Submission to SCP Special Issue on Experimental Software and Toolkits

Flexible Metaprogramming and AOP in Java

Eric Tanter® Rodolfo Toledo® Guillaume Pothier ® Jacques NoyéP

apCC, University of Chile — Santiago, Chile
YOBASCO Project EMN/INRIA, LINA — Nantes, France

Abstract

Advanced programming techniques such as metaprogramming and computational
reflection, as well as the more recent paradigm of aspect-oriented programming
(AOP), serve important objectives of software engineering such as modularization
and adaptability. In this tool presentation paper, we briefly overview this area and
present Reflex, a tool for flexible metaprogramming and AOP in Java. Based on a
uniform model of partial reflection, Reflex provides both structural and behavioral
facilities, which makes it easy to experiment with (combinations of) advanced uses
of AOP and reflection without reinventing the wheel or being limited to a specific
AOP language.

Key words: Metaprogramming, reflection, aspect-oriented programming, Reflex,
Java

1 Introduction

Research in programming languages has been driven by the need to achieve
well-modularized software respecting the principle of Separation of Concerns |1,
2]. Good modularization serves many software engineering properties such as
understandability, extensibility, reusability, etc. It also helps support adapt-
able software [3,4], since for a given concern to be adaptable (possibly dy-
namically) it first has to be cleanly modularized. Work on computational
reflection [5, 6], metaprogramming, and more recently, Aspect-Oriented Pro-
gramming (AOP) [7-9], has been a fruitful path to achieve better modular-
ization and adaptation in many systems, such as middleware [10], concurrent

Email addresses: etanter@dcc.uchile.cl (Eric Tanter),
rtoledo@dcc.uchile.cl (Rodolfo Toledo), gpothier@dcc.uchile.cl (Guillaume
Pothier), noye@emn. fr (Jacques Noyé).

Preprint submitted to Elsevier Science 1 May 2006

systems [11,12], distributed programming [13-16], operating systems [17, 18],
user interfaces [19], context-aware applications [20,21], etc.

The Java programming language only offers a limited set of reflective abilities,
which have been progressively extended as the language matured. Still, many
fundamental reflective features are missing. This is why many reflective and /or
aspect-oriented extensions of Java have been proposed; just to name a few:
Javassist [22], for structural reflection at load time, Kava [23], for runtime
behavioral reflection, and on the AOP side, Aspect] [24], the most popular
Java language extension for AOP, and frameworks such as AspectWerkz [25],
JAC [26], and JAsCo [27].

This paper gives an overview of Reflex, a portable Java framework for flexible
metaprogramming and AOP. Reflex bridges the gap between metaprogram-
ming and reflection on one side and AOP on the other side, and hence provides
advanced users with a versatile kernel for experimenting with AOP concepts
and language features [28-31]. It has been applied in concrete contexts such as
concurrent systems [12], distributed systems [16,32], and context-aware appli-
cations [21]. Tt is an open source project distributed under the MIT license, and
the Reflex website! gives access to many resources, such as documentation
and tutorial, subversion repository, mailing lists, and publications.

In the next section, we give a bit more background information on metapro-
gramming, reflection and AOP. We then present the key features of Reflex in
Section 3, by exposing its underlying model and concepts. API details are not
addressed here, the reader is rather referred to the Reflex tutorial on the web-
site. We finally briefly discuss related systems in Section 4. Section 5 concludes
with on-going and future work.

2 Metaprogramming and AOP

After the seminal work of Brian C. Smith on computational reflection [5,33],
and the marriage of reflection and object-oriented programming by Pattie
Maes [6], many attempts have been made to apply so-called metaobject pro-
tocols (MOPs) [34] for achieving separation of concerns [35]. The basic idea
is that the semantics of a base program is modularly extended or modified
by appropriate metaobjects. A metaobject is given control over reifications of
the structure or behavior of the underlying program, i.e. objects describing
otherwise implicit elements of a program. Hence metaobjects can take care
of particular concerns of the application, such as authentication, or invariant
checking, while the base application is mostly unaware of these concerns.

1 http://reflex.dcc.uchile.cl

This led to the fundamental issue of metalevel engineering [36], that is, how to
organize metalevel entities in ways that are satisfying with respect to the tra-
ditional engineering principles of composability, extensibility and flexible gran-
ularity. These issues have given rise to many reflective architectures, exploring
different approaches to metalevel engineering. A particularly interesting one is
the operational decomposition proposed by McAffer [36]. McAffer distinguishes
between two approaches to reflection, which consist of either starting from the
base-level language structural elements (e.g. classes), or from the basic oper-
ations (message send and receive, field access, object creation, etc.) defining
the computational behavior of an object. He refers to these approaches as the
top-down and the bottom-up approach, respectively. One could alternatively
refer to them as a structural and a behavioral approach. McAffer justifies the
use of the second approach as it is more flexible in terms of granularity and
makes it possible to describe a wider range of behavior models.

At the same time, work on open implementations [19] was facing the same
issues of metalevel locality of change and engineering. Furthermore, Kiczales
noticed that sometimes the metalevel concepts that are most natural to use
actually crosscut the concepts at the base level [37]. This led his group to focus
on this crosscutting issue and to eventually come up with the paradigm of
Aspect-Oriented Programming [7] (AOP). AOP is now a very active research
area [8,9].

AOP puts forward a new kind of module called an aspect, which is the modular
definition of a crosscutting concern. An aspect can act on a program by syn-
chronizing with it at join points, usually defined as program execution points
where an aspect applies, and performing its action, often called an advice, a
term inherited from Lisp. Although the most famous join point model is the
dynamic join point model, whereby a join point is simply a program execution
point, which greatly ressembles the operational decomposition of McAffer, a
join point model can also refer to other program properties (e.g. data flow
graphs [7], traces [38], structural properties [39]). Individual join points are
grouped together by means of pointcuts, which can be seen as queries on the
program structure and the program execution.

3 Reflex

Reflex is a portable library that extends Java with structural and behavioral
reflective facilities. We first describe the uniform model of partial reflection
that lies at the heart of Reflex, before surveying the structural and behavioral
facilities of Reflex. We end this section with a brief discussion of Reflex as a
versatile kernel for AOP.

3.1 Uniform model of partial reflection

The underlying model of partial reflection of Reflex is that of explicit links
binding a cut to an action. A cut specifies which program elements are of
interest, the action specifies what to do on these program elements. The link
is an explicit entity binding both, characterized by several attributes. Links
are the basic unit of specification in Reflex, and can be defined either eagerly
before an application starts, or dynamically while the application is running.

The cut of a link is defined via selection predicates, as illustrated later in this
section, and the action is implemented in a metaobject. A metaobject can
be any standard Java object, provided it implements the expected protocol.
There are two kinds of links: structural links and behavioral links. The former
are used to perform structural reflection at load time, while the latter are used
to perform behavioral reflection at run time.

Links can be used to implement aspects in the AOP sense, because they do sup-
port the specification of crosscutting modifications to program (structure and
execution). Note that our view of AOP is inherently related to metaprogram-
ming: an aspect cut is realized by introspection of a program (both structure
and execution), and its action consists of behavioral /structural modifications
(intercession).

3.2 Structural facilities

A structural link binds a set of classes to a metaobject, which can both intro-
spect and modify class definitions via a class-object structural model similar to
that of Javassist [22] (Fig. 1): an RPool object gives access to RClass objects,
which in turn give access to their members as RMember objects (either RField,
RMethod, or RConstructor), which in turn give access to their bodies as RExpr
objects (with a specific type for each kind of expression). These objects are
causally-connected representations of the underlying bytecode, meaning they
offer source-level abstractions to observe and manipulate bytecode.

A structural link can be used to perform any kind of structural modification
to a class before it is loaded: this includes adding members to it, making a
class implement a new interface, change some method signatures, etc. At this
stage, modifying a method body is not permitted, as it would lead to serious
interferences with the behavioral reflective facilities.

The cut is defined intentionally in a class selector, i.e. a predicate over RClass
objects. For instance, the following class selector matches all classes that are
direct subclasses of the class Object:

RMethodCall
RFieldAccess

RInstanceOf
RHandler

Fig. 1. Load-time structural model of Reflex.

ClassSelector objSubs = new ClassSelector() {
public boolean accept(RClass aClass){
return aClass.getSuperclass().equals(RClass.OBJECT);

| s

A structural metaobject should implement the handle (RClass) protocol and
thereby perform the desired modifications. The following piece of code shows a
metaobject that adds a unique identifier to instances of the given class, hence
adding a field, interface, and method to the class:

SMetaobject uidAdder = new SMetaobject(){
public void handle(RClass aClass){
aClass.addField(...); aClass.addInterface(...); aClass.addMethod(...);

}

Finally, the following statements bind the objSubs class selector to the uidAdder
metaobject, and install the corresponding structural link:

SLink sI = Links.get(objSubs, uidAdder);
sl.install();

Once install is executed, any direct subclass of Object that is loaded gets
transformed by uidAdder so that its instances will own a unique identifier
field, a method to access it, and the corresponding interface.

3.8 Behawioral facilities

Behavioral reflection follows a model of partial behavioral reflection presented
in [28]: the central notion is that of an explicit link binding a set of program
points (a hookset) to a metaobject. A link is characterized by a number of
attributes, among which the control attribute tells how the metaobject af-

O O --------- metaobject:l advice

activation | Ponteut

condition residue

X X
/ X X X / hookset shadow

Fig. 2. The behavioral link model and correspondence to AOP concepts.

fect the base program (before, after, or around the program points), and a
dynamically-evaluated activation condition makes it possible to activate and
deactivate the link. Relying on a precise selection of when reification occurs,
both spatially and temporally, drastically limits the cost of using reflection
since jumps to the metalevel only occur when needed [28].

Furthermore, this flexible model solves the metalevel engineering problems
mentioned in Sect. 2 because the metalevel decomposition is not restricted to
be entity-based (e.g. one metaobject per object) or operation-based (e.g. one
metaobject for message sending, one for object creation, etc.). Hence, the
organization of the metalevel can rather be completely concern-based, i.e. a
metaobject can realize a single concern of the application, possibly being con-
nected to several entities and/or operations in the application. This is a first
step in bridging behavioral reflection and dynamic crosscutting in AOP.

Finally, our approach promotes open metaobject protocol (MOP) specification,
meaning that the actual protocol between the base program and metaobjects
is not fixed and can be customized on a fine-grained basis (on a per-link basis),
by means of call descriptors. For instance, if a metaobject only needs to be
passed the name of the currently-executing method, then only that name will
be passed, avoiding the overhead of full reification typically present in classical
MOPs (i.e. implying the creation of a MsgReceive object which encapsulates
the method object, an array of arguments, etc.).

This last point bridges the gap between behavioral reflection and AOP, since it
eventually makes it possible to hide that a metaobject has something “meta’”:
it just becomes the receiver of an intentionally-specified communication trig-
gered by some events in program execution. Also, our experience with a con-
currency model based on a simple but customized MOP confirmed that precise
specification of the MOP is a great factor of performance improvement [12,30].
Using call descriptors is also better from a software design point of view, be-
cause metaobjects do not have to implement an overly-generic protocol.

Fig. 2 depicts two links, one of which is not subject to activation, along with
the correspondence to the AOP concepts of the pointcut/advice model. A de-
tailed case study of supporting the dynamic crosscutting of AspectJ in Reflex
can be found in [29].

The cut of a behavioral link is defined as a hookset. A primitive hookset is
specific to an operation: it defines which operation is of interest (e.g. ob-
ject creation), and further discriminates occurrences of interest depending on
the class in which they occur (by means of a class selector as in the previ-
ous section), and on their characteristics, by means of an operation selector,
i.e. a predicate over the properties of reified operation occurrences. Composite
hooksets can then be built using union, difference and intersection.

For instance, the following hookset matches both occurrences of a public method
execution in objects of a subclass of A and accesses to fields of objects of type
A occurring outside objects of A:

final ClassSelector a = new NameCS("A”, true);

Hookset mExecs = new PrimitiveHookset(MsgReceive.class, a, new PublicOS());
Hookset fAccess = new PrimitiveHookset(FieldAccess.class, new NotCS(a),
new OperationSelector(){
public boolean accept(Operation op, RClass c){
return a.accept(((FieldAccess) op).getTargetType()); });

Hookset useOfA = new CompositeHookset().add(mExecs).add(fAccess);

First, since the property of being a subclass of A is repeatedly used, we de-
fine the class selector a matching A and its subclasses (as indicated by the
true parameter). The mExecs primitive hookset matches occurrences of the
MsgReceive operation, provided that they occur in a class accepted by a and
that they denote public methods (the PublicQS is a general-purpose operation
selector). Then, the fAccess hookset matches occurrences of the FieldAccess
operation, occurring in a class that is neither A nor a subclass of A, and whose
target type (the type of the accessed object) is accepted by a. Finally, the
use0fA composite hookset combines public method executions and external
field accesses in one entity. This hookset can then be used for instance to log
all such events:

class Logger { public void log(){ print("access or execution on an A"); } }

BLink log = Links.get(useOfA, new Logger());
log.setControl(Control. BEFORE);

log.setCall(” Logger”, "log");
log.install();

The log behavioral link associates occurrences of operations matched by
use0fA to a newly-created Logger object. Reflex supports many means of
specifying how the metaobject is obtained (by instantiating a class, querying

a factory, using an existing object, etc). Then, the control of the link is set to
before, and the call to the metaobject is specialized by saying that the log
method declared in Logger should be called with no parameters.

3.4 Implementation

Reflex is implemented as a Java 5 instrumentation agent operating on byte-
code, typically at load time. For each class being loaded, the transformation
process consists of (1) determining the set of structural links that apply to
the class, and applying them, and (2) determining the set of behavioral links
and installing them. The reason for this ordering has to do with possible in-
teractions between both kinds of links [40]. During installation of behavioral
links, hooks are inserted in class definitions at the appropriate places in order
to provoke reification at runtime, following the metaobject protocol specified
for each link.

3.5 Reflex as an AOP kernel

As a matter of fact, Reflex provides building blocks that facilitate the im-
plementation of different aspect-oriented languages so that it is easier to ex-
periment with new AOP concepts and languages. The flexible model of links
for both structural and behavioral reflection can be used as an intermediate
target for the implementation of aspect-oriented languages.

This led us to the proposal of AOP kernels: versatile substrates for various
AOP languages and frameworks, that should make it possible to compose
aspects written in different AOP languages [31,41]. At the kernel level, aspect
interactions can be detected and resolved. We do not address the details of
this layer here, but the interested reader is referred to [40] for a discussion of
the concepts and challenges of aspect composition and the various mechanisms
supported by Reflex in this regard.

 plugin architecture languages

C detection) C resolution) composition

transformation

Fig. 3. Architecture of a versatile AOP kernel.

Below this composition layer, a reflection layer implements the intermediate
reflective model. This is the layer we have extensively overviewed in this paper.

Above the composition layer, a language layer, structured as a plugin archi-
tecture, helps bridge the gap between the aspect models and the intermediate
model, as illustrated on Fig. 3. The language plugins part is the most unstable
part of Reflex as of today [42], hence we deliberately choose not to enter into
details here.

4 Related Systems

There are many systems related to Reflex, may they be tools for structural or
behavioral reflection, or tools for AOP in Java. Reflex has however a unique
combination of features that is characteristic of the AOP kernel approach: as
general as possible reflective features, with advanced customization means,
and the direct support for crosscutting changes. In the following, we discuss
the salient differences of Reflex compared to existing systems. In-depth dis-
cussion of related work in all these areas is out of the scope of this paper, but
information can be found in the existing publications on Reflex.

With respect to structural metaobject protocols, Reflex relies on Javassist [22]
and hence provides the same facilities for structural reflection. The major
difference though is that Reflex follows the design principle of mirror-based
reflective APIs [43]: the structural model of Fig. 1 actually consists of interfaces
rather than direct implementation types as in Javassist. This is crucial for
Reflex as a substrate dealing with composition and interaction issues, as it
makes it possible to hide parts of the real (modified) structure of a class, so
that modifications made by one link may or may not be visible to others [40].

Compared to tools for behavioral reflection, like the dynamic proxies of Java,
or Kava [23], Reflex offers much better selectivity and expressiveness, within
the implementation limits of being a portable library (and not a modified run-
time environment, as Iguana/J [44]). In particular, it offers direct support for
crosscutting localities, which is typically something missing in most runtime

MOPs [28].

Compared to AOP proposals, Reflex is first of all a framework, rather than a
new language like AspectJ. In this regard, it can be distinguished from other
frameworks like AspectWerkz [25] and JAC [26] by its versatility: structural
modifications are fully supported, and most importantly, Reflex automatically
detects interactions between aspects and offers expressive and extensible means
for their resolution [40].

Although the core of Reflex is a plain Java framework, the AOP kernel ap-
proach in Reflex provides a layer on top of which general-purpose aspect lan-
guages like AspectJ, or domain-specific aspect languages like that of SOM [12]

can be defined. Further experiments with concrete syntax support are on-
going [42]. A system like XAspects [45] shares the objective of having several
aspect languages coexist in a single context, however their approach is based
on AspectJ and hence limited to what AspectJ supports. In particular the
support for aspect composition is minimal.

5 Conclusion

In this tool presentation paper, we have briefly overviewed the area of metapro-
gramming, reflection and aspect-oriented programming, and presented the Re-
flex system for Java. Based on a uniform model of partial reflection, Reflex pro-
vides both structural and behavioral facilities, which are well-suited to support
aspect-oriented programming. Being a versatile kernel for AOP, Reflex further
supports aspect composition as well as the definition of (domain-specific) as-
pect languages. As a result, Reflex makes it possible to build applications by
weaving aspects written in various aspect languages, as well as experiment
with old and new AOP languages.

The lower levels of Reflex are stable; both their design and implementation
have been validated through quite a number of experiments. Also, part of the
design is being exported to Smalltalk (the Geppetto system developed at the
University of Bern). We are currently working on extensible concrete syntax
with the MetaBorg approach for language embedding and assimilation [46].
We have developed a concrete syntax for Reflex as an alternative to directly
using the Reflex API [42]. Also on-going are extensions of Reflex to the realm
of distributed computing [16] and context-aware applications [21], which will
enhance the applicability of the system.

Acknowledgments. E. Tanter is financed by the Millennium Nucleus Center
for Web Research, Grant P01-029-F, Mideplan, Chile. This work has partially
been funded by the CoreGRID Network of Excellence and the ITCC Chile-

Korea.

References

[1] E. W. Dijkstra, The structure of the THE multiprogramming system,
Communications of the ACM 11 (5) (1968) 341-346.

[2] D. Parnas, On the criteria for decomposing systems into modules,
Communications of the ACM 15 (12) (1972) 1053-1058.

10

K. Cheverst, C. Efstratiou, N. Davies, A. Friday, Architectural ideas for the
support of adaptive context-aware applications, in: Workshop on Infrastructure
for Smart Devices - How to Make Ubiquity an Actuality, Bristol, UK, 2000.

G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran,
N. Parlavantzas, K. Saikoski, A principled approach to supporting adaptation
in distributed mobile environments, in: Proceedings of the International
Symposium on Software Engineering for Parallel and Distributed Systems
(PDSE 2000), Limerick, Ireland, 2000, pp. 3-12.

B. C. Smith, Reflection and semantics in a procedural language, Tech. Rep.
272, MIT Laboratory of Computer Science (1982).

P. Maes, Concepts and experiments in computational reflection, in:
N. Meyrowitz (Ed.), Proceedings of the 2nd International Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA 87),
ACM Press, Orlando, Florida, USA, 1987, pp. 147-155, ACM SIGPLAN
Notices, 22(12).

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-oriented programming, in: M. Aksit, S. Matsuoka (Eds.),
Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP 97), Vol. 1241 of Lecture Notes in Computer Science, Springer-Verlag,
Jyvaskyla, Finland, 1997, pp. 220-242.

R. E. Filman, T. Elrad, S. Clarke, M. Aksit (Eds.), Aspect-Oriented Software
Development, Addison-Wesley, Boston, 2005.

Aspect-oriented software development community and conference,
http://aosd.net.

[10] F. Kon, F. Costa, G. Blair, R. H. Campbell, The case for reflective middleware,

Communications of the ACM 45 (6) (2002) 33-38.

[11] T. Watanabe, A. Yonezawa, Reflection in an object-oriented concurrent

language, in: N. Meyrowitz (Ed.), Proceedings of the 3rd International
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 88), ACM Press, San Diego, California, USA, 1988,
pp. 306-315, ACM SIGPLAN Notices, 23(11).

[12] D. Caromel, L. Mateu, E. Tanter, Sequential object monitors, in: M. Odersky

(Ed.), Proceedings of the 18th European Conference on Object-Oriented
Programming (ECOOP 2004), no. 3086 in Lecture Notes in Computer Science,
Springer-Verlag, Oslo, Norway, 2004, pp. 316-340.

[13] C. V. Lopes, D: A language framework for distributed programming, Ph.D.

thesis, College of Computer Science, Northeastern University (1997).

[14] B. Gowing, V. Cahill, Making meta-object protocols practical for operating

systems, in: Proceedings of the 4th International Workshop on Object
Orientation in Operating Systems, 1995, pp. 52-55.

11

[15] L. D. Benavides Navarro, M. Siidholt, W. Vanderperren, B. De Fraine,
D. Suvée, Explicitly distributed AOP using AWED, in: Proceedings of the
5th International Conference on Aspect-Oriented Software Development (AOSD
2006), ACM Press, Bonn, Germany, 2006, pp. 51-62.

[16] E. Tanter, R. Toledo, A versatile kernel for distributed aop, in: Proceedings
of the IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS 2006), Vol. 4025 of Lecture Notes in Computer
Science, Springer-Verlag, Bologna, Italy, 2006, pp. 316-331.

[17] J. McAffer, Meta-level architecture support for distributed objects, in:
International Workshop on Object-Orientation in Operating Systems (IWOOS
95), 1995.

[18] Y. Yokote, The ApertOS reflective operating system: The concept and its
implementation, in: Proceedings of the 7th International Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA 92),
ACM Press, Vancouver, British Columbia, Canada, 1992, pp. 414-434, ACM
SIGPLAN Notices, 27(10).

[19] R. Rao, Implementational reflection in Silica, in: P. America (Ed.), Proceedings
of the 5th European Conference on Object-Oriented Programming (ECOOP
91), Vol. 512 of Lecture Notes in Computer Science, Springer-Verlag, Geneva,
Switzerland, 1991, pp. 251-266.

[20] L. Capra, W. Emmerich, C. Mascolo, Reflective middleware solutions for
context-aware applications, in: A. Yonezawa, S. Matsuoka (Eds.), Proceedings
of the 3rd International Conference on Metalevel Architectures and Advanced
Separation of Concerns (Reflection 2001), Vol. 2192 of Lecture Notes in
Computer Science, Springer-Verlag, Kyoto, Japan, 2001, pp. 126-133.

[21] E. Tanter, K. Gybels, M. Denker, A. Bergel, Context-aware aspects, in:
Proceedings of the 5th International Symposium on Software Composition (SC
2006) [47], to appear.

[22] S. Chiba, Load-time structural reflection in Java, in: E. Bertino (Ed.),
Proceedings of the 14th European Conference on Object-Oriented Programming
(ECOOP 2000), no. 1850 in Lecture Notes in Computer Science, Springer-
Verlag, Sophia Antipolis and Cannes, France, 2000, pp. 313-336.

[23] I. Welch, R. J. Stroud, Kava - using bytecode rewriting to add behavioral
reflection to Java, in: Proceedings of USENIX Conference on Object-Oriented
Technologies and Systems (COOTS 2001), San Antonio, Texas, USA, 2001, pp.
119-130.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An
overview of AspectJ, in: J. L. Knudsen (Ed.), Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP 2001), no. 2072 in
Lecture Notes in Computer Science, Springer-Verlag, Budapest, Hungary, 2001,
pp. 327-353.

[25] Aspectwerkz website, http://aspectwerkz.codehaus.org/ (2002).

12

[26] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, L. Martelli,
JAC: an aspect-oriented distributed dynamic framework, Software Practice and
Experience 34 (12) (2004) 1119-1148.

[27] D. Suvee, W. Vanderperren, V. Jonckers, JAsCo: an aspect-oriented approach
tailored for component based software development, in: M. Aksit (Ed.),
Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD 2003), ACM Press, Boston, MA, USA, 2003, pp. 21-29.

[28] E. Tanter, J. Noyé, D. Caromel, P. Cointe, Partial behavioral reflection:
Spatial and temporal selection of reification, in: R. Crocker, G. L. Steele, Jr.
(Eds.), Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2003), ACM
Press, Anaheim, CA, USA, 2003, pp. 27-46, ACM SIGPLAN Notices, 38(11).

[29] L. Rodriguez, E. Tanter, J. Noyé, Supporting dynamic crosscutting with partial
behavioral reflection: a case study, in: Proceedings of the XXIV International
Conference of the Chilean Computer Science Society (SCCC 2004), IEEE
Computer Society Press, Arica, Chile, 2004.

[30] E. Tanter, From metaobject protocols to versatile kernels for aspect-oriented
programming, Ph.D. thesis, University of Nantes and University of Chile (Nov.
2004).

[31] E. Tanter, J. Noyé, A versatile kernel for multi-language AOP, in: R. Gliick,
M. Lowry (Eds.), Proceedings of the 4th ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering (GPCE
2005), Vol. 3676 of Lecture Notes in Computer Science, Springer-Verlag, Tallinn,
Estonia, 2005, pp. 173-188.

[32] E. Tanter, J. Piquer, Managing references upon object migration: Applying
separation of concerns, in: Proceedings of the XXI International Conference of
the Chilean Computer Science Society (SCCC 2001), IEEE Computer Society
Press, Punta Arenas, Chile, 2001, pp. 264-272.

[33] B. C. Smith, Reflection and semantics in Lisp, in: Proceedings of the 14th
Annual ACM Symposium on Principles of Programming Languages (POPL),
1984, pp. 23-35.

[34] G. Kiczales, J. des Rivieres, D. G. Bobrow, The Art of the Metaobject Protocol,
MIT Press, 1991.

[35] R. J. Stroud, Z. Wu, Advances in Object-Oriented Metalevel Architectures and
Reflection, CRC Press, 1996, Ch. Using Metaobject Protocols to Satisfy Non-
Functional Requirements, pp. 31-52.

[36] J. McAffer, Engineering the meta-level, in: G. Kiczales (Ed.), Proceedings of
the 1st International Conference on Metalevel Architectures and Reflection
(Reflection 96), San Francisco, CA, USA, 1996, pp. 39-61.

[37] G. Kiczales, Towards a new model of abstraction in software engineering,
in: Proceedings of the IMSA 92 Workshop on Reflection and Metalevel
Architectures, Akinori Yonezawa and Brian C. Smith, editors, 1992.

13

[38] R. Douence, P. Fradet, M. Siidholt, Trace-based aspects, in: Filman et al. [8],
pp- 201-217.

[39] K. Lieberherr, I. Silva-Lepe, Adaptive object-oriented programming using
graph-based customization, Communications of the ACM 37 (5) (1994) 94-101.

[40] E. Tanter, Aspects of composition in the Reflex AOP kernel, in: Proceedings of
the 5th International Symposium on Software Composition (SC 2006) [47], to
appear.

[41] E. Tanter, J. Noyé, Motivation and requirements for a versatile AOP kernel,
in: 1st European Interactive Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany, 2004.

[42] E. Tanter, An extensible kernel language for AOP, in: Proceedings of AOSD
Workshop on Open and Dynamic Aspect Languages, Bonn, Germany, 2006.

[43] G. Bracha, D. Ungar, Mirrors: Design principles for meta-level facilities of
object-oriented programming languages, in: OOPSLA 2004 [48], pp. 331-344,
ACM SIGPLAN Notices, 39(11).

[44] B. Redmond, V. Cahill, Supporting unanticipated dynamic adaptation of
application behavior, in: B. Magnusson (Ed.), Proceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP 2002), no. 2374 in
Lecture Notes in Computer Science, Springer-Verlag, Mélaga, Spain, 2002, pp.
205-230.

[45] M. Shonle, K. Lieberherr, A. Shah, XAspects: An extensible system for domain-
specific aspect languages, in: OOPSLA 2003 Domain-Driven Development
Track, 2003.

[46] M. Bravenboer, E. Visser, Concrete syntax for objects, in: OOPSLA 2004 [48],
ACM SIGPLAN Notices, 39(11).

[47] Proceedings of the 5th International Symposium on Software Composition (SC
2006), Lecture Notes in Computer Science, Springer-Verlag, Vienna, Austria,
2006, to appear.

[48] Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2004), ACM
Press, Vancouver, British Columbia, Canada, 2004, ACM SIGPLAN Notices,
39(11).

14

