear. Also as Technical Report TR/DCC-2003-0, Dept. of Computer Science, University of Chile.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/jlzindex.ps.gz.

57. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39(1):article 2, 2007.
58. G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compression to block addressing inverted indexes.

Information Retrieval, 3(1):49–77, 2000.
59. D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. InProc. Workshop on Algorithm Engi-

neering and Experiments (ALENEX), pages 60–70, 2007.
60. R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encodingk-ary trees and multisets.

In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 233–242, 2002.
61. R. Raman and S. S. Rao. Succinct dynamic dictionaries andtrees. InProc. 30th International Colloquium on Automata,

Languages and Computation (ICALP), LNCS 2719, pages 357–368, 2003.
62. L. Russo and A. Oliveira. A compressed self-index using aZiv-Lempel dictionary.Information Retrieval, 5(3):501–513, 2007.
63. K. Sadakane. New Text Indexing Functionalities of the Compressed Suffix Arrays.J. of Algorithms, 48(2):294–313, 2003.
64. K. Sadakane and R. Grossi. Squeezing Succinct Data Structures into Entropy Bounds. InProc. 17th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1230–1239, 2006.
65. J. S. Vitter.Algorithms and Data Structures for External Memory. Series on Foundations and Trends in Theoretical Computer

Science, now Publishers, 2008.
66. P. Weiner. Linear pattern matching algorithms. InProc. 14th Annual Symposium on Foundations of Computer Science (FOCS),

pages 1–11, 1973.
67. I. Witten, A. Moffat, and T. Bell.Managing Gigabytes. Morgan Kaufmann Publishers, second edition, 1999.
68. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.IEEE Transactions on Information

Theory, 24(5):530–536, 1978.

39

