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Abstract

Re-Pair is a dictionary-based compression method invented in 1999 by Lars-
son and Moffat. Although its practical performance has been established
through experiments, the method has resisted all attempts of formal analy-
sis. In this paper we show that Re-Pair compresses a sequence T [1, n] over an
alphabet of size σ and k-th order entropy Hk, to at most 2Hk + o(n log σ) bits,
for any k = o(logσ n).

1 Introduction

Re-Pair is a dictionary-based compression method invented in 1999 by Larsson and
Moffat [11, 12]. It has been successfully used in different scenarios related to word-
based text compression [17], searching compressed text [8], compression of Web graphs
[4], and suffix array compression [7], to give some examples.

Re-Pair can be tought of as a grammar-based compressor [9] as it discovers a gram-
mar that generates the text. Re-Pair is a remarkably simple member of this family,
with a very simple heuristic rule to build the grammar. Moreover, it decompresses
very fast, and this is an important part of its appeal. As shown by the authors,
Re-Pair achieves competitive compression ratios (albeit there are compressors that
perform better). However, no theoretical guarantee is given in the original papers,
and the method has resisted all attempts of analysis over the years.

In this paper we present the first analysis of Re-Pair, finally proving that it achieves
high-order compression. More precisely, given a text T [1, n] over an alphabet of size
σ, Re-Pair achieves at most 2nHk(T ) + o(n log σ) bits of space, where Hk is the k-
th order entropy of T , taken either in the classical information-theory sense over an
ergodic source [5], or in the sense of empirical entropy [13]. Note that, unless k = 0,
the condition on k implies that the alphabet must be small, log σ = o(log n).

Previous analyses we are aware of only proved very coarse properties of its opti-
mality as a grammar-based compressor [3].
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2 Re-Pair

Re-Pair operates by repeatedly finding the most frequent pair of symbols in a sequence
and replacing it with a new symbol, until every pair appears only once. More precisely:

1. It identifies the most frequent pair ab in T

2. It adds a rule R → ab to a dictionary, where R is a new symbol that does not
appear in T .

3. It replaces every occurrence of ab in T by symbol R (as far as possible, e.g. one
cannot replace both occurrences of aa in aaa).

4. It iterates until every pair in T appears once.

Re-Pair can be implemented in linear time and space [12]. There are several
techniques to achieve further compression, for example by representing the rules in
compressed form [12, 7], but those are not relevant for this paper.

3 Analyzing Re-Pair

We start with a text T [1, n] over an alphabet σ ≤ n. Re-Pair compression proceeds in
a sequence of steps, each step creating a new dictionary entry. At an arbitrary step of
the process, let us call C = c1c2 . . . cp the current sequence, mixing original symbols
(terminals) and newly created symbols (nonterminals). Hence we call p the length
of C (measured in symbols) and d the size of the dictionary (measured in entries,
each formed by 2 symbols). In the beginning, C = T , p = n and d = 0. At each
step, d grows by 1 and p decreases at least by 2. Hence d also signals the number of
compression steps already executed.

Let us call expand(ci) the sequence of terminals that symbol ci represents in T
(expand(ci) = ci if ci is already terminal). Hence T = expand(c1) · expand(c2) . . .
expand(cp) at any stage. Each expand(pi) is called a phrase and the partition is
called a parsing of T . We will also denote expand(XY ) = expand(X) · expand(Y ).

The number of different symbols in the sequence after d steps is at most σ + d,
and thus we would need ⌈log(σ + d)⌉ bits to represent each symbol (by log we mean
log2 in this paper). For simplicity we will make the pessimistic assumption that each
dictionary cell, as well as each symbol in the compressed text, will be stored using
⌈log n⌉ bits. This pessimistic, as shown by the next lemma.

Lemma 1 At any step of the process, it holds σ + d ≤ n.

Proof. We show that at least d repeated symbols are identified in T when forming a
dictionary of size d. If we form a rule A → ab (a and b terminals) we have actually
identified (at least) two repeated symbols in T . Let us count only the repetition of
b. Instead of counting the repetition of a, we will count those of nonterminal A just
formed, as if it were a terminal. This way, every formed rule (no matter whether it
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is formed by two terminals or nonterminals) removes at least one repetition. Hence
if we form d rules there are at least d repeated symbols in T and hence σ ≤ n− d. �

We will speak of “integers” to denote symbols stored using ⌈log n⌉ bits. The
size of the compressed data, at any step of the process, is therefore upper bounded
by (p + 2d)⌈log n⌉ bits (recall that each dictionary entry occupies 2 integers). The
following lemma is rather obvious but important.

Lemma 2 The size of the compressed data, p + 2d integers, does not increase along
the process.

Proof. We recall that Re-Pair chooses the most frequent pair of symbols at each
iteration. Let b be the highest frequency at some particular step. This means that
a new entry (using 2 integers) will be added to the dictionary, while the text will be
shortened by b integers. The process continues as long as b ≥ 2, so +2 − b ≤ 0 and
hence p + 2d never increases from one step to the next. �

It is also clear that b cannot increase along the process, as shown in the next
lemma.

Lemma 3 The frequency of the most repeated pair does not increase from one step
to the next.

Proof. Assume the most frequent pair formed the rule X → AB, and after the re-
placement, the most frequent pair CD has more occurrences than X. If CD does
not contain X, then it existed before X was created and hence AB was not the most
frequent pair. If it contains X, it cannot be more frequent than X alone. �

We will also make use of the following lemma.

Lemma 4 Let XY and ZW be two different consecutive pairs of (terminal or non-
terminal) symbols in C at any stage of the compression. Then expand(XY ) 6=
expand(ZW ).

Proof. We prove, more generally, that XY and ZW cannot expand to the same
sequence of terminals and nonterminals, that is, they cannot become equal at any
point of the expansion process. Assume XY and ZW expand to a phrase of the
same length ℓ, otherwise the lemma follows trivially. We proceed by induction on ℓ.
The base case is ℓ = 2, that is, zero expansion steps took place, and then the lemma
follows trivially. Let us now assume that ℓ > 2 and both XY and ZW expand to
phrase α, so that, along the compression process, one occurrence of α is parsed into
XY and another occurrence is parsed into ZW . Let AB be the first pair of symbols
within α that is replaced by the compression process. Since the replacement ocurrs
in both occurrences of α in the text, it produces a shorter phrase α′ in both places.
By the inductive hypothesis, α′ cannot be parsed into XY in one occurrence and into
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ZW in another occurrence. �

Finally, we make heavy use of the following theorem, proved by Kosaraju and
Manzini.

Theorem 1 [10] Let y1 . . . yt denote a parsing of the string T [1, n] over an alphabet
of size σ, such that each phrase yi appears at most b times. For any k ≥ 0 we have

t log t ≤ nHk(T ) + t log(n/t) + t log b + Θ(t(1 + k log σ))

Proof. See Lemma 2.3 in [10]. The latter term appears as Θ(kt + t) in there, but
in their appendix (where the lemma is proved) the right term becomes apparent. The
results holds either if we interpret Hk as the empirical entropy [13] or as the classical
entropy of a stationary ergodic sequence. �

We are now ready to state our main result.

Theorem 2 Let T [1, n] be a text over an alphabet of size σ and having k-th or-
der (classical or empirical) entropy Hk(T ). Then, compression algorithm Re-Pair
achieves a representation using at most 2nHk(T )+o(n log σ) bits for any k = o(logσ n)
(which implies log σ = o(log n) unless k = 0).

Proof. Since the highest frequency is nonincreasing (Lemma 3), let us consider
the process at the step d where we have replaced every pair with frequency more than
b = log2 n, and now the most frequent pair has frequency at most b. We will analyze
the size of the sequence plus dictionary, (p + 2d)⌈log n⌉ bits, at this point, knowing
that the size cannot grow in further steps of the process (Lemma 2).

Since every replacement up to this point chose a pair appearing more than b
times, it follows that the text has decreased by at least b + 1 symbols at each step,
and hence at most n/(b+1) steps might have been carried out up to now. Therefore,
the size of the dictionary at this step is limited by d < n/b. Hence 2d⌈log n⌉ <
2(n/b)(log(n) + 1) = O(n/ logn) = o(n) is well within the sublinear part of the space
occupancy the theorem promises.

Let us now focus on the remaining term, p⌈log n⌉. At this step, no consecutive pair
of symbols in the current sequence C appears more than b times. In particular, if we
choose c1c2, c3c4, . . ., no pair will appear more than b times. Let us then consider the
following parsing: T = expand(c1c2)·expand(c3c4) . . . expand(c2i−1c2i) . . .. Because of
Lemma 4, no phrase in this expansion appears more than b times either. The parsing
contains t = ⌈p/2⌉ ≥ p/2 phrases (if p is odd, the last phrase will be just expand(cp),
and it cannot be equal to any other phrase: either it is of length 1, or there is a rule
cp → XY to which we can apply Lemma 4 against any other c2i−1c2i).

We are almost ready to apply Theorem 1, yet we have p⌈log n⌉ ≤ 2t⌈log n⌉ and
our bound is on t log t. To move forward, we must focus on the interesting case of
sufficiently large t. If t⌈log n⌉ ≤ n/ log n, then p⌈log n⌉ ≤ 2n/ log n = o(n), in which
case the theorem is trivially true (as all the space falls within the o(n log σ) term).
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The interesting case is t⌈log n⌉ > n/ log n, and therefore log n ≥ log t ≥ log n −
O(log log n). Hence t⌈log n⌉ ≤ t log n+O(t) ≤ t log t+O(t log log n). Also, log(n/t) <
log(log2 n) = O(log log n). Finally, since b = log2 n we also have t log b = O(t log log n),
so we obtain the following from Theorem 1:

t⌈log n⌉ ≤ t log t + O(t log log n)

≤ nHk(T ) + O(t log log n) + O(t(1 + k log σ))

= nHk(T ) + O(t(log log n + k log σ))

and therefore

t ≤
nHk(T )

⌈log n⌉ − O(log log n + k log σ)

t⌈log n⌉ ≤ nHk(T )

(

1 + O

(

log log n + k log σ

log n

))

≤ nHk(T ) + O

(

n(log log n + k log σ)

logσ n

)

which is nHk(T ) + o(n log σ) provided k = o(logσ n) (and hence either k = 0 or
log σ = o(log n)).

Thus (p + 2d)⌈log n⌉ ≤ 2t⌈log n⌉ + 2(n/b)⌈log n⌉ = 2nHk(T ) + o(n log σ) + o(n),
and we have proved our theorem. �

4 Conclusions

We have presented the first analysis of Re-Pair, which shows that it achieves k-th order
entropy with a penalty factor of 2. Apart from upper-bounding the performance of
the classic Re-Pair compression algorithm, our analysis gives some intriguing clues.
We note that we have used b = log2 n to prove our theorem, yet any b = logt n
for any constant t > 1 would do (more precisely, the limits are b = ω(logn) and
log b = o(log n)). The fact that a small b achieves our same upper bound shows that
weaker versions of Re-Pair, which instead of choosing the best (i.e., most frequent)
pair, choose a “good enough” pair, are likely to perform well (e.g. [4]). On the other
hand, the fact that such a large b also achieves the same upper bound explains in
part the success of techniques that limit the size of the dictionary (by preempting the
compression process) [7].

We point out, however, some limitations of our analysis which deserve further
research:

1. The factor 2 could explain why Re-Pair does not perform as well as other k-th
order compressors such as PPM. However, we are not sure this upper bound is
tight. To be sure one should find a class of sequences which achieve the 2 factor
over a sufficiently small alphabet (ideally binary).
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2. The analysis holds for sufficiently small k compared to σ, more precisely for
k = o(logσ n). In particular, unless log σ = o(log n), the analysis holds only for
k = 0. The main tool used in our proof [10] seems not to give useful results
for log σ = Θ(log n). The fact that Re-Pair performs so well on large alphabets
[17, 7, 4], therefore, remains largely unexplained. Still, there are some limits to
what can be achieved for these large alphabets: In [6] it is shown that, as soon as
σk+1/c−3ε = Ω(n), it is not possible to represent T using cnHk(T )+ εn log σ bits
of space. It is likely that k-th order entropy is not a good model to analyze the
behavior of compression algorithms in those cases. Still, it should be possible
to obtain results related to Hk(T ) for k ≤ α logσ n, for constant 0 < α < 1, as
achieved using the Burrows-Wheeler Transform, for example [2, 13, 14].

3. It could be possible to extend our analysis to other compression methods that
operate by textual substitution, see for example [1, 16]. Some of those, however,
are on-line (e.g. Sequitur [15]), in the sense that they choose the phrases to
replace as they process the text. This does not match well with our analysis,
which assumes that the most frequent pair overall is chosen. Our usage of
parameter b, however, suggests that on-line variants that replace phrases that
appear at least b times are likely to be tractable with our analysis technique.
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