An Abstract Data Model for the Tabulator Data
Browser

RENZO ANGLES and CLAUDIO GUTIERREZ
Computer Science Department, Universidad de Chile

1. INTRODUCTION

One of the main features of the RDF data model is its ability for modeling highly
interconnected data in an extensible way. In this sense, given the graph-like nature
of RDF, browsing RDF data arises as a natural requirement. At the moment, there
are many applications for browsing RDF, for example Palm-DAML, RDF Author,
IsaViz, CS-Aktive, mSpace, BrownSauce, DAM viewer. These applications, com-
monly named Semantic Web Data Browsers, use different visualization models (e.g.
circle-and-arrow diagrams), each one having its advantages and disadvantages.

The Tabulator [2] is a semantic data browser which provides the user with dif-
ferent views (e.g. outlines and tables) for visualizing, querying and browsing of
RDF data. The central component of the Tabulator is the outliner view, a tree-like
environment that provides a powerful interface for presenting RDF data as a nested
structure of resources. Moreover, the user is able to express queries through the
definition of graphical patterns.

The objective of this paper is to show that underlying the outliner view, there
is a powerful data model which needs to be studied formally to take advantage of
its properties. In this sense, we present and analyse the outliner view. We define a
general framework based on the notion of nested graphs, a concept that was studied
in the area of databases by the hypernode model [9; 7; 12]. An hypernode extends
the plain structure of a graph to a nested structure, allowing a simple and flexible
representation of nested complex objects.

We study nested graphs in the context of complex objects in databases, in par-
ticular the notion of equivalence. In this direction, the information capacity of a
nested graph is defined in terms of its plain representation called a graphset. We
treat data relativism [5] when analyzing the issue of transforming nested graphs
into graphsets and viceversa. Relevant properties for visualization of nested graphs
are defined. Finally, we present an algebraic query language oriented to capture the
basic queries supported by the outliner-view. This language consists in two basic
operators for selection and projection over a set of nested graphs. Both operators
are based on matching of nested graph patterns and are closed under sets of nested
graphs.

The contribution of this paper is to define formally an abstract data model which
allows us to study properties and characteristics of the Tabulator. We show that
nested graphs, graphsets and RDF graphs are three equivalent abstract representa-
tions for RDF data. Using this, we propose that the nested graph model can be
considered an abstract representation for the outliner view of the tabulator RDF
browser.

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

¥David Li
type > ©PerzonEl
based near e A
family_name Li
Given name David
acguaintance O ¥Tim Berners-Lee
type » ©PerzanEl
seedlso > ©http:ifdbpedia. orgfresource/Tim_Berners-Lee
name) Tim Berners-Lee
requested » ©http:/fdbpedia.orgfresource/Tim_Bemers-Lee

is acquaintance of » ©David Li
» James Hollenbach

personal mailbox @ » david li@mit.edu
Fig. 1. Outliner View

The paper is organized as follows. In section 2 we study The Tabulator by
describing and discussing its characteristics; Section 3 presents formally the notion
of nested graphs and we show that it can be considered an abstract representation
for the Tabulator; In section 4 we present a query language for the model; Finally,
Section 5 presents some conclusions.

2. THE TABULATOR

Many RDF visualizers (e.g. IsaViz) present RDF data as circle-and-arrow diagrams.
This interface is very intuitive and useful when trying to understand the structure
of data (a graph in the case of RDF), however it is not an appropriate way to look
at data with many nodes or for comparing objects of the same class. Moreover,
they are not proper for typical enterprise users who are accustomed to seeing and
handling data through tables or matrices.

The Tabulator [2] is a generic semantic data browser whose design was motivated
by the lack of a straightforward generic data browser with an appropriate user
interface metaphor. The workspace of the Tabulator! is divided in different views
and forms. The outliner view (see Figure 1) is a powerful component where the user
is able to: visualize RDF data as a nested structure of resources (in the form of a
tree); browse RDF data by expanding nodes and navigating across its tree structure;
and query RDF data by defining graphically a graph pattern. For complex queries,
a SPARQL view (see Figure 2) allows the user to introduce SPARQL queries [13]
through a web form. The result of a query is displayed in other modular views, e.g,
tables. All these views, work together to provide a rich environment for visualizing,
exploring and querying of RDF data. Following, we describe the main features
presented by the Tabulator, which are relevant toward it formalization.

2.1 Exploring vs. Analyzing

The Tabulator studies RDF querying in the context of exploring and analyzing
linked data. In the exploration mode, the user is unaware of what data is available,
then the user should be able to recognize and follow links. In the analysis mode,

Thttp://dig.csail. mit.edu/2005/ajar /release/tabulator/0.8 /tab.html

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

| | SPARCLE
SELECT w0 2wl 2w 2v3
THERE

{

<http://dig.esail.wit.edu/2005/ajarfajaw/datafiTebulators
<http://usefulinc.com/ns/doapfdeveloper> ?v0 .

w0 <http://xmlns.com/foaf/0. 1/ knows> 2wl .

w1 <http://=xmwlns.comfoaf/0. 1/ name> w2 .

FILTER [?vi = "Tim Berners-Lee" |

OPTICHAL |

w0 <http://wmwlns.com/ foaf/0. 1/ mhox> w3 .
i

Fig. 2. SPARQL View

the user can select certain resources by using a query language. According to these
criteria, the exploration of data in the Tabulator is carried out in the outliner view,
where an RDF graph is visualized as a tree structure. Exploration begins in a root
node (a resource that act as the container) and navigation is achieved by expanding
nodes (the properties of the resource) to get more information about them. In this
sense, the outliner view models a nesting of resources.

In the analysis mode, the Tabulator provides query facilities for basic users (who
have not any experience or detailed knowledge of RDF') and experienced user (who
are able to query using SPARQL). In this sense, the outliner view support simple
queries represented by graphical patterns, and the SPARQL wview to introduce
complex queries expressed in the SPARQL query language [13].

Figure 1 shows a screenshot of the outliner view characterized by its tree struc-
ture. Here, a resource is represented as a node whose properties and values can be
viewed by expanding the node through its icon ». If a resource is expanded, it is
possible to see a new bunch of expandable resources, which corresponds to values
for its properties. For example, the node David Li looks expanded and shows its
properties, where the value of the property acquaintance occurs also expanded,
showing the description for Tim Berners-Lee.

2.2 Querying in The Tabulator

In the outliner view, the user can define a graphical pattern by selecting certain
fields (arcs or predicates) in a “query-by-example style”, and ask the Tabulator to
find all examples of that pattern. In the SPARQL view, a graphical pattern can
be viewed as a SPARQL expression (with filter and optional), or it can be edited
to construct more complex queries. The result of a query can be displayed in a
number of modular views, including tables, projections of time and space axes onto
a calendar and map.

Now, in the the outliner-view we can also query data by means of a graphi-
cal pattern which is constructed by highlighting fields. For example, in Figure 1,
the graphical pattern, looks for developers having an acquaintance named “Tim
Berners-Lee” and optionally having a personal mailbox. Note that the optional
field is specified by selecting its radio button. The graphical pattern can be edited
as a SPARQL expression in the SPARQL view and the result of the query can be
viewed in the Table view (Figure 3).

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

TableE = = B b
Select gueries to display: M g0 qapulator The tabulator project The tabulator project The tabulator project
project develop leveloper acquaintance | developer acquaintance leveloper | | mailbox
@ Cuary #1 X name
Diavid Li Tim Berners-Lee Tim Berners-Lee mailto: david_lig@mit. edu
Sonia Mijhawan Tirmothy Berners-Lee Tirm Berners-Lee

Expoartto HTML

Fig. 3. Table View

2.3 Discussion

Before presenting an abstract data model for the Tabulator, consider the following
characteristics of the Tabulator:

—The outliner view allows encapsulation of information because a non-expanded
resource hides its properties.

—There is a nesting of resources which is not necessarily hierarchical and cyclic
references are possible. For example, in Figure 1, the property is acquaintance
of introduces a cyclic reference to the predecessor resource David Li.

—The model allows to see outgoing and incoming properties for a resource (an
incoming property comes from a statement where the resource occurs as the
object). It follows the independence of direction for properties in RDF, where
the direction one choses for a given property is arbitrary (it does not matter
whether one defines “parent” or “child”). The outline is therefore redundant, in
that whenever an object is expanded more than one deep, for outer link will also
be found as a ”dual” inner link in the opposite direction (e.g. acquaintance and
is acquaintance of).

—A table is a more compact and natural form for the user, but it does not reflect
connectivity between resources.

Moreover, consider the following questions about future work on the Tabulator?:

—In the case of selecting a set of objects, what could we do with such sets? Restrict
a view to only things in that set? Start a new outline view with that set?

—How to deal with large numbers of items as result of a query?

—How to display multiple queries on a single view in order to compare them?

There are other two RDF browsers with similar characteristics. The BrownSauce
RDF Browser 2 uses a web interface to show a resource its properties and the
resources that reference it. The navigation is possible, but the data of a unique
resource is visible in each moment. The DAML Viewer 4 provides a user interface
for navigation of nested objects called node view. It shows outgoing and incoming
properties, and in case of selecting a node the result, is other node view.

?http://dig.csail.mit.edu/2005/ajar/ajaw/ToDo.html
3http://brownsauce.sourceforge.net/
4http://www.daml.org/viewer/

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

3. ABSTRACT DATA MODEL FOR THE OUTLINER VIEW

The abstract data model for the outliner view to be defined in this section is based
on the notion of nested graphs, a concept that was introduced in the area of graph
database modeling by the Hypernode Model [9; 7; 12]. The single data structure
of this model is the hypernode, a graph whose nodes can themselves be graphs.

Hypernodes are simple and flexible data structures that: extends the plain struc-
ture of a graph to a nested structure; supports the representation of arbitrarily
complex objects; and presents inherent ability to encapsulate information. Other
models based on hypernodes are Simatic-XT [10] and GGL [4].

Assume the following domains: an infinite set of URI references U; an infinite
set of blank nodes B = {N; : j € N}; and an infinite set of RDF Literals L. We
will use the following abbreviations: UBL for the set U U B U L and UB for the
set UU B.

3.1 Nested Graphs

We present a formal framework for nested graphs. The basic concepts are comple-
mented with fundamental operators to extract relevant data modeled by a nested
graph. Finally, we present properties for nested graphs, when defining empty, cyclic,
hierarchical, and encapsulated nested graphs.

Definition 1. (Nested Graph) A Nested Graph is defined recursively as a pair
(n, Ey), where n € UB is the name of the nested graph and E,, is a finite set of
triples (v1, v2,v3) satisfying that:

(i) v1 € U or vy is a nested graph;

(ii) v2 € {*+7, %~ "}; and

(#i) vs € UBL or vs is a nested graph.

We denote by NG the set of nested graphs.

Graphically we represent a triple (v1,v2,v3) by vy Y2, py. A triple is called an

edge, v; and vz are called nodes of the edge and vy its label. A node v is called a
primitive node if v € UBL, otherwise if v is a nested graph it is called a complex
node.

Definition 2. (Basic Operators) Let N = (n, E,;) be a nested graph. The basic
operators name, nodes® and graphs® are defined as follows:

—name returns the name of a node. For a complex node N € NG, name(N) = n.
For a primitive node v € UBL, name(v) = v.
—nodes®(N) extracts nodes from N by examining recursively each nested graph
in N until it reaches the k¢, level of nesting. Let k& > 1.
nodes" (N) = Uy, vy 05)em, 101503}
nodes®(N) = nodes'(N) U Unenodest (v)nna nodes*1(N')
nodes*(N) = |y, nodes®(N)
—graphs®(N) extracts nested graphs from nodes*(N).
graphs®(N) = {v | v € nodes*(N) N NG}
graphs™(N) = Uy>, graphs®(N)

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

Finally, we have the following definitions: if nodes'(N) = @ then N is an empty
nested graph; N is cyclic if N € nodes*(N) or if there exist N’ € graphs*(N) such
that N’ is cyclic; A nested graph is hierarchical if it is not cyclic; A node v (simple
or complex) is encapsulated in N if v € nodes*(N). Two nested graphs Ny and N»
are compatible if name(Ny) = name(N3).

Next, we study the notion of equivalence between nested graphs in the context
of complex objects in databases, specifically the issue of comparing the information
capacity of complex object types. The intuitively approach usually taken in the
conceptual literature is to say that one object type is absolutely dominated by
another object type if we can construct at least as many objects of the second
type as of the first type. Moreover, one object is query dominated by another
object type if any query over a collection of objects of the first object type can be
translated into a query over a collection of objects of the second object type. The
information capacity of two object types is absolutely equivalent (query equivalent)
if both object types absolutely dominate (query dominate) each other [6; 8].

Following the above approach, we introduce the notion of graphsets as an equiv-
alent plain representation for nested graphs. This approach will allow us to study
other properties of nested graphs, for example comparing their information capac-
ity. The activity of structuring the same data in different ways is known in the area
of databases as “data relativism”. Consider that it is crucial to understand data
relativism at a fundamental level, so that systems can effectively translate between
alternative data representations [5].

3.2 Graphsets

In this section, we present a plain (or unnested) representation for a nested graph,
called a graphset. The complexity of working with a nested structure is usually
reduced by transforming it as a plain structure. This result is shown when we
define additional operators and properties for nested graphs in terms of graphsets.

Definition 3. (Plain Graph) A Plain Graph is a nested graph G satisfying that
graphs*(G) = @, i.e., a plain graph has no nested graphs as nodes.

Given two compatible plain graphs G1 = (n, E1) and G2 = (n, E3), we define the
union, G; UG3 = (n, By U Ey); intersection, G1 NGy = (n, E1 N E2); and difference,
G — Gy = (n, By — E5) between G and Gbs.

Definition 4. (Graphset) A Graphset S is a set of plain graphs satisfying that,
for each two plain graphs G1,G5 € S then G; and G5 are not compatible, i.e. a
name n € UB identifies at most one plain graph.

Given two graphsets Sp,S52, we say that S7 is a sub-graphset of Sy, denoted
S1 C 8o, iff V(n, E) € S; there exists (n, Es) € Sy satisfying that Fy C Es. Two
graphsets are equivalent, denoted S; = Ss, if S7 C S5 and Sy C S;. Additionally,
we define the following operations between S7 and Ss:

Intersection: S;1 NSy = {GNG'|G € S1,G’ € Sy are compatible}

Difference: S; — Sz = {G|G € S; is not compatible with all G’ € Sy}

U{G - G'|G € 51,G" € S3 are compatible}

Maximal-intersection: Sy M Sy = {GUG'|G € S1,G" € Sy are compatible}

Union: S; U Sy = (51 — SQ) @] (SQ — 51) U (Sl I SQ)

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

Let N = (n, E,) be a nested graph. We introduce the transformation of nested
graphs into graphsets by defining the operators flat and flat* as follows:

—flat(N) = (n, E!)) where E!, = {(name(vy),v2,name(vs)) | (v1,v2,v3) € Ep}
—flat*(N) = flat(N) U {flat(N") | N' € graphs*(N)}

Then, flat(N) transform N into a plain graph by flattening its first level of nesting.
flat*(N) flattens N and each nested graph encapsulated in N.

The following lemma defines the equivalence - in terms of representation - between
nested graphs and graphsets.

Lemma 1. Let NG the set of nested graphs and GS the set of graphsets. There
are functions f : NG — GS and g : GS — P(NG) such that: (i) for each N € NG,
N € g(f(N)); and (ii) for each S € GS, f(g(5)) = S.

PRrROOF. .

(1) Given a nested graph N, just consider f(N) = flat*(N).

(2) Define g : GS — P(NG) as follows: a graphset S can be transformed into
a set of nested graphs by expanding the structure of each plain graph in .S,
i.e, replacing simple nodes by complex nodes. The function g is defined by
the following algorithm: given a graphset S, for each plain graph G € S, for
each primitive node v € UB occurring in G, we replace v by a complex node
(n,Ey,) € Sifv=n.

O

Following the notion that the information capacity of a representation is given
by the set of objects modeled by the representation, the information capacity of a
nested graph N is given by N plus the set of plain graphs encapsulated by IV, that
is the graphset flat*(N). Additionally, we say that the equivalence of two nested
graphs is given by the equivalence in their information capacities, i.e. they model
exactly the same set of objects.

In [1], it was shown that two complex object types are absolutely equivalent if
and only if they can both be reduced to a normal form complex object type, which
is based on some natural restructuring operators. Based on this idea, we define the
equivalence of nested graphs as follows:

Definition 5. (Equivalence of nested graphs) Two nested graphs N; and Nj are
equivalent, denoted N1 = Ns, if they can be reduced to the same graphset, i.e.
flat*(Ny) = flat*(Na).

Additionally, we say that Nj is a subgraph of Na, denoted No C Ny, iff Ny is
compatible with Ny and flat*(Ny) C flat*(N2)
3.3 RDF Graphs and Graphsets

In this section we present the RDF model following the W3C documents. We use
the abstract definition of RDF to show that we can represent an RDF graph as a
graphset and viceversa.

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

An RDF triple is a triple (s,p,0) such that s € UB is called the subject, p € U
the predicate and, o € UBL the object. An RDF Graph Grq [11] is a set of RDF
triples. The vocabulary of G4, is the set of elements of UB that occur in the
triples of G.qr.

Lemma 2. An RDF Graph can be represented as a graphset.

Proor. An RDF graph G4 is represented by a graphset S, if for each resource
or blank node u in G4, there exist a plain graph G in .S, which encapsulates the
set of RDF triples where u occurs as subject plus the triples where u occurs as
object.

The function Gset(G,qf) returns the graphset S by using the following algorithm:
for each u € vocabulary(G.q4f), there is a plain graph (u, E,) where
E, = {(p,+,0)|(u,p, 0) € G’r"df}) {(p7 _78)|(57p7 u) € G'r‘df}-

In this context, a plain graph (u, F,) interprets a resource identified u with the
set of properties E,. A triple (p,+,0) in E, is called an outgoing property and a
triple (p, —, s) is called an incoming property. [

Lemma 3. A graphset can be represented as an RDF Graph.

PROOF. A graphset S can be transformed into an RDF graph by retrieving the
triples modeled by each plain graph G in S. The function Grdf(S) returns an RDF
graph from a graphset S as follows:

Grdf(S) = {(u,p,0)|(p, +,0) € G,G € S} U

{(s,p,u)|(p,—,s) € G,Ge S} O

Note. A plain graph can be considered a special type of Named Graph [3] (n,g)
where the triples of g have the same subject n. Additionally, a graphset can be
considered a special type of RDF Dataset [13] D where there is not default graph
in D and the named graphs in D are special.

3.4 Nested graphs in the Tabulator

Now, we present the main result of the paper.

Proposition 1. The nested graph model is an abstract representation for the
outliner view.

Proor. (Note that the outliner view has no formal definition to compare if
formally to own model). Consider the outliner view presented in Figure 1. An
abstract representation for the expanded node David Li can be the nested graph
presented in Figure 4 . If we compare both figures, we can see that an expanded
node in the outliner view can be represented by a nested graph, and outgoing and
incoming properties are represented by edges labeled “4” and “-” respectively. Note
that, the redundant link is acquaintance of — David Li of the outliner view is
represented by the edge acquaintance— David Li. [

Now, consider the process of visualize an RDF graph G4 in the outliner view.
For Lemma 2 we represent G4 as a graphset S. For Lemma 1, we transform S in
a set of nested graphs M. Finally, the outliner view of the Tabulator is a graphic
representation of M.

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

David Li

type = person
family_name— "Lj"
Given name"— "David"
acquaintance—> Tim Berners-Lee
Typei> Person
seeAlse > http://dbpedia.org/resource/Tim_Berners—
nameT= "Tim Berners-Lee"
requested"'—> http://dbpedia.org/resource/Tim_Berners—
acquaintance—= David Li

acquaintanc@» James Hollenbach
personal mailboi— "david_li@mit.edu

Fig. 4. A nested graph that represent the outliner view of Figure 1

Tim Berners-Lee

Typei> Person
seeAlse = http://dbpedia.org/resource/Tim_Berners—|
name¥= "Tim Berners-Lee"
requested"'—» http://dbpedia.org/resource/Tim_Berners—
acquaintance—= David Li

tyPeL Person
family_namet> "Lt
Given namé" = "David"
acquaintance—> Tim Berners-Lee
G
acquaintanc@» James Hollenbach
personal mailbot= "david_li@mit.edu

Fig. 5. A nested graph equivalent to the nested graph presented in Figure 4

If we construct a set of nested graphs M from a graphset S, we will have a nested
graph in M for each plain graph in S, but in some cases it is possible that a subset
of M is enough for modeling all the data modeled by the graphset S. We define
this subset as the core of a set of nested graphs.

Definition 6. (Core of a set of nested graphs) Let M be a set of nested graphs.
A Core of M is a minimal subset M’ of M satisfying that flat*(M') = flat*(M)

For example, consider the graphset S obtained by transforming the nested graph
of Figure 4. We will have two plain graphs in S, one for David Lee and other for
Tim Berners-Lee. Now, if we obtain the set of nested graphs M from the graphset
S (by using Lemma 1), we will have the nested graphs of Figure 4 and Figure 5.
Note that, these nested graphs are equivalent (such that they can be reduced to
the same graphset S) and both are a core of the graphset S, because any of them
contains all the data modeled by S.

Now, if the core of a set of nested graphs M is a single nested graph N, then NV
is called the single-source of M. In the context of graphsets, the above property
introduce the notion of a single-source graphset.

Definition 7. (Single-source graphset) A graphset S is called a single-source
graphset if there exists a nested graph N such that flat*(N) = S.

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

10

The notion of a core is useful for visualization of nested graphs. For example
consider the problem of selecting a good start point for navigation. If we use the
core as a minimal set of navigation, we can reduce the number of visible or active
nested graphs without losing data, such that all the data could be accessed by
navigating through the nested graphs of the core. Clearly this problem could have
a direct solution if we have a single-source graphset, the all the data can be accessed
from a single nested graph.

4. ALGEBRAIC QUERY LANGUAGE

In this section we sketch an algebraic query language that simulates the graphic
queries supported by the outliner view. The query language consists of two opera-
tors (projection and selection) which are based in the use of nested graph patterns.

Definition 8. (Nested Graph Pattern) Let V' an infinite set of variables (disjoint
from UBL). A Nested Graph Pattern P is a nested graph where some URI’s, labels
or blank nodes are replaced by variables from V. We denote by var(P), the set of
variables occurring in P.

Definition 9. (Plain Graph Pattern and Graphset Pattern) A Plain Graph Pat-
tern is a nested graph pattern which is plain. A Graphset Pattern is a graphset of
plain graph patterns. We denote by var(SP), the set of variables occurring in a
graphset pattern SP.

A matching is a function ¢ : UBLV — UBL defined as follows:
(a) for u € UL, 9(u) = u.
(b) for z € BV, ¢(z) =t where t € UBL.5
(c) for a plain graph pattern p = (p, E,), ¥(p) = (n, E,) where n = ¢(p), E,, =
{(@(v1),v2, ¥ (v3))[(v1, v2,v3) € Ep}.
A matching 1 is consistent with a graph pattern p = (p, Ep) if ¢(p) is a plain graph,
ie., ¥(p) € UB and Y(v1,v2,v3) € Ep, ¥(v1) € U and 9(v3) € UBL.

Definition 10. (Matching of plain graph patterns) Let p be a plain graph pattern,
and G a plain graph. We say that p matches G, denoted p < G, if there exist a
matching ¢ such that ¢(p) is a subgraph of G. Additionally, if ¥(p) is equal to G
we say that p completely matches G, denoted p < G. For a particular matching v
we will use the notations p <y G and p =y G.

Definition 11. (Matching of graphset patterns) A graphset pattern SP matches
a graphset S, denoted SP < 9, if there exist a matching ¢ such that for each plain
graph pattern p € SP there is a plain graph G € S satisfying that p <, G. For a
particular matching ¢ we will use the notation SP <, S.

Definition 12. (Matching of nested graph patterns) A nested graph pattern P
matches a nested graph IV, denoted P < N, if there exist a matching ¢ such that

flat*(P) <y flat*(S).

Definition 13. (Selection and Projection operators) Let S be a set of nested
graphs and P a nested graph pattern where some edges are marked as OPTIONAL.

5A blank node can appear in a query pattern. It behaves as a variable; a blank node in a query
pattern may match any RDF term UBL (SPARQL 2.7)

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

11

?2v0

developer —= Tabulator
acquaintancé"+ 2vl

name®> "Tim Berners—Leg!

personal mailbo¥= ?v3 (OPTIONAL)

Fig. 6. A nested graph pattern equivalent to the graphical pattern of Figure 1

The operators Selection and Projection are defined as follows:

e The Selection operator, denoted Op(S), returns the nested graphs of S which
satisfy the nested pattern P considering some optional edges. It means that, a
nested graph N in S, is part of the result set, if and only if there exist P’ which is
a sub-nested graph pattern of P where some optional edges are omitted, satisfying
that 7" < N.

e The Projection operator, denoted IIp(S), projects the nested graphs of Op(S)
according to P. It means that, a nested graph N is part of the result set, if and
only if there exist N’ that belong to 0p(S) and N is a subgraph of N’ whose edges
are projected according to P (or P < N).

A Query Expression is defined as the recursively application of the selection and
projection operators. Consider the graphical pattern presented in Figure 1 and
its equivalent SPARQL expression in Figure 2. We express its query in our query
language through a selection Op where P is the nested graph pattern showed in
Figure 6.

In Figure 3 we can note that the Tabulator follows the SPARQL approach where
solutions to queries are given in the form of result sets (result sets are sets of
mappings from the variables occurring within the query to nodes of the queried
data). In contrast, the result of a query expression in our query language is a set
of nested graphs, i.e, our query language is closed under sets of nested graphs.

5. CONCLUSIONS

In this paper, we have analysed the semantic web browser Tabulator, principally its
underlying data structure called the outliner view. We have proposed an abstract
data model for the outliner view based on the notion of nested graphs, together
with their plain representation called graphsets. We showed that an RDF graph
can be modeled in terms of graphsets and consequently as nested graphs. When
studying formal properties of RDF graphs viewed as nested graphs (or graphsets),
we observed that its is possible to optimize some visualization parameters. Finally,
we proposed a algebraic query language closed under nested graphs. Currently, we
are analyzing the properties of nested graphs and graphsets (e.g. what is the most
appropriate core to start a navigation?) and we are improving the expressiveness
of the query language by adding other operators.

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

12

REFERENCES

S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical Computer
Science, 62(1-2):3-38, 1988.

T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A. Lerer, and
D. Sheets. Tabulator: Exploring and analyzing linked data on the semantic web. In Procedings
of the 3rd International Semantic Web User Interaction Workshop (SWUI06), 2006.

J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and trust. In
Proceedings of the 14th International Conference World Wide Web (WWW °05), pages 613~
622. ACM Press, 2005.

M. Graves, E. R. Bergeman, and C. B. Lawrence. A Graph-Theoretic Data Model for Genome
Mapping Databases. In Proceedings of the 28th Hawaii International Conference on System
Sciences (HICSS), page 32. IEEE Computer Society, 1995.

R. Hull. Relative information capacity of simple relational database schemata. In Proceedings
of the 8rd ACM Symposium on Principles of Database Systems (PODS), pages 97-109. ACM
Press, 1984.

R. Hull. A survey of theoretical research on typed complex database objects. pages 193-261,
1987.

M. Levene and G. Loizou. A Graph-Based Data Model and its Ramifications. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 7(5):809-823, 1995.

M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond. Springe-Verlag,
1999.

M. Levene and A. Poulovassilis. The Hypernode Model and its Associated Query Language. In
Proceedings of the 5th Jerusalem Conference on Information technology, pages 520-530. IEEE
Computer Society Press, 1990.

M. Mainguenaud. Simatic XT: A Data Model to Deal with Multi-scaled Networks. Computer,
Environment and Urban Systems, 16:281-288, 1992.

F. Manola and E. Miller. RDF Primer. http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/, Feb 2004.

A. Poulovassilis and M. Levene. A Nested-Graph Model for the Representation and Manipu-
lation of Complex Objects. ACM Transactions on Information Systems (TOIS), 12(1):35-68,
1994.

E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR /2007 /CR-rdf-sparql-query-20070614/, June 2007.

Technical Report TR/DCC-2007-8 - Computer Science Department - Universidad de Chile.

