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Abstract. Suffix trees are by far the most important data structure in stringology, with myriads of
applications in fields like bioinformatics and information retrieval. Classical representations of suffix
trees require O(n log n) bits of space, for a string of size n. This is considerably more than the n log2 σ
bits needed for the string itself, where σ is the alphabet size. The size of suffix trees has been a barrier
to their wider adoption in practice. Recent compressed suffix tree representations require just the space
of the compressed string plus Θ(n) extra bits. This is already spectacular, but still unsatisfactory when
σ is small as in DNA sequences.
In this paper we introduce the first compressed suffix tree representation that breaks this linear-space
barrier. Our representation requires sublinear extra space and supports a large set of navigational
operations in logarithmic time. An essential ingredient of our representation is the lowest common
ancestor (LCA) query. We reveal important connections between LCA queries and suffix tree navigation.

1 Introduction and Related Work

Suffix trees are extremely important for a large amount of string processing problems. Their many
virtues have been described by Apostolico [1] and Gusfield, who dedicates a large portion of his
book to them [10]. Once built over a “text” string (which can be done in linear time [24, 16, 22,
4]), suffix trees can find the occ occurrences, in the text, of any pattern string, of length m, in the
optimal time O(m+ occ). Suffix trees also provide elegant linear-time solutions to several complex
string problems. A good example is to find the longest common substring of two strings, conjectured
to have superlinear complexity by Knuth in 1970 [11], and solved in linear time using suffix trees
in 1973 [24].

The combinatorial properties of suffix trees have a profound impact in the bioinformatics field,
which needs to analyze large strings of DNA and proteins with no predefined boundaries. This part-
nership has produced several important results [10], but it has also exposed the main shortcoming
of suffix trees. Their large space requirements, together with their need to operate in main memory
to be useful in practice, renders them inapplicable in the cases where they would be most useful,
that is, on large texts.

The space problem is so important that it has originated a paraphernalia of research results to
address it, ranging from space-engineered implementations [9] to novel data structures to simulate
it, most notably suffix arrays [14]. Some of those space-reduced variants give away some functionality
in exchange. For example suffix arrays miss the important suffix link navigational operation. Yet,
all these classical approaches require O(n log n) bits, while the indexed string requires only n log σ
bits3, n being the size of the string and σ the size of the alphabet. For example, the human genome
sequence requires 700 Megabytes, while even a space-efficient suffix tree on it requires at least 40
Gigabytes [21], and the reduced-functionality suffix array requires more than 10 Gigabytes. This
problem is particularly evident in DNA because log σ = 2 is much smaller than log n.

3 In this paper log stands for log2.



These representations are also much larger than the size of the compressed string. Recent ap-
proaches [17] combining data compression and succinct data structures have achieved spectacular
results for the pattern search problem. For example Ferragina et al. [5] presented a compressed
suffix array that requires nHk + o(n log σ) bits and computes occ in time O(m(1 + (logσ log n)−1)).
Here nHk denotes the k-th order empirical entropy of the string [15], a lower bound on the space
achieved by any compressor using k-th order modeling.

It turns out that it is possible to use this kind of data structures, that we will call compressed
suffix arrays4, and, by adding a few extra structures, support all the operations provided by suffix
trees. Sadakane was the first to present such a result [21], adding 6n bits to the size of the compressed
suffix array. This was later improved to 4n extra bits and the same efficiency [6], but the Θ(n) extra
bits space barrier remains.

In this paper we break the Θ(n) extra-bits space barrier. We build a new suffix tree representa-
tion on top of a compressed suffix array, so that we can support all the navigational operations and
our extra space fits within the sublinear o(n log σ) extra bits of the compressed suffix array. Our
central tool are a particular sampling of suffix tree nodes, its connection with the suffix link and
the lowest common ancestor (LCA) query, and the interplay with the compressed suffix array. We
exploit the relationship between these actors and in passing uncover some relationships between
them that might be of independent interest.

A comparison between Sadakane’s representation and ours is shown in Table 2. The result for
the time complexities is mixed. Our representation is faster for the important Child operation,
yet Sadakane’s is usually faster on the rest. On the other hand, our representation requires much
less space. For DNA, assuming realistically that Hk ≈ 2, Sadakane’s approach requires 8n + o(n)
bits, whereas our approach requires only 2n + o(n) bits. The recent improvement to 4n + o(n)
extra bits [6] would still require 6n + o(n) bits in this example, three times larger than ours. We
choose a compressed suffix array that has the best Letter time, for nHk +o(n log σ) bits. Only for
O(nH0) + o(n log σ) bits and σ = ω(polylog(n)) is Sadakane’s compressed suffix array [20] faster
at computing the Letter operation. In that case, using his compressed suffix array, Sadakane’s
suffix tree would work faster, while ours does not benefit from that. As such, Table 2 shows the
time complexities that can be obtained for suffix trees using the best asymptotic space achieved for
compressed suffix arrays alone. This space is optimal in the sense that no k-th order compressor
can achieve asymptotically less space to represent T .

We note that there exists a previous description [7] of a technique based on interval represen-
tation and sampling of suffix tree nodes. However the description is extremely brief. Moreover the
approach is heuristic and hence no theoretical bounds on the result are given.

2 Basic Concepts

A string T is a finite sequence of n symbols taken from a finite alphabet Σ of size σ. By T [i] we
denote the symbol at position (i mod n), where T [0] denotes the first symbol. The concatenation

of two strings T, T ′, denoted by T.T ′, is the string that results from appending T ′ to T . The
reverse string TR of a string T is the string such that TR[i] = T [−i− 1]. A prefix T [..i − 1],
substring T [i..j] and a suffix T [j + 1..] of string T are (possibly empty) strings such that T =
T [..i− 1].T [i..j].T [j + 1..].

Parent(v) is the parent node of node v, FChild(v) gives its first child, and NSib(v) the
next child of the same parent. Ancestor(v, v′) tells whether v is an ancestor of v′, that is, if

4 In the literature these are called compact/compressed suffix arrays, FM-indexes, etc., see [17].
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Fig. 1. Suffix tree T of string abbbab,
with the leaves numbered. The arrow
shows the SLink between node ab and
b. Bellow it we show the suffix array. The
portion of the tree corresponding to node
b and respective leaves interval is high-
lighted with a dashed rectangle. The sam-
pled nodes have bold outlines.
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Fig. 3. Parentheses representations of
trees. The parentheses on top represent
the suffix tree and those on the bottom
represent the sampled tree. The numbers
are not part of the representation; they
are shown for clarity. The rows labeled
i: give the index of the parentheses.

v = Parentj(v′) for some j ≥ 0. LCA(v, v′) is the lowest common ancestor of nodes v and v′.
TDep(v) is the tree-depth of node v, i.e. its distance to the Root. LAQt(v, d) (level-ancestor

query) is the ancestor of v whose tree depth is d.

A compact tree is a tree that has no unary nodes, except possibly the Root. A labeled tree

is a tree that has a nonempty string label for every edge. In a deterministic tree, the common
prefix of any two different edges out of a node is empty.

The path-label of a node v in a labeled tree is the concatenation of the edge-labels from the
root down to v. For deterministic trees we refer indifferently to nodes and to their path-labels,
also denoted by v. The string-depth of a node v in a labeled tree, denoted by SDep(v), is the
length of its path-label. LAQs(v, d) is the highest ancestor of node v with SDep ≥ d. Letter(v, i)
equals v[i], i.e. the i-th letter of the path-label of node v. Child(v,X) is the node that results of
descending from node v by the edge whose label starts with symbol X, if it exists.

The suffix tree of T is the deterministic compact labeled tree for which the path-labels of
the leaves are the suffixes of T$, where $ is a terminator symbol not belonging to Σ. We will
assume n is the length of T$. The children of suffix tree nodes are lexicographically ordered by the
corresponding edge labels. The suffix-link of a node v 6= Root of a suffix tree, denoted SLink(v),
is a pointer to node v[1..]. Figure 1 shows the suffix tree of string abbbab, and illustrates with an
arrow the SLink from the node with path-label ab to the node with path-label b.

Since the edge-labels that leave from every suffix tree node are lexicographically sorted, the
path-labels of the leaves form the set of suffixes of T$ in lexicographical order. Note that SDep(v)
for a suffix tree leaf v identifies the suffix of T$ starting at position n − SDep(v). This operation
is called Locate(v). In Figure 1, for leaf ab$ we obtain T [7 − 3..] = ab$.

A suffix array is the array A[0, n − 1] of the starting positions of the suffixes of T$ such that
the suffixes are lexicographically sorted. In other words, A is the sequence of the n − SDep(v)
values of the suffix tree leaves, read left to right. Figure 1 shows the suffix array of string abbbab.
Suffix arrays are able to represent an interesting subset of suffix tree operations [14] by means of
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Table 1. Comparing compressed suffix tree representations. The operations are defined along Section 2. Time com-
plexities, but not space, are big-O expressions. Notice that Letter(v, i) can also be computed in O(iψ) time. Also
Child can, alternatively, be computed using FChild and at most σ times NSib. We give the generalized performance
and an instantiation using δ = (logσ log n) log n, assuming σ = O(polylog(n)), and using the FM-Index of Ferragina
et al. [5] as the compressed suffix array (CSA).

Sadakane’s Ours

Space in bits |CSA| + 6n + o(n)
= nHk + 6n + o(n log σ)

|CSA| +O((n/δ) log n) = nHk +O((n log σ)/ log log n)
= nHk + o(n log σ)

SDep/Locate Φ = (logσ log n) log n Ψδ = (logσ log n) log n

Count/Ancestor 1 = 1 1 = 1

Parent 1 = 1 (Ψ + t)δ = (logσ log n) log n

FChild/NSib 1 = 1 (Ψ + t)δ = (logσ log n) log n

SLink Ψ = 1 (Ψ + t)δ = (logσ log n) log n

SLinki Ψ = 1 Φ+ (Ψ + t)δ = (logσ log n) log n

Letter(v, i) Φ = (logσ log n) log n Φ = (logσ log n) log n

LCA 1 = 1 (Ψ + t)δ = (logσ log n) log n

Child Φ log n = (logσ log n)(log n)2 log σ + Φ log δ + (Ψ + t)δ = (log log n)2 logσ n

TDep 1 = 1 (Ψ + t)δ2 = ((logσ log n) log n)2

LAQt 1 = 1 log n+ (Ψ + t)δ2 = ((logσ log n) log n)2

LAQs — log n+ (Ψ + t)δ = (logσ log n) log n

WeinerLink t = 1 t = 1

identifying suffix tree nodes with suffix array intervals: Just as each the i-th suffix tree leaf can be
identified with the i-th suffix array entry, internal suffix tree nodes v are identified with the range
of suffix array entries that correspond to the leaves that descend from v. In Figure 1, the node with
path-label b is represented by the interval [3, 6].

We use this customary representation for suffix tree nodes in our proposal. Any suffix tree node
v will be represented by the interval [vl, vr] of the left-to-right leaf indexes that descend from v.
Leaves will also be identified with their left-to-right index (starting at 0) and also with the interval
[v, v]. For example, if node v is represented as [vl, vr], by node vl−1 we refer to the leaf immediately
before vl, i.e. the leaf represented as [vl − 1, vl − 1].

An immediate consequence is that we can Count in constant time the number of leaves that
descend from any node v. For example, the number of leaves below node b in Figure 1 is 4 = 6−3+1.
This is precisely the number of times that the string b occurs in the indexed string T , and shows
how suffix trees can be used for finding strings in T . This simple application of suffix trees uses
only operations Child, Letter, SDep and Count.

Another property of the interval representation is that we solve Ancestor in O(1) time:
Ancestor(v, v′) ⇔ vl ≤ v′l ≤ v′r ≤ vr. This works because suffix trees are compact (i.e. no
node has just one child) and thus no two different nodes have the same interval.

3 Using Compressed Suffix Arrays

We are interested in compressed suffix arrays because they have very compact representations
and support partial suffix tree functionality (being usually more powerful than the classical suffix
arrays [17]). Apart from the basic functionality of retrieving A[i] = Locate(i), which we support
by means of n − SDep(v) in our representation, state-of-the-art compressed suffix arrays support
operation SLink(v) for leaves v. This is called ψ(v) in the literature: A[ψ(v)] = A[v] + 1, and thus
SLink(v) = ψ(v) for a leaf v. We denote by O(Ψ) the time complexity of this operation for a
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particular compressed index. They also support the WeinerLink(v, a) operation [24] for nodes v:
WeinerLink(v,X) gives the suffix tree node with path-labelX.v[0..]. This is called the LF mapping
in compressed suffix arrays, and is a kind of inverse of ψ. Consider in Figure 1 the interval [3, 6] that
represents a set of leaves whose path-labels start by b. In this case we have that LF(a, [3, 6]) = [1, 2],
i.e. by using the LF mapping with a we obtain the interval of leaves whose path-labels start by
ab. We denote by O(t) the time to compute this operation on a particular compressed suffix array.
For shortness we use an extension of LF to strings, LF(X.Y, v) = LF(X,LF(Y, v)), implemented
by successively applying LF.

The iterated version of ψ, denoted as ψi, can usually be computed faster than O(iΨ) with
compressed indexes. This is achieved with the inverse permutation A−1 and Locate [17]. We
denote its time complexity by O(Φ).

Finally, compressed suffix arrays are usually self-indexes, meaning that they replace the text: it
is possible to extract any substring, of size ℓ, of the indexed text in O(Φ+ ℓΨ) time. A particularly
easy case that is solved in constant time is to extract T [A[v]] for a suffix array cell v, that is, the
first letter of a given suffix5. This corresponds to v[0], the first letter of the path-label of a suffix
tree leaf v.

As anticipated, our compressed suffix tree representation will consist of a sampling of the suf-
fix tree plus a compressed suffix array representation. A well-known compressed suffix array is
Sadakane’s CSA [20], which requires 1

ǫnH0 +O(n log log σ) bits of space and has times Ψ = O(1),
Φ = O(logǫ n), and t = O(log n), for any ǫ > 0. For our results we favor a second compressed suffix
array, called the FM-index [5], which requires nHk + o(n log σ) bits, for any k ≤ α logσ n and con-
stant 0 < α < 1. Its complexities are Ψ = t = O(1+ (logσ log n)−1) and Φ = (logσ log n) log n.6 The
instantiation in Table 2 is computed for the FM-index, but the reader can easily compute the result
of using Sadakane’s CSA. In that case the comparison would favor more Sadakane’s compressed
suffix tree, yet the space would be considerably higher.

4 The Sampled Suffix Tree

A pointer based implementation of suffix trees requires O(n log n) bits to represent a suffix tree of (at
most) 2n nodes. As this is too much, we will store only a few sampled nodes. We denote our sampling
factor by δ, so that in total we sample O(n/δ) nodes. Hence, provided δ = ω(logσ n), the sampled
tree can be represented using o(n log σ) bits. To fix ideas we can assume δ = ⌈(logσ log n) log n⌉. In
our running example we use δ = 4.

To understand the structure of the sampled tree notice that every tree with 2n nodes can be
represented in 4n bits as a sequence of parentheses (see Figures 1 and 3). The representation of the
sampled tree can be obtained by deleting the parentheses of the non-sampled nodes, as in Figure 3.
For the sampled tree to be representative of the suffix tree it is necessary that every node is, in
some sense, close enough to a sampled node.

Definition 1. A δ-sampled tree S of a suffix tree T with Θ(n) nodes is formed by choosing O(n/δ)
nodes of T so that for each node v of T there is an i < δ such that node SLinki(v) is sampled.
The Parent of a sampled node in S is the lowest sampled ancestor of its Parent in T .

5 This is determined in constant time as the c ∈ Σ satisfying C[c] ≤ i < C[c+ 1], see Navarro et al. [17].
6 ψ(i) can be computed as selectT [A[i]](T

bwt, T [A[i]]) using the multiary wavelet tree [12]. The cost for Φ is obtained
using a sampling step of (logσ log n) log n, so that o(n log σ) stands for O((n log σ)/ log log n) as for our other suffix
tree structures.
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This means that if we start at v and follow suffix links successively, i.e. v, SLink(v),
SLink(SLink(v)), . . ., we will find a sampled node in at most δ steps. Note that this property
implies that the Root must be sampled, since SLink(Root) is undefined. Appendix A shows that
it is feasible to obtain S in linear time from the suffix tree.

In addition to the pointers, that structure the sampled tree, we store in the sampled nodes their
interval representation; their SDep and TDep; the information to answer lowest common ancestor
queries in S, LCAS , in constant time [2, 6]; and the information to answer level ancestor queries
in S, LAQS, in constant time [3, 8]. All this requires O((n/δ) log n) bits of space, as well as some
further data introduced later.

In order to make effective use of the sampled tree, we need a way to map any node v = [vl, vr] to
its lowest sampled ancestor, LSA(v). A second operation of interest is the lowest common sampled
ancestor between two nodes:

Definition 2. Let v, v′ be nodes of the suffix tree T . Then, LCSA(v, v′) is the lowest common
sampled ancestor of v and v′, that is, the lowest common ancestor that is represented in the sampled
tree S.

In Figure 1 the LCSA(3, 4) node is the Root, whereas LCA(3, 4) is [3, 6], i.e. the node labeled b.
It is not hard to see that LCSA(v, v′) = LCAS(LSA(v),LSA(v′)) = LSA(LCA(v, v′)). Next

we show how LSA is supported for leaves in constant time and O((n/δ) log n) extra bits. With that
we also have LCSA in constant time (for leaves, we will extend this, for a general node, later).

4.1 Computing LSA for Leaves

LSA is computed by using an operation Reduce(v), that receives the numeric representation of leaf
v and returns the position, in the parentheses representation of the sampled tree, where that leaf
should be. Consider for example the leaf numbered by 5 in Figure 3. This leaf is not sampled, but
in the original tree it appears somewhere between leaf 4 and the end of the tree, more specifically
between parenthesis ’)’ of 4 and parenthesis ’)’ of the Root. We assume Reduce returns the first
parenthesis, i.e. Reduce(5) = 4. In this case since the parenthesis we obtain is a ’)’ we know that
LSA should be the parent of that node. Hence we compute LSA as follows:

LSA(v) =

{

Reduce(v) , if the parenthesis at Reduce(v) is ’(’
Parent(Reduce(v)) , otherwise

To compute Reduce we use a bitmap RedB and an array RedA. The bitmap RedB is initialized
with zeros. For every sampled node v represented as [vl, vr] we set bits RedB[vl] and RedB[vr + 1]
to 1. For example the RedB in our example is 1001110. This bitmap indicates the leaves for
which we must store partial solutions to Reduce. In our example the leaves are 0, 3, 4, 5. These
partial solutions are stored in array RedA (in case of a collision vr + 1 = v′l, the data for v′l is
stored). In our example these partial results are respectively 0, 1, 3, 4. Therefore Reduce(v) =
RedA[Rank1(RedB, v) − 1], where v is a leaf number and Rank1 counts the number of 1’s in
RedB up to and including position v.

First we show that Reduce can be computed in O(1) time with O((n/δ) log n) bits. The bitmap
RedB cannot be stored in uncompressed form because it would require n bits. We store RedB with
the representation of Raman et al. [18] that needs only m log n

m + o(n) bits, where m = O(n/δ) is
the number of 1’s in the bitmap (as every sampled node inserts at most two 1’s in RedB). Hence
RedB needs O((n/δ) log δ) = O((n/δ) log n) bits, and supports Rank1 in O(1) time. On the other
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hand, since there are also O(n/δ) integers in RedA, we can store them explicitly to have constant
constant access time in O((n/δ) log n) bits. Therefore Reduce can be computed within the assumed
bounds. According to our previous explanation, so can LSA and LCSA, for leaves.

5 The Kernel Operations

We have described the two basic components of our compressed suffix tree representation. Most of
our functionality builds on the LCA operation, which is hence fundamental to us. In this section
we present an entangled mechanism that supports operations LCA, SLink, and SDep, depending
on each other. The other suffix tree operations are implemented on top of these kernel operations.

5.1 Two Fundamental Observations

We point out that SLink’s and LCA’s commute on suffix trees.

Lemma 1. For any nodes v, v′ such that LCA(v, v′) 6= Root we have that:

SLink(LCA(v, v′)) = LCA(SLink(v),SLink(v′))

Proof. Assume that the path-labels of v and v′ are respectively X.α.Y.β and X.α.Z.β′, where
Y 6= Z. According to the definitions of LCA and SLink, we have that LCA(v, v′) = X.α and
SLink(LCA(v, v′)) = α. On the other hand the path-labels of SLink(v) and SLink(v′) are respec-
tively α.Y.β and α.Z.β′. Therefore the path-label of LCA(SLink(v),SLink(v′)) is also α. Hence
this node must be the same as SLink(LCA(v, v′)). ⊓⊔

Figure 4 illustrates this lemma; ignore the nodes associated with ψ. The condition LCA(v, v′) 6=
Root is easy to verify, in a suffix tree, by comparing the first letters of the path-label of v and v′,
i.e. LCA(v, v′) 6= Root iff v[0] = v′[0].

Our next lemma shows the fundamental property that relates all the kernel operations.

Lemma 2. Let v, v′ be nodes such that SLinkr(LCA(v, v′)) = Root, and let d = min(δ, r + 1).
Then

SDep(LCA(v, v′)) = max
0≤i<d

{i+ SDep(LCSA(SLinki(v),SLinki(v′)))}

7



Proof. The following reasoning holds for any valid i:

SDep(LCA(v, v′)) = i+ SDep(SLinki(LCA(v, v′))) (1)

= i+ SDep(LCA(SLinki(v),SLinki(v′))) (2)

≥ i+ SDep(LCSA(SLinki(v),SLinki(v′))) (3)

Equation (1) holds by iterating the fact that SDep(v′′) = 1+SDep(SLink(v′′)) for any node v′′ for
which SLink(v′′) is defined. Equation (2) results from applying Lemma 1 repeatedly. Inequality (3)
comes from Definition 2 and the fact that if node v′′′ is an ancestor of node v′′ then SDep(v′′) ≥
SDep(v′′′). Therefore SDep(LCA(v, v′)) ≥ max0≤i<d{. . .}. On the other hand, from Definition 1
we know that for some i < δ the node SLinki(LCA(v, v′)) is sampled. The formula goes only up to
d, but d < δ only if SLinkd(LCA(v, v′)) = Root, which is also sampled. According to Definition 2,
inequality (3) becomes an equality for that node. Hence SDep(LCA(v, v′)) ≤ max0≤i<d{. . .}. ⊓⊔

5.2 Entangled Operations

To apply Lemma 2 we need to support operations LCSA, SDep, and SLink. Operation LCSA
is supported in constant time, but only for leaves (Section 4.1). Since SDep is applied only to
sampled nodes, we have it readily stored in the sampled tree. SLink is also unsolved. We recall
from Section 3 that SLink(v) = ψ(v) is supported by the compressed suffix array when v is a leaf.
However, we need it for internal tree nodes as well.

Computing SDep. Assuming we can compute SLink, we can use Lemma 2 to compute SDep(v) =
SDep(LCA(v, v)), since LCA(v, v) = v.

Computing SLink/SLinki. Let v 6= Root be represented as [vl, vr]. One might naively think
that SLink(v) could be represented as [ψ(vl), ψ(vr)]. This however is not always the case: Apply
the idea to SLink(X.α) in Figure 4. The correct solution is SLink(v) = LCA(ψ(vl), ψ(vr)), as
explained by Sadakane [21]. More generally, it holds SLinki(v) = LCA(ψi(vl), ψ

i(vr)). Recall that
compressed suffix arrays can compute ψi efficiently. Thus, we can support SLink provided we have
LCA.

Computing LCA The next lemma shows that, if we can compute SDep and SLink, we can
compute LCA.

Lemma 3. Let v, v′ be nodes such that SLinkr(LCA(v, v′)) = Root and let d = min(δ, r + 1).
Then there exists an i < d such that

LCA(v, v′) = LF(v[0..i − 1],LCSA(SLinki(v),SLinki(v′)))

Proof. This is a direct consequence of Lemma 2. Let i be the index of the maximum of
the set in Lemma 2, i.e. SLinki(LCA(v, v′)) is a sampled node and hence it is the same
as LCSA(SLinki(v),SLinki(v′)). Note that from the definition of LF mapping we have that
LF(v′′[0],SLink(v′′)) = v′′. Applying this iteratively to SLinki(LCA(v, v′)) we obtain the equality
in the lemma. ⊓⊔
To use this lemma we must know which is the correct i. This is easily determined if we first compute
SDep(LCA(v, v′)). Accessing the letters to apply LF is not a problem, as we have always to obtain
the first letter of a path-label, SLinki(v)[0] = SLinki(v′)[0]. However, we still need SLink and
LCSA over internal nodes.
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5.3 Breaking the Circle

To get out of this circular dependence situation, we need a new idea. This idea is to handle all the
computation over leaves, for which we can compute SLink(v) = ψ(v) and LCSA(v, v′).

Lemma 4. Let v, v′ be nodes represented respectively as [vl, vr] and [v′l, v
′
r]. Then

LCA(v, v′) = LCA(min{vl, v
′
l},max{vr, v

′
r})

Proof. Let v′′ and v′′′ be respectively the nodes on the left and on the right of the equality. Assume
that they are represented as [v′′l , v

′′
r ] and [v′′′l , v

′′′
r ] respectively. Hence v′′l ≤ vl, v

′
l and v′′r ≥ vr, v

′
r since

v′′ is an ancestor of v and v′. This means that v′′l ≤ min{vl, v
′
l} ≤ max{vr, v

′
r} ≤ v′′r , i.e. v′′ is also

an ancestor of min{vl, v
′
l} and max{vr, v

′
r}. Since v′′′ is by definition the lowest common ancestor

of these nodes we have that v′′l ≤ v′′′l ≤ v′′′r ≤ v′′r . Using a similar reasoning for v′′′ we conclude that
v′′′l ≤ v′′l ≤ v′′r ≤ v′′′r and hence v′′ = v′′′. ⊓⊔

Observe this property in Figure 4; ignore SLink, ψ and the rest of the tree. Using this property
and ψ the equation in Lemma 2 reduces to:

SDep(LCA(v, v′))

= SDep(LCA(min{vl, v
′
l},max{vr, v

′
r}))

= max
0≤i<d

{i+ SDep(LCSA(SLinki(min{vl, v
′
l}),SLinki(max{vr, v

′
r})))}

= max
0≤i<d

{i+ SDep(LCSA(ψi(min{vl, v
′
l}), ψ

i(max{vr, v
′
r})))}

Now the circle is broken and SDep(v) simplifies to:

SDep(v) = SDep(LCA(v, v)) = max
0≤i<d

{i+ SDep(LCSA(ψi(vl), ψ
i(vr)))}

Operationally, this corresponds to iteratively taking the ψ function of vl and vr, δ times or until
the Root is reached. At each step we find the LCSA of the two current leaves and retrieve its
stored SDep. The overall process takes O(Ψδ) time.

Likewise LCA(v, v′) simplifies to :

LCA(v, v′) = LF(v[0..i − 1],LCSA(ψi(min{vl, v
′
l}), ψ

i(max{vr, v
′
r})))

Now it is finally clear that we do need SDep to compute LCA, because we have no other mean to
determine which i reaches the sampled node. The arguments to LCSA are not necessarily intervals
that correspond to suffix tree nodes. The time to compute LCA is thus O((Ψ + t)δ). Using LCA
we compute SLink in O((Ψ + t)δ) and SLinki in O(Φ+ (Ψ + t)δ) time.

Finally, note that using Lemma 4 we can extend LSA for a general node v as LSA(v) =
LSA(LCA(v, v)) = LSA(LCA(vl, vr)) = LCSA(vl, vr).

6 Further Operations

We now show how the other operations can be computed on top of the kernel ones, going from
simpler to more complex operations.

Computing Letter: Since Letter(v, i) = SLinki(v)[0] = ψi(vl)[0], we can solve it in time
O(min(Φ, iΨ)).
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Computing Parent: For any node v represented as [vl, vr] we have that Parent(v) is either
LCA(vl − 1, vl) or LCA(vr, vr + 1), whichever is lowest (see Figure 5). This computation is correct
because suffix trees are compact. Notice that if one of these nodes is undefined, either because vl = 0
or vr = n, then the parent is the other node. If both nodes are undefined the node in question is
the Root which has no Parent node.

Computing Child: Suppose for a moment that every sampled node stores a list of its children
and the corresponding first letters of the edges. In our example the Root would store the list
{($, [0, 0]), (a, [1, 2]), (b, [3, 6])}, which can reduced to {($, 0), (a, 1), (b, 3)}. Hence, for sampled nodes,
it would be possible to compute Child(v,X) in O(log σ) by binary searching its child list. To
compute Child on non-sampled nodes we could use a process similar to Lemma 3: determine which
SLinki(v), with i < δ, is sampled; compute Child(SLinki(v),X); and use the LF mapping to
obtain the answer, i.e. Child(v,X) = LF(v[0..i− 1],Child(SLinki(v),X)). This process requires
O(log σ + (Ψ + t)δ) time. Still, it requires too much space since it may need to store O(σn/δ)
integers.

To avoid exceeding our space bounds we mark one leaf out of δ, i.e. mark leaf v if v ≡δ 0. Do
not confuse this concept with sampling, they are orthogonal. In Figure 1 we mark leaves 0 and 4.
For every sampled node, instead of storing a list with all the children, we consider only the children
that contain marked leaves. In the case of the Root this means excluding the child [1, 2], hence
the resulting list is {($, 0), (b, 3)}. A binary search on this list no longer returns only one child.
Instead, it returns a range of, at most δ, children. Therefore it is necessary to do a couple of binary
searches, inside that range, to delimit the interval of the correct child. This requires O(Φ log δ)
time because now we must use Letter to drive the binary searches. Overall, we can compute
Child(v,X) in O(log σ + Φ log δ + (Ψ + t)δ). Let us now consider space. Ignoring unary paths in
the sampled tree, whose space is dominated by the number of sampled nodes, the total number of
integers stored amortizes to O(n/δ), the number of marked leaves. Hence this approach requires at
most O((n/δ) log n) bits.

Computing TDep: To compute TDep(v) we need to add other O(n/δ) nodes to the sampled tree
S, so as to guarantee that, for any suffix tree node v, Parentj(v) is sampled for some 0 ≤ j < δ
(Appendix A shows, as a byproduct, how to achieve this too). Recall that the TDep(v) values are
stored in S. Hence, computing TDep(v) consists in reading TDep(LSA(v)) and adding the number
of nodes between v and LSA(v), i.e. TDep(v) = TDep(LSA(v))+j when LSA(v) = Parentj(v).
The sampling guarantees that j < δ. Hence to determine j we iterate Parent until reaching
LSA(v). The total cost is O((Ψ + t)δ2).

Computing LAQt: We extend the ParentS(v) notation to represent LSA(v) when v is a non-
sampled node. Recall that the sampled tree supports constant-time level ancestor queries. Hence
we have any Parenti

S(v) in constant time for any node v and any i. We binary search Parenti
S(v)

to find the node v′ with TDep(v′) ≥ d > TDep(ParentS(v′)). Notice that this can be computed
evaluating only the second inequality. Now we iterate the Parent operation, from v′, exactly
TDep(v′)−d times. We need the additional sampling introduced for TDep to guarantee TDep(v′)−
d < δ. Hence the total time is O(log n+ (Ψ + t)δ2).

Computing LAQs: As for LAQt, we start by binary searching Parenti
S(v) to find a node

v′ for which SDep(v′) ≥ d > SDep(ParentS(v′)). Now we scan all the sampled nodes vi,j =

Parentj
S(LSA(SLinki(v′))) for which d ≥ i+SDep(vi,j) and i, j < δ. This means that we start at
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node v′, follow SLink’s, reduce every node found to the sampled tree S and use ParentS until the
SDep of the node drops below d−i. Our aim is to find the vi,j that minimizes d−(SDep(vi,j)+i) ≥ 0,
and then apply the LF mapping to it. The answer is necessarily among the nodes considered.

The time to perform this operation depends on the number of existing vi,j nodes. Appendix A
shows how to obtain a sampling that satisfies Definition 1 with at most two distinct sampled nodes
SLinki(v′) for any v′. Therefore, there are at most 2δ nodes vi,j (see Figure 6). The additional
sampling of SDep adds another 2δ nodes vi,j. Hence the total time is O(log n+ (Ψ + t)δ).

Unfortunately, the same trick does not work for TDep and LAQt, because we cannot know
which is the “right” node without bringing all them back with LF.

Computing FChild: To find the first child of v = [vl, vr], where vl 6= vr, we simply ask for
LAQs(vl,SDep(v) + 1). Likewise if we use vr we obtain the last child.

By TDepS(v) = i we mean that Parenti
S(v) = Root. This is also defined when v is not

sampled. It is possible to skip the binary search step by choosing v′ = Parenti
S(vl), for i =

TDepS(vl) − TDepS(v).

Computing NSib: The next sibling of v = [vl, vr] is LAQs(vr +1,SDep(Parent(v))+1) for any
v 6= Root. Likewise we can obtain the previous sibling with vl − 1. We must check that the answer
has the same parent as v, to cover the case where there is no previous/next sibling. We can also
skip the binary search.

We are ready to state our summarizing theorem.

Theorem 1. Using a compressed suffix array (CSA) that supports ψ, ψi, T [A[v]] and LF in times
O(Ψ), O(Φ), O(1), and O(t), respectively, it is possible to represent a suffix tree with the properties
given in Table 2.

7 Conclusions and Future Work

We presented a fully-compressed representation of suffix trees, which breaks the linear-bits space
barrier of previous representations at a reasonable (and in some cases no) time complexity penalty.
Our structure efficiently supports common and not-so-common operations, including very powerful
ones such as lowest common ancestor (LCA) and level ancestor (LAQ) queries. In fact our repre-
sentation is largely based on the LCA operation. Suffix trees have been used in combination with
LCA’s for a long time, but our results show new ways to explore this partnership.

With respect to practical considerations, we believe that the structure can be implemented
without large space costs associated to the sublinear term o(n log σ). In fact, by using parentheses
representations of the sampled tree and compressed bitmaps, it seems possible to implement the tree
with log n + O(log δ) bits per sampled node. For simplicity we have omitted those improvements.
The only datum that seems to need log n bits is SDep, and even this one should take much less
space except in pathological situations.

Our structure has the potential of using much less space than alternative suffix tree represen-
tations. On the other hand, we can tune the space/time tradeoff parameter δ to fit the real space
needs of the application. Even though some DNA sequences require 700 Megabytes, that is not
always the case. Hence it is reasonable to use larger representations of the suffix tree to obtain
faster operations, as long as the structure fits in main memory. We believe that our structure
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should be competitive in practice, using the same amount of space, with alternative implemented
schemes [23].

An important challenge is to build this structure in compressed space, as well as supporting a
dynamic scenario where the indexed text can be updated. The recent work on dynamic compressed
suffix arrays and bitmaps [13] should be relevant for this goal.

Overall we believe this work presents a very significant contribution to the theory of suffix
trees. Ours and similar results are eliminating the space handicap normally associated with suffix
trees. Thus this type of work has the potential to make suffix trees as popular amongst computer
scientists as they should be, given the huge amount of stringology problems they solve.
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A A Regular Sampling

We show how to obtain a sampling that respects Definition 1. The fundamental insight necessary
for this result is to observe that the suffix-links form a labeled trie. Our solution to this problem is
based on the work of Russo et al. [19].

Definition 3. The reverse tree T R of a suffix tree T is the minimal labeled tree that, for every
node v of T , contains a node vR denoting the reverse string of the path-label of v.

Figure 2 shows a reverse tree. Observe that since there is a node with path-label ab in T there
is a node with-path label ba in T R. We can therefore define a mapping R that maps every node
v to vR. Observe that for any node v of T , except for the Root, we have that SLink(v) =
R−1(Parent(R(v))). This mapping is partially shown in Figures 1 and 2 by the numbers. Hence
the reverse tree stores the information of the suffix links.

To guarantee Definition 1 we use the reverse tree. By Height(vR) we refer to the distance
between v and its farthest descendant leaf. We sample the nodes for which TDep(vR) ≡δ/2 0 and

Height(vR) ≥ δ/2. The second condition is used to guarantee that we do not sample too many
nodes, in particular we avoid sampling too close to the leaves. See Figure 2 for an example of this
sampling.

Note that in this context stating that there is an i < δ for which SLinki(v) is sampled
is the same as stating that there is an i < δ for which TDep(Parenti(vR)) ≡δ/2 0 and

Height(Parenti(vR)) ≥ δ/2 . Since TDep(Parenti(vR)) = i + TDep(vR), the first condition
holds for exactly two i’s in [0, δ[. Since Height is strictly increasing the second condition holds for
sure for the largest i.

To prove the bound on the number of sampled nodes note that any sampled node has at least
δ/2 descendants that are not sampled. To be precise this guarantees that we sample at most ⌊4n/δ⌋
nodes from a suffix tree with 2n nodes.

Note that this method, if applied to T instead of T R, ensures the condition we needed for
TDep, LAQt and LAQs.
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