
Compressed Full-Text Indexes

Gonzalo Navarro

Center for Web Research, Department of Computer Science, University of Chile

Veli Mäkinen

Department of Computer Science, University of Helsinki, Finland

Full-text indexes provide fast substring search over large text collections. A serious problem of
these indexes has traditionally been their space consumption. A recent trend is to develop indexes
that exploit the compressibility of the text, so that their size is a function of the compressed text
length. This concept has evolved into self-indexes, which in addition contain enough information
to reproduce any text portion, so they replace the text. The exciting possibility of an index that
takes space close to that of the compressed text, replaces it, and in addition provides fast search
over it, has triggered a wealth of activity and produced surprising results in a very short time,
and radically changed the status of this area in less than five years. The most successful indexes
nowadays are able to obtain almost optimal space and search time simultaneously.

In this paper we present the main concepts underlying self-indexes. We explain the relationship
between text entropy and regularities that show up in index structures and permit compressing
them. Then we cover the most relevant self-indexes up to date, focusing on the essential aspects on
how they exploit the text compressibility and how they solve efficiently various search problems.
We aim at giving the theoretical background to understand and follow the developments in this
area.

Categories and Subject Descriptors: E.1 [Data structures]; E.2 [Data storage representa-

tions]; E.4 [Coding and information theory]: Data compaction and compression; F.2.2 [Anal-

ysis of algorithms and problem complexity]: Nonnumerical algorithms and problems—Pat-
tern matching, Computations on discrete structures, Sorting and searching; H.2.1 [Database

management]: Physical design—Access methods; H.3.2 [Information storage and retrieval]:
Information storage—File organization; H.3.3 [Information storage and retrieval]: Informa-
tion search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Text indexing, text compression, entropy.

First author funded by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile. Second author funded by the Academy of Finland under grant 108219.
Address: Gonzalo Navarro. Blanco Encalada 2120, Santiago, Chile. E-mail:
gnavarro@dcc.uchile.cl. Web: http://www.dcc.uchile.cl/∼gnavarro. Veli Mäkinen. P. O.
Box 68 (Gustaf Hällströmin katu 2 b), 00014 Helsinki, Finland. Email: vmakinen@cs.helsinki.fi.
Web: http://www.cs.helsinki.fi/u/vmakinen.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · V. Mäkinen and G. Navarro

1. INTRODUCTION

The amount of digitally available information is growing at an exponential rate.
The volume of new material published in the Web in the period 1999–2003 exceeds
what has been produced during the whole previous history of Mankind. A large
part of these data is formed by text, that is, sequences of symbols representing not
only natural language, but also music, program code, signals, multimedia streams,
biological sequences, time series, and so on. If we exclude strongly structured data
such as relational tables, text is the medium to convey information where retrieval
by content is best understood. The recent boom on XML advocates the use of text
as the medium to express structured and semistructured data as well, boosting
the potential of text as the favorite format for information storage, exchange, and
retrieval.

Each scenario where text is used to express information requires a different form
of retrieving such information from the text. On natural language text, for example,
information retrieval and natural language processing techniques aim at discovering
the meaning of text passages and their relevance to the information need of a human.
The main tools are statistical analysis of occurrences and variants of words. Another
prominent example is computational biology, which works on DNA, protein, or
gene sequences to extract information on evolutionary history, biochemical function,
chemical structure, and so on. The main tool used is sequence comparison to
determine similarities according to diverse biological models.

There is a basic search task, however, that underlies all the applications that
aim at extracting information from text. String matching is the process of finding
the occurrences of a short string (called the pattern) inside a (usually much longer)
string called the text. Virtually every text managing application builds on basic
string matching to implement more sophisticated functionalities such as finding
frequent words or retrieving sequences most similar to a sample. Significant devel-
opments in basic string matching have a wide impact on most applications. In the
rest of the paper we focus on basic string matching (also called “text searching” in
some scenarios).

String matching can be carried out in two forms. Sequential string matching
requires no preprocessing of the text, but rather traverses it sequentially to point
out every occurrence of the pattern. Indexed string matching builds a data structure
(index) on the text beforehand, which permits finding all the occurrences of any
pattern without traversing the whole text. Indexing is the choice when (i) the text
is so large that a sequential scanning is prohibitively costly, (ii) the text does not
change so frequently that the cost of building and maintaining the index outweighs
the savings on searches, and (iii) there is sufficient storage space to maintain the
index and provide efficient access to it.

While the first two considerations refer to the convenience of indexing compared
to sequentially scanning the text, the last one is a necessary condition to consider
indexing at all. At first sight, the storage issue might not seem significant given the
wide availability of massive storage. The real problem, however, is efficient access.
In the last two decades, the CPU speeds have been doubling every 18 months, while
the disk access times have stayed basically unchanged. Computer caches are many
times faster than their standard main memories. On the other hand, the classical

Compressed Full-Text Indexes · 3

indexes for string matching require from 4 to 20 times the text size [McCreight
1976; Manber and Myers 1993; Kurtz 1998]. This means that, even when we may
have enough main memory to hold a text, we may need to use the disk to store
the index. Moreover, most existing indexes are not designed to work in secondary
memory, so using them from disk is extremely inefficient. As a result, indexes are
usually confined to the case where the text is so small that even the index fits in
main memory, and those cases are less interesting for indexing given consideration
(i). For such a small text, a sequential scanning can be preferable for its simplicity
and better cache usage compared to an index.

In the analysis above, we are excluding a very well-known particular case. If the
text consists of natural language and we stick to word and phrase queries, then
inverted indexes require only 20%– 100% of extra space on top of the text [Baeza-
Yates and Ribeiro 1999], which is very low by the above standards. Moreover, there
exist compression techniques that can represent inverted index and text in about
35% of the space required by the original text [Witten et al. 1999; Navarro et al.
2000; Ziviani et al. 2000]. Yet, it is important to notice the limitations of this
approach. First, the keyword “natural language” excludes several very important
Human languages. It refers only to languages where words can be syntactically sep-
arated and follow some statistical laws such as Heaps’ (which governs the number of
distincts words) and Zipf-Mandelbrot (which governs their frequency distribution)
[Baeza-Yates and Ribeiro 1999]. This includes English and several other European
languages, but it excludes, for example, Chinese and Korean, where words are hard
to separate without understanding the meaning of the text; as well as agglutinating
languages, where particles are glued to form long “words”, yet one wishes to search
for the particles (such as Finnish and German). Second, natural language excludes
many symbol sequences of interest in many applications, such as DNA, gene or
protein sequences in computational biology; MIDI, audio, and other multimedia
signals; source and binary program code; numeric sequences of diverse kinds; etc.

Text compression is a technique to represent a text using less space. Given the
relation between main and secondary memory access times, it is advantageous to
store a large text that does not fit in main memory in compressed form, so as
to reduce disk transfer time, and then decompress it by chunks in main memory
prior to sequential searching. Moreover, a text may fit in main memory once com-
pressed, so compression may completely remove the need to access the disk. Some
developments in recent years have focused on improving this even more by directly
searching the compressed text instead of decompressing it.

Several attempts to reduce the space requirements of text indexes were made
in the past with moderate success, and some of them even considered the relation
with text compression. Three important concepts have emerged.

Definition 1 A succinct index is an index that provides fast search functionality
using a space proportional to that of the text itself (say, two times the text size).
A stronger concept is that of a compressed index, which takes advantage of the
regularities of the text to operate in space proportional to that of the compressed text.
An even more powerful concept is that of a self-index, which is a compressed index
that, in addition to providing search functionality, contains enough information to
efficiently reproduce any text substring. A self-index can therefore replace the text.

4 · V. Mäkinen and G. Navarro

Classical indexes such as suffix trees and arrays are not succinct. On a text of
n characters over an alphabet of size σ, those indexes require Θ(n log n) bits of
space, whereas the text requires n log σ bits. The first succinct index we know of
is by Kärkkäinen and Ukkonen [1996a]. It uses Ziv-Lempel compression concepts
to achieve O(n log σ) bits of space. Indeed, this is a compressed index achieving
space proportional to the k-th order entropy of the text (a lower-bound estimate
for the compression achievable by many compressor families). However, it was not
until this decade that the first self-index appeared [Ferragina and Manzini 2000]
and the potential of the relationship between text compression and text indexing
was fully realized, in particular regarding the correspondence between the entropy
of a text and the regularities in some widely used indexing data structures. Several
others succinct and self-indexes appeared almost simultaneously [Mäkinen 2000;
Grossi and Vitter 2000; Sadakane 2000]. The exciting concept of a self-index that
requires space close to that of the compressed text, provides fast searching on it, and
moreover replaces the text, has triggered much interest on this issue and produced
surprising results in very few years.

At this point, there exist indexes that require space close to that of the best
existing compression techniques, and provide search and text recovering function-
ality with almost optimal time complexity [Ferragina and Manzini 2000; Ferragina
and Manzini 2005; Grossi et al. 2003; Ferragina et al. 2006]. Yet, several of these
developments are still in a theoretical stage, and significant algorithm engineering
is necessary to implement them. However, some promising steps have already been
taken in making the compressed indexes more usable in real-world scenarios. For
example, there are studies on construction time and space [Hon et al. 2003], man-
agement of secondary storage [Mäkinen et al. 2004], searching for more complex
patterns [Huynh et al. 2004], updating upon text changes [Hon et al. 2004], etc.
Overall, this is an extremely exciting research area, with encouraging results of
theoretical and practical interest, and a long way ahead.

The aim of this survey is to give the theoretical background needed to understand
and follow the developments in this area. We first explain the relationship between
the compressibility of a text and the regularities that show up in its indexing struc-
tures. Those regularities can be exploited to compress the indexes. Then, we cover
the most relevant self-indexes that have been proposed, focusing on the conceptual
foundations underlying them, and explaining how they exploit the regularities of
the indexes to compress them and at the same time search them efficiently.

We do not give experimental results in this paper. Doing this carefully and
thoroughly would require many more pages. Some comparisons can be found, for
example, by Mäkinen and Navarro [2005a]. All the implementations we refer to
across the survey can be found from our Web pages. A repository of texts and
standardized implementations of succinct full-text indexes is available at mirrors
http://pizzachili.dcc.uchile.cl and http://pizzachili.di.unipi.it.

2. NOTATION AND BASIC CONCEPTS

We introduce the notation we use in the rest of the paper. A string S is a sequence of
characters. Each character is an element of a finite set called alphabet. The alphabet

Compressed Full-Text Indexes · 5

is usually called Σ and its size |Σ| = σ, and it is assumed to be totally ordered.
Sometimes, for technical convenience, we assume Σ = [1, σ] = {1, 2, . . . , σ}. The
length (number of characters) of S is denoted |S|. Let n = |S|, then the characters
of S are indexed from 1 to n, so that the i-th character of sequence S is Si. A
substring of S is written Si,j = SiSi+1 . . . Sj . A prefix of S is a substring of the
form S1,j, and a suffix is a substring of the form Si,n. If i > j then Si,j = ε, the
empty string of length |ε| = 0.

The concatenation of strings S and S′, written SS′, is obtained by appending
sequence S′ at the end of S. It is also possible to concatenate string S and character
c, as in cS or Sc. This is the same as if c were a string of length 1.

The lexicographical order “<” among strings is defined as follows. Let a and b
be characters and X and Y be strings. Then aX < bY if a < b, or if a = b and
X < Y . Furthermore, ε < X for any X 6= ε.

The problems we focus on in this paper are defined as follows.

Definition 2 Given a (long) text string T1,n and a (comparatively short) pattern
string P1,m, both over alphabet Σ, the occurrence positions (or just occurrences)
of P in T are the set O = {1 + |X |, ∃Y, T = XPY }. Two search problems are
of interest: (1) count the number of occurrences, that is, return occ = |O|; (2)
locate the occurrences, that is, return set O in some order. When the text T is not
explicitly available, a third task of interest is (3) display text substrings, that is,
return Tl,r given l and r.

In this paper we adopt for technical convenience the assumption that T is ter-
minated by Tn = $, which is a character from Σ that lexicographically precedes all
the others and appears nowhere else in T nor in P .

Logarithms in this paper are in base 2 unless otherwise stated.
In our study of compression algorithms, we will need routines to access individual

bit positions inside bit vectors. This raises the question of which machine model to
assume. We assume the standard word random access model (RAM); the computer
word size w is assumed to be such that log n = O(w), where n is the maximum size
of the problem instance. Standard operations (like bit-shifts, additions, etc.) on
an O(w) = O(log n)-bit integer are assumed to take constant time in this model.
However, all the results considered in this paper we only assume that an O(w)-bit
block at any given position in a bit vector can be read, written, and converted into
an integer, in constant time. This means that on a weaker model, where for example
such operations would take time linear in the length of the bit block, all the time
complexities for the basic operations would be multipied O(log n). In other words,
the dependency on the machine model is not severe.

3. BASIC TEXT INDEXES

In this section we cover the most popular full-text indexes, which are in particular
those that are turned into compressed indexes later in this paper. We are interested
in general indexes that work for any kind of text. As explained in the Introduction,
this excludes in particular the popular inverted indexes. Yet, we will consider
inverted indexes in Section 4.5 as an example of a compressed index for natural
language text.

6 · V. Mäkinen and G. Navarro

Given the focus of this paper, we are also not covering the various text indexes
that have been designed with constant-factor space reductions in mind, with no
relation to text compression nor self-indexing. In general these indexes have had
some, but not spectacular, success in lowering the large space requirements of text
indexes [Blumer et al. 1987; Andersson and Nilsson 1995; Kärkkäinen 1995; Irving
1995; Colussi and de Col 1996; Kärkkäinen and Ukkonen 1996b; Crochemore and
Vérin 1997; Kurtz 1998; Giegerich et al. 1999].

3.1 Tries or Digital Trees

A digital tree or trie [Fredkin 1960; Knuth 1973] is a data structure that stores a
set of strings. It can support the search for a string in the set in time proportional
to the length of the string sought, independently of the set size.

Definition 3 A trie for a set S of distinct strings S1, S2 . . . , SN is a tree where
each node corresponds to a distinct prefix in the set. The root node corresponds to
the empty prefix ε. Node v representing prefix Y is a child of node u representing
prefix X iff Y = Xc for some character c, which will label the tree edge from u to
v.

We assume that all strings are terminated by “$”. Under this assumption, no
string Si is a prefix of another, and thus the trie has exactly N leaves, each corre-
sponding to a distinct string. Fig. 1 illustrates.

a $

l

a

$

l
a b a r

$

d

a $

Fig. 1. A trie for the set {"alabar", "a", "la", "alabarda"}. In general trie nodes may have
arity up to σ.

A trie for S = {S1, S2, . . . , SN} is easily built in time O(|S1|+ |S2|+ . . .+ |SN |)
by successive insertions. Any string S can be searched for in the trie in time O(|S|)
by following from the trie root the path labeled with the characters of S. Two
outcomes are possible: (i) at some point i there is no edge labeled Si to follow,
which means that S is not in the set S, (ii) we reach a leaf corresponding to S
(assume that S is also terminated with character “$”).

Actually, the above complexities assume that the alphabet size σ is a constant.
For general σ, we must multiply the above complexities by O(log σ), which accounts
for the overhead of searching the correct character to follow inside each node. This

Compressed Full-Text Indexes · 7

can be made O(1) by using at each node a table of size σ, but in this case the size
and construction cost must be multiplied by O(σ) to allocate the tables at each
node. Alternatively, perfect hashing permits O(1) search time O(1) space factor at
each node, yet the construction cost is multiplied by O(σ2) [Raman 1996].

Note that a trie can be used for prefix searching, that is, to find every string
prefixed by S in the set. In this case, S is not terminated with “$”. If we can follow
the trie path corresponding to S, then the internal node reached corresponds to all
the strings Si in the set prefixed by S. We can traverse all the leaves of the subtree
to find the answers.

3.2 Suffix Tries and Suffix Trees

Let us now consider how tries can be used for text indexing. Given text T1,n

(terminated with Tn = $), T defines n suffixes T1,n, T2,n, . . . , Tn,n.

Definition 4 The suffix trie of a text T is a trie data structure built over all the
suffixes of T .

The suffix trie of T makes up an index for fast string matching. Given a pattern
P1,m (not terminated with “$”), every occurrence of P in T is a substring of T ,
that is, the prefix of a suffix of T . Entering the suffix trie with the characters of
P leads us to a node that corresponds to all the suffixes of T prefixed by P (or,
if we do not arrive at any trie node, then P does not occur in T). This permits
counting the occurrences of P in T in O(m) time, by simply recording the number
of leaves that descend from each suffix tree node. It also permits finding all the occ
occurrences of P in T in O(m + occ) time by traversing the whole subtree (some
additional pointers threading the leaves and connecting each internal node to its
first leaf are necessary to ensure this complexity).

In practice, the trie is pruned at a node as soon as there is only a unary path from
the node to a leaf. Instead, a pointer to the text position where the corresponding
suffix starts is stored. In this case, it is possible that we arrive at a leaf during the
search for P , without having read the complete suffix of T . This means that P has
at most one occurrence in T . We have to follow the pointer and compare the rest
of P with the rest of the suffix of T to determine whether there is one occurrence
or none.

With or without the trick of pruning nodes, the trie of a text T1,n requires space
and construction time O(n2) in the worst case. Albeit this worst case is unlikely,
and on average the trie requires O(n) space [Sedgewick and Flajolet 1996], there
exist equally powerful structures that guarantee this in the worst case [Morrison
1968; Apostolico 1985].

Definition 5 The suffix tree of a text T is a suffix trie where each unary path
is converted into a single edge. Those edges are labeled by strings obtained by
concatenating the characters of the replaced path. The leaves of the suffix tree
indicate the text position where the corresponding suffixes start.

Since there are n leaves and no unary nodes, it is easy to see that suffix trees
require O(n) space (the strings at the edges are represented with pointers to the

8 · V. Mäkinen and G. Navarro

text). Moreover, they can be built in O(n) time [Weiner 1973; McCreight 1976;
Ukkonen 1995; Farach 1997]. Fig. 2 shows an example.

_

$
_

r

18

d

21

12

l_

7

a l

9

_

10

la

19

d

_

164

d

bar

_

6

_

142

d

bara

r

_

131

d

$

20

a l

811

_

153

d

17

d_

5

bar labar

201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21

l a a a ab r a l a a l b a r d $T = a _ _ _

Fig. 2. The suffix tree of the text "alabar a la alabarda$". The white space is written as an
underscore for clarity, and it is lexicographically smaller than the characters "a"–"z".

The search for P in the suffix tree of T is similar to a trie search. Now we may
use more than one character of P to traverse an edge, but all edges leaving from a
node have different first characters. The search can finish in three possible ways:
(i) at some point there is no edge leaving from the current node that matches the
characters that follow in P , which means that P does not occur in T ; (ii) we read
all the characters of P and end up at an internal node (or in the middle of an edge),
in which case all the answers are in the subtree of the reached node (or edge); or
(iii) we reach a leaf of the suffix tree without having read the whole P , in which
case there is at most one occurrence of P in T , which must be checked by going
to the text pointed to by the leaf and comparing the rest of P with the rest of the
suffix. In any case the process takes O(m) time (assuming one uses perfect hashing
to find the children in constant time) and suffices for counting queries.

Suffix trees permit O(m + occ) locating time without need of further pointers
to thread the leaves, since the subtree with occ leaves has O(occ) nodes. The
real problem of suffix trees is their high space consumption, which is Θ(n log n)
bits and at the very least 10 times the text size in practice [Kurtz 1998]. Also,
in practice perfect hashing is replaced either by binary searching on the array of
existing children (so m is replaced by m log σ in the time complexities), or by a
direct indexing into a full array of all the possible children (so n is replaced by σn
in the space complexities).

Compressed Full-Text Indexes · 9

3.3 Suffix Arrays

A suffix array [Manber and Myers 1993; Gonnet et al. 1992] is simply a permutation
of all the suffixes of T so that the suffixes are lexicographically sorted.

Definition 6 The suffix array of a text T1,n is an array A[1, n] containing a per-
mutation of the interval [1, n], such that TA[i],n < TA[i+1],n for all 1 ≤ i < n, where
“<” between strings is the lexicographical order.

The suffix array can be obtained by collecting the leaves of the suffix tree in
left-to-right order (assuming that the children of the suffix tree nodes are lexico-
graphically ordered left-to-right by the edge labels). However, it is much more
practical to build them directly. In principle, any sorting algorithm can be used, as
it is a matter of sorting the n suffixes of the text, but this could be costly especially
if there are long repeated substrings within the text. There are several more sophis-
ticated algorithms, from the original O(n log n) time [Manber and Myers 1993] to
the latest O(n) time algorithms [Kim et al. 2003; Ko and Aluru 2003; Kärkkäinen
and Sanders 2003]. In practice, the best current algorithms are not linear-time ones
[Larsson and Sadakane 1999; Itoh and Tanaka 1999; Manzini and Ferragina 2004;
Schürmann and Stoye 2005].

Fig. 3 shows our example suffix array. Note that each subtree of the suffix tree
corresponds to the subinterval in the suffix array encompassing all its leaves (in the
figure we have highlighted the interval corresponding to the suffix tree node that
descends from the root by character "a").

7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

_ _ _

A =

201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21

l a a a ab r a l a a l b a r d $T = a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21

Fig. 3. The suffix array of the text "alabar a la alabarda$". We have shown explicitly where
the suffixes starting with "a" point to.

The suffix array plus the text contain enough information to search for patterns.
Since the result of a suffix tree search is a subtree, the result of a suffix array
search must be an interval. This is also obvious if one considers that all the suffixes
prefixed by P are lexicographically contiguous in the sorted array A. Thus, it is
possible to search for the interval of A containing the suffixes prefixed by P via
two binary searches on A. The first binary search determines the starting position
sp for the suffixes lexicographically larger than or equal to P . The second binary
search determines the ending position ep for suffixes that start with P . Then the
answer is the interval A[sp, ep]. A counting query needs to report just ep− sp + 1.
A locating query enumerates A[sp], A[sp + 1], . . ., A[ep].

Note that each step of the binary searches requires a lexicographical comparison
between P and some suffix TA[i],n, which requires O(m) time in the worst case.

10 · V. Mäkinen and G. Navarro

Hence the search takes worst case time O(m log n) (this can be lowered to O(m +
log n) by using more space to store the length of the longest common prefixes
between consecutive suffixes [Manber and Myers 1993; Abouelhoda et al. 2002]). A
locating query requires additional O(occ) time to report the occ occurrences. Fig. 4
gives the pseudocode.

Algorithm SASearch(P1,m,A[1, n],T1,n)
(1) sp← 1; st← n;
(2) while sp < st do

(3) s← ⌊(sp + st)/2⌋;
(4) if P > TA[s],A[s]+m−1 then sp← s + 1 else st← s;

(5) ep← sp− 1; et← n;
(6) while ep < et do

(7) e← ⌈(ep + et)/2⌉;
(8) if P = TA[e],A[e]+m−1 then ep← e else et← e− 1;

(9) return (sp, ep);

Fig. 4. Algorithm to search for P in suffix array A over text T . T is assumed to be terminated
by “$”, but P is not. Accesses to T outside the range [1, n] are assumed to return “$”. From
the returned data one can answer the counting query ep− sp + 1 or the locating query A[i], for
sp ≤ i ≤ ep.

All the space/time tradeoffs offered by the different succinct full-text indexes in
this paper will be expressed in tabular form, as theorems where the meaning of n,
m, σ, and Hk, is implicit (see Section 5 for the definition of Hk). For illustration and
comparison, and because suffix arrays are the main focus of compressed indexes,
we give now the corresponding theorem for suffix arrays. As the suffix array is
not a self-index, the space in bits includes a final term n log σ for the text itself.
The time to count refers to counting the occurrences of P1,m in T1,n. The time to
locate refers to giving the text position of a single occurrence after counting has
completed. The time to display refers to displaying one contiguous text substring
of ℓ characters. In this case (not a self-index), this is trivial as the text is readily
available. We show two tradeoffs, the second referring to storing longest common
prefix information. Throughout the survey, many tradeoffs will be possible for the
structures we review, and we will choose to show only those that we judge most
interesting.

Theorem 1 (Manber and Myers [1993]) The Suffix Array (SA) offers the fol-
lowing space/time tradeoffs.

Space in bits n log n + n log σ
Time to count O(m log n)
Time to locate O(1)
Time to display ℓ chars O(ℓ)
Space in bits 2n log n + n log σ
Time to count O(m + log n)
Time to locate O(1)
Time to display ℓ chars O(ℓ)

Compressed Full-Text Indexes · 11

4. PRELUDE TO COMPRESSED FULL-TEXT INDEXES

Before we start the formal and systematic exposition of the techniques that lead to
compressed indexes, we want to point out some key ideas at an informal level. This
is to permit the reader understanding the essential concepts without thoroughly
absorbing the formal treatment that follows. With this aim, the section includes
also a “roadmap” guide for the reader to gather from the forthcoming sections the
details required in fully grasping what is behind the simplified presentation of this
section.

We explain two elementary concepts that have a significant role in compressed
full-text indexes. Suprisingly, these two concepts can be plugged to traditional full-
text indexes making impact beyond compression. In fact, no knowledge of com-
pression techniques is required to understand the power of these methods. These
two concepts are backward search [Ferragina and Manzini 2000] and wavelet trees
[Grossi et al. 2003].

After introducing these concepts, we will give a brief motivation to compressed
data structures by showing how the familiar inverted index can be easily turned
into a compressed self-index for natural language texts. Then we will explain how
this same compression technique can be used to implement an approach that is the
reverse of backward searching.

4.1 Backward Search

Recall the binary search algorithm in Fig. 4. Ferragina and Manzini [2000] propose
a completely reverse way of guiding the search: The pattern is searched for from its
last character on to its first character. Fig. 5 illustrates how this backward search
proceeds.

Fig. 5. Backward search for pattern "ala" on the suffix array of the text "alabar a la

alabarda$".

12 · V. Mäkinen and G. Navarro

Fig. 5 shows the steps a backward search algorithm takes when searching for the
occurrences of "ala" in "alabar a la alabarda$". Let us reverse engineer how
the algorithm works. The first step is finding the range [5, 13] in suffix array A
where the suffixes start with "a". This is trivial: Everything one needs is an array
C indexed by the characters, such that C["a"] points to the first index in A where
the suffixes start with "a". Then, knowing that "b" is the successor of "a" in the
alphabet, the last index in A where the suffixes start with "a" is C["b"] − 1.

To understand step 2 in Fig. 5, consider column labeled TA[i]−1. By concatenating
a character in this column with the suffix TA[i],n following it, one obtains suffix
TA[i]−1,n. Since we have found out that suffixes TA[5],21, TA[6],21, . . . , TA[13],21 are
the only ones starting with "a", we know that suffixes TA[5]−1,21, TA[6]−1,21, . . . ,
TA[13]−1,21 are the only candidates to start with "la": We just need to check which
of those candidates actually start with "l".

The only crux is to efficiently find the range corresponding to suffixes starting
with "la" after knowing the range corresponding to "a". This is the novel point
needing more formalism, but to get an idea, consider all the concatenated suffixes
"l" TA[i],n in the descending row order they appear in (that is, find the rows
where TA[i]−1 = "l"). Now find the rows for the corresponding suffixes TA[i]−1,n =
"l" TA[i],n. Row 6 becomes row 17 after we prepend "l" to the suffix, row 8
becomes row 18, and row 9 becomes row 19. One notices that the top-to-bottom
order in the suffix array is preserved! It is easy to see why this must be so: The
suffixes TA[i]−1,n that start with "l" must be sorted according to the characters
that follow that "l", and this is precisely how suffixes TA[i],n are sorted.

Hence, to discover the new range corresponding to "la" it is sufficient to count
how many times "l" appears before and after the rows [5, 13] in column TA[i]−1.
Both counts are zero, and hence the complete range [17, 19] of suffixes starting with
"l" also start with "la".

Step 3 is more illustrating. Following the same line of thought, we end up counting
how many times the first character of our query, "a", appears before row 17 and
after row 19 in column TA[i]−1. The counts are 5 and 2, respectively. This means
that the range corresponding to suffixes starting with "ala" is [C["a"]+5, C["b"]−
1 − 2] = [10, 11].

We have now discovered that backward search can be implemented by means
of table C (to map each character to the lexicographically smallest suffix starting
with it) and some queries on the column TA[i]−1. Let us denote column TA[i]−1

by string L1,n (for reasons to make clear later). When formalized, one notices
that the single query needed on L is counting how many times a given character
appears up to some given position. Let us denote this query Occ(c, i) on character
c and position i. For example, in Fig. 5 we have L ="raadl ll$ bbaar aaaa" and
Occ("a", 16) = 5 (and Occ("a", 19) = 7 = 9 − 2, where 9 is the total number of
times "a" appears in L).

Another way of deriving the backward search algorithm (see Section 9) is to
notice that function LF (i) = C[L[i]] + Occ(L[i], i) maps suffix TA[i]...n to suffix
TA[i]−1...n (this permits decoding the text backwards). For example, C[L[14]] +
Occ(L[14], 14) = C["a"] + Occ("a", 14) = 4 + 4 = 8 (from suffix "bar a la

alabarda$" to suffix "abar a la alabarda$"). Instead of mapping one suffix
at the time, the backward search maps a range of suffixes (those whose prefix

Compressed Full-Text Indexes · 13

matches the current pattern suffix Pi...m) to their predecessors having the required
first character Pi−1 (by induction, the suffixes in the new range have the common
prefix Pi−1...m).

To finish the description of backward search, we still have to discuss how the
function Occ(c, i) can be computed. The most naive way to solve the Occ(c, i) query
is to do the counting on each query. However, this means O(n) scanning at each
step (overall O(mn) time!). Another extreme is to store all the answers in an array
Occ[c, i]. This requires σn log n bits of space, but gives O(m) counting time, which
improves the original suffix array search complexity. A practical implementation
of backward search is somewhere in between the extremes: Consider indicator bit
vectors Bc[i] = 1 iff L[i] = c for each character c. Let us define operation rankb(B, i)
as the number of occurrences of bit b in B[1, i], It is easy to see that rank1(B, i) =
Occ(c, i). That is, we have reduced the problem of counting characters up to a
given position in string L to counting bits set up to a given position in bit vectors.
Function rank will be studied in Section 6, where it will be shown that some
simple dictionaries taking o(n) extra bis for a bit vector B of length n enable
answering rankb(B, i) in constant time for any i. By building these dictionaries for
the indicator bit-vectors Bc, we can conclude that σn + o(σn) bits of space suffices
for O(m) time backward search. These structures together with the basic suffix
array give the following result:

Theorem 2 The Suffix Array with rank-dictionaries (SA-R) supports backward
search with the following space and time complexities.

Space in bits n log n + σn + o(σn)
Time to count O(m)
Time to locate O(1)
Time to display ℓ chars O(ℓ)

4.2 Wavelet trees

A tool to reduce the alphabet dependence from σn to n logσ in the afore-studied
Occ(c, i) queries is the wavelet tree Grossi, Gupta, and Vitter [2003]. The idea
is to simulate each Occ(c, i) query by log σ rank1-queries on binary sequences, as
illustrated in Fig. 6.

The structure of the wavelet tree is a balanced search tree where each symbol from
the alphabet corresponds to a leaf in the tree (see Fig. 6). The root of the wavelet
tree holds a bit-vector marking with 1 those character positions that belong to the
right subtree. Characters on those marked positions are concatenated to form the
sequence corresponding to the right child of the root. Symmetrically, characters on
the unmarked positions form the sequence corresponding to the left child of the root.
The same marking of character positions and concatenation of marked/unmarked
positions is repeated recursively until the leaves. Only the bit-vectors marking the
positions are stored, and they are preprocessed for rank1-queries.

Fig. 6 shows how Occ("a", 15) is computed, where L ="raadl ll$ bbaar aaaa".
As we know that "a" belongs to the first half of the sorted alphabet, it receives
mark 0 in the root bit-vector, and consequently its occurrences go to the left child.

14 · V. Mäkinen and G. Navarro

_ _ _

1 1 1 0 0
a aa $ a a

0 1 1 0 1 1 1 1
a a a a

_ _ _$
1 0 1 1

_ _

d b b
1 0 0

r l l l r
1 0 0 0 1

1 0 1 1 1 0 0 1
r d l l l b b r

$_a bdlr

$_ a

0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 00 0
a r a a d l _ ll $ b b a a r a a a a

lrbd

$ _ b ld r

5

a = 1, rank1(8) = 5

a = 0, rank0(15) = 8

Fig. 6. A binary wavelet tree for the string L = "raadl ll$ bbaar aaaa", illustrating the solution
of query Occ("a", 15). Only the bit vectors are stored, the texts are shown for clarity.

Thus, we compute rank0(B, 15) = 15 − rank1(B, 15) = 15 − 7 = 8 to find out
which is its corresponding character position in the concatenated sequence of the
left child of the root. As "a" belongs to the second quarter of the sorted alphabet
(that is, to the second half within the first half), its occurrences are marked 1 in
the bit-vector B′ of the left child of the root. Thus we compute rank1(B

′, 8) = 5 to
find out the corresponding position in the right child of the current node. As that
child is a leaf, it would contain a sequence formed by just "a"s, thus we already
have our answer Occ("a", 15) = 5. (Readers familiar with computational geometry
might notice that the process is quite identical to fractional cascading [de Berg et al.
2000, Chapter 5].) In practice, knowing which bit mark corresponds to a character
can be made very easy: One can use the bits of the integer representation of the
character within Σ, from most to least significant.

Some care in the implementation (see Section 6.3) leads to n log σ + o(n log σ)
bits representation of the wavelet tree supporting the internal rank computations
in constant time. As we have seen, each Occ(c, i) query can be simulated by log σ
binary rank computations. That is, wavelet trees enable improving the space com-
plexity significantly with a small sacrifice in time complexity.

Theorem 3 The Suffix Array with wavelet trees (SA-WT) supports backward
search with the following space and time complexities.

Space in bits n log n + 2n log σ + o(n log σ)
Time to count O(m log σ)
Time to locate O(1)
Time to display ℓ chars O(ℓ)

4.3 Turning Suffix Arrays into Self-Indexes

We have seen that counting queries can actually be supported without using suffix
arrays at all! Essentially, the wavelet tree for a sequence derived from the origi-
nal text suffices. For locating the occurrence positions or displaying text context,
the combination of suffix array and the original text is still necessary. The main

Compressed Full-Text Indexes · 15

technique to cope without the suffix array nor the text is to sample both at reg-
ular intervals, so that the space needed to store the samples is sublinear. Then,
to locate the occurrence positions we proceed as follows: The counting query gives
an interval in the suffix array to be reported. Now, given each position i within
this interval, we wish to find the corresponding text position A[i]. If suffix posi-
tion i is not sampled, one uses the backward step mechanism LF (i) to find the
suffix array entry pointing to text position A[i] − 1, A[i] − 2, . . . , until a sampled
position X = A[i] − k is found. Then, X + k is the answer. Displaying arbitrary
text substrings Tl,r is also easy by first finding the nearest sampled position after
r, following its stored link to obtain the corresponding suffix array position i such
that A[i] = r, and then using function LF successively from i to print out one
character per step from r to l (for example, the wavelet tree reveals the character
at a given position in log σ steps). Complete descriptions of these procedures are
given in the next sections (the details slightly varying from index to index).

Thus, we do not need the text nor the suffix array, just the wavelet tree and a few
additional arrays. This completes the description of a simple self-index, although
it is not yet compressed. Compression can be obtained by further engineering, for
example by using more space-economical versions of wavelet trees (see Sections 6.3
and 9).

4.4 Forward Searching: Compressed Suffix Arrays

Another line of studies on self-indexes [Grossi and Vitter 2000; Sadakane 2000]
builds on the inverse of LF (i) = C[[L[i]] + Occ(L[i], i) function studied above (see
Section 5.3 for details). The inverse function, denoted Ψ, maps suffix TA[i]...n to
suffix TA[i]+1...n, and thus enables scanning the text in forward direction, from left to
right. Continuing our example, we computed LF (14) = C[L[14]]+Occ(L[14], 14) =
8, and thus the inverse is Ψ(8) = 14. In general, the mapping has the simple
definition Ψ(i) = j such that A[j] = A[i] + 1. Fig. 7 illustrates.

Fig. 7. The suffix array of the text "alabar a la alabarda$" with Ψ values computed.

While the Occ(c, i) function demonstrated the backward search paradigm, the

16 · V. Mäkinen and G. Navarro

inverse function Ψ is useful in demonstrating the connection to compression: When
its values are listed from 1 to n, they form σ increasing integer sequences with
each value in {1, 2, . . . , n}. Fig. 7 works as a proof by example. Such increasing
integer sequences can be compressed using so-called gap encoding methods, as will
be demonstrated in Section 4.5.

Let us, for now, assume that we have the Ψ values compressed in a form that
enables constant-time access to its values. This function and the same table C that
was used in backward searching are almost all we need. Consider the standard
binary search algorithm of Fig. 4. Each step requires comparing a prefix of some
text suffix TA[i],n with the pattern. We can extract such prefix by following the
Ψ values recursively: i, Ψ[i], Ψ[Ψ[i]], . . ., as they point to TA[i], TA[i]+1, TA[i]+2,
. . .. After at most m steps, we have revealed enough characters from the suffix the
pattern is being compared to. To discover each such character TA[j], for j = i, Ψ[i],
Ψ[Ψ[i]], . . ., we can use the same table C: Because the first characters TA[j] of the
suffixes TA[j],n, are in alphabetic order in A, TA[j] must be the character c such
that C[c] < j ≤ C[c + 1]. Thus each TA[j] can be found by an O(log σ)-time binary
search on C.

The overall time complexity for counting queries is therefore the same O(m log n)
as in the standard binary search multiplied by the time needed for computing one
Ψ value and discovering the corresponding text character. As we have described it,
this yields O(m log n log σ) time, yet we show in Section 8 how a simple rank-based
trick reduces it to the same O(m log n) time used by the standard binary search.
For locating and displaying the text, one can use the same sampling method as in
the backward search-based self-indexes.

4.5 Inverted Indexes as Compressed Self-Indexes

The same technique used for compressing function Ψ is widely used in the more
familiar inverted indexes for natural language texts. To show the connection, we
analyze the space usage of inverted indexes as an introduction to compression of
function Ψ.

Consider text "to be or not to be". An inverted index for the text is

"be": 4, 17
"not": 10
"or": 7
"to": 1, 14

That is, each word in the vocabulary is followed by its occurrence positions in
the text. It is then easy to implement the search for the occurrences of a query
word (e.g. by binary on the vocabulary, or using a trie on the vocabulary words).
However, only the word beginnings are indexed, not all substrings as in full-text
indexes. We can think of the alphabet of the text as Σ = {"be","not","or","to"}.
Then we have σ increasing occurrence lists to compress (exactly as we will have in
function Ψ later on).

An efficient way to compress the occurrence lists is to use variable-length encoding
for the gaps, such as Elias-δ coding [Elias 1975; Witten et al. 1999]. Take for exam-
ple the list for "be": 4, 17. First, we get smaller numbers by representing the list
using differences between adjacent elements (called gaps): 4, (17 − 4) = 4, 13. The

Compressed Full-Text Indexes · 17

binary representations of the numbers 4 and 13 are 100 and 1101, respectively. How-
ever, from sequence 1001101 one cannot reveal the original content as the bound-
aries are not marked. Hence, one must somehow encode the lengths of the separate
binary numbers. Such coding is for example δ(4)δ(13) = 1101110011101001101,
where the first bits set until the first zero (11) encode a number ℓ (= 2) in unary.
The next ℓ-bit field (11), as an integer (3), tells the length of the bit field (100) that
codes the actual number (4). The process is repeated until the whole bit stream
is processed. Asymptotically the code for integer x takes log x + 2 log log x + O(1)
bits, where O(1) comes from the zero-bit separating the unary code from the rest,
and from rounding the logarithms.

We can now analyze the space requirement of the inverted index when the dif-
ferentially represented occurrence lists are δ-encoded. Let Iw[1], Iw[2], . . . Iw[nw] be
the list of occurrences for word w ∈ Σ. The list represents the differences between
occurrence positions, hence

∑nw

i=1 Iw[i] ≤ n. The space requirement of the inverted
index is then

∑

w∈Σ

nw
∑

i=1

(log Iw [i] + 2 log log Iw [i] + O(1))

≤ O(n) +
∑

w∈Σ

nw
∑

i=1

(log
n

nw
+ 2 log log

n

nw
)

= O(n) + n
∑

w∈Σ

nw

n
(log

n

nw
+ 2 log log

n

nw
)

= nH0 + O(n log log σ),

where the second and the last lines follow from the properties of the logarithm
function (the sum obtains its largest value when the occurrence positions are equally
distributed). We have introduced H0 as a shorthand notation for the familiar
measure of compressibility: the zero-order empirical entropy H0 =

∑

w∈Σ
nw

n log n
nw

(see Section 5), where the text is regarded as a sequence of words. For example,
nH0 is a lower bound for the bit-length of the output file prodced by any compressor
that encodes each text word using a unique (variable-length) bit sequence. Those
types of zero-order word-based compressors are very popular for their good results
on natural language [Ziviani et al. 2000].

This kind of gap encoding is the main tool for inverted index compression [Witten
et al. 1999]. We have shown that, using this technique, the inverted index is actually
a compressed index. In fact, the text is not necessary at all to carry out searches,
and moreover the text could be reconstructed from the index. Although technically
this makes this inverted index a self-index, displaying arbitrary text substrings is
not efficiently implementable using only the inverted index.

Random access to Ψ. As mentioned, the compression of function Ψ is identical
to the above scheme for lists of occurrences. The major difference is that we need
access to arbitrary Ψ values, not only from the beginning. A reasonably neat
solution (not the most efficient possible) is to sample, say, each log n-th absolute Ψ
value, together with a pointer to its position in the compressed sequence of Ψ values.
Access to Ψ[i] is then accomplished by finding the closest absolute value, following
the pointer to the compressed sequence, and uncompressing the differential values

18 · V. Mäkinen and G. Navarro

until reaching the desired entry. Value Ψ[i] is then the sampled absolute value
plus the sum of the differences. It is reasonably easy to uncompress each encoded
difference value in constant time. There will be at most log n values to decompress,
and hence each Ψ[i] value can be computed in O(log n) time. The absolute samples
take O(n) additional bits.

With the help of some small auxiliary tables, the extraction of Ψ values can be
carried out in constant time. Self-indexes based on the Ψ function will be studied
in more detail in Section 8.

4.6 Roadmap

At this point the reader can leave with a reasonably complete and accurate intuition
of the main ideas behind compressed full-text indexing. The rest of the paper is
devoted to readers seeking for a more in-depth technical understanding of the area,
and thus it revisits the concepts presented in this section (as well as other omitted
ones) in a more formal and systematic way.

We start in Section 5 by exposing the fundamental relationships between text
compressibility and index regularities. This also reveals the ties that exist among
the different approaches, proving facts that are used both in forward and backward
search paradigms. The section will also introduce the fundamental concepts behind
the indexing schemes that achieve higher-order compression, something we have
not touched in this section. Readers wishing to understand the algorithmic details
behind compressed indexes without understanding why they achieve the promised
compression bounds, can safely skip Section 5 and just believe the space complexity
claims in the rest of the paper. They will have to return to this section only
ocassionally for some definitions.

Section 6 describes some basic compact data structures and their properties,
which can also be taken for granted when reading the other sections. Thus this
section can be skipped by readers wanting to understand the main algorithmic
concepts of self-indexes, but not by those wishing for example to implement one
such self-index.

Sections 7 and 8 describe the self-indexes based on forward searching using the
Ψ function, and they can be read independently of Section 9, which describes the
backward searching paradigm, and of Section 10, which describes Ziv-Lempel based
self-indexes (the only ones not based on suffix arrays).

The last sections finish the survey with an overview of the area and are recom-
mended to every reader, tough not essential.

5. SUFFIX ARRAY REGULARITIES AND TEXT COMPRESSIBILITY

Suffix arrays are not random permutations. When the text alphabet size σ is smaller
than n, not every permutation of [1, n] is the suffix array of some text (as there
are more permutations than texts of length n). Moreover, the k-th order empirical
entropy of T is reflected in regularities that appear on its suffix array A. In this
section we show how some subtle measures of suffix array regularities are related
to measures of text compressibility. Those relationships are used later to compress
suffix arrays.

The analytical results in this section are presented at a basic level only. We
refer the reader to the original sources to find the detailed proofs. Moreover, we

Compressed Full-Text Indexes · 19

sometimes deviate slightly from the original definitions, changing technical details
to allow for a simpler exposition.

5.1 k-th Order Empirical Entropy

Opposed to the classical notion of k-th order entropy [Bell et al. 1990], which can
only be defined for infinite sources, the k-th order empirical entropy defined by
Manzini [2001] applies to finite texts. It coincides with the statistical estimation
of the entropy of a source taking the text as a finite sample of the infinite source
(actually, the same formula of Manzini [2001] is used by Grossi et al. [2003], yet it
is interpreted in this latter sense). The definition is especially useful because it can
be applied to any text without resorting to assumptions on its distribution. It has
become popular in the algorithm community, for example in analyzing the size of
data structures, because it is a worst-case measure but yet relates the space usage
to compressibility.

Definition 7 Let T1,n be a text over an alphabet Σ. The zero-order empirical
entropy of T is defined as

H0 = H0(T) =
∑

c∈Σ

nc

n
log

n

nc
,

where nc is the number of occurrences of character c in T . The sum includes only
those characters c that occur in T , so that nc > 0.

Definition 8 Let T1,n be a text over an alphabet Σ. The k-th order empirical
entropy of T is defined as

Hk = Hk(T) =
∑

s∈Σk

|T s|
n

H0(T
s), (1)

where T s is the subsequence of T formed by all the characters that occur followed
by the context s. To have a context for the last k characters of T , we pad T with k
characters “$” (in addition to Tn = $). More precisely, if the occurrences of s in
T2,n$k start at positions p1, p2, . . ., then T s = Tp1−1Tp2−1 Again, we consider
only contexts s that do occur in T .

We note that, in the text compression literature, it is customary to define T s

regarding the characters preceded by s, rather than followed by s. We use the
reverse definition for technical convenience. Although the empirical entropy of T
and its reverse do not necessarily match, one can always work on the reverse text if
this is an issue. Moreover, it has been shown that the difference is relatively small
[Ferragina and Manzini 2005].

The empirical entropy of a text T provides a lower bound to the number of bits
needed to compress T using any compressor that encodes each character considering
only the context of k characters that follow it in T . Many self-indexes state their
space requirement as a function of the empirical entropy of the indexed text. This
is useful because it gives a measure of the index size with respect to the size the
best k-th order compressor would achieve, thus relating the index size with the
compressibility of the text.

20 · V. Mäkinen and G. Navarro

We note that the classical entropy defined over infinite streams is always constant
and can be zero. In contrast, the definition of Hk we use for finite texts is always
positive, yet it can be o(1) on compressible texts. For an extreme example, consider
T = abab . . . ab$, where H0(T) = 1 − O(log n/n) and Hk(T) = 2/n for k ≥ 1.
The technical consequence of the finiteness of the text is the presence of the “$”
terminator.

When we have a binary sequence B[1, n] with ℓ bits set, it is good to remember
some bounds on its zero-order entropy, such as log

(

n
ℓ

)

≤ nH0(B) ≤ log
(

n
ℓ

)

+
O(log ℓ), ℓ log n

ℓ ≤ nH0(B) ≤ ℓ log n
ℓ + ℓ log e, and ℓ log n

ℓ ≤ nH0(B) ≤ ℓ log n.

5.2 Self-Repetitions in Suffix Arrays

Consider again the suffix tree for our example text T = "alabar a la alabarda$"

depicted in Fig. 2. Observe, for example, that the subtree rooted at "abar" contains
leaves {3, 15}, while the subtree rooted at "bar" contains leaves {4, 16}, that is,
the same positions shifted by one. The reason is simple: every occurrence of "bar"
in T is also an occurrence of "abar". Actually, the chain is longer: If one looks at
subtrees rooted at "alabar", "labar", "abar", "bar", "ar", and "r", the same
phenomenon occurs, and positions {1, 13} become {6, 18} after five steps. The
same does not occur, for example, with the subtree rooted at " a", whose leaves
{7, 12} do not repeat as {8, 13} inside another subtree. The reason is that not all
occurrences of "a" belong to occurrences of " a" in T , and thus there are many
more leaves rooted by "a" in the suffix tree, apart from 8 and 13.

Those repetitions show up in the suffix array A of T , depicted in Fig. 3. For
example, consider A[18, 19] with respect to A[10, 11]: A[18] = 2 = A[10] + 1 and
A[19] = 14 = A[11] + 1. We denote such relationship by A[18, 19] = A[10, 11] + 1.
There are also longer regularities that do not correspond to a single subtree of the
suffix tree, for example A[18, 21] = A[10, 13]+1. Still, the text property responsible
for the regularity is the same: All the text suffixes in A[10, 13] start with "a", while
those in A[18, 21] are the same suffixes with the initial "a" excluded. The regularity
appears because, for each pair of consecutive suffixes aX and aY in A[10, 13], the
suffixes X and Y are contiguous in A[18, 21], that is, there is no other suffix Z
such that X < Z < Y elsewhere in the text. This motivates the definition of
self-repetition initially devised by Mäkinen [2000, 2003].

Definition 9 Given a suffix array A, a self-repetition is an interval [i, i+ℓ] of [1, n]
such that there exists another interval [j, j+ℓ] such that A[j+r] = A[i+r]+1 for all
0 ≤ r ≤ ℓ. For technical convenience, cell A[1] = n is considered as a self-repetition
of itself, of length 1.

Note that A[1] = n because Tn,n = $, which is lexicographically the smallest
suffix and hence it is pointed from A[1].

A measure of the amount of regularity in a suffix array is how many self-repetitions
we need to cover the whole array. This is captured by the following definition
[Mäkinen and Navarro 2004a, 2005a, 2005b].

Definition 10 Given a suffix array A, we define nsr as the minimum number of
self-repetitions necessary to cover the whole A. This is the minimum number of

Compressed Full-Text Indexes · 21

nonoverlapping intervals [is, is + ℓs] that cover the interval [1, n] such that, for any
s, there exists js such that A[js + r] = A[is + r] + 1 for all 0 ≤ r ≤ ℓs (except for
i1 = 1, where A[i1] = n, and thus ℓ1 = 0 and j1 = 1).

Self-repetitions are best highlighted through the definition of function Ψ, which
tells where in the suffix array lies the pointer following the current one [Grossi and
Vitter 2000].

Definition 11 Given suffix array A[1, n], function Ψ : [1, n] → [1, n] is defined so
that, for all 1 ≤ i ≤ n, A[Ψ(i)] = A[i] + 1. The exception is A[1] = n, in which
case we require A[Ψ(1)] = 1 so that Ψ is actually a permutation.

Function Ψ is heavily used in most compressed suffix arrays, as seen later. There
are several properties of Ψ that make it appealing to compression. A first one
establishes that Ψ is monotonically increasing in the areas of A that point to suffixes
starting with the same character [Grossi and Vitter 2000].

Lemma 1 Given a text T1,n, its suffix array A[1, n], and the corresponding function
Ψ, it holds Ψ(i) < Ψ(i + 1) whenever TA[i] = TA[i+1].

To see that the lemma holds, assume that TA[i],n = cX and TA[i+1],n = cY , so
cX < cY and then X < Y . Thus TA[i]+1,n = TA[Ψ(i)],n = X and TA[i+1]+1,n =
TA[Ψ(i+1)],n = Y . So TA[Ψ(i)],n < TA[Ψ(i+1)],n, and thus A[Ψ(i)] must occur before
A[Ψ(i + 1)] in A, that is, Ψ(i) < Ψ(i + 1).

Another interesting property is a special case of the above: how does Ψ behave
inside a self-repetition A[j+r] = A[i+r]+1 for 0 ≤ r ≤ ℓ. Note that Ψ(i+r) = j+r
throughout the interval. Fig. 8 illustrates (for now consider only the first two
arrays). This motivates the definition of runs in Ψ [Mäkinen and Navarro 2004a,
2005a, 2005b].

7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

10 7 11 4 15 19 21 13 8 1617 1 3 14 18 20 12 5 6 9 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

r d aa a a l l l $ b b a a r aa aT =
bwt

A =

Ψ =

Fig. 8. Covering the suffix array A of the text T = "alabar a la alabarda$" with self-
repetitions, and the corresponding Ψ function. Below array A we show the minimal covering
with self-repetitions, and below array Ψ we show the runs. Both coincide. On the bottom, the
characters of T bwt, where we show the equal-letter runs. Almost all targets of self-repetitions

become equal-letter runs.

Definition 12 A run in Ψ is a maximal interval [i, i + ℓ] in sequence Ψ such that
Ψ(i + r + 1) − Ψ(i + r) = 1 for all 0 ≤ r < ℓ.

22 · V. Mäkinen and G. Navarro

Note that the number of runs in Ψ is n minus the number of positions i such
that Ψ(i + 1) − Ψ(i) = 1. The following lemma should not be surprising [Mäkinen
and Navarro 2004a, 2005a, 2005b].

Lemma 2 The number of self-repetitions nsr to cover a suffix array A is equal to
the number of runs in the corresponding Ψ function.

5.3 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform [Burrows and Wheeler 1994] is a reversible trans-
formation from strings to strings.

Definition 13 Given a text T1,n and its suffix array A[1, n], the Burrows-Wheeler
transform (BWT) of T , T bwt

1,n , is defined as T bwt
i = TA[i]−1, except when A[i] = 1,

where T bwt
i = Tn.

That is, T bwt is formed by sequentially traversing the suffix array A and con-
catenating the characters that precede each suffix. Fig. 8 illustrates. Although
the transformation does not compress the text, the transformed text is easier to
compress by local optimization methods [Manzini 2001].

We show now an alternative form to regard the BWT, which is useful to under-
stand how it is reversed and to understand several self-indexes presented later.

A cyclic shift of T1,n is any string of the form Ti,nT1,i−1. Let M be a matrix
containing all the cyclic shifts of T in lexicographical order. Let F be the first
and L the last column of M . Since T is terminated with character “$”, which is
smaller than any other, the cyclic shifts Ti,nT1,i−1 are sorted exactly like the suffixes
Ti,n. Thus M is essentially the suffix array A of T , and L is the list of characters
preceding each suffix, that is, L = T bwt. On the other hand, F is a sorted list of
all the characters in T .

Fig. 9 illustrates. Note that row M [i] is essentially TA[i],n of Fig. 5, and that
every column of M is a permution of the text. For compression purposes, it would
seem that one could choose the most regular of those permutations to obtain best
compression. That would be column F . The problem is that the original text
cannot be revealed by just knowing F . However, permutation L can be reversed
back to the text, and it also exhibits some compressibility information that can be
exploited in many ways, as we show next.

In order to reverse the BWT, we need to be able to know, given a character in L,
where it appears in F . This is called the LF-mapping [Burrows and Wheeler 1994;
Ferragina and Manzini 2000].

Definition 14 Given strings F and L resulting from the BWT of text T , the LF-
mapping is a function LF : [1, n] −→ [1, n], such that LF (i) is the position in F
where character L[i] occurs.

Consider the single occurrence of character "d" in Fig. 9. It is at L[5]. It is easy
to see where it is in F : Since F is alphabetically sorted and there are 15 characters
smaller than "d" in T , it must be F [16] = "d", thus LF (5) = 16. The situation
is a bit more complicated for L[18] = "a", because there are several occurrences of
the same character. Note, however, that all the occurrences of "a" in F are sorted

Compressed Full-Text Indexes · 23

bwt

T =

F =

L = T =

alabar_a_la_alabarda$

araadl_ll$_bbaar_aaaa

$___aaaaaaaaabbdlllrr

alabar_a_la_alabarda$
labar_a_la_alabarda$a
abar_a_la_alabarda$al
bar_a_la_alabarda$ala
ar_a_la_alabarda$alab
r_a_la_alabarda$alaba
_a_la_alabarda$alabar
a_la_alabarda$alabar_
_la_alabarda$alabar_a
la_alabarda$alabar_a_
a_alabarda$alabar_a_l

alabarda$alabar_a_la_
labarda$alabar_a_la_a
abarda$alabar_a_la_al
barda$alabar_a_la_ala
arda$alabar_a_la_alab
rda$alabar_a_la_alaba
da$alabar_a_la_alabar
a$alabar_a_la_alabard
$alabar_a_la_alabarda

$alabar_a_la_alabarda
_a_la_alabarda$alabar

_alabarda$alabar_a_la

_alabarda$alabar_a_la
_la_alabarda$alabar_a
a$alabar_a_la_alabard
a_alabarda$alabar_a_l
a_la_alabarda$alabar_
abar_a_la_alabarda$al
abarda$alabar_a_la_al
alabar_a_la_alabarda$
alabarda$alabar_a_la_
ar_a_la_alabarda$alab
arda$alabar_a_la_alab
bar_a_la_alabarda$ala
barda$alabar_a_la_ala
da$alabar_a_la_alabar
la_alabarda$alabar_a_
labar_a_la_alabarda$a
labarda$alabar_a_la_a
r_a_la_alabarda$alaba
rda$alabar_a_la_alaba

M =
cyclic shifts LF

sort

Fig. 9. Obtaining the BWT for the text "alabar a la alabarda$".

according to the suffix that follows the "a". Likewise, all the occurrences of "a" in
L are also sorted accordingly to the suffix that follows that "a". Therefore, equal
characters preserve the same order in F and L. As there are 4 characters smaller
than "a" in T and 6 occurrences of "a" in L[1, 18], we have that L[18] = "a" occurs
at F [4 + 6] = F [10], that is, LF (18) = 10.

The following lemma gives the formula for the LF-mapping [Burrows and Wheeler
1994; Ferragina and Manzini 2000].

Lemma 3 Let T1,n be a text and F and L be the result of its BWT. Let C : Σ −→
[1, n] and Occ : Σ × [1, n] −→ [1, n], such that C(c) is the number of occurrences
in T of characters alphabetically smaller than c, and Occ(c, i) is the number of
occurrences of character c in L[1, i]. Then, it holds LF (i) = C(L[i]) + Occ(L[i], i).

With this mapping, reversing the BWT is simple, as L[i] always precedes F [i] in
T . Since Tn = $, the first cyclic shift in M is TnT1,n−1, and therefore Tn−1 = L[1].
We now compute i = LF (1) to learn that Tn−1 is at F [i], and thus Tn−2 = L[i]
precedes F [i] = Tn−1. With i′ = LF (i) we learn that Tn−2 is at F [i′] and thus
Tn−3 = L[i′], and so on, Tn−k = L[LF k−1(1)].

We finish with an observation that is crucial to understand the relation between
different kinds of existing self-indexes [Sadakane 2000; Ferragina and Manzini 2000].

Lemma 4 Functions LF and Ψ are the inverse of each other.

24 · V. Mäkinen and G. Navarro

To see this, note that LF (i) is the position in F of character L[i] = T bwt
i =

TA[i]−1, or which is the same, the position in A where the suffix TA[i]−1,n is pointed
to. Thus A[LF (i)] = A[i] − 1, or LF (i) = A−1[A[i] − 1]. On the other hand,
according to Definition 11, A[Ψ(i)] = A[i]+1. Hence LF (Ψ(i)) = A−1[A[Ψ(i)]−1] =
A−1[A[i] + 1 − 1] = i and vice versa.

5.4 Relation between Regularities and Compressibility

We start by pointing out a simple but essential relation between T bwt, the Burrows-
Wheeler transform of T , and Hk, the k-th order empirical entropy of T . Note that,
for each text context of length k, all the suffixes starting with that context appear
consecutively in A. Therefore, the characters that precede each context appear
consecutively in T bwt. The following lemma [Ferragina and Manzini 2004; Ferragina
et al. 2004a] shows that it suffices to compress the characters of each context to
their zero-order entropy to achieve k-th order entropy overall.

Theorem 4 Given T1,n over an alphabet of size σ, with k-th order empirical en-
tropy Hk, if we divide T bwt into (at most) σk pieces according to the text context
that follows each character in T , and then compress each piece T s corresponding to
context s using c|T s|H0(T

s)+f(|T s|) bits, where the f is a concave function1, then
the representation for the whole T bwt requires at most cnHk + σkf(n/σk) bits.

To see that the theorem holds, it is enough to recall Eq. (1), as we are representing
the characters T s followed by each of the contexts s ∈ Σk using space proportional
to |T s|H0(T

s). The extra space, σkf(n/σk), is just the worst case of the sum of σk

values f(|T s|) where the values |T s| add up to n.
Thus, it is enough to encode each portion of T bwt with a zero-order compressor

in order to obtain a k-th order compressor for T , for any k. The price of using a
longer context (larger k) is paid in the extra σkf(n/σk) term. This can be thought
of as the price to manage the model information, and it can easily dominate the
overall space if k is not small enough.

Let us now consider the number of equal-letter runs in T bwt. This will be related
both to self-repetitions in suffix arrays and to the empirical entropy of T [Mäkinen
and Navarro 2004a, 2005a, 2005b].

Definition 15 Given a Burrows-Wheeler transformed text T bwt, nbw is the number
of equal-letter runs in T bwt, that is, n minus the number of positions j such that
T bwt

j+1 = T bwt
j .

There is a close relationship between the number of runs in Ψ (or self-repetitions
in A), and the number of equal-letter runs in T bwt [Mäkinen and Navarro 2004a,
2005a, 2005b].

Lemma 5 Let nsr be the number of runs in Ψ (or self-repetitions in A), and let
nbw be the number of equal-letter runs in T bwt, all with respect to a text T over an
alphabet of size σ. Then it holds nsr ≤ nbw ≤ nsr + σ.

1That is, its second derivative is never positive.

Compressed Full-Text Indexes · 25

To see why the lemma holds, consider Figs. 3 (page 9) and 8. Let us focus
on the longest self-repetition, A[10, 13] = {1, 13, 5, 17}. All those suffixes (among
others) start with "a". The self-repetition occurs in Ψ([10, 13]) = [18, 21], that
is, A[18, 21] = {2, 14, 6, 18}. All those suffixes are preceded by "a", because all
{1, 13, 5, 17} start with "a". Hence there is a run of characters "a" in T bwt

18,21.
It should be obvious that in all cases where all the suffixes of a self-repetition start

with the same character, there must be an equal-letter run in T bwt: Let A[j + r] =
A[i + r] + 1 and TA[i+r] = c for 0 ≤ r ≤ ℓ. Then T bwt

j+r = TA[j+r]−1 = TA[i+r] = c
holds for 0 ≤ r ≤ ℓ. On the other hand, because of the lexicographical ordering,
consecutive suffixes change their first character at most σ times throughout A[1, n].
Thus, save at most σ exceptions, every time Ψ(i + 1) − Ψ(i) = 1 (that is, we are
within a self-repetition), there will be a distinct j = Ψ(i) such that T bwt

j+1 = T bwt
j .

Thus nbw ≤ nsr+σ. (There is one such exception in Fig. 8, where the self-repetition
A[16, 17] + 1 = A[5, 6] does not correspond to an equal-letter run in T bwt

5,6 .)

On the other hand, every time T bwt
j+1 = T bwt

j , we know that suffix TA[j],n = X is
followed by TA[j+1],n = Y , and both are preceded by the same character c. Hence
suffixes cX and cY must also be contiguous, at positions i and i+1 so that Ψ(i) = j
and Ψ(i + 1) = j + 1, thus it holds Ψ(i + 1) − Ψ(i) = 1 for a distinct i every time
T bwt

j+1 = T bwt
j . Therefore, nsr ≤ nbw. These observations prove Lemma 5.

We finally relate the k-th order empirical entropy of T with nbw [Mäkinen and
Navarro 2004a, 2005a, 2005b].

Theorem 5 Given a text T1,n over an alphabet of size σ, with k-th order empirical
entropy Hk, and given its Burrows-Wheeler transformed text T bwt with nbw equal-
letter runs, it holds nbw ≤ nHk + σk for any k ≥ 0. In particular, it holds nbw ≤
nHk +o(n) for any k ≤ logσ n−ω(1). The bounds are obviously valid for nsr ≤ nbw

as well.

We only attempt to give a flavor of why the theorem holds. The idea is to
partition T bwt according to the contexts of length k. Following Eq. (1), nHk is the
sum of zero-order entropies over all the contexts. It can then be shown that, within
a single context T bwt

i,j , the number of equal-letter runs in T bwt
i,j can be upper bounded

in terms of the zero-order entropy of the string T bwt
i,j . A constant f(|S|) = 1 in the

upper bound is responsible for the σk overhead, which is the number of possible
contexts of length k. Thus the rest is a consequence of Theorem 4.

6. BASIC COMPACT DATA STRUCTURES

We will learn later that nearly all approaches to represent suffix arrays in com-
pressed form take advantage of compressed representations of binary sequences.
That is, we are given a bit vector (or bit string) B1,n, Bi ∈ {0, 1} for 1 ≤ i ≤ n,
and we want to compress it while at the same time supporting several operations
on it. Typical operations are the following:

Bi: Accesses the i-th element.
rankb(B, i): Returns the number of times bit b appears in the prefix B1,i.

selectb(B, j): Returns the position i of the j-th appearance of bit b in B1,n.

Other useful operations are prevb(B, i) and nextb(B, i), which give the position

26 · V. Mäkinen and G. Navarro

of the previous/next bit b from position i. However, these operations can be ex-
pressed via rank and select, and hence are usually not considered separately. Notice
also that rank0(B, i) = i − rank1(B, i), so considering rank1(B, i) will be enough.
However, the same duality does not hold for select, and we have to consider both
select0(B, j) and select1(B, j). We call a representation of B complete if it supports
all the listed operations in constant time. Representation is partial if it supports
the listed operations only for 1-bits, that is, it supports rankb(B, i) only if Bi = 1
and it only supports select1(B, j).

The study of succinct representations of various structures, including bit vectors,
was initiated by Jacobson [1989]. The main motivation to study these operations
came from the possibility to simulate tree traversals in small space: It is possible
to represent the shape of a tree as a bit vector, and then the traversal from a node
to a child and vice versa can be expressed via constant number of rank and select
operations. Jacobson showed that attaching a dictionary of size o(n) to the bit
vector B1,n is sufficient to support rank operation in constant time on a RAM
model. He also studied select operation, but for the RAM model the solution was
not yet optimal. Later, Munro [1996] and Clark [1996] obtained constant-time
complexity for select on the RAM model, using also o(n) extra space.

Although the n + o(n) solutions are asymptotically optimal for incompressible
binary sequences, one can obtain more space-efficient representations for compress-
ible ones. Consider, for example, select1(B, i) operation on a bit vector containing
ℓ = o(n/ log n) 1-bits. One can store all answers explicitly using O(ℓ log n) = o(n)
bits.

Pagh [1999] was the first to study compressed representations of bit vectors sup-
porting more than just access to Bi. He gave a representation of bit vector B1,n

that uses
⌈

log
(

n
ℓ

)⌉

+ o(ℓ) + O(log log n) bits, where ℓ is the number of 1-bits in
B. In principle this representation supported only Bi queries, yet it also supported
rank queries for sufficiently dense bit vectors, n = O(ℓ polylog(ℓ)). Notice that
log

(

n
ℓ

)

= nH0(B) + O(log n).
This result was later enhanced by Raman, Raman, and Rao [2002], who developed

a representation with similar space complexity, nH0(B) + o(ℓ) + O(log log n) bits,
supporting rank and select. However, this representation is partial: they support
select1(B, j) but not select0(B, j), and rank1(B, i) only when Bi = 1. They also
provide a new complete representation requiring nH0(B)+O(n log log n/ logn) bits.

The missing piece, therefore, is achieving a complete representation that needs
o(ℓ) instead of o(n) extra space when ℓ is significantly smaller than n. This, however,
seems unlikely, as there is a matching lower bound [Miltersen 2005] that holds for
schemes that do not alter B. This leaves open the question on schemes that replace
B with a compressed representation, as the one considered in Section 6.2.

In the rest of this section we explain the most intuitive of these results, to give
a flavor of how some of the solutions work. We also show how results extend to
non-binary sequences.

6.1 Basic n + o(n)-bit Solutions for Binary Sequences

We start by explaining the n + o(n) bits solution supporting rank1(B, i) and
select1(B, j) in constant time [Jacobson 1989; Munro 1996; Clark 1996]. Then
rank0(B, i) is obtained automatically and select0(B, j) is symmetric.

Compressed Full-Text Indexes · 27

Let us start with rank. The structure is composed of a two-level dictionary with
partial solutions (directly storing the answers at regularly sampled positions i), plus
a global table storing answers for every possible short binary sequence. The answer
to a rank query is formed by summing values from these dictionaries and tables.

For clarity of presentation we assume n is a power of four. The general case is
handled by considering floors and ceilings when necessary. We assume all divisions
x/y to give the integer ⌊x/y⌋.

Let us start from the last level. Consider a substring smallblock of B1,n of

length t = log n
2 . This case is handled by the so-called four-Russians technique

[Arlazarov et al. 1975]: We build a table smallrank[0,
√

n − 1][0, t − 1] storing all
answers to rank queries for all binary sequences of length t (note that 2t =

√
n).

Then rank1(smallblock, i) = smallrank[smallblock][i] is obtained in constant
time. To index smallrank, smallblock is regarded as an integer in the usual
way. Note that this can be extended to substrings of length c log n, which would
be solved in at most 2c accesses to table smallrank. For example, if smallblock
is of length log n, then rank1(smallblock, t + 3) = smallrank[smallpiece1, t] +
smallrank[smallpiece2, 3], where smallpiece1 and smallpiece2 are the two halves
of smallblock.

We could complete the solution by dividing B into blocks of length log n and ex-
plicitly storing rank answers for block boundaries, in a table boundaryrank[0, n

log n−
1], such that boundaryrank[q] = rank1(B, q log n) for 0 ≤ q < n

log n . Then,

given i = q log n + r, 0 ≤ r < log n, we have rank1(B, i) = boundaryrank[q] +
rank1(Bq log n+1,q log n+log n, r). As the latter rank1 query is answered in constant
time using table smallrank, we have constant time rank queries on B.

The problem with boundaryrank is that there are n
log n blocks in B, each of

which requires log n bits in boundaryrank, for n total bits. To obtain o(n) extra
space, we build a superblocks dictionary superblockrank[0, n

log2 n
− 1] such that

superblockrank[q′] = rank1(B, q′ log2 n) for 0 ≤ q′ < n
log2 n

. We replace the

blocks dictionary boundaryrank with blockrank, such that blockrank stores rel-
ative answers, inside the corresponding superblock of superblockrank. That is,
blockrank[q] = boundaryrank[q] − superblockrank[q

log n] for 0 ≤ q < n
log n . It

follows that, for i = q′ log2 n + r′ = q log n + r, 0 ≤ r′ < log2 n, 0 ≤ r < log n,

rank1(B, i) = superblockrank[q′]+blockrank[q]+rank1(Bq log n+1,q log n+log n, r),

where the last rank1 query is answered in constant time using table smallrank.
The values stored in blockrank are in the range [0, log2 n − 1], hence table

blockrank takes O(n log log n/ logn) bits. Table superblockrank takes O(n/ log n)
bits, and finally table smallrank takes O(

√
n log n log log n) bits. We have obtained

the claimed n + o(n) bits representation of B1,n supporting constant time rank.
Fig. 10 illustrates the structure.

Extending the structure to provide constant time select queries is more compli-
cated. We explain a simple version here which shares the essential idea of the real
solutions [Munro 1996; Clark 1996].

We partition the space [1, n] of possible arguments of select, that is, the values
j of queries select1(B, j). We cut [1, n] into blocks of log2 n arguments. A dictionary

28 · V. Mäkinen and G. Navarro

Fig. 10. An example of constant time rank computation using n + o(n) bits of space.

superblockselect[j], requiring O(n/ log n) bits of space, answers select1(B, j log2 n)
in constant time.

Some of those blocks may span a large extent in B (with many 0-bits and just
log2 n 1-bits). A fundamental problem for using blocks and superblocks for select
is that there is no guarantee that relative answers inside blocks do not require log n
bits anyway. A block is called long if it spans more than log4 n positions in B, and
short otherwise. Note that there cannot be more than n/ log4 n long blocks. As
long blocks are problematic, we simply store all their log2 n answers explicitly. As
each answer requires log n bits, this accounts for other n/ logn bits overall.

The short blocks contain n′ = log2 n 1-bits (arguments for select1) and span
at most log4 n bits in B. We divide them again into miniblocks of log2 n′ =
O((log log n)2) arguments. A miniblock directory miniblockselect[j] will store
the relative answer to select1 inside the short block, that is, miniblockselect[j] =

select1(B, j log2 n′)−superblockselect[j log2 n′

log2 n
]. Values in miniblockselect are

in the range [1, log4 n] and thus require O(log log n) bits. Thus miniblockselect

requires O(n/ log log n) bits. A miniblock will be called long if it spans more than
log n bits in B. For long miniblocks, we will again store all their answers explicitly.
There are at most n/ logn long miniblocks overall, so storing all the log2 n′ answers
of all long miniblocks requires O(n(log log n)3/ logn) bits. Finally, short miniblocks
span at most log n bits in B, so a precomputed table analogous to smallrank gives
their answers using O(

√
n log n log log n) bits. This completes the solution. These

structures have to be duplicated for select0(B, j).

Theorem 6 Bit vector B1,n can be represented using n+ o(n) bits of space so that
Bi, rankb(B, i), and selectb(B, j), can be answered in constant time.

There exist implementations of these solutions which, although not achieving the
same theoretical guarantees, work well in practice [González et al. 2005].

6.2 More Sophisticated nH0-bits Solutions

We explain now how to improve the representation of the previous section for com-
pressible sequences, so as to obtain complete representations requiring nH0(B) +
o(n) bits of space [Raman et al. 2002]. Our presentation is simplified and will only
cover rank1(B, i) queries.

We cut B into blocks of fixed length t = log n
2 . Each such block I = Bti+1,ti+t

Compressed Full-Text Indexes · 29

with ℓ bits set will belong to class ℓ of t-bitmaps. For example, if t = 4, then class 0
is {0000}, class 1 is {0001, 0010, 0100, 1000}, class 2 is {0011, 0101, 0110, 1001, 1010,
1100}, and so on until class t = 4, {1111}. As class ℓ contains

(

t
ℓ

)

elements, an

index to identify a t-bitmap within its class requires only log
(

t
ℓ

)

bits. Instead of
using t bits to represent a block, we use two components (ℓ, r): a class identifier
0 ≤ ℓ ≤ t, using ⌈log(t + 1)⌉ bits, and an index r within that class, using ⌈log

(

t
ℓ

)

⌉
bits. Then B is represented as a sequence of ⌈n/t⌉ such descriptions.

The class identifiers amount to O(n log t/t) = O(n log log n/ logn) bits overall.
The interesting part is the sequence of indexes. Let Ii be the i-th block, with ℓi

bits set. Let us also call ℓB the total number of bits set in B. The number of bits
required by all the blocks I1 . . . In/t is [Pagh 1999]

⌈

log

(

t

ℓ1

)⌉

+ . . . +

⌈

log

(

t

ℓ⌈n/t⌉

)⌉

≤ log

((

t

ℓ1

)

× . . . ×
(

t

ℓ⌈n/t⌉

))

+ n/t

≤ log

(

n

ℓ1 + . . . + ℓ⌈n/t⌉

)

+ n/t = log

(

n

ℓB

)

+ n/t ≤ nH0(B) + O(n/ log n),

where the second inequality holds because the ways to choose ℓi bits from each
block of t bits are included in the ways to choose ℓB bits out of n. Thus, we have
represented B with nH0(B) + o(n) bits.

We need more structures to answer queries on B. The same superblockrank

and blockrank directories used in Section 6.1, with block size t, are used. As the
descriptions (ℓ, r) have varying length, we need position directories superblockpos
and blockpos, which work like superblockrank and blockrank to give the position
in the compressed B where the description of each block starts.

In order to complete the solution with table smallrank, we must obtain the
bitmap I from its description. For each class ℓ we store an array decodeℓ, so that
decodeℓ[r] is the bitmap with index r of class ℓ (in our example, decode2[4] = 1001).
Thus, instead of smallrank[I, i] as in Section 6.1, we use smallrank[decodeℓ[r], i],
as I is not directly available but just its description (ℓ, r). Table decode needs
overall t2t = O(

√
n log n) bits. (The real solution does not use smallrank but

stores the answers to queries directly in decode, instead of the bitmaps.) Thus all
the extra structures still require o(n) bits. Fig. 11 illustrates.

For select, the solution is again more complicated, but it also uses the strategy
of dividing blocks into short and long. We omit the details here.

Theorem 7 Bit vector B1,n can be represented using nH0(B)+O(n log log n/ log n)
bits of space so that Bi, rankb(B, i), and selectb(B, j), can be answered in constant
time.

6.3 Handling General Sequences and Wavelet Trees

Consider now a sequence (or string) S1,n from an alphabet of size σ ≥ 2. We wish
to support rankc(S, i) and selectc(S, j) for all alphabet symbols c: rankc(S, i) gives
the number of times character c appears in S1,i and selectc(S, j) gives the position
of the j-th c in S. Analogously to the binary case, we call a representation of S
complete if it supports access to S, rankc, and selectc, in constant time for all
symbols c.

30 · V. Mäkinen and G. Navarro

Fig. 11. An example of constant time rank computation using nH0(B) + o(n) bits of space.
Here B′ is the sequence of pairs (ℓ, r). In a real implementation, this sequence is represented as a
binary string, each pair occupying a variable number of bits, and the values in superblockpos and
blockpos point to the corresponding positions in the binary representation of B′. Note also that
we have integrated the answers of table smallrank into table decode, as in the real implementation.

We can easily obtain a complete representation for S using the results from
the previous section: Consider indicator bit vectors Bc

1,n such that Bc
i = 1 iff

Si = c. Then rankc(S, i) = rank1(B
c, i) and selectc(S, j) = select1(B

c, j). Using
Theorem 7, the representations of vectors Bc take overall

∑

c∈Σ(nH0(B
c)+o(n)) =

nH0(S) + O(n) + o(σn) bits.
The O(n) extra term can be removed with a more careful design [Ferragina et al.

2004b, 2006]. Essentially, one can follow the development leading to Theorem 7
on a general sequence. Now binomials become multinomials and the scheme is
somewhat more complicated, but the main idea does not change. This leads to the
next observation.

Lemma 6 Sequence S1,n over an alphabet of size σ can be represented using nH0(S)
+O(σn log log n/ logσ n) bits of space so that Bi, rankc(S, i), and selectc(S, j), can
be answered in constant time.

This complete representation of S takes sublinear space, namely o(n log σ) bits,
only if σ = o(log n/ log log n).

A completely different technique is the wavelet tree [Grossi et al. 2003]. Fig. 6,
on page 14, illustrates this structure. The wavelet tree is a perfect binary tree of
height ⌈log σ⌉, built on the alphabet symbols, such that the root represents the
whole alphabet and each leaf represents a distinct alphabet symbol. If a node v
represents alphabet symbols in the range Σv = [i, j], then its left child vl represents
Σvl = [i, i+j

2] and its right child vr represents Σvr = [i+j
2 + 1, j].

We associate to each node v the subsequence Sv of S formed by the characters
in Σv. However, sequence Sv is not really stored at the node. Instead, we store a
bit sequence Bv telling whether characters in Sv go left or right, that is, Bv

i = 1 iff
Sv

i ∈ Σvr (i.e., Sv
i goes right).

All queries on S are easily answered in O(log σ) time with the wavelet tree,
provided we have complete representations of the bit vectors Bv. To determine Si,
we check Broot

i to decide whether to go left or right. If we go left, we now seek the

Compressed Full-Text Indexes · 31

character at position rank0(B
root, i) in the left child of the root, otherwise we seek

character rank1(B
root, i) in its right child. We continue recursively until reaching

a leaf corresponding to a single character, which is the original Si.
Similarly, to answer rankc(S, i), we go left or right, adapting i accordingly. This

time we choose left or right depending on whether character c belongs to Σvl or
Σvr . Once we arrive at a leaf, the current i value is the answer. Fig. 6 gives an
example for rank"a"(S, 15) = 5.

Finally, to answer selectc(S, j), we start at the leaf corresponding to c and move
upwards in the tree. If the leaf is a left child, then the position corresponding to
j in its parent v is select0(B

v, j), otherwise it is select1(B
v, j). When we reach

the root, the current j value is the answer. For example, in Fig. 6, select"a"(S, 5)
starts with the leaf for "a". It is a right child, so in its parent the position is
select1(1110001101111, 5) = 8. This in turn is a left child, so in its parent (the
root), the final position is select0(010011011001100100000, 8) = 15.

If we use the complete representation of Theorem 6 for the bit vectors Bv, the
overall space is n log σ(1 + o(1)), that is, essentially the same space to store S (and
we do not need to also store S). Yet, by using the representation of Theorem 7, the
sum of entropies of all bit vectors simplifies to nH0(S) and the extra terms add up
O(n log log n/ logσ n) = o(n log σ) [Grossi et al. 2003].

Theorem 8 Sequence S1,n over an alphabet of size σ can be represented using the
wavelet tree in nH0(S)+O(n log log n/ logσ n) bits of space, so that Si, rankc(S, i),
and selectc(S, j), can be answered in O(log σ) time.

It is possible to combine the representations of Lemma 6 and Theorem 8. The
former gives a complete representation (constant query time) with sublinear extra
space, for σ = o(log n/ log log n). The latter works for any alphabet σ but it
pays O(log σ) query time. By using r-ary wavelet trees, with suitable r, one can
obtain a complete representation with constant-time rank and select that works
for σ = O(polylog(n)) [Ferragina et al. 2004b, 2006]. The idea is that, instead
of storing bitmaps at each node, we store sequences over an alphabet of size r to
represent the tree branch chosen by each character. Those sequences are handled
with Lemma 6.

By carefully choosing r, we can get constant access time for σ = O(polylog(n)),
and improved access time for larger alphabets.

Theorem 9 Sequence S1,n over an alphabet of size σ = O(polylog(n)) can be
represented using a multi-ary wavelet tree in nH0(S) + O(n/ logǫ n) bits of space,
for any constant 0 < ǫ < 1, so that Si, rankc(S, i), and selectc(S, j), can be
answered in constant time O

(

1
1−ǫ

)

.

Theorem 10 Sequence S1,n over an alphabet of size σ = o(n/ log log n), can be
represented using a multi-ary wavelet tree in nH0(S)+O(n⌈log σ/ log log n⌉) bits of
space, so that Si, rankc(S, i), and selectc(S, j), are answered in O(⌈log σ/ log log n⌉)
time.

Finally, we point out some very recent work [Golynski et al. 2006] where they
obtain O(log log σ) time for accessing symbols and rank, and constant time for

32 · V. Mäkinen and G. Navarro

select, using n logσ(1 + o(1)) bits of space.

6.4 Two-dimensional Range Searching

As we will see later, some compressed indexes reduce some search subproblems to
two-dimensional range searching. We present here one classical data structure for it,
by Chazelle [Chazelle 1988; Kärkkäinen 1999]. For succinctness and simplicity we
will focus on the problem variant that appears in the compressed full-text indexes
we cover: One has a set of n points over an n × n grid. There is exactly one point
for each row i and one for each column j.

Let us regard the set of n points as a sequence S = i(1)i(2) . . . i(n), so that
i(j) is the row of the only point at column j. As all the rows are also different,
S is actually a permutation of the interval [1, n]. More complex scenarios can be
reduced to this simplified setting.

The most succinct way of describing Chazelle’s data structure is to say that it is
the wavelet tree of S, so the tree partitions the point set by half according to their
row value i. Thus it can be implemented using n log n(1 + o(1)) bits of space. Yet,
the query algorithms are rather different.

Let us focus on retrieving all the points that lie within a two-dimensional range
[i, i′] × [j, j′]. Let B1,n be the bitmap at the tree root. We can project the range
[j, j′] onto the left child as [jl, j

′
l] = [rank0(B, j−1)+1, rank0(B, j′)], and similarly

onto the right child with rank1. We bactrack over the tree, abandoning a path at
node v either when the local interval [jv, j′v] is empty, or when the local interval
[iv, i

′
v] does not intersect anymore the original [i, i′]. If we arrive at a leaf [i, i]

without discarding it, then the point with row value i is part of the answer. In the
worst case every answer is reported in O(log n) time, and we need O(log n) time if
we want just to count the number of occurrences.

There exist other data structures [Alstrup et al. 2000] that require O(n log1+γ n)
bits of space, for any constant γ > 0, and can, after spending O(log log n) time for
the query, retrieve each occurrence in constant time. Another structure in the same
paper takes O(n log n log log n) bits of space and requires O((log log n)2) time for
the query, after which it can retrieve each answer in O(log log n) time.

7. COMPRESSED SUFFIX ARRAYS

The first type of compressed indexes we are going to review can be considered as
the result of the abstract optimization of the suffix array data structure. That is,
the search algorithm remains essentially as in Fig. 4, but suffix array A is taken as
an abstract data type that gives access to the array in some way. This abstract data
type is implemented using as little space as possible. This is the case of the Compact
Suffix Array of Mäkinen [2000, 2003] (Mak-CSA) and the Compressed Suffix Array
of Grossi and Vitter [2000, 2006] (GV-CSA). Both ideas appeared simultaneously
and independently during the year 2000, and they are based on different ways of
exploiting the regularities that appear on the suffix arrays of compressible texts.
Those structures are still not self-indexes, as they need the text T to operate.

7.1 Mak-CSA: Mäkinen’s Compact Suffix Array

The Compact Suffix Array of Mäkinen [2000, 2003] (Mak-CSA) was aimed at
explicitly exploiting the self-repetitions of the suffix array A in order to store it in

Compressed Full-Text Indexes · 33

a more compact form. It was conceived as a succinct index. Only later [Mäkinen
and Navarro 2004a] it was shown that its size was related to the text entropy, thus
becoming a compressed index. We describe here a version similar in spirit to the
original proposal and equally efficient, yet somewhat cleaner.

The idea of the Mak-CSA is, essentially, to represent A as the minimal sequence
of the nsr self-repetitions covering A (recall Definition 9). Assume that the partition
is A[i1, i1 + ℓ1], A[i2, i2 + ℓ2], and so on, so that is+1 = is + ℓs + 1, i1 = 1,
insr

+ ℓnsr
= n. Let js be so that A[js, js + ℓs] = A[is, is + ℓs] + 1. Let ps be the

partition number where js lies, that is, ips
≤ js < ips+1, and let os = js − ips

be
the corresponding offset. Then, the Mak-CSA for A is an array of nsr blocks of
the form Bs = (ps, os, ℓs, A[is]). That is, for each interval [is, is + ℓs], Bs tells the
partition where the interval repeats, the offset from the origin of that partition,
the length of the repetition, and the explicit A value of the first cell of the block.
Sequence Bs contains enough information to reconstruct A.

Fig. 12 illustrates the Mak-CSA for our example text. For example, B9 =
(8, 2, 1, 4) means that block 9 (that is, A[14, 15] = {4, 16}) is obtained by copying
2 (1 + 1) cells starting at offset 2 of block 8 (and subtracting 1 from them), and it
also records A[i9] = A[14] = 4. Note that a pointer from a block may span several
other blocks (such as B8), and that it may point at the middle of a block (as does
B9).

7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18A =

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13

21

1 2 3 4 5 6 7

1312111098

(10,0,0,18)(2,0,0,6)(7,0,1,2)(5,0,1,19)(8,2,1,4)(11,0,3,1)

(1,0,0,21) (6,1,0,7) (8,1,0,12) (10,1,0,9) (1,0,0,20) (3,0,1,11) (9,0,1,3)

Fig. 12. The Mak-CSA of the text "alabar a la alabarda$". We show the suffix array A and
the Mak-CSA B. The minimal covering of self-repetitions is shown on the bottom of A, each
region being an entry in B. We also show graphically some pointers related to self-repetitions.

The figure also illustrates partially how we can decompress the second cell of
block B11. The entry leads us to decompress the second cell of B7, then the second
cell of B9, then the fourth cell of B8, and finally the first cell of B13. First cells are
explicitly known, in this case its value is 18. Since we made 4 steps to reach B13,
the value we wanted is 18−4 = 14. This path must finish at some moment because
B1 is at the end of any path and it is of length 1.

Fig. 13 gives the pseudocode to decompress a cell value. The value i = is + δ
we wish to obtain is represented by reference pair (s, δ). Note that in lines 1–3 we
consider the possibility that δ > ℓs, in which case the pair (s, δ) is said to be not
normalized, so we advance in B until finding the correct normalized reference pair.
This normalization process is necessary because, even if we ensure δ ≤ ℓs in the

34 · V. Mäkinen and G. Navarro

first call, recursive calls with offset os + δ may need normalization. Note that the
search finishes when the offset δ = 0, as we explicitly store all first cells of blocks.

Algorithm Mak-CSA-decompress(s, δ, B)
(1) while δ > ℓs do

(2) δ ← δ − ℓs − 1
(3) s← s + 1
(4) if δ = 0
(5) then return A[is];
(5) else return Mak-CSA-decompress(ps, os + δ, B);

Fig. 13. Algorithm to obtain A[is + δ] from the Mak-CSA structure.

Although one could implement a basic binary search (Fig. 4) using B, it is more
clever to first binary search on the first cells of the blocks, which are explicitly
stored. After O(log nsr) steps, one knows that the answer lies within Bs for some s.
At this point, one continues the binary search inside Bs, this time using algorithm
Mak-CSA-decompress() to obtain each needed value in A[is, is + ℓs]. Thus the
total cost of the binary search is O(m log n) as in the basic suffix array, plus that
of decompressing some cells of a B block.

The time to decompress a cell is limited by using two parameters C and D. The
former is the maximum length of a block, ℓs ≤ C, and it is enforced by cutting
longer self-repetitions into several ones. Parameter D limits the length of a chain of
successive self-repetitions, so as to ensure that we will reach an explicit cell after D
recursive invocations of Mak-CSA-decompress(). This is ensured by forcing explicit
cells at the D-th position in any self-repetition path. With these parameters, the
extra cost of the binary search inside a block is O(CD log C) (the C factor comes
from normalizing the references).

For locating queries, we must decompress several cells of B to obtain the whole
interval A[sp, ep]. In the worst case this may require a full decompression for each
of the occ occurrences, at O(CD occ) cost.

Given Theorem 5, it is clear that the size of the Mak-CSA is O(nsr log n) =
O(nHk log n) bits, thus it is a compressed index. Yet, it is not a self-index, as
it still needs T to operate (hence the extra n log σ term in the space complexity
that follows). Forcing a maximum block length C introduces at most n/C extra
blocks. The same occurs by cutting referencing paths at depth D: every new cut
introduced correctly bounds D paths, so n/D cuts suffice. The following theorem
assumes C = D = log n/ log log n so that the extra space associated to C and D is
O(n log log n), but other tradeoffs are possible. In addition, this makes each entry
of B require only log n + 2 log log n bits (as os and ℓs are O(log n)).

Theorem 11 (Mäkinen [2003]) The Compact Suffix Array (Mak-CSA) offers
the following space/time tradeoff.

Space in bits 2nHk log n + O(n log log n) + n log σ

Time to count O(m log n + log2 n/ log log n)

Time to locate O(log2 n/(log log n)2)
Time to display ℓ chars O(ℓ) (text is available)

Compressed Full-Text Indexes · 35

In practice. The implementation of Mak-CSA follows closely the description above,
except that the blocks are decompressed in pieces taking advantage of the common
part of the search path of consecutive elements. This does not improve the worst
case complexity, but constitutes a significant speedup in practice.

7.2 GV-CSA: Grossi and Vitter’s Compressed Suffix Array

The Compressed Suffix Array of Grossi and Vitter [2000, 2006] (GV-CSA) is a
succinct index based on the idea of providing efficient access to A[i] without rep-
resenting A, so that the search algorithm is exactly as in Fig. 4. The text T is
maintained explicitly.

The GV-CSA uses a hierarchical decomposition of A based on the Ψ function
(Definition 11). Let us focus on the first level of that hierarchical decomposition.
Let A0 = A be the original suffix array. A bit vector B0[1, n] is defined so that
B0[i] = 1 iff A[i] is even. Let also Ψ0[1, ⌈n/2⌉] contain the sequence of values Ψ(i)
for arguments i where B0[i] = 0. Finally, let A1[1, ⌊n/2⌋] be the subsequence of
A0[1, n] formed by the even A0[i] values, divided by 2.

Then, A = A0 can be represented using only Ψ0, B0, and A1. To retrieve A[i],
we first see if B0[i] = 1. If it is, then A[i] is (divided by 2) somewhere in A1. The
exact position depends on how many 1’s are there in B0 up to position i, that is,
A[i] = 2 ·A1[rank1(B0, i)]. If B0[i] = 0, then A[i] is odd and not represented in A1.
However, A[i] + 1 = A[Ψ(i)] has to be even and thus represented in A1. Since Ψ0

collects only the Ψ values where B0[i] = 0, we have A[Ψ(i)] = A[Ψ0[rank0(B0, i)]].
Once we compute A[Ψ(i)] (for even Ψ(i)), we simply obtain A[i] = A[Ψ(i)] − 1.

Fig. 14 illustrates. For example, to obtain A[11], we verify that B0[11] = 0, thus it
is not represented in A1. So we need to obtain Ψ(11), which is Ψ0[rank0(B0, 11)] =
Ψ0[8] = 19. We must then obtain A[19]. Not surprisingly, B0[19] = 1, so A[19] is
at A1[rank1(B0, 19)] = A1[8] = 7. Thus A[19] = 2 · 7 = 14 and finally A[11] =
A[19] − 1 = 13. (Note the exception that A[1] is odd and A[Ψ(1)] = A[10] is odd
too, but this is not a problem because we know that A[1] = n always.)

0A = 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 1 0 1 0 1 0 00 0 0 0 1 1 0 1 1 1 1 1B =0

1 2

10 7 15 19 2117 3 14 18 20 5

11109876543

0Ψ =

A =1

10987654321

10 4 2 1 3 97586

Fig. 14. The first level of the GV-CSA recursive structure, for the text "alabar a la

alabarda$". We show the original suffix array A = A0 and structures B0, Ψ0, and A1. We
show Ψ0 and A1 in scattered form to ease understanding but they are obviously stored contigu-
ously. Recall that A0 is not really stored but replaced by the other three structures.

The idea can be used recursively: Instead of representing A1, we replace it with
B2, Ψ2, and A2. This is continued until Ah is small enough to be represented

36 · V. Mäkinen and G. Navarro

explicitly. Fig. 15 gives the pseudocode to extract an entry A[i] from the recursive
structure. The complexity is clearly O(h) assuming a constant-time implementation
for rank (Section 6.1).

Algorithm GV-CSA-lookup(i, ℓ)
(1) if ℓ = h then return Ah[i];
(2) if Bℓ[i] = 1
(3) then return 2 · GV-CSA-lookup(rank1(Bℓ, i), ℓ + 1);
(4) else return GV-CSA-lookup(Ψℓ[rank0(Bℓ, i)], ℓ) −1;

Fig. 15. Algorithm to obtain A[i] from GV-CSA recursive structure with h levels. It is invoked
as GV-CSA-lookup(i,0).

It is convenient to use h = ⌈log log n⌉, so that the n/2h entries of Ah, each of
which requires O(log n) bits, take overall O(n) bits. All the Bℓ arrays add up
at most 2n bits (as their length is halved from each level to the next), and their
additional rank structures add o(n) extra bits (Section 6.1). The only remaining
problem is how to represent the Ψℓ arrays.

For a compact representation of Ψ0, we recall that Ψ is increasing within the
area of A that points to suffixes starting with the same character (Lemma 1).
Although Grossi and Vitter [2000] do not detail how to use this property to rep-
resent Ψ in little space, an elegant solution is given in later work by Sadakane
[2000, 2003]. Essentially, Sadakane shows that Ψ can be encoded differentially
(Ψ(i + 1) − Ψ(i)) within the areas where it is increasing, using Elias-δ coding
[Elias 1975; Witten et al. 1999] (recall Section 4.5). The number of bits this
representation requires is nH0 + O(n log log σ). For Ψ0, since only odd text po-
sitions are considered, the result is the same as if we had a text T ′

1,n/2 formed

by bigrams of T , T ′
i = T2i−1,2i. Since the zero-order entropy of T taken as a

sequence of 2ℓ-grams is H
(2ℓ)
0 ≤ 2ℓH0 [Sadakane 2003], Ψ0 requires |T ′|H(2)

0 +
O(|T ′| log log(σ2)) ≤ (n/2)(2H0)+O((n/2)(1+log log σ)). In general, Ψℓ requires at
most (n/2ℓ)(2ℓH0)+O((n/2ℓ)(ℓ+log log σ)) = nH0+O(nℓ/2ℓ)+O((n log log σ)/2ℓ)
bits. Overall, the h levels require hnH0 + O(n log log σ) bits.

In order to access the entries of these compressed Ψℓ arrays in constant time
[Sadakane 2003], absolute Ψ values are inserted every Θ(log n) bits, so this adds
O(n) bits. To extract an arbitrary position of Ψ, we go to the nearest absolute
sample before that position and then sequentially advance summing up differences
until reaching the desired position. By maintaining a precomputed table with the
total number of differences encoded inside every possible chunk of log n

2 bits, we can
process each such chunk in constant time, so the Θ(log n) bits of differences can
be processed in constant time. The size of that table is only O(

√
n log2 n) = o(n)

bits. Note the similarity with the other four-Russians technique for constant time
rank (Section 6.1).

What we have, overall, is a structure using nH0 log log n + O(n log log σ) bits of
space, which encodes A and permits retrieving A[i] in O(log log n) time.

A tradeoff with 1
ǫ nH0 + O(n log log σ) bits of space and O(logǫ n) retrieval time,

for any constant 0 < ǫ < 1, can be obtained as follows. Given the h = ⌈log log n⌉
levels, we only keep three of them: level 0, level ⌊h/2⌋, and level h. Bit vectors B0

Compressed Full-Text Indexes · 37

and B⌊h/2⌋ indicate which entries are represented in levels ⌊h/2⌋ and h, respectively.
The space for Ψ0, Ψ⌊h/2⌋, and Ah, is at most 2nH0 + O(n log log σ) bits. However,
we cannot move from one level to the next in constant time. We must use Ψℓ

several times until reaching an entry that is sampled at the next level. The number
of times we must use Ψℓ is at most 2h/2 = O(

√
log n). If, instead of 3 levels, we

use a constant number 1 + 1/ǫ of levels 0, hǫ, 2hǫ, . . ., h, the time is O(logǫ n). By
using the search algorithm of Fig. 4 and the usual way to locate occurrences with
A, we get the following results.

Theorem 12 ([Grossi and Vitter 2000; Sadakane 2000]) The Compressed Suf-
fix Array (GV-CSA) offers the following space/time tradeoffs.

Space in bits nH0 log log n + O(n log log σ) + n logσ
Time to count O(m log n log log n)
Time to locate O(log log n)
Time to display ℓ chars O(ℓ) (text is available)
Space in bits 1

ǫ nH0 + O(n log log σ) + n logσ

Time to count O(m log1+ǫ n)
Time to locate O(logǫ n)
Time to display ℓ chars O(ℓ) (text is available)
Conditions for all 0 < ǫ ≤ 1 is an arbitrary constant

We have described the solution of Sadakane [2000, 2003] to represent Ψ in little
space and constant access time. The solution of the original authors has just ap-
peared [Grossi and Vitter 2006] and it is slightly different. They also use the fact
that Ψ is piecewise increasing in a different way, achieving 1

2n log σ bits at each level
instead of nH0. Furthermore, they take T as a binary string of n log σ bits, which
yields essentially n logσ log logσ n bits for the first version and (1 + 1/ǫ)n logσ bits
for the second version of the theorem. They actually use h = ⌈log logσ n⌉, which
adds up n log σ extra space for Ah and slightly reduces the time to access A[i] in
the first variant of the above theorem (to O(h)).

Grossi and Vitter [2000, 2006] show how the occ occurrences can be located more
efficiently in batch when m is large enough. They also show how to modify a
compressed suffix tree [Munro et al. 2001] so as to obtain O(m/ logσ n + logǫ n)
search time, for any constant 0 < ǫ < 1, using O(n log σ) bits of space. This is
obtained by modifying the compressed suffix tree [Munro et al. 2001] in two ways:
First, using perfect hashing to allow traversing O(logσ n) tree nodes downwards in
one step, and second, replacing the suffix array required by the compressed suffix
tree with the GV-CSA. We do not provide details because in this paper we are
more interested in indexes taking o(n log σ) bits. In this sense, we are not interested
in the GV-CSA by itself, but as a predecessor of other self-indexes that appeared
later.

A generalization of this structure (but still not a self-index) is presented by Rao

[2002], where they index a binary text using O(nt log1/t n) bits and retrieve A[i] in
O(t) time, for any 1 ≤ t ≤ log log n.

38 · V. Mäkinen and G. Navarro

8. TURNING COMPRESSED SUFFIX ARRAYS INTO SELF-INDEXES

Further development over the compressed suffix arrays of Section 7 lead to self-
indexes, which can operate without the text. The idea is to replace T by an
abstract data type that gives access to any substring of it. The first index in
this line was the Compressed Suffix Array of Sadakane [2000, 2002, 2003] (Sad-

CSA). This was followed by the Compressed Suffix Array of Grossi, Gupta, and
Vitter [2003, 2004] (GGV-CSA), and by the Compressed Compact Suffix Array of
Mäkinen and Navarro [2004a] (MN-CCSA).

8.1 Sad-CSA: Sadakane’s Compressed Suffix Array

Sadakane [2000, 2003] showed how the GV-CSA can be converted into a self-index,
and at the same time optimized it in several ways. The resulting index was also
called Compressed Suffix Array and will be referred to as Sad-CSA in this paper.

The Sad-CSA does not give, as the GV-CSA, direct access to A[i], but rather to
any prefix of TA[i],n. With this value one can still use the basic search algorithm of
Fig. 4. The Sad-CSA represents A and T using the full function Ψ (Definition 11),
and a special representation of function C (Lemma 3). We have already overviewed
the basics of this technique in Section 4.4.

Imagine we wish to compare P against TA[i],n. For the binary search, we need
to extract enough characters from TA[i],n so that its lexicographical relation to
P is clear. Since TA[i] is the first character of the suffix pointed to by A[i] (or,
alternatively, TA[i] = F [i] in Fig. 9), we have that TA[i] = c such that C(c) < i ≤
C(c + 1) (assuming C(σ + 1) = n). Once we determine TA[i] = c in this way, we
need to obtain the next character, TA[i]+1. But TA[i]+1 = TA[Ψ(i)], so we simply
move to i′ = Ψ(i) and keep extracting characters with the same method, as long
as necessary. Note that at most |P | = m characters suffice to decide a comparison
with P .

In order to find quickly the c such that C(c) < i ≤ C(c + 1), we represent C
with a bit vector D[1, n], so that D[i + 1] = 1 iff C(c) = i < n for some c ∈ [1, σ],
and a string S where the (at most σ) distinct characters of T are concatenated in
alphabetical order (once can also regard D as marking the points where sequence
F [i] changes). Therefore, the c such that C(c) < i ≤ C(c + 1) is precisely c =
S[rank1(D, i)]. Using the succinct data structures of Section 6.1 we can compute
c in constant time using only n + o(n) bits for D and σ log σ bits for S.

Fig. 16 illustrates. To obtain, say, TA[11],n we see that S[rank1(D, 11)] = S[3] =
"a". Then we move to 19 = Ψ(11). The second character is thus S[rank1(D, 19)] =
S[6] = "l". Then we move to 9 = Ψ(19) and get third character S[rank1(D, 9)] =
S[3] = "a", and so on. Note that we are, implicitly, walking the text in forward
direction. Note also that we do not know where we are in the text, that is, we never
know A[i], just TA[i],n.

Thus the Sad-CSA implements the binary search in O(m log n) worst-case time,
which is better than in the GV-CSA structure. Fig. 17 gives the pseudocode to
compare P against a suffix of T .

Right now we have used n + o(n) + σ log σ bits of space for D and S, plus the
representation for Ψ described in Section 7.2, nH0 + O(n log log σ) bits. Note that,
since the Sad-CSA does not give direct access to A[i], it needs more structures to

Compressed Full-Text Indexes · 39

7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

_ _ _

Ψ =

D =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0

S = $_abdlr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

10 7 11 4 15 19 21 13 8 1617 1 3 14 18 20 12 5 6 9 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21

C($) = 0
C(_) = 1
C(a) = 4
C(b) = 13

C(d) = 15
C(l) = 16
C(r) = 19

A =

l a a a ab r a l a a l b a r d $aT =

Fig. 16. The main components of the Sad-CSA structure, for the text "alabar a la alabarda$".
The text T , the original suffix array A, and function C, are shown for illustrative purposes but
are not represented in the structure.

Algorithm Sad-CSA-compare(P , m, i, Ψ, D, S)
(1) j ← 1;
(2) do c← S[rank1(D, i)];
(3) if Pj < c then return “<”;
(4) if Pj > c then return “>”;
(5) i← Ψ(i);
(6) j ← j + 1;
(7) while j ≤ m;
(8) return “=”;

Fig. 17. Algorithm to compare P against TA[i],A[i]+m−1, where T and A are represented by Ψ,
D, and S.

solve a locating query. That is, although the index knows that the answers are in
A[sp, ep] and thus that there are occ = ep−sp+1 answers, it does not have enough
information to know the text positions pointed to by A[i], sp ≤ i ≤ ep. For this
sake, the Sad-CSA includes the hierarchical GV-CSA structure (without the text
and with Ψ instead of Ψ0, as we already have the more complete Ψ). Let us choose
the version requiring 1

ǫ nH0 + O(n log log σ) bits of space and computing A[i] in
O(logǫ n) time, for any constant 0 < ǫ < 1 (Theorem 12).

Sadakane, however, notices an important fact. The same hierarchical GV-CSA

structure can serve to compute the inverse of A, A−1[j], within the same O(logǫ n)
time, provided we store explicitly A−1

h in the last level (in addition to the explicit Ah

stored in the GV-CSA structure). The reason is that, if one knows that A−1[j−1] =
i, then A[i] = j−1, and therefore A[Ψ(i)] = j, thus A−1[j] = Ψ(i) = Ψ(A−1[j−1]).
Iterating, A−1[j] = Ψk(A−1[j − k]). Hence, to obtain A−1

h/2[j], we take the largest

j′ ≤ j that is represented in the last level, j′ = select1(Bh/2, rank1(Bh/2, j)), and

obtain i′ = A−1
h/2[j

′] = A−1
h [rank1(Bh/2, j)] (note that A−1

h is explicitly stored).

Now we apply Ψ successively over i′ to obtain A−1
h/2[j] = Ψj−j′

h/2 (i′). To compute

A−1[j] = A−1
0 [j] we do the same using B0 and Ψ0, with the exception that A−1

h/2 is

40 · V. Mäkinen and G. Navarro

not explicitly stored but must be computed with the above procedure.
The inverse of A is useful to implement the additional function that a self-index

must provide: given 1 ≤ l ≤ r ≤ n, retrieve Tl,r without having access to T .
We already know how to retrieve TA[i],n (or any prefix of it) given i. With the
inverse suffix array we first find i = A−1[l] in O(logǫ n) time, and then retrieve
Tl,r = TA[i],A[i]+(r−l) in O(r − l) time.

Theorem 13 (Sadakane [2003]) The Compressed Suffix Array (Sad-CSA) of-
fers the following space/time tradeoff.

Space in bits 1
ǫ nH0 + O(n log log σ) + σ log σ

Time to count O(m log n)
Time to locate O(logǫ n)
Time to display ℓ chars O(ℓ + logǫ n)
Conditions 0 < ǫ ≤ 1 is an arbitrary constant

It is interesting that not only a local portion of T can be decompressed, but also
that the suffix array of such a local segment of T can be retrieved using A−1 and
Ψ.

We note that the method of inserting absolute samples every Θ(log n) positions
in Ψ and using the four-Russian technique to access between samples in constant
time, works with many other compression methods. In particular, if we compress
runs in Ψ (Definition 12) with run-length compression (see Section 9.6), we can
achieve nHk(log σ + log log n) + O(n) bits of space, for k ≤ logσ n − ω(1), while
retaining the same search times [Mäkinen and Navarro 2004b] (recall Theorem 5).

In practice. The implementation of Sad-CSA differs in several aspects from its
theoretical description. First, it does not implement the inverse suffix array to
locate occurrences. Rather, it samples A at regular intervals of length d, explicitly
storing A[i·d] for all i. In order to obtain A[j], we compute Ψ repeatedly over j until
obtaining a value j′ = Ψr(j) that is a multiple of d. Then A[j] = A[j′]−r. Similarly,
constant access to Ψ is not provided. Rather, absolute Ψ values are sampled every
L positions. To obtain Ψ(i), we start from its closest previous absolute sample
and decompress the differential encoding until position i. Finally, instead of the
classical suffix array searching, backward searching is used [Ferragina and Manzini
2000; Sadakane 2002]. This avoids any need to obtain text substrings, and it is
described in Section 9.2. Thus, d and L give practical tradeoffs between index
space and search time.

8.2 MN-CCSA: Mäkinen and Navarro’s Compressed Compact Suffix Array

The Compressed Compact Suffix Array of Mäkinen and Navarro [2004a] (MN-

CCSA) is a simple self-index using essentially the structures of the Mak-CSA

of Section 7.1 to implement the search method of the Sad-CSA of Section 8.1. Its
main idea is twofold: (1) make the Mak-CSA a self-index, and (2) reduce its space
by replacing some of its many pointers by smarter data structures based on rank
and select on bit arrays (Section 6.1).

The MN-CCSA uses the basic structure of the Mak-CSA, with the slight differ-
ence that all the suffixes belonging to a single block in the MN-CCSA must start

Compressed Full-Text Indexes · 41

with the same character, otherwise the block must be split. This produces at most
σ extra splits from the optimal covering.

Just as done in Section 8.1, the text is deleted and replaced by bit array D and
string S. Yet, since all suffixes in a block start with the same character, we need
only one bit in D per block, so |D| = nsr. Then, with an equivalent of function
Ψ we can retrieve any text string of the form TA[i],n given i. In this case we must
keep track all the time of the block number we are at, not only the position in A.

The equivalent of function Ψ is given by array Bs = (ps, os, ℓs, A[is]) of Sec-
tion 7.1. Assume cell i of A corresponds to offset δ in block s, that is, i = is + δ
and 0 ≤ δ ≤ ℓs. Then i is represented by the reference pair (s, δ), and Ψ(i) is repre-
sented by reference pair (ps, os +δ), yet this pair is not necessarily normalized. The
Mak-CSA lost O(C) time in normalizing each reference pair before continuing.

The MN-CCSA uses a more compact representation that in addition performs
normalization in constant time. Assume we have a bit vector L[1, n] aligned to
A, where the block starts are signaled with a bit set. In addition to L, instead
of storing sequence Bs = (ps, os, ℓs, A[is]) we store the sequence js of absolute
positions in A where the copy of each block s starts. That is, js is the number
represented by the reference pair (ps, os). From js and L we can obtain other
components in constant time: ps = rank1(L, js), os = js − select1(L, ps) − 1,
and ℓs = select1(L, ps + 1) − select1(L, ps). Furthermore, if current position i is
represented by reference pair (s, δ), then Ψ(i) corresponds to normalized reference
pair (ps, δ

′), where ps = rank1(L, js + δ) and δ′ = js + δ − select1(L, ps).
This permits using the same binary search of the Sad-CSA (so we do not give

explicit access to A[i] as in the Mak-CSA). Fig. 18 gives the pseudocode.

Algorithm MN-CCSA-compare(P , m, i, L, J , D, S)
(1) j ← 1;
(2) do s← rank1(L, i);
(3) δ ← i− select1(L, s);
(4) c← S[rank1(D, s)];
(5) if Pj < c then return “<”;

(6) if Pj > c then return “>”;
(7) i← J [s] + δ;
(6) j ← j + 1;
(7) while j ≤ m;
(8) return “=”;

Fig. 18. Algorithm to compare P against TA[i],A[i]+m−1, where T and A are represented by L,
J , D, and S. Array J [s] stores sequence js.

Array js takes nsr log n bits, while L takes n + o(n) bits using the techniques of
Section 6.1. Likewise, array D takes nsr(1 + o(1)) bits. Adding up all the space
complexities and recalling Theorem 5, we have overall n(Hk(1 + log n) + 1) + o(n)
bits.

In addition, the MN-CCSA uses O(n) extra bits to locate occurrences and dis-
play text contexts. The technique resembles that used for the Sad-CSA in prac-
tice (and even more those in the FM-Index [Ferragina and Manzini 2000], Sec-
tion 9.3). Text positions are sampled at regular intervals h = 2

ǫ log n, and the

42 · V. Mäkinen and G. Navarro

positions in A that point to T1,n, Th+1,n, T2h+1,n, and so on, are sorted and stored
in array Sp (that is, obtain A−1[1], A−1[h + 1], etc., sort them, and store the
result in Sp). A bit array inSp[1, n], aligned to A, tells which positions in A
turned out to be sampled in Sp. Then, to find A[i], we take Ψ(i) zero or more
times until finding the first r such that inSp[Ψ

r(i)] = 1, at which point we have
A[i] = Sp[rank1(inSp, Ψ

r(i))] − r. This costs O(1
ǫ log n) at worst. To show text

contexts, the same A positions of Sp are stored in another array St, now sorted by
their order in T (that is, St[s] = A−1[h · s + 1]). To display Tl,r we compute its
immediately preceding sample s = ⌊ l−1

h ⌋, and rather obtain Ths+1,r = TA[St[s]],r,
so we can use the already known method to extract substrings of the form TA[i],n.
Those structures take n(1 + ǫ) + o(n) extra bits.

Theorem 14 (Mäkinen and Navarro [2004a]) The Compressed Compact Suf-
fix Array (MN-CCSA) offers the following space/time tradeoff.

Space in bits n(Hk(1 + log n) + 2 + ǫ) + o(n log σ)
Time to count O(m log n)
Time to locate O(1

ǫ log n)
Time to display ℓ chars O(ℓ + 1

ǫ log n)
Conditions ǫ > 0 is an arbitrary constant;

k ≤ logσ n − ω(1)

In practice. The MN-CCSA is implemented as described, so it has a major differ-
ence with respect to the implementation of the Sad-CSA. The MN-CCSA uses the
usual suffix array search method, while the Sad-CSA uses backward searching as
explained at the end of Section 8.1. This favors MN-CCSA for large m because the
O(m log n) worst case complexity is no more than O(log2 n) on average, while the
worst and average case complexities are both O(m log n) with backward searching,
if P appears in T .

8.3 GGV-CSA: Grossi, Gupta, and Vitter’s Compressed Suffix Array

The Compressed Suffix Array of Grossi, Gupta, and Vitter [2003, 2004] (GGV-

CSA) is an evolution over the GV-CSA and the Sad-CSA. It is a self-index whose
space usage depends on the k-th order entropy of T . The result is based on a new
representation of Ψ that requires essentially nHk bits rather than nH0, basically
using Theorem 4.

Consider Figs. 3 (page 9) and 16, and the text context s = "la". Its occurrences
are pointed from A[17, 19] = {10, 2, 14}. The Ψ values that point to that interval
are Ψ(4) = 17, Ψ(10) = 18, and Ψ(11) = 19. The first argument, 4, corresponds
to character TA[4] = " " preceding "la", while the other two correspond to "a"

preceding "la".
Fig. 19 illustrates how the sequence of Ψ values is partitioned into lists (Ψ(i)

belongs to list TA[i], that is, the character preceding position Ψ(i) in T) and con-
texts (Ψ(i) belongs to context TA[Ψ(i)],A[Ψ(i)]+k−1 = TA[i]+1,A[i]+k, that is, the text
starting at Ψ(i) in T). Seen another way, if A[i] = j, then suffix array posi-
tion i belongs to list Tj−1 and context Tj,j+k−1. For example, with k = 2, suf-
fix array position 17 (= Ψ(4)) points to TA[17]... = T10..., so it belongs to list

Compressed Full-Text Indexes · 43

Context List "$" List " " List "a" List "b" List "d" List "l" List "r"

"$" 1,

" a" 3, 2,

" l" 4,

"a$" 5,

"a " 7, 6,

"ab" 10, 8, 9,

"al" 11,

"ar" 12, 13,

"ba" 14, 15,

"da" 16,

"la" 17, 18, 19,

"r " 20,

"rd" 21,

Fig. 19. Partition of Ψ into lists (columns) and contexts (rows) in the GGV-CSA, for the text
"alabar a la alabarda$". Array Ψ is read from leftmost to rightmost column, each column top
to bottom.

T9 = TA[4] = " " and context T10,11 = TA[17],A[17]+1 = TA[4]+1,A[4]+2 = "la",
whereas position 18 (= Ψ(10)) belongs to list TA[10] = T1 = "a" and context
TA[10]+1,A[10]+2 = TA[18],A[18]+1 = T2,3 = "la".

The duality we have pointed out is central to understand what follows. The table
of lists and contexts is arranging the numbers in the interval [1, n]. Those numbers
can be regarded in two ways. The main one is that they are the values Ψ(1), Ψ(2),
. . ., Ψ(i), . . ., Ψ(n), that is, we are storing vector Ψ. The secondary one is that
these Ψ values are indexes to array A.

If we sort the sequence of values in the table by list, and by context inside each
list, then we have the entries Ψ(i) sorted by TA[i],A[i]+k, that is, an order compatible
to that of the suffix array. Thus we recover the original sequence Ψ in good order if
we read the table column by column (left to right), and each column top to bottom
(as we ordered lists and contexts lexicographically). We respect the original suffix
array order within cells.

The Ψ values along each list (column) are increasing because Ψ is increasing
in the area of A that starts with the same character (Lemma 1). Similarly, Ψ is
increasing inside each particular cell.

Consider now for a moment that the numbers correspond to indexes j of A, that
is j = Ψ(i) is now seen as an index of A rather than as a value in array Ψ. The row
where each j value lies corresponds to the context its pointed suffix starts with,
TA[j],A[j]+k−1 = TA[Ψ(i)],A[Ψ(i)]+k−1.

Take a specific row corresponding to context s. All the j found there are those
such that TA[j],A[j]+k−1 = s. Thus, the j values found in a row form a contiguous
subinterval of [1, n] (that is, of A). Each cell in the row corresponds to a different
character preceding the context (that is, to a different column), and values are
increasing inside each cell.

If we identify each Ψ value in the row with the character of the column (list) it
belongs to, then the set of all characters form precisely T s (Definition 8). Thus, if we
manage to encode each row in |T s|H0(T

s) bits, we will have nHk bits overall (recall
Eq. (1) and Theorem 4). In our previous example, considering context s = "la",

44 · V. Mäkinen and G. Navarro

we have to represent all the Ψ values that lie inside that context ([17, 19]) in space
proportional to the zero-order entropy of the first characters of the positions in Ψ
that point there (in this case, TA[4], TA[10], and TA[11]), overall T s = T bwt

17,19 = " aa".
To obtain Ψ(i) from this table we first need to determine the row and column i

belongs to, and then the position inside that cell. To know the column c, bitmap
D[1, n] of Fig. 16 (corresponding to Gk of Grossi et al. [2003]) suffices, as c =
rank1(D, i) (for clarity we are using c as a character but in practice it is a column
number). Using the techniques of Section 6.2, D can be represented in nH0(D) +
o(n) ≤ σ log n+o(n) bits (as it has at most σ bits set, recall the end of Section 5.1),
so that it answers rank1 queries in constant time. The relative position of i inside
column c is i′ = i − select1(D, c) + 1. In the example, to retrieve Ψ(10) = 18
(thus i = 10), we find c = rank1(D, 10) = 3 (third column in the table, symbol
"a"). Inside the table, we want the 6th value, because i′ = 10− select1(D, 3)+1 =
10 − 5 + 1 = 6.

A similar technique gives the right cell within the column. Two bit arrays Lc

and Ec are maintained for each column c (these correspond to Ly
k and by

k of Grossi
et al. [2003]). Lc is aligned to the area of A where suffixes start with character c
(appearing in T). Lc contains a 1 every time we change context as we read the
numbers in column c, or which is the same, where some of the first k +1 characters
of the suffixes pointed from the corresponding area in A change. In our example,
La = 111101011, which is aligned to A[5, 13]. La[4] = 1 because TA[8],A[8]+2 =
"aba" 6= TA[7],A[7]+2 = "a l"; whereas La[5] = 0 because TA[9],A[9]+2 = "aba" =
TA[8],A[8]+2.

Ec, instead, stores one bit per context indicating whether the cell for that context
is nonempty in column c. In our example, Ea = 1110000010111.

It is easy to see that the relative index i′ within column c corresponds to the r′-th
nonempty cell of column c, where r′ = rank1(Lc, i

′). Moreover, the r′ nonempty
cell has global row number r = select1(Ec, r

′). Thus both arrays permit obtaining
the row number r for relative index i′. Finally, the position we want inside the
r′-th nonempty cell is p = i′ − select1(Lc, r

′) + 1. In our example, the cell is
at the 5th nonempty row, as r′ = rank1(La, 6) = 5. Its global row number is
r = select1(Ea, 5) = 11. Its position within the cell is the first, as p = 6 −
select1(La, 5) + 1 = 1.

Using again the techniques from Section 6.2, each Lc can be stored in ncH0(Lc)+
o(nc) bits (where nc is the number of elements in column c), and answer those
queries in constant time. As there are at most σk bits set in Lc, the space is at most
σk log(nc)+o(nc) bits. Added over all columns, this is at most σk+1 log n+o(n). In
the real structure [Grossi et al. 2003], all vectors Lc are concatenated for technical
reasons we omit. All the Ec vectors, in turn, using Section 6.1, require σk+1(1+o(1))
bits of space.

Finally, we are inside a cell and know which position we seek inside it. Let us
regard again the numbers as indexes j = Ψ(i) in A. We need to know which is the
range of suffix array positions handled by the row. For example, for s = "la", row
11, we must know that this context corresponds to the suffix array interval [17, 19].
We store a bitmap R (corresponding to Fk of Grossi et al. [2003]) whose positions
are aligned to A, storing a 1 each time a context change occurs while traversing A.
This is the global version of Lc bit vectors (which records context changes within

Compressed Full-Text Indexes · 45

column c). In our example, R = 110111010011010110011. If we know we are in
global row r, then select1(R, r) tells the first element in the interval handled by
row r. In our example, r = 11 and select1(R, 11) = 17. We will add this value
to the result we obtain inside our cell. Using Section 6.2 once more, R requires
σk log n + o(n) bits.

The final piece is to obtain the p-th element of cell (r, c) (or locally, the r′-th
nonempty cell at column c). At this point there are different choices. One, leading
to Theorem 15, is to store a bitmap Z for each cell, indicating which elements
of the row interval belong to the cell. This is necessary because any permutation
of the A interval of the row can arise among the cells of the row (e.g., see row
"ab"). In our example, for row 11, the interval is [17, 19], and we have Z = 100
at column " " and Z = 011 at column ”a” (zeros and ones can be interleaved in
general). With select1(Z, p) we obtain the offset of our element in the row interval.
Therefore, we finally have Ψ(i) = select1(R, r) + select1(Z, p)− 1. In our example,
select1(011, 1) = 2, and therefore Ψ(10) = 17 + 2 − 1 = 18. Fig. 20 gives the
pseudocode.

Algorithm GGV-CSA-Ψ(i, D, L, E, R, Z)
(1) c← rank1(D, i);
(2) i′ ← i− select1(D, c) + 1;
(3) r′ ← rank1(Lc, i′);
(4) p← i′ − select1(Lc, r′) + 1;
(5) r ← select1(Ec, r);
(6) return select1(R, r) + select1(Zr,c, p)− 1;

Fig. 20. Algorithm to compute Ψ(i) using the GGV-CSA.

We consider now the space required by the bit vectors Z. Using again the tech-
niques of Section 6.2, those can be stored in |Z|H0(Z) + o(|Z|) bits (note that
|Z| = |T s| for each cell in the row corresponding to context s). Summed over all
the lists of the same row, this turns out to be |T s|H0(T

s) + |T s| log e + o(|T s|)
[Grossi et al. 2003]. Added over all the contexts, we get nHk + n log e + o(n) (re-
call Eq. (1) and Theorem 4). To see how the sum of the H0(Z) entropies over
the different columns adds up to H0(T

s), let us call z = |Z| = |T s|, and zc the
number of entries in column c of row s. Then, recalling the end of Section 5.1,
H0(Z) ≤ zc log z

zc
+ zc log e, which add up

∑

c∈Σ zc log z
zc

+ z log e. But zc is also
the number of occurrences of c in T s, so the latter is zH0(T

s) + z log e.
If we add up all the space requirements, we have nHk +n log e+O(σk+1 log n)+

o(n). For k + 1 ≤ logσ(n/ log n) − ω(1), the space is nHk + n log e + o(n).
Remember that we are not representing Ψ, but Ψℓ for 0 ≤ ℓ ≤ h (Section 7.2).

The structure above works verbatim for Ψ0, but it also can be used for any level

ℓ. The difference is that at level ℓ there are not σ lists, but rather σ2ℓ

. The space

requirement at level ℓ turns out to be nHk + (n/2ℓ) log e + O(σk+2ℓ

log n) + o(n)
bits (remember the space analysis in Section 7.2). To maintain the third term
within o(n), it is sufficient that k + 2ℓ ≤ α logσ n, for some 0 < α < 1 of our
choice. For this we need two conditions: (1) k ≤ α′ logσ n for some constant
0 < α′ < 1, so we can choose any α ∈ (α′, 1); (2) to stop the recursive structure

46 · V. Mäkinen and G. Navarro

at level h′ = log((α− α′) logσ n) = Θ(log logσ n), so that 2ℓ ≤ (α− α′) logσ n when
ℓ ≤ h′. The levels between h′ and h = ⌈log log n⌉ (where we store Ah explicitly)
must be omitted, and this means that we must jump directly from level h′ to level
h, just as when we used a constant number of levels in Theorem 12. The number
of steps for that jump is not constant but 2h−h′

= O(log σ).
As we can access each Ψℓ in constant time, we first pay O(h′) time to reach

level h′ and then pay O(log σ) to reach level h. This is O(log logσ n + log σ) =
O(log log n + log σ) time to access A[i]. For the space, we have h′ levels taking
nHk + (n/2ℓ) log e + o(n) each, plus the final level containing A and its inverse.
This yields the first result of Grossi et al. [2003].

Theorem 15 (Grossi, Gupta, and Vitter [2003]) The Compressed Suffix Ar-
ray (GGV-CSA) offers the following space/time tradeoffs.

Space in bits nHk log logσ n + 2(log e + 1)n + o(n)
Time to count O(log n(m/ logσ n + log log n + log σ))
Time to locate O(log log n + log σ)
Time to display ℓ chars O(ℓ/ logσ n + log log n + log σ)
Space in bits 1

ǫ nHk + 2(log e + 1)n + o(n)
Time to count O(log n(m/ logσ n + logǫ n + log σ))
Time to locate O(logǫ n + log σ)
Time to display ℓ chars O(ℓ/ logσ n + logǫ n + log σ)
Conditions for all 0 < ǫ ≤ 1 is an arbitrary constant;

k ≤ α logσ n, for some constant 0 < α < 1

Note that, compared to Theorem 13, m has been replaced by m/ logσ n, and
likewise ℓ by ℓ/ logσ n. This is because they note that the process carried out by
the Sad-CSA to extract the text using Ψ character by character can actually be
carried out at Ψh′ , where 2h′

= O(logσ n) characters are obtained in each step.
Thus the counting time is O(m log σ+polylog(n)). The O(log n) factor multiplying
m in previous approaches becomes now O(log σ), although new polylogarithmic
terms in n appear. On the other hand, the version using 1

ǫ nHk bits is obtained
just as with the GV-CSA, using a constant number 1 + 1/ǫ of levels in [0, h′].

We observe that there is still an O(n) term in the space complexity, which is
possible to remove. The extra space appears because we are coding each cell indi-
vidually, indicating in its Z vector which elements of the row interval belong to the
cell and which do not. Summed over all the row, the positive information amounts
to |T s|H0(T

s) + o(|T s|) bits, but the negative information amounts to the extra
O(|T s|) bits.

An alternative representation for the row is a wavelet tree (Section 6.3, invented
by Grossi et al. [2003] for this purpose). The idea is that, for each row of context
s, we encode sequence T s with the binary wavelet tree of Theorem 8. In our
example, for row s = "la", we encode Rr = T s = " aa". In order to retrieve
element p from column c in global row r, we just compute selectc(Rr, p), adding it
to select1(R, r) − 1 to return the value in the final line of Fig. 20. In our example,
selecta(" aa", 1) = 2, which added to 17 − 1 gives the final answer 18.

Compressed Full-Text Indexes · 47

The binary wavelet tree requires |T s|H0(T
s) + o(|T s|) bits of space and answers

the queries in O(log σ) time. Adding over all the contexts s we get nHk +o(n) bits.
In exchange, the time increases by an O(log σ) factor. In level ℓ, the space remains

the same but the query time of the wavelet tree is O(log(σ2ℓ

)) = O(2ℓ log σ). The
search time added over 1 + 1/ǫ levels in 0 ≤ ℓ ≤ h′ is O(log1+ǫ n), while the time
to move from level h′ to h is O(log n logσ).

Yet, we still have a problem, namely the extra O(n) bits due to storing Ah and
A−1

h . These are converted into O(n log log n/ logσ n) by setting h = ⌈log logσ n −
log log log n⌉. Now the jump from level h′ to h takes O(log2 n/ log log n) time. Thus
we have an alternative structure.

Theorem 16 (Grossi, Gupta, and Vitter [2003]) The Compressed Suffix Ar-
ray (GGV-CSA) offers the following space/time tradeoffs.

Space in bits 1
ǫ nHk + o(n log σ)

Time to count O(m log σ + log3 n/ log log n)

Time to locate O(log2 n/ log log n)

Time to display ℓ chars O(ℓ/ logσ n + log2 n/ log log n)
Conditions 0 < ǫ ≤ 1 is an arbitrary constant;

k ≤ α logσ n, for some constant 0 < α < 1

Note that it is not a good idea to use multiary wavelet trees (e.g. Theorem 9)
to improve time, as these limit the alphabet size, while in the last levels of the

structure the alphabet reaches size σ2h
′

= Θ(n).
More complicated tradeoffs are given by Grossi et al. [2003]. The most relevant

ones obtain, roughly, O(m/ logσ n+log
2ǫ

1−ǫ n) counting time with 1
ǫ nHk +o(n log σ)

space, 0 < ǫ < 1/3; or O(m log σ + log4 n) counting time with almost optimal
nHk + o(n log σ) space.

In practice. Some experiments and practical considerations are given by Grossi
et al. [2004]. They show that bit vectors Z can be represented using run-length
encoding and then Elias-γ [Elias 1975; Witten et al. 1999], so that they take in the
worst case 2|Z|H0(Z) bits (and they may take less if the bits are not uniformly
distributed). Note that this result was partially foreseen by Sadakane [2000, 2003]
to achieve zero-order encoding of Ψ in the Sad-CSA (Section 7.2). They do not
explain how to do rank and select in constant time on this representation, but in
[Grossi and Vitter 2006] they explore binary-searchable gap encodings as a practical
alternative.

An interesting result of Grossi et al. [2004] is that, since the sum of all the γ-
encodings across all the cells adds up 2nHk bits, we could use the same encoding to
code each column in Fig. 19 as a whole. The values within a column are increasing.
The total space for this representation is that of the γ-encoding inside the cells
(which overall amounts to 2nHk bits) plus that of the γ-encoding of the jumps
between cells. The latter is shown to be o(n) as long as k ≤ α logσ n for some
constant 0 < α < 1. Thus, we obtain 2nHk + o(n) space. Note, and this is the key
part, that the sequence of differences we have to represent is the same no matter
how the values are split along the rows. That is, the sequence (and its space) is

48 · V. Mäkinen and G. Navarro

the same Ψ independently of how long the contexts are. Therefore, this encoding
achieves 2nHk + o(n) implicitly and simultaneously for any k ≤ α logσ n. This is
in contrast with their original work [Grossi et al. 2003], where k had to be chosen
at indexing time. Interestingly, this also shows that the Elias-δ representation of
the Sad-CSA (where in fact a column-wise differential representation is used for
Ψ) actually requires nHk + O(n log log σ) bits of space, improving the analysis by
Sadakane [2000, 2003] (contrast with the other nHk-like solution at the end of
Section 8.1).

9. BACKWARD SEARCHING AND THE FM-INDEX FAMILY

Backward searching is a completely different approach to searching using suffix
arrays. It matches particularly well with the BWT (Section 5.3), but it can also be
applied with compressed suffix arrays based on the Ψ function, using the fact that
Ψ and LF are the inverse of each other. The first exponent of this idea was the
FM-Index of Ferragina and Manzini [2000], and many others followed. We start
by explaining the idea and then go on to describe its different realizations (see also
Section 4.1).

9.1 The Backward Search Concept

Consider searching for P in A as follows. We first determine the range [spm, epm]
in A of suffixes starting with Pm. Since Pm is a single character, function C
of Lemma 3 can be used to determine [spm, epm] = [C(Pm) + 1, C(Pm + 1)] 2.
Now, given [spm, epm], we want to compute [spm−1, epm−1], the interval of A cor-
responding to suffixes starting with Pm−1,m. This is of course a subinterval of
[C(Pm−1)+1, C(Pm−1+1)]. In the general case, we know the interval [spi+1, epi+1]
of A corresponding to suffixes that start with Pi+1,m and want [spi, epi], which is
a subinterval of [C(Pi) + 1, C(Pi + 1)]. At the end, [sp1, ep1] is the answer for P .

The LF-mapping (Definition 14) is the key to obtain [spi, epi] from [spi+1, epi+1].
Consider again Fig. 9, and the search for P = "ala". Initially, [sp3, ep3] =
[C("a") + 1, C("b")] = [5, 13]. Now, within this subinterval, we wish to know
which of those "a"s are preceded by "l", as this would give us the occurrences
of "la". That is, we know that all the "l"s in L[5, 13] appear contiguously in F ,
and they preserve their relative order. Let s and e be the first and last position
in [5, 13] where L[s] = L[e] = "l". In our example, s = 6 and e = 9. Then,
LF (s) and LF (e) are the first and last rows of M that start with "la". In our
case, [sp2, ep2] = [LF (6), LF (9)] = [17, 19]. Recall from Lemma 3 that LF (6) =
C("l") + Occ("l", 6) = 16 + 1 and that LF (9) = C("l") + Occ("l", 9) = 16 + 3.
With the same mechanism we finally get [sp1, ep1] = [10, 11].

In general, given [spi+1, epi+1], we determine s and e and then have [spi, epi] =
[LF (s), LF (e)]. The problem is that we do not know s and e. Yet, this is not neces-
sary. Since s is the position of the first occurrence of Pi in L[spi+1, epi+1], it follows
that Occ(Pi, s) = Occ(Pi, spi+1 − 1) + 1. Likewise, Occ(Pi, e) = Occ(Pi, epi+1) be-
cause e is the last occurrence of Pi in L[spi+1, epi+1]. The resulting algorithm is
rather simple and is shown in Fig. 21.

2Here we use a + 1 to denote the character that follows a in Σ.

Compressed Full-Text Indexes · 49

Algorithm FM-search(P , m, n, C, Occ)
(1) sp← 1; ep← n;
(2) for i← m to 1
(3) sp← C(Pi) + Occ(Pi, sp− 1) + 1;
(4) ep← C(Pi) + Occ(Pi, ep);
(5) if sp > ep then return ∅;
(6) i← i− 1;
(7) return [sp, ep];

Fig. 21. Backward search algorithm to find the interval in A[1, n] of the suffixes that start with
P1,m.

Note that function C can be implemented in constant time as an array, using
just σ log n bits. A similar approach with Occ would require σn log n bits, which
is too much space. All the different variants of the backward search concept aim
basically at implementing Occ in little time and space. If we achieve constant time
for Occ, then the backward search needs just O(m) time, which is better than any
compressed suffix array from the previous section.

9.2 Backward Searching using Ψ

Before entering into the more typical backward search implementations, which are
based on the BWT, we show that backward searching can be implemented using
function Ψ [Sadakane 2002]. As mentioned at the end of Section 8.1, this is how
the Sad-CSA is actually implemented.

Since Ψ and LF are inverse functions, we might binary search values LF (s) and
LF (e) using Ψ. Imagine we already know [spi+1, epi+1] and [C(Pi) + 1, C(Pi + 1)].
Function Ψ is increasing in the latter interval (Lemma 1). Moreover, [spi, epi] is the
subinterval of [C(Pi) + 1, C(Pi + 1)] such that Ψ(j) ∈ [spi+1, epi+1] if j ∈ [spi, epi].
Hence, two binary searches permit obtaining [spi, epi] in O(log n) time.

Backward search then completes in O(m log n) time using the Sad-CSA, just as
classical searching. An advantage of backward searching is that it is not necessary
at all to obtain text substrings at search time. A disadvantage is that the average
and worst-case costs are similar, because we perform m steps of cost O(log n) each.
In classical searching, we perform O(log n) steps of cost between 1 and m each, the
average case being O(log2 n) rather than O(m log n) if m > log n (see the end of
Section 8.2). On the other hand, Sadakane [2002] shows how the backward search
can be implemented in O(m) time if σ = O(polylog(n)), essentially using the same
idea we present in Section 9.5.

We also recall (end of Section 8.1) that function Ψ is implemented via sampling,
so the binary searching is performed first over the samples and then completed with
a sequential decompression plus search between two samples. If the sampling step
is L = Θ(log n) (to maintain the space cost of the samples within O(n) bits), then
the binary search complexity remains O(log n) time and the overall search time
O(m log n), even if we do not use four-Russian techniques for fast decompression.
If we used the normal suffix array searching, there would have been O(m log n)
accesses to arbitrary positions of Ψ, so the use of four-Russian techniques would be
mandatory to avoid a total search cost of O(m log2 n).

50 · V. Mäkinen and G. Navarro

9.3 FMI: Ferragina and Manzini’s Implementation

The first implementation of backward searching was proposed, together with the
concept itself, by Ferragina and Manzini [2000]. This will be called FMI in this
paper.

Ferragina and Manzini [2000] show that Occ can be implemented in constant
time, using space upper bounded by 5nHk + o(n). This was the first structure
achieving O(nHk) bits of space. Essentially, Occ is implemented as the compressed
BWT transformed text T bwt plus some directory information.

They compress T bwt by applying move-to-front transform, then run-length com-
pression, and finally a variable-length prefix code. Move-to-front [Bentley et al.
1986] consists of keeping a list of characters ranked by recency, that is, the last
character seen is first in the list, then the next-to-last, and so on. Every time we
see a new character c, which is at position p in the list, we output p and move c to
the beginning of the list. This transform produces small numbers over text zones
with few different characters. This is precisely what happens in T bwt. In partic-
ular, there tend to appear runs of equal characters in T bwt (precisely, nbw runs,
recalling Definition 15), which become runs of 1’s after move-to-front. These runs
are then captured by the run-length compression. Finally, the prefix code applied
is a version of Elias-γ with some provisions for the run lengths. Overall, they show
using results from Manzini [2001] that this representation compresses T bwt to at
most 5nHk + O(σk log n) bits. The compressed T bwt will be called Z.

The directories to answer Occ(c, i) resemble the solution for rank in Section 6.1.
We choose a block length ℓ and cut the range [1, n] into blocks of length ℓ. Every
ℓ consecutive blocks will be grouped into a superblock of length ℓ2. For each su-
perblock 1 ≤ i ≤ ⌈n/ℓ2⌉ and each character c ∈ Σ, we store NO[c, i] = Occ(c, (i −
1)ℓ2), the Occ value for character c just before superblock i starts. We also store
W [i], the bit position of T bwt

(i−1)ℓ2+1 (the first character of superblock i) in the com-

pressed representation Z. These two tables require O((nσ log n)/ℓ2) bits. Similarly,
for each block 1 ≤ j ≤ ⌈n/ℓ⌉ we store the same data relative to its superblock
i = 1 + ⌊j/ℓ⌋, that is, NO′[c, j] = Occ(c, (j − 1)ℓ) − Occ(c, (i − 1)ℓ2), as well
as W ′[j], the bit position of T bwt

(j−1)ℓ+1 in Z minus W [i]. It is easy to see that

NO′[c, j] ≤ ℓ2, and similarly it holds W ′[j] = O(ℓ2 log σ), so these two tables
require O((nσ log ℓ)/ℓ) bits. In addition, for each block j, the state of the move-to-
front transformation (that is, the recency rank of characters) at the beginning of
the block is maintained in MTF [j]. This requires O((nσ log σ)/ℓ) additional bits.

The final component is a table S that does not depend on Z. S[c, o, B, M] is
indexed by a character c ∈ Σ, an offset o ∈ [1, ℓ] inside a block, the content of a
block (a bit stream) whose length is in the worst case ℓ′ = (1 + 2 logσ)ℓ, and the
state of a move-to-front transformation (a permutation of [1, σ]). The content of
S[c, o, B, M] is Occ(c, o) for the text obtained by decompressing B starting with a
move-to-front transform initialized as M .

It is not hard to see that, given position u, we can compute i = 1 + ⌊u/ℓ2⌋,
j = 1+⌊u/ℓ⌋ and o = u−(j−1)ℓ, and then it holds Occ(c, u) = NO[c, i]+NO′[c, j]+
S[c, o, ZW [i]+W ′[j],W [i]+W ′[j+1]−1, MTF [j]] (if j = ℓ−1 then W [i]+W ′[j+1] should
be replaced by W [i + 1]). This can be computed in constant time on a RAM
machine provided |B| = ℓ′ = O(log n) and |M | = O(log n). The first restriction

Compressed Full-Text Indexes · 51

yields ℓ = O(logσ n), whereas the second becomes σ = O(log n/ log log n).
Fig. 22 illustrates, with ℓ = 3. For example, to compute Occ("a", 14) we

consider superblock i = 1 + ⌊14/ℓ2⌋ = 2, block j = 1 + ⌊14/ℓ⌋ = 5, and off-
set o = 14 − (j − 1)ℓ = 2. Then Occ("a", 14) = NO["a", 2] + NO′["a", 5] +
S["a", 2, {1, 6, 1}, "b $ldar"] = 3 + 0 + 1 = 4.

a
r
a
a
d
l
_
l
l
$
_
b
b
a
a
r
_
a
a
a
a

NO’ [a,4]=0

Superblocks Blocks

7
2

6
7

2
1

3
7

6
1

4
3

1
1

NO [a,3]=6

NO [a,2]=3

NO [a,1]=0

NO’ [a,3]=3

NO’ [a,2]=2

NO’ [a,1]=0

NO’ [a,6]=2

NO’ [a,5]=0

NO’ [a,7]=0

MTF MTF state

3 $_abdlr

1 ar$_bdl

6 ldar$_b

6 l_dar$b

1 b_$ldar

7 ab_$ldr

1 a_rb$ld

S[a,2,{1,6,1},b_$ldar] = 1

Fig. 22. The main components of the FMI structure, for the text "alabar a la alabarda$" using
ℓ = 3. The compression of T bwt is illustrated only up to the move-to-front (MTF) transform for
readability, and we also show the MTF states stored per block. We show the NO and NO′ values
only for character "a", and omit W and W ′. We show just a single entry of S.

Adding up all the space complexities we obtain, apart from |Z|, the upper bound
O((nσ log n)/ℓ2+(nσ log ℓ)/ℓ+(nσ log σ)/ℓ+σℓ2ℓ′σ! log ℓ). If we choose ℓ = x logσ n
for constant 0 < x < 1/3, then ℓ′ ≤ 3x logn < log n. Under this setting the
extra space is O((nσ log σ log log n)/ log n + (σ/e)σ+3/2n3x logσ n log log n). This is
o(n log σ) (that is, sublinear in |T |) for σ = o(log n/ log log n).

In order to locate occurrences, they sample text positions at regular intervals,
just as described in Section 8.2 (the concept was invented by Ferragina and Manzini
[2000] and reused for the MN-CCSA). Instead of marking one text position every
1
ǫ log n, they mark one text position every log1+ǫ n, for some ǫ > 0, and collect
the A values pointing to those marked positions. To know A[i], they find the
smallest r ≥ 0 such that LF r(i) is a marked position (and thus A[LF r(i)] is known),
and then A[i] = A[LF r(i)] + r. This way, they pay O(n/ logǫ n) extra space and
can locate the occurrences in O(occ log1+ǫ n) steps. A problem is that there is
no easy way to know T bwt

i in order to compute LF (i) = C(T bwt
i) + Occ(T bwt

i , i)
(Lemma 3). They discover T bwt

i by sequentially searching Σ for the c such that

52 · V. Mäkinen and G. Navarro

Occ(c, i) 6= Occ(c, i − 1). This takes O(σ) time per step. A similar approach
permits displaying Tl,r in O(σ(r − l + log1+ǫ n)) time.

Theorem 17 (Ferragina and Manzini [2000]) The FM-Index (FMI) offers the
following space/time tradeoff.

Space in bits 5nHk + o(n log σ)
Time to count O(m)

Time to locate O(σ log1+ǫ n)

Time to display ℓ chars O(σ(ℓ + log1+ǫ n))
Conditions σ = o(log n/ log log n);

k ≤ logσ(n/ logn) − ω(1);
ǫ > 0 is an arbitrary constant

We note that 5nHk is actually a rather pessimistic upper bound, and that the
technique works with essentially any compressor for T bwt. Thus the FMI obtains
unbeaten counting complexity and attractive space complexity. Its real problem is
the alphabet dependence, as in fact the original proposal [Ferragina and Manzini
2000] was for a constant-size alphabet. Further work on the FMI have focused on
alleviating its dependence on σ.

Some more complicated techniques [Ferragina and Manzini 2000], based on us-
ing alphabet Σq instead of Σ, permit reducing the O(log1+ǫ n) time factor in the
locating and displaying complexities to O(logǫ n), yet this makes the alphabet de-
pendence of the index even sharper.

In practice. A practical implementation of the FMI could not follow the idea
of the S table. Ferragina and Manzini [2001] propose replacing S with a plain
decompression and scanning of block B, which (according to the theoretical value
of ℓ) takes O(log n) time and raises the counting complexity to O(m log n). Some
heuristics have also been used to reduce the size of the directories in practice.
Also, instead of sampling the text at regular intervals, all the occurrences of some
given character are sampled. This removes the need to store a table telling which
positions are marked, as this can be deduced from the current character in T bwt.

Finally, they consider alternative ways of compressing the text. The most success-
ful one is to compress each block with a Huffman variant derived from bzip2, with
a distinct Huffman tree per block. If we recall Theorem 4, this does not guarantee
O(nHk) bits of space, but it should be close (actually, the practical implementa-
tions are pretty close to the best implementations of bzip2). The reason for this
lack of guarantee is that T bwt is partitioned into equal-size blocks, not according
to contexts of length k. Such a partitioning will be considered in Section 9.7.

9.4 Huff-FMI: An O(nH0) Size Implementation

We present now an alternative implementation of the backward search idea that
is unable to reach the O(nHk) size bound, yet it is an interesting way to remove
the alphabet dependence. The Huffman FM-Index by Grabowski et al. [2004, 2005]
(Huff-FMI) uses Huffman as a tool to reduce the alphabet of the text to bits.

The idea is to first compress T using Huffman [Huffman 1952; Bell et al. 1990].
In the resulting bit stream T ′

1,n′ , of n′ < n(H0 +1) bits, logically mark the bits that

Compressed Full-Text Indexes · 53

start a codeword. Apply the BWT over T ′ to obtain bit stream B[1, n′] = (T ′)bwt.
Create another bit stream Bh[1, n′] indicating the pointed bits that are marked
in T ′. That is, if A′[1, n′] is the suffix array of T ′, then Bh[i] = 1 iff T ′[A′[i]] is
marked. No attempt is made to compress B nor Bh.

Implementing Occ over B is very easy, because it is a binary stream. Indeed,
Occ(0, i) = rank0(B, i) and Occ(1, i) = rank1(B, i), which can be answered in
constant time using n′+o(n′) bits with the techniques of Section 6.1. Any alphabet
dependence has vanished. (We omit some technicalities due to boundary effects
because of not having a terminator character for T ′.)

To count the occurrences of P1,m in T , we first Huffman-transform P into a
binary pattern P ′

1,m′ , using the codebook we have created for T . Then, we use
the backward search of Fig. 21 for P ′ over B, finishing after O(m′) constant-time
steps with [sp′, ep′] as the bounds in A′ for the suffixes that start with P ′. Note
that m′ < m(H0 + 1) if P has the same zero-order entropy of T , and in any case
m′ = O(m log n) because the longest Huffman code has O(log n) bits [Witten et al.
1999, pp. 397].

Yet, not every occurrence of P ′ in T ′ corresponds to an occurrence of P in
T , as we want only the codeword-aligned occurrences. This is where Bh comes
into play. Only the bits set in Bh[sp′, ep′] correspond to real occurrences, so we
complete the counting query by returning rank1(Bh, ep′) − rank1(Bh, sp′ − 1). In
order to find the exact entries in A′ corresponding to occurrences, we start with
b = rank1(Bh, sp′ − 1) and use select1(Bh, b + 1), select1(Bh, b + 2), and so on,
taking constant time per occurrence.

Fig. 23 illustrates the search for P = "ba". This is translated into P ′ =
11010. The backward search yields A′[43, 46]. From those, only rank1(Bh, 46) −
rank1(Bh, 42) = 2 are valid.

To locate the occurrences, the same mechanism of the MN-CCSA (Section 8.2)
of marking T ′ at regular intervals of the form 1

ǫ (H0 + 1) log n is employed, yet the
marks are slightly moved to align to codeword beginnings. The absolute values
stored for the samples correspond to positions in T , not in T ′. Using the LF-
mapping over B and using Bh to keep count of how many positions in T we have
moved, we can deduce the text position corresponding to A′[i] in O(1

ǫ (H0+1) logn)
time. Finally, to display Tl,r we store the same samples, this time in text position
order and pointing to A′ entries. After extracting the bits from T ′, we decode them
to get Tl,r.

Theorem 18 (Grabowski, Mäkinen, Navarro, and Salinger [2005]) The
Huffman FM-Index (Huff-FMI) offers the following space/time tradeoff.

Space in bits n(2H0 + 3 + ǫ) + o(n)
Time to count O(m(H0 + 1)) (average case)

O(m log n) (worst case)
Time to locate O(1

ǫ (H0 + 1) log n)
Time to display ℓ chars O((H0 + 1)(ℓ + 1

ǫ log n)) (average case)
O((ℓ + 1

ǫ (H0 + 1)) log n) (worst case)
Conditions σ = o(n/ log n)

ǫ > 0 is an arbitrary constant

54 · V. Mäkinen and G. Navarro

0. 1. 1.1. 1.1. 1. 0 1 01 1 0 1. 0. 1 0 0 0 1 1 0.

1
3
9
2
1
3
2

1010
111
0
1101
1011
100
1100

$
_
a
b
d
l
r

Freq Code

B
Bh

P

P’

ba

1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 01 1 1 1 1 0 0 1 1 0 1 1 0. 0. 1 0. 0. 1 1 0. 0..

T’ 0.0. 0.0 0 1 1 0 1. 1 11. 1 0 0. 0. 1 11. 0. 1 0 0. 0.1 11 0 0

a a a a l b _ l a _ a l a r_r b a d a $

1 1 0 1 0

T

Fig. 23. The main components of the Huff-FMI structure, for the text "alabar a la

alabarda$". We show T ′, and the dots below its bits indicate those that start a codeword.
We also show the bits of B, and those of Bh correspond to the dots below B. The search pattern
P = "ba" is translated into P ′ = 11010. The backward search yields A′[43, 46], as indicated on
top of B. From those, only two are valid (those with dots in the result range). We show explicitly
the location of the results, both valid (solid line) and invalid (dashed line).

We note that the average-case complexity for counting assumes that P has the
same zero-order entropy of T (in which case it is a worst-case complexity), or that
P is chosen randomly from T . The average complexity for displaying text assumes
that [l, r] is chosen at random in T . Grabowski et al. [2005] show that, by using
2n additional bits, the worst cases can be reduced to O(m log σ) for counting, and
O(ℓ log σ + 1

ǫ (H0 +1) logn) for displaying. This is obtained by forcing the Huffman
tree to have depth at most (1+x) log σ, for some constant x > 0, without changing
its average codeword depth (H0 + 1) by more than a constant factor.

In practice: The Huff-FMI implementation is close to its theoretical proposal.
The main difference is that select is not used, but the area Bh[sp′, ep′] is linearly
traversed to find the occurrences. This is much faster as on average we have to
traverse H0 + 1 bits to find each real answer (this is at most 8 if symbols fit in
bytes). In addition, 2k-ary Huffman has been tried, which improves search time
and may increase or decrease the space complexity (as |B| increases slightly due
to the less efficient (non-binary) compression; |Bh| is almost divided by k because
only positions multiple of k can start a codeword; and one needs 2k rank structures
for B).

It is worth mentioning that there is another approach [Ferragina 2006] to combin-
ing Huffman compression with the FM-Index, based on using a word-based Huffman
compression (where words, not characters, are the text symbols) with byte-aligned
codewords. The sequence of codewords is then indexed with an FM-Index, which
is able to efficiently search for word-based queries. The space is much lower than
inverted lists, which nonetheless need to store the text.

Compressed Full-Text Indexes · 55

9.5 WT-FMI: A Cleaner O(nH0) Size Implementation

A second idea producing an index of size O(nH0) is the Wavelet Tree FM-Index
(WT-FMI). The essential idea was introduced by Sadakane [2002], when wavelet
trees [Grossi et al. 2003] did not yet exist. Sadakane used individual indicator
arrays instead (as those proposed in the beginning of Section 6.3). The use of
wavelet trees was proposed later [Ferragina et al. 2004a] as a particular case of
the AF-FMI (Section 9.7), and even later [Mäkinen and Navarro 2005a, 2005b]
as a particular case of the RL-FMI (Section 9.6). The same idea, in the form of
indicator vectors, also reappeared for the case of binary alphabets [He et al. 2005].

The idea of the WT-FMI is extremely simple, once in context (recall Theo-
rem 3). Just use the wavelet tree of Section 6.3 over the sequence T bwt. Hence,
Occ(c, i) = rankc(T

bwt, i) can be answered in O(log σ) time using the basic wavelet
tree (Theorem 8), and in O(1) time for σ = O(polylog(n)) using the multi-ary one
(Theorem 9). The method for locating the occurrences and displaying the text is
the same as for the FMI, yet this time we also find T bwt

i in O(log σ) or O(1) time
using the same wavelet tree.

Fig. 6 in page 14 illustrates how to obtain Occ("a", 15) = rank"a"(T
bwt, 15) = 5,

using a binary wavelet tree. Fig. 24 gives the pseudocode. Depending on which
wavelet tree we use, different tradeoffs are obtained. Yet, we have chosen to give a
simple general form that is valid for all cases.

Algorithm WT-Occ(c, i, σ1, σ2, v)
(1) if σ1 = σ2 then return i;

(2) σm =
j

σ1+σ2

2

k

;

(3) if c ≤ σm

(4) then return WT-Occ(c, rank0(Bv, i), σ1, σm, vl);
(5) else return WT-Occ(c, rank1(Bv, i), σm + 1, σ2, vr);

Fig. 24. Computing Occ(c, i) on a binary wavelet tree. It is invoked as WT-Occ(c, i, 1, σ, root).
We call Bv the bit vector at tree node v, vl its left child, and vr its right child.

Theorem 19 The Wavelet Tree FM-Index (WT-FMI) offers the following space/time
tradeoffs.

Space in bits nH0 + o(n log σ)
Time to count O(m(1 + log σ/ log log n))

Time to locate O(log1+ǫ n log σ/ log log n)

Time to display ℓ chars O((ℓ + log1+ǫ n) log σ/ log log n)
Conditions σ = o(n/ log log n);

ǫ > 0 is an arbitrary constant

Note that log σ/ log log n = O(1) if σ = O(polylog(n)), in which case, for exam-
ple, counting time becomes O(m).

Despite its simplicity, the WT-FMI is the precursor of further research that lead
to the best implementations of the backward search concept (Sections 9.6 and 9.7).

56 · V. Mäkinen and G. Navarro

In practice: The implementation of the WT-FMI uses the binary wavelet tree,
preprocessed for rank using the simple techniques of Section 6.1, and gives the
wavelet tree the shape of the Huffman tree of the text. This way, instead of the
theoretical nH0 + o(n) bits, we obtain n(H0 + 1)(1 + o(1)) bits with much simpler
means [Grossi et al. 2003, 2004]. In addition, the Huffman shape gives the index
O(mH0) average counting time. The worst case time is O(m log n), but it can
be limited to O(m log σ) without losing the O(mH0) average time, by forcing the
Huffman tree to balance after depth (1+x) log σ, for some constant x > 0 [Mäkinen
and Navarro 2004b].

9.6 The Run-Length FM-Index of Mäkinen and Navarro (RL-FMI)

The Run-Length FM-Index of Mäkinen and Navarro [2004b, 2004c, 2005a, 2005c]
(RL-FMI) is an improvement over the WT-FMI of Section 9.5, which exploits the
equal-letter runs of the BWT (Theorem 5) to achieve O(nHk log σ) bits of space.
It retains the good search complexities of the FMI, but it is much more resistant
to the alphabet size. Actually this was the first index achieving O(m) search time
for σ = O(polylog(n)) and taking simultaneously space proportional to the k-th
order entropy of the text. The idea is to compute Occ(c, i) = rankc(T

bwt, i) using
a wavelet tree built over the run-length compressed version of T bwt.

In Fig. 6 we built the wavelet tree of T bwt = "araadl ll$ bbaar aaaa". As-
sume that we run-length compress T bwt to obtain S = "aradl l$ bar a". By
Theorem 5, we have the limit |S| ≤ nHk + σk for any k. Therefore, a wavelet tree
(Section 6.3) built over S would require (nHk + σk)H0(S) + o(n log σ) bits. The
only useful bound we have for the zero-order entropy of S is H0(S) ≤ log σ, thus
the space bound is nHk log σ + o(n log σ) for any k ≤ logσ n − ω(1).

The problem is that rank over S does not give the answers we need over T bwt.
For example, assume we want to compute rank"a"(T

bwt, 19) = 7. We need to know
that T bwt

19 lies at S14. This is easily solved by defining a bitmap B[1, n] indicating
the beginnings of the runs in T bwt. In our case B = 111011110111010111000. We
know that the position of T bwt

19 in S is rank1(B, 19) = 14. Yet, this is not sufficient,
as rank"a"(S, 14) = 4 just tells us that there are 4 runs of "a"s before and including
that of T bwt

19 . What we need is to know the total length of those runs, and in which
position of its run is T bwt

19 (in our case, 2nd).
For this sake, we reorder the runs in B alphabetically, accordingly to the char-

acters that form the run. Runs of the same character stay in the same rela-
tive order. We form bit array B′[1, n] with the reordered B. In our case B′ =
111111010100010111011. We also compute array CS indexed by Σ, so that CS [c]
tells the number of occurrences in S (runs in T bwt) of characters smaller than c
(thus CS plays for S the same role C plays for T in the FMI). In our example
CS ["a"] = 4. This means that, in B′, the first CS ["a"] = 4 runs correspond to
characters smaller than "a", and then come those of "a", of which T bwt

19 is in the
4th because rank"a"(S, 14) = 4. Fig. 25 illustrates.

To compute rankc(T
bwt, i), we first find i′ = rank1(B, i), the position of the run

T bwt
i belongs to in S. Thus there are j′ = rankc(S, i′) runs of c’s in T bwt

1,i . In B′,
the runs corresponding to c start at j = select1(B

′, CS [c] + 1). Now there are two
cases. If Si′ 6= c, then the run of T bwt

i does not belong to c, and thus we must
accumulate the full length of the first j′ runs of c, select1(B

′, CS [c]+ 1+ j′)− j. If,

Compressed Full-Text Indexes · 57

_ _ _$
1 0 1 1

d b
1 0

r l l
1 0 0

r
1

_ _ _

1 1
aa

0 0
$ a
0 1 0 1

a
1 0 1 1
r d l l

0
b

1
r

__

1 0 0
r a

0
a

0 0 1
$ b

1 1 0 1
d l _ l

0 1 0
a r a

a
r
a
a
d
l
_
l
l
$
_
b
b
a
a
r
_
a
a
a
a

a
r
a

d
l
_
l

$
_
b

a

r
_
a

1
1
1
1
1
1
0
1
0
1
0
0
0
1
0
1
1
1
0
1
1

T
bwt

B’ B S

1
1
0

1

1
1
1
1
0
1

1
0
1
0
1
1
1
0
0
0

1

$_a bdlr

$_ a lrbd

$ _ b ld r

S =

Fig. 25. The main RL-FMI structures for the text "alabar a la alabarda$". The transformed
text T bwt is shown only for clarity. The wavelet tree on the right, built for S, stores only the
bitmaps, not the texts at each node.

on the other hand, Si′ = c, then the run of T bwt
i does belong to c, and we must be

careful how much of the last run we count. We are sure that the first j′ − 1 runs
must be fully counted, so we have select1(B

′, CS [c] + j′) − j, but we must add the
corresponding part of the last run. This part is clearly i−select1(B, i′)+1. Fig. 26
gives the pseudocode.

Algorithm RLFM-Occ(c, i, S, B, B′, CS)
(1) i′ ← rank1(B, i);
(2) j′ ← rankc(S, i′);
(3) j ← select1(B′, CS [c] + 1);
(4) if Si′ = c then

(5) j′ ← j′ − 1;
(6) ofs← i− select1(B, i′) + 1;
(7) else ofs← 0;
(8) return select1(B′, CS [c] + 1 + j′) − j + ofs;

Fig. 26. Algorithm to compute Occ(c, i) with the RL-FMI.

Thus the RL-FMI takes nHk log σ + 2n + o(n log σ) bits of space, and it solves
Occ(c, i) = rankc(T

bwt, i) in the time necessary to perform rankc over S. Depend-
ing on which wavelet tree is used to implement this operation, we have different
results. The rest is handled just like the WT-FMI.

Theorem 20 (Mäkinen and Navarro [2005c]) The Run-Length FM-Index (RL-

FMI) offers the following space/time tradeoffs.

58 · V. Mäkinen and G. Navarro

Space in bits nHk log σ + 2n + o(n log σ)
Time to count O(m(1 + log σ/ log log n))

Time to locate O(log1+ǫ n log σ/ log log n)

Time to display ℓ chars O((ℓ + log1+ǫ n) log σ/ log log n)
Conditions σ = o(n/ log log n);

ǫ > 0 is an arbitrary constant;
k ≤ logσ n − ω(1)

In practice. The implementation of the RL-FMI, just as that of the WT-FMI (end
of Section 9.5), uses binary wavelet trees with Huffman shape, with the bitmaps
using the techniques of Section 6.1. This gives at most nHk(H0(S) + 1)(1 + o(1))
space, which in the worst case is nHk(log σ+1)(1+o(1)) bits, close to the theoretical
version but much simpler to implement. Even when it has not been proved that
H0(S) is smaller than anything other than log σ, in practice space and access time
are reduced.

9.7 The Alphabet-Friendly FM-Index of Ferragina et al. (AF-FMI)

The Alphabet-Friendly FM-Index of Ferragina, Manzini, Mäkinen, and Navarro
[2004a, 2004b, 2006] (AF-FMI) is another improvement over the WT-FMI of
Section 9.5. It combines the idea with Theorem 4 to achieve nHk + o(n log σ) bits
of space and the same search time of the WT-FMI.

Theorem 4 tells that, if we split T bwt into substrings T s according to its contexts
s of length k, and manage to represent each resulting block T s, of length ns = |T s|,
in nsH0(T

s)+f(ns) bits, for any convex function f , then the sum of all bits used is
nHk + σkf(n/σk). In particular, we can use the binary wavelet tree of Section 9.5
for each block (Theorem 6.3). It requires nsH0(T

s)+O(ns log log ns/ logσ ns) bits,
so we need overall nHk + O(n log log(n/σk)/ logσ(n/σk)) bits, for any k. If k ≤
α logσ n, for any constant 0 < α < 1, this space is nHk + O(n log log n/ logσ n).

Assume s is the j-th nonempty context in T bwt. The wavelet tree of T s allows
us to solve Occj(c, i), which is the number of occurrences of c in (T s)1,i. To answer
a global Occ(c, i) query, we must be able to (1) determine to which block j does
i belong, so as to know which wavelet tree to query, and (2) know how many
occurrences of c there are before T s in T bwt.

We store a bit vector B[1, n] indicating the beginning of blocks in T bwt, so that
j = rank1(B, i) (this is equivalent to vector F in Section 8.3). Moreover, the j-th
block starts at i′ = select1(B, j).

We also store, for each block j, vector Cj [c], which tells the number of occurrences
of c in T bwt

1,i′−1, that is, before block j (or before substring T s). Since Cj [c] =
Occ(c, i′ − 1), it is clear that Occ(c, i) = Cj [c] + Occj(c, i − i′ + 1). Similarly, to
determine T bwt

i , we obtain j and i′, and query the wavelet tree of the j-th block to
find its (i − i′ + 1)-th character.

Using the technique of Section 6.2, bit vector B requires at most σk log n bits
because it has at most σk bits set. On the other hand, arrays Cj require overall
σk+1 log n bits of space. If k ≤ α logσ n this space is within nHk + o(n).

Fig. 27 illustrates, for k = 1. To determine Occ("l", 8), we first find that j =
rank1(B, 8) = 3 is the block number where i = 8 belongs. The first position of
block 3 is i′ = select1(B, 3) = 5. The number of occurrences of "l" in T bwt

1,i′−1, that

Compressed Full-Text Indexes · 59

is, before block j = 3, is C3("l") = 0. Inside block 3, corresponding to substring
T s = "dl ll$ bb" of T bwt, we need the number of "l"s in (T s)1,i−i′+1 = (T s)1,4.
This is given by the wavelet tree, which answers Occ3("l", 4) = 2. Thus the answer
is 0 + 2 = 2.

1

1
0
0
1
1
0
1
0

0

0

0

1

0
1

0

0

0

0

0

0

_

1 1 0 1 1 0 0 1 1
d l _ ll $ b b

_ _

0 0
$
0

d b b
1 0 0

l l l
0 0 0

_ _$
1 0 1

0 1 1 1 0 0
d l l l b b

M B
$alabar_a_la_alabarda

_alabarda$alabar_a_la
_la_alabarda$alabar_a
a$alabar_a_la_alabard
a_alabarda$alabar_a_l
a_la_alabarda$alabar_
abar_a_la_alabarda$al
abarda$alabar_a_la_al
alabar_a_la_alabarda$
alabarda$alabar_a_la_
ar_a_la_alabarda$alab
arda$alabar_a_la_alab
bar_a_la_alabarda$ala
barda$alabar_a_la_ala
da$alabar_a_la_alabar
la_alabarda$alabar_a_
labar_a_la_alabarda$a
labarda$alabar_a_la_a
r_a_la_alabarda$alaba
rda$alabar_a_la_alaba

_a_la_alabarda$alabar

$_a bdlr

$_ a lrbd

$ _ b ld r

C (a) = 33

C (l) = 03

Fig. 27. The main AF-FMI structures for the text "alabar a la alabarda$" considering con-
texts of length k = 1. Matrix M of the BWT is shown only for clarity. We show only one of the
wavelet trees, corresponding to context "a", and only a couple of its Occj values. Note that this
wavelet tree corresponds to a substring of that in Fig. 6.

Yet, Ferragina et al. [2004a] go further. Instead of choosing a fixed k value
in advance, they use a method by Ferragina and Manzini [2004] that, given a
space overhead function f(ns) on top of nsH0(T

s), finds the partition of T bwt that
optimizes the final space complexity. Using blocks of fixed context length k is just
one of the possibilities considered in the optimization, so the resulting partition
is below nHk + σkf(n/σk) simultaneously for all k (and it is possibly better than
using any fixed k). That is, although we have made the analysis assuming a given
k, the construction does not have to choose any k but it reaches the space bound for
any k of our choice. Thus this index also achieves the independence of k mentioned
at the end of Section 8.3, yet it obtains at the same time the minimum space nHk,
using significantly simpler means.

The locating of occurrences and displaying of text is handled just as in Section 9.5.

Theorem 21 (Ferragina, Manzini, Mäkinen, and Navarro [2006]) The
Alphabet-Friendly FM-Index (AF-FMI) offers the following space/time tradeoffs.

60 · V. Mäkinen and G. Navarro

Space in bits nHk + o(n log σ)
Time to count O(m(1 + log σ/ log log n))

Time to locate O(log1+ǫ n log σ/ log log n)

Time to display ℓ chars O((ℓ + log1+ǫ n) log σ/ log log n)
Conditions σ = o(n/ log log n);

ǫ > 0 is an arbitrary constant;
k ≤ α logσ n, for some constant 0 < α < 1

10. ZIV-LEMPEL BASED INDEXES

Up to now we have considered different ways of compressing suffix arrays. While
this is clearly the most popular trend on compressed indexing, it is worthwhile to
know that there exist alternative approaches to self-indexing, based on Ziv-Lempel
compression. In particular, one of those achieves O(m+ occ) time to locate the occ
occurrences of P in T , with no restriction on m or occ. This has not been achieved
with other indexes.

10.1 Ziv-Lempel Compression

In the seventies, Ziv and Lempel [1977, 1978] presented a new approach to data
compression. It was not based on text statistics, but rather on identifying repeated
text substrings and replacing repetitions by pointers to their former occurrences in
T . Ziv-Lempel methods produce a parsing (or partitioning) of the text into phrases.

Definition 16 The original Ziv-Lempel parsing [Lempel and Ziv 1976] of text T1,n

is a sequence Z[1, n′] of phrases such that T = Z[1] Z[2] . . . Z[n′], built as follows.
Assume we have already processed T1,i−1 producing sequence Z[1, p − 1]. Then,
we find the longest prefix Ti,i′−1 of Ti,n which occurs in T1,i−1. If i′ > i then
Z[p] = Ti,i′−1 and we continue from text position i′. Otherwise Ti has not appeared
before and Z[p] = Ti, continuing from text position i + 1. The process finishes once
we obtain Z[n′] = “$”.

The output of a compressor using this parsing is essentially the position where
each new phrase starts (called its source) and its length (new characters in Σ that
appear are exceptions in this encoding). An important property of this parsing
is that every phrase has appeared before, unless it is a new character of Σ. (The
original definition [Lempel and Ziv 1976] actually permits the former occurrence of
Ti,i′−1 to extend beyond position i − 1, but we ignore this here.)

We will also be interested in a Ziv-Lempel parsing called LZ78, where each phrase
is formed by an already known phrase concatenated with a new character at the
end.

Definition 17 The LZ78 parsing [Ziv and Lempel 1978] of text T1,n is a sequence
Z[1, n′] of phrases such that T = Z[1] Z[2] . . . Z[n′], built as follows. The first
phrase is Z[1] = ε. Assume we have already processed T1,i−1 producing a sequence
Z[1, p − 1] of p − 1 phrases. Then, we find the longest prefix of Ti,n which is equal
to some Z[p′], 1 ≤ p′ < p. Thus Ti,n = Z[p′] c Ti′,n, where Z[p′] c does not appear
in Z and i′ = i + |Z[p′]| + 1. We define Z[p] = Z[p′] c, increment p, and continue
processing T from position i′. The process finishes once we get c =“$”.

Compressed Full-Text Indexes · 61

The output of the LZ78 compressor is essentially the sequence of pairs (p′, c)
found at each step p of the algorithm. This parsing has a couple of important
properties. First, all the phrases in an LZ78 parsing are different from each other.
Second, the prefixes of a phrase are phrases.

Fig. 28 shows the LZ78 parsing of our example text. The figure also illustrates
the Ziv-Lempel trie LZTrie, which is the trie storing the set of strings Z. The trie
has n′ nodes (as there is one per string in Z). If Z[p] = Z[p′] c, then node p is a
child of p′ by edge labeled c. LZTrie is used in LZ78 compression to produce the
Ziv-Lempel parse in O(n) time. The other trie, RevTrie, is used by some indexes
we review soon. Depending on the case, we can associate some extra information
to these tries, such as the text position of the phrases, the lexicographical rank of
the phrases (shown in the figure), and so on.

Definition 18 The Ziv-Lempel trie of T is a trie storing all the phrases of the
LZ78 parsing of T . Each node corresponds to a distinct phrase.

11

a l ab ar _ a_ lab_ala ard a$
1 2 3 4 5 6 7 8 9 10 11

5

8

a

b

a

7

2

$

1

11

0

9

11
4

2

9
10

3

9

1

8 7

_

0
0

a b d l

a

11

$

5

6

a a

l a

rl_ a

42

1
6 7

8

10
r

3 5

RevTrieLZTrie 0

_ a l

6 3

_

4

d

10

rb

1

2

3

4 5 6 7

8

9

10

Fig. 28. On the bottom, the LZ78 parsing of the text "alabar a la alabarda$". On the left we
show LZTrie, the trie of the phrases Z[p], and on the right RevTrie, the trie indexing the reverse
phrases. We use the phrase identifiers as node labels. The smaller numbers in italics outside the
nodes are the lexicographic rank of the corresponding strings.

An important property of both Ziv-Lempel parsings is that the number of phrases
they produce is at most n/ logσ n, and in general the size of the Ziv-Lempel com-
pressed text (slowly) converges to the entropy of the source [Cover and Thomas
1991]. Of more direct relevance to us, it has been shown that n′ is related to the
definition of Hk(T) we use in this paper [Kosaraju and Manzini 1999; Ferragina
and Manzini 2005].

Lemma 7 Let n′ be the number of phrases produced by Ziv-Lempel parsing of text
T1,n, using either the parsing of Definition 16 or 17. Then n′ log n = nHk(T) +
O((k +1)n′ log σ). As n′ ≤ n/ logσ n, this is nHk(T)+ o(n log σ) for k = o(logσ n).

62 · V. Mäkinen and G. Navarro

Lemma 7 implies that the Ziv-Lempel trie can be stored, even using pointers,
in O(nHk) bits of space. The pioneer work in Ziv-Lempel based indexes is due to
Kärkkäinen and Ukkonen [1996a], deriving from their earlier work on sparse suffix
trees [Kärkkäinen and Ukkonen 1996b]. This Ziv-Lempel based index is also the
first compressed index we know of.

Before entering into the Ziv-Lempel based methods, let us review the sparse
suffix tree [Kärkkäinen and Ukkonen 1996b], which is the first succinct index we
know of. This is a suffix tree indexing every h-th text position. It easily finds the
aligned occurrences in O(m) time. The others can start up to h− 1 positions after
a sampled position. Thus we search for all the patterns of the form ΣiP , 0 ≤ i < h.
Overall this requires O(σh−1m + occ) time. By choosing h = 1 + ǫ logσ n we get
O(mnǫ + occ) search time and O((n log n)/h) = O(n log σ) bits of space.

10.2 The LZ-Index of Kärkkäinen and Ukkonen (KU-LZI)

The LZ-Index of Kärkkäinen and Ukkonen [1996a] (KU-LZI) uses a suffix tree that
indexes only the beginnings of phrases in a Ziv-Lempel parsing of T . This parsing
is a variant of the original Ziv-Lempel parsing (Definition 16). Although they use
the property that n′ ≤ n/ logσ n to show that their index is succinct, requiring
O(n log σ) bits of space, Lemma 7 shows that they actually require O(nHk) bits of
space. We present here the results in their definitive form [Kärkkäinen 1999].

The original parsing has the property that each new phrase has already appeared
in T , or it is a new character in Σ. Thus, the first occurrence of any pattern P
cannot be completely inside a phrase, otherwise it would have appeared before
(the exception is m = 1, which is easy to handle and we disregard here). They
divide occurrences among primary (spanning two or more phrases) and secondary
(completely inside a phrase). Secondary occurrences are repetitions of other pri-
mary or secondary occurrences. Assume there are occp primary and occs secondary
occurrences, so that occ = occp + occs.

Primary occurrences are found as follows. For some 1 ≤ i < m, P1,i is the
suffix of a phrase and Pi+1,m starts at the next phrase. To avoid reporting the
same occurrence multiple times, they insist that P1,i has to be completely included
in a phrase, so the partitioning (P1,i, Pi+1,m) will be unique per occurrence. The
occurrences of Pi+1,m are found using a sparse suffix tree that indexes the phrase
beginnings (and is searched only for phrase-aligned occurrences). Those of P1,i

within a phrase are found using the equivalent of RevTrie, which is searched for
PiPi−1 . . . P1 (RevTrie is illustrated in Fig. 28 for the LZ78 parsing). For example,
P ="labar" appears twice in Fig 28: in phrase 2 with partition ("l","abar") and
in phrase 9 with partition ("lab","ar"). For succinctness we will use the LZ78
parsing of Fig. 28 to illustrate the method, although it actually uses the original
Ziv-Lempel parsing of Definition 16.

Each of those two searches yields a lexicographical range in [1, n′]. The sparse
suffix tree yields the range [l2, r2] of the phrase-aligned suffixes that start with
Pi+1,m. The trie of reverse phrases gives the range [l1, r1] of phrases that finish with
P1,i. Consider now the p-th phrase. Assume Z[p] reversed is ranked xp-th among all
reversed phrases, and that the suffix starting at phrase p+1 is ranked yp-th among
all phrase-aligned suffixes. Then we wish to report a primary occurrence (with Pi

aligned at the end of Z[p]) iff (xp, yp) ∈ [l1, r1] × [l2, r2]. This is a two-dimensional

Compressed Full-Text Indexes · 63

range search problem (Section 6.4), where we store all the points (xp, yp) and search
for the range [l1, r1] × [l2, r2]. For example, for P ="labar" and i = 3, we find
range [l1, r1] = [8, 8] for "bal" in RevTrie (as node with label p = 9 is 8th in a
preorder traversal of RevTrie; this data can be stored in each node), and range
[l2, r2] = [7, 8] for "ar" in the sparse suffix tree (as the 7th and 8th suffixes starting
phrases start with "ar"). Then we search for [8, 8] × [7, 8] and find point (7, 8)
corresponding to p = 9.

Secondary occurrences are obtained by tracking the source of each phrase Z[p].
Given a primary occurrence Tj,j+m−1, we wish to find all phrases p whose source
contains [j, j + m − 1]. Those phrases contain secondary occurrences Tj′,j′+m−1,
which are again tracked for new copies. With some slight changes to the original
parsing, it can be ensured that no source contains another and thus source intervals
can be linearly ordered. An array S[p] of phrase numbers sorted by their source
interval position in T , plus a bit array B[1, n] indicating which text positions start
phrase sources, permits finding each phrase copying [j, j +m− 1] in constant time:
S[rank1(B, j)] is the last phrase in S whose source starts in T1,j. We traverse S
backwards from that position until the source intervals finish before Tj+m−1.

The index space is O(n′ log n) = O(nHk) for the sparse suffix tree and the trie of
reverse phrases. Among the range search data structures considered by Kärkkäinen
[1999], we take those requiring O(1

εn′ log n′) bits of space (the one we reviewed in
Section 6.4 corresponds to ǫ = 1). Array S also needs the same space, and bit array
B requires O(n′ log n) bits using the techniques of Section 6.2. Thus the overall
space is O(1

εnHk) bits, in addition to the text.
We note that this index carries out counting and locating simultaneously. The

m − 1 searches in RevTrie (for all P1,i reversed) and sparse suffix tree (for all
Pi+1,m) require O(m2) time. Finding the secondary occurrences takes constant
time per occurrence retrieved, so it amounts to O(occs). The remaining cost is
that of the two-dimensional search. Depending on the structures used, different
tradeoffs are obtained [Kärkkäinen 1999]. We give the most interesting one for us.

Theorem 22 (Kärkkäinen and Ukkonen [1996a]) The LZ-Index (KU-LZI)
offers the following space/time tradeoffs.

Space in bits O(1
ǫ nHk) + o(n log σ) + n log σ

Time to count O(m2 + m log n + 1
ǫ occ logǫ n)

Time to locate free after counting
Time to display ℓ chars O(ℓ) (text is available)
Conditions k = o(logσ n);

0 < ǫ < 1 (not necessarily constant)

The first term of the counting complexity can be made O(m2/ logσ n) by letting
the tries move by O(logσ n) characters in one step, yet this raises the space require-
ment to O(n log σ) unless we use much more recent methods [Grossi et al. 2003].
By using range search data structures that appeared later [Alstrup et al. 2000], the
index would require O(nHk logγ n) bits and count in O(m2 +m log log n+occ) time.
Finally, we point out a variant of this idea [Kärkkäinen and Sutinen 1998] that can
answer queries in O(m) counting time and O(1) locating time per occurrence, for
short patterns (m < logσ n).

64 · V. Mäkinen and G. Navarro

10.3 The LZ-Index of Ferragina and Manzini (FM-LZI)

The LZ-Index of Ferragina and Manzini [2005] (FM-LZI) is the only existing self-
index taking O(m) counting time and constant time to locate each occurrence. It
is based on the LZ78 parsing of T (Definition 17) and requires O(nHk logγ n) bits
of space for any constant γ > 0.

Let us define T # as text T where we have inserted special characters “#” af-
ter each phrase (so |T #| = n + n′). For our example text T = "alabar a la

alabarda$" we have T # = "a#l#ab#ar# #a #la# a#lab#ard#a$#". We also de-
fine T R as text T # read backwards, T R = "#$a#dra#bal#a #al# a# #ra#ba#l#a".
Note that position t in T , belonging to the p-th phrase, corresponds to position
rev(t, p) = (n− t + 1) + (n′ − p + 1) in T R. Let A be the suffix array of T and AR

that of T R. Finally, let PR = #PmPm−1 . . . P1.

The FM-LZI consists of four components: (1) the FMI of text T ; (2) the FMI

of text T R; (3) LZTrie, the Ziv-Lempel trie of T ; (4) Range, a two-dimensional
range search data structure similar to that of the KU-LZI. The first three structures
require O(nHk) bits of space, yet Range will dominate the space complexity. As
the FMI of T is enough for counting in O(m) time, we will focus in locating the
occ occurrences in O(m+occ) time. Occurrences of P are divided into primary and
secondary as in Section 10.2 (they are called “external” and “internal” by Ferragina
and Manzini [2005]).

Let us first consider secondary occurrences. Since every prefix of a phrase is also
a phrase, every secondary occurrence which is not at the end of its phrase p occurs
also in the phrase p′ referenced by p (that is, the parent of p in the LZTrie). For
example, in Fig. 28, pattern P ="a" occurs in phrase 10. Since it does not occur
at the end of Z[10] ="ard", it must also occur in its parent 4, Z[4] ="ar" and in
turn in its parent 1, Z[1] ="a". Let us call a trie node p pioneer for P if P is a
suffix of Z[p]. In our example the pioneer nodes for P ="a" are 1, 7, and 8. Then,
all secondary occurrences correspond to LZTrie nodes that descend from pioneer
nodes (including themselves). To find the secondary occurrences, it is sufficient to
obtain the pioneer nodes and then traverse all their subtrees reporting all the text
positions found (with the appropriate offsets).

Finding the pioneer nodes is easy using the FMI of T R. It is a matter of searching
for PR, as that corresponds to occurrences of P that are phrase suffixes, or which is
the same, to occurrences of P# in T #. For example, if we search for PR ="#a" in
T R we will find occurrences at positions 12, 15, and 31 of T R. This corresponds to
the occurrences of "a#" in T #, at positions 20, 17, and 1, respectively. Aligned to
the (contiguous) area of AR corresponding to suffixes that start with “#”, we store
a vector S of pointers to the corresponding LZTrie nodes. As the range for P R

is always contained in the area covered by S, vector S permits finding the pioneer
nodes of the results of the search. As S has n′ entries, it occupies nHk + o(n log σ)
bits. Thus the occs secondary occurrences are reported in O(m+occs) time. Fig. 29
illustrates.

Let us now consider the primary occurrences. The same idea of Section 10.2, of
searching for P1,i at the end of a phrase and Pi+1,n from the next phrase, is applied.
Yet, the search proceeds differently, and the FMI is shown to be a very fortunate
choice for this problem. We first search for P using the FMI of T . This single

Compressed Full-Text Indexes · 65

5

8

a

#$a#dr a#bal #a_#al #_a#_#r a#ba#l #a

31 12 15 26 231 21 18 8 4 29

b

a

7

2

$

1

11

0

9

0

_ a l

6 3

_

4

d

10

rb

1

2

3

4 5 6 7

8

9

10

11

LZTrie

2 14 22

R
T

A
R

S 911 5 6 1 8 7 3 10 2 4

Fig. 29. Parts of the FM-LZI index. We show T R and AR (none of which is explicitly repre-
sented), as well as vector S and LZTrie. Only the part of AR pointing to suffixes starting with
“#” is shown in detail. This is the part S is aligned to. For legibility, S shows phrase numbers
instead of pointers to LZTrie. The result of the search for "#a" is illustrated with the actual
pointers from AR to T R and from S to LZTrie.

search gives us all the ranges [spi+1, epi+1] in A corresponding to the occurrences
of Pi+1,m, 1 ≤ i < m (recall Section 9.1). We now search for P R in the FMI of T R.
After we have each range [sp′i, ep

′
i] corresponding to the occurrences of PiPi−1 . . . P1

in AR, we add character “#”, obtaining the range [spR
i , epR

i] of the occurrences of
#PiPi−1 . . . P1 in AR, 1 ≤ i < m. This corresponds to occurrences of P1,i# in T #.
Note that the search in T R ensures that P1,i is completely contained in a phrase
(and is at the end of it), while the search in T permits Pi+1,m to span as many
phrases as necessary. All this process takes O(m) time.

Consider searching for P ="bar". There are m−1 = 2 possible partitions for P ,
("b","ar") and ("ba","r"). Those appear in T # as "b#ar" and "ba#r". Using the
FMI of T we get [sp3, ep3] = [20, 21] (A range for "r"), and [sp2, ep2] = [12, 13] (A
range for "ar"), see Figs. 3 and 9. Using the FMI of T R we get [spR

3 , epR
3] = [8, 9]

(AR range for "#b", corresponding to "b#" in T #), and we get that [spR
2 , epR

2]
(AR range for "#ab", corresponding to "ba#" in T #) is empty, see Fig. 29. Thus,
we know that it is possible to find primary occurrences corresponding to partition
("b","ar"). The first part corresponds to AR[8, 9] and the second to A[12, 13].
Looking at Figs. 3 and 29, we see that AR[8] = 26 in T R matches with A[12] = 5
in T and AR[9] = 8 in T R matches with A[13] = 17 in T . For example, t = 5 in T
matches with 26 in T R because it belongs to the 4th phrase and thus t corresponds
to rev(5, 4) = (21 − 5 + 1) + (11 − 4 + 1) = 25 in T R.

Structure Range, storing n′ points in [1, n]× [1, n], is used to find those matching
pairs. Let j = A−1[t] be the position in A pointing to Tt,n, where t starts the p-th
phrase in T . Similarly, let jR = (AR)−1[rev(t) + 1] be the position in AR pointing
to T R

rev(t)+1,n (which represents T1,t−1). We store pairs (jR, j) in Range. A range

search for [spR
i , epR

i]× [spi+1, epi+1] retrieves all those phrase positions t such that
P1,i is completely included in the phrase preceding position t and Pi+1,m follows
from Tt. Thus we report text positions t − i + 1, where each occurrence P starts.
In our example, two points we would store are (8, 12) and (9, 13), corresponding to
t = 5 and t = 17 in T . These will be retrieved by range query [8, 9] × [12, 13].

66 · V. Mäkinen and G. Navarro

They use the two-dimensional data structure [Alstrup et al. 2000] (see Section 6.4)
that can store n′ points in [1, n′] × [1, n′] using O(n′ log1+γ n′) bits for any γ > 0,
so that they answer a query with res results in time O(log log n′ + res). In our
case, we must query the structure once per each partition 1 ≤ i < m, so we pay
overall O(m log log n + occp). Note that our points are actually in [1, n] × [1, n].
Those can be mapped to [1, n′]× [1, n′] using rank and select on bitmaps of length
n with n′ bits set. Using the techniques of Section 6.2, those bitmaps require
O(n′ log n) = O(nHk) bits. Note that the space of the structure, O(n′ log1+γ n′)
bits, is O(nHk logγ n) + o(n log σ logγ n) if k = o(logσ n).

The O(m log log n) time can be improved as follows. Basically, instead of stor-
ing only the positions t that start a phrase in Range, we add all positions [t −
log log n + 1, t]. Now each cut (P1,i, Pi+1,m) would be found log log n times, not
once. Thus we can search only for those i that are multiples of log log n. As we
perform only m/ log log n queries, the overall time is O(m + occp). Although now
we store n′ log log n points in Range, the space complexity stays the same. We omit
some technical details to handle borders between phrases.

For patterns shorter than log log n we must use a different approach. Those
patterns are so short that we can precompute all their primary occurrences with a
four-Russians technique. There are at most σlog log n = (log n)log σ different short
patterns, each requiring a pointer of log n bits to its occurrence list, and the total
number of primary occurrences for all short patterns is at most n′(log log n)2 (as
they must start at most log log n positions before a phrase border, and finish at
most log log n positions after it), each requiring log n bits as well. The overall space
for short patterns is o(n log σ) if σ = o(n1/ log log n). For example, this is valid
whenever σ = O(nβ) for any 0 < β < 1.

By using the AF-FMI rather than the original FMI, we obtain the following
result, where counting time is O(m) for σ = O(polylog(n)).

Theorem 23 (Ferragina and Manzini [2005]) The LZ-Index (FM-LZI) offers
the following space/time tradeoffs.

Space in bits O(nHk logγ n) + o(n log σ logγ n)
Time to count O(m(1 + log σ/ log log n))
Time to locate O(1)

Time to display ℓ chars O(ℓ + log1+ǫ n)
Condition γ > 0 is any constant
Space in bits O(nHk log log n) + o(n log σ log log n)
Time to count O(m(1 + log σ/ log log n))
Time to locate O(log log n)

Time to display ℓ chars O(ℓ + log1+ǫ n)

Conditions for all σ = o(n1/ log log n);
k = o(logσ n);
0 < ǫ < 1 is any constant

The second version is due to other results by Alstrup et al. [2000], which need
O(n′ log n′ log log n′) bits of space and can search in time O((log log n)2+res log log n).
We can retain the same counting time by indexing (log log n)2 positions per phrase

Compressed Full-Text Indexes · 67

instead of log log n.
The two-dimensional range search idea has inspired other solutions to achieve

constant time per occurrence on compressed suffix arrays [He et al. 2005], yet those
work only for sufficiently large m.

10.4 The LZ-Index of Navarro (Nav-LZI)

The LZ-Index of Navarro [2002, 2004] (Nav-LZI) uses essentially LZTrie and
RevTrie (Definition 18), under LZ78 parsing. Despite that its complexity is not
competitive, the structure is interesting because it is the only self-index not using
the suffix array concept at all.

The Nav-LZI uses four structures: (1) LZTrie, the Ziv-Lempel trie of T , (2)
RevTrie, storing the reverse of strings Z[p], (3) the same two-dimensional Range
data structure of Section 10.2, (4) Node, a mapping from phrase numbers to LZTrie
nodes.

To save space, LZTrie and RevTrie tree shapes are represented using parenthe-
ses rather than full pointers. The tree shape of Fig. 28 is expressed by a preorder
traversal as "((())(()()()(()))((())))", or Tr = 111001101010110001110000
in bits. Munro and Raman [1997] show how a tree of n′ nodes can be represented
using 2n′ + o(n′) bits so that it can be traversed in constant time per operation,
by identifying each node with its open parenthesis. Some operations implemented
in constant time are: first child, next sibling, parent, depth, preorder position, etc.
For example, the first child of node at position t is t+1 unless Tr[t+1] = 0, in which
case the node is a leaf. The depth of node at position t is rank1(Tr, t)−rank0(Tr, t).
Other operations are more complex to implement, but the ideas derive from those
in Section 6.1.

In addition to the tree space, LZTrie has to store the characters labeling the
edges and the phrase number of each node. These are stored in arrays, in preorder
traversal. In our example, the characters array is lets[1, 12] = "ε aa$ brdlab"

and the phrase numbers array is ids[1, 12] = {0, 5, 8, 1, 11, 6, 3, 4, 10, 2, 7, 9}. Let
pos(v) be the preorder position of node v, pos(v) = rank1(Tr, t), where t repre-
sents node v. For example, the node v representing string Sv ="ar" corresponds
to the open parenthesis at Tr[13]. It is the 8th tree node in preorder traversal,
pos(v) = rank1(Tr, 13) = 8. With position 8, we know that node v descends by
character lets[8] = "r" from its parent, and that its phrase number is ids[8] = 4
(see Fig. 28). Note also that, if v is represented by Tr[t] and t′ is the closing paren-
thesis that matches t, then [rank1(Tr, t), rank1(Tr, t′)] is the interval of positions
of all nodes that descend from v in the trie. For our example node, this interval
is [rank1(Tr, 13), rank1(Tr, 16)] = [8, 9], which contains v itself as well as the node
representing phrase 10, "ard".

RevTrie is a bit more complicated. Since there are RevTrie nodes not corre-
sponding to any phrase (see Fig. 28), there could be more than n′ nodes in RevTrie.
To limit its size, we compress unary paths as when moving from suffix tries to suffix
trees (Section 3.2). This ensures having at most 2n′ nodes in RevTrie. Clark and
Munro [1996] show how a suffix tree can be represented with parentheses plus some
additional information regarding the first character of each edge label and its length
(like a Patricia tree [Morrison 1968]). The Nav-LZI is more extreme, as nothing
apart from the tree shape (using parentheses) and the array of phrase numbers is

68 · V. Mäkinen and G. Navarro

stored. Let p be the phrase number of node vR in RevTrie, representing string

SvR

. Then v = Node(p) is the corresponding LZTrie node for phrase p. Using the
parent traversal operation in LZTrie one can obtain Sv in reverse order, and this

is precisely SvR

. This is the information we need to traverse RevTrie: In order to
descend from RevTrie node vR to the child (vR)′ labeled by some given character
c, we need to obtain the full string of each child, character by character, at overall

cost O(σ|SvR |). Thus, finding the RevTrie node corresponding to a string S costs
O(|S|2σ) time, whereas the same search on LZTrie costs only O(|S|σ) time. By
converting the alphabet to binary, the O(σ) terms become O(log σ) (we omit the
technicalities).

Occurrences are classified according to how many phrases they span. Occurrences
of type 1 are contained in a phrase, those of type 2 are contained in a pair of
consecutive phrases, and those of type 3 span three phrases or more. Thus we have
occ = occ1 + occ2 + occ3 occurrences to count and locate.

Occurrences of type 1 are found with the same idea for secondary occurrences in
Section 10.3, yet with a different mechanism. We search for P reversed in RevTrie.
Say we arrive at node v. Any node v′ descending from v, including v′ = v itself,
corresponds to a phrase terminated with P . Thus Node(v′) is a pioneer LZTrie
node. Thus we traverse and report all subtrees of all those Node(v′) nodes in
LZTrie, so occurrences of type 1 are counted and located in O(m2 log σ + occ1)
time.

Occurrences of type 2 are found with the range search data structure, as in
Section 10.3. This time we search for P1,i reversed in RevTrie, and for Pi+1,m

in LZTrie, obtaining two nodes vrev and vlz , respectively. We are interested in
phrases p such that the node of phrase p descends from vrev and that of phrase p+1
descends from vlz. We store in Range all points (pos(v′), pos(v)) for each phrase
1 ≤ p < n′, so that v′ ∈ RevTrie has phrase number p and v ∈ LZTrie has phrase
number p + 1. Thus a range search for the array areas that descend from vrev and
vlz retrieves those occurrences we want. To implement Range, the two-dimensional
data structure of Section 6.4 is used to store n′ points in a grid [1, n′] × [1, n′] in
n′ log n′(1 + o(1)) bits, and can find the res results of a query in O((1 + res) log n′)
time. Thus occurrences of type 2 cost O(m3 log σ + (m + occ2) log n) time.

Finally, for occurrences of type 3, the fact that every LZ78 phrase is unique
is exploited. Since an occurrence of type 3 must contain a whole phrase, there
cannot be more than m(m − 1)/2 ≥ occ3 such occurrences because this is the
number of substrings of P . Essentially, the phrase equal to each substring of P is
found using LZTrie and extended to a full occurrence if possible, in overall time
O(m2 log σ + m3).

Overall, the query time is upper bounded by O(m3 log σ + (m + occ) log n). The
space is dominated by the phrase arrays of LZTrie and RevTrie, the Range struc-
ture, and the Node mapping. Each of these requires n′ log n′(1 + o(1)) bits, which
makes the index space 4nHk + o(n log σ) bits if k = o(logσ n).

We note that in this index counting is not easier than locating. Just like the
KU-LZI, both processes must be carried out simultaneously. In order to display a
text substring, we first locate its phrase p and then traverse LZtrie upwards from
Node(p) to obtain all its characters in reverse order. If we need more phrases, we

Compressed Full-Text Indexes · 69

repeat the process with p − 1 or p + 1, and so on. This takes O(log σ) time per
character, yet it displays whole phrases. The extra work to display partial phrases
is O(n/n′) = O(log(n)/Hk) on average.

Theorem 24 (Navarro [2004]) The LZ-Index (Nav-LZI) offers the following
space/time tradeoff.

Space in bits 4nHk + o(n log σ)
Time to count O(m3 log σ + (m + occ) log n)
Time to locate free after counting
Time to display ℓ chars O(log σ(ℓ + log(n)/Hk)) (last term is on average)
Conditions k = o(logσ n)

Note that, by using the range search data structure of Section 10.3 [Alstrup et al.
2000], the space would be O(nHk logγ n) and the counting time would decrease to
O(m3 log σ + m log log n + occ).

We also remark that, very recently, Arroyuelo et al. [2006] presented a variant of
this index which reduces the space complexity to (2 + ǫ)nHk + o(n log σ) for any
ǫ > 0, and the search complexity to O(m2 log m + (m + occ) log n). The display-
ing complexity also improves: It becomes O(ℓ/ logσ n) worst case by using recent
techniques [Sadakane and Grossi 2006].
In practice: The implementation of the Nav-LZI has several differences with re-
spect to the theoretical proposal. The most important one is that Range structure
is replaced by RNode, a mapping from phrase numbers to RevTrie nodes. Now
occurrences of type 2 are found as follows: Check each phrase p in the range de-
scending from vrev and report it if phrase p+1 descends from vlz . Each such check
takes constant time with Node. Yet, if the range of vlz has less elements, do the
opposite: check phrases from vlz in vrev, using RNode. RNode is also useful to
reduce the usage of the slower RevTrie to a minimum: In every case where we can
search for the reverse string in LZTrie, we avoid searching RevTrie as we can map
results using RNode.

11. DISCUSSION

We have presented the main ideas of several compressed indexes as intuitively as
possible, yet with an accuracy enough to understand the space/time tradeoffs they
achieve. In many cases, these depend on several parameters in a complex way, which
makes a fair comparison difficult. Just as an overview, we provide a summary in
Table 1.

It is interesting at this point to discuss the most important common points in
these approaches. Common points within the CSA family and within the FMI

family are pretty obvious, namely they are basically different implementations of
functions Ψ and Occ, respectively. There is also an obvious relation among these
two families, as Ψ and LF are the inverse of each other (Lemma 4).

What is more subtle is the relation between the different ways to achieve O(nHk)
space. Let us exclude the Ziv-Lempel based methods, as they are totally different.
For this discussion, the table of Fig. 19 is particularly enlightening. Each number
i ∈ [1, n] can be classified according to two parameters: the list (or table column)

70 · V. Mäkinen and G. Navarro

Table 1. Simplified space and time complexities for compressed full-text indexes. For space
complexities, we present only the main term related to entropies and seek to minimize space.
For time complexities, we present bounds that hold on some representative inputs, assuming for
example that the alphabet is small. We refer to the theorems given earlier for accurate statements
and boundary conditions.

Index entropy term time to count Theorem page

Mak-CSA 2nHk log n O(m log n + polylog(n)) 11 34
GV-CSA nH0 O(m log2 n) 12 37
Sad-CSA nH0 O(m log n) 13 40
MN-CCSA nHk log n O(m log n) 14 42
GGV-CSA nHk O(m log σ + polylog(n)) 16 47
FMI 5nHk O(m) 17 52
Huff-FMI 2nH0 O(mH0) 18 53
WT-FMI nH0 O(m) 19 55
RL-FMI nHk log σ O(m) 20 58
AF-FMI nHk O(m) 21 60
KU-LZI O(nHk) O(m2 + (m + occ) log n) 22 63
FM-LZI O(nHk logγ n) O(m) 23 66
Nav-LZI 4nHk O(m3 log σ + (m + occ) log n) 24 69

TA[i]−1 and the context (or table row) TA[i],A[i]+k−1 where i belongs. Within a
given row and column, numbers i (sharing TA[i]−1,A[i]+k−1), are classified according
to TA[i]+k,n.

As A is sorted by TA[i],n (a refinement of the k-th context order), all the i val-
ues in each table row form a contiguous subinterval of [1, n], which advances with
the row number. How the i values within each row (corresponding to contexts
TA[i],A[i]+k−1) distribute across columns, depends on TA[i]−1, the characters pre-
ceding the occurrences of the context in T .

Instead of row-then-column, consider now a column-then-row order. Now i values
are collected in the order given by TA[i]−1,n, or renaming i = Ψ(j) (as Ψ is a
permutation), Ψ(j) values are collected in the order given by TA[Ψ(j)]−1,n = TA[j],n.
This order is of course j = 1, 2, and so on, thus we are in fact reading array Ψ.
Numbers i are increasing inside each column because they are ordered by TA[i],n.

The Sad-CSA structure stores Ψ in order, that is, it stores the table in column-
wise order, and then row-wise inside each column. Being σ increasing lists, this leads
to O(nH0) space. The GGV-CSA, instead, stores Ψ in row-wise order. For this
sake, it needs to record how the values inside each row distribute across columns.
According to Theorem 4, it is sufficient to store that distribution information in
space close to its zero-order entropy, to achieve nHk overall space. The GGV-CSA

uses the wavelet tree as a device to represent to which column each row element
belongs.

In a widely different view, the AF-FMI structure stores T bwt context-wise (that
is, row-wise in the table). For each context, it stores the characters of T bwt, which
are precisely T bwt

i = TA[i]−1, that is, the column identifiers of the positions i lying
within each context (row). The AF-FMI uses the same wavelet tree to represent
basically the same data within the same zero-order entropy space. Thus both
structures are using essentially the same concept to achieve nHk space.

The differences are due to other factors. While the GGV-CSA structure still

Compressed Full-Text Indexes · 71

adheres to the idea of abstract optimization of A, so that it must provide access
to A[i] and use the normal binary search on A, the FMI family uses a completely
different form of searching, which directly relies on T bwt.

The final practical twist of the GGV-CSA is the discovery that γ- or δ-encoding
of consecutive i values within each cell of the table yields O(nHk) space, indepen-
dently of whether one uses row-wise or column-wise order (as there are not too
many jumps across table cells if k is small enough). This permits a much simpler
implementation of the structure, which turns out to be close to the Sad-CSA,
initially believed to require O(nH0) space.

A completely different mechanism to achieve O(nHk) space is used in the other
indexes. These rely on compressing the runs that appear in Ψ, or alternatively
those that appear in T bwt. The former achieve O(nHk log n) space by emulating
the binary search on A through Ψ, whereas the latter achieve O(nHk log σ) space
by emulating an FMI strategy.

Table 2 classifies the approaches that reach Hk-related space according to their
approach. In one dimension, we have those based on local entropy (Theorem 4)
versus those based on run lengths (Theorem 5). In the other dimension, we have
those based on Ψ or on Occ. We have included Sad-CSA as having size nHk

according to the results of Grossi et al. [2004]. We classify the FMI as using run
lengths because this is the key property ensuring its O(nHk) size, although it also
uses some local entropy optimization. Recall that we left aside Ziv-Lempel methods
in this discussion and in the table.

Table 2. Classifying the indexes with size related to Hk. Names are followed by a pair indicating
(space,time) complexities.

local entropy run lengths

using Ψ Sad-CSA (nHk, m log n) Mak-CSA (2nHk log n, m log n)
GGV-CSA (nHk, m log σ) MN-CCSA (nHk log n, m log n)

using Occ AF-FMI (nHk , m) FMI (5nHk, m)
RL-FMI (nHk log σ, m)

12. CONCLUSIONS

We have given a unified look at the state of the art in compressed full-text indexing.
We focused on the essential ideas relating text compressibility and regularities on
indexes built on it, and uncovered fundamental relations between seemingly dis-
parate approaches. Those approaches have led to a rich family of results, whose
most important consequence is a surprising fact of text compressibility:

Fact. Instead of compressing a text into a representation that does not reveal any-
thing from the original text unless decompressed, one can obtain an almost equally
space-efficient representation that at the same time works as a versatile index on
the text.

In other words, the indexes we have reviewed take space close to what can be
obtained by the best possible compressors, both in theory and in practice. In the-
ory, the leading term in the space complexities of the best indexes is nHk, which

72 · V. Mäkinen and G. Navarro

is a lower-bound estimate for many text compression techniques. For substring
searches, the same best indexes are practically optimal, obtaining O(m) count-
ing query time. This remarkable discovery is without any doubt one of the most
important achievements ever obtained in text compression and text indexing.

However, the theory is not yet complete, as there are several open questions to
be answered. A first open question is whether one can obtain nHk space and O(m)
query time on any alphabet size, and in general which is the lower bound relating
these parameters. One easily notices that obtaining nHk without any constraints
is impossible as nHk = 0 for large k (in particular for k = n). Another example
is a text consisting of a permutation of [1, n], where σ = n. Although Hk = 0
for k ≥ 1, Ω(n log n) bits are necessary to represent such text. Still, there is a
gap between what is obtained and what is possible. This statement also applies
to the sublinear terms in the space complexities, which might be bigger than the
entropy-related part. However, recent lower bounds [Miltersen 2005] on rank and
select dictionaries seem to indicate that not much more progress in that direction
is possible.

Another open challenge is to obtain better output sensitivity in reporting queries
within little space. For this goal, there are some results achieving O(occ+o(n)) time
for large enough m [Grossi and Vitter 2000, 2006], O(occ) time for large enough
m [He et al. 2005], and even O(occ) time without any restriction on m, for small
alphabets, using O(nHk logγ n) bits of space [Ferragina and Manzini 2005]. The
technique by He et al. [2005] is general and can be plugged into any of the indexes
discussed before, by adding some sublinear size dictionaries.

In this survey we have focused on the most basic problem, namely the exact
search problem in main memory. There are many more further challenges, with re-
gard to more complex searching, index construction and updating issues, secondary
memory, and so on. A brief list of other relevant problems beyond the scope of this
survey follows.

Secondary memory: Although their small space requirements might permit com-
pressed indexes fit in main memory, there will always be cases where they have
to operate on disk. There is not much work yet on this important issue. One of
the most attractive full-text indexes for secondary memory is the String B-tree
[Ferragina and Grossi 1999]. This is not, however, a succinct structure. Some
proposals for succinct and compressed structures in this scenario exist [Clark
and Munro 1996; Mäkinen et al. 2004]. A good survey on full-text indexes in
secondary memory is by Kärkkäinen and Rao [2003].

Construction: Compressed indexes are usually derived from an uncompressed one.
Although it is usually simple to build a classical index and then derive its
compressed version, there might not be enough space to build the uncompressed
index first. Secondary memory might be available, but many classical indexes
are costly to build in secondary memory. Therefore, an important problem is
how to build compressed indexes without building their uncompressed versions
first. Several papers have recently appeared on the problem of building the
Sad-CSA in little space [Lam et al. 2002; Hon et al. 2003; Hon et al. 2003;
Na 2005], as well as the Nav-LZI [Arroyuelo and Navarro 2005]. There is
also some recent work on efficient construction of (plain) suffix arrays [Manzini

Compressed Full-Text Indexes · 73

and Ferragina 2004] and trees [Farach 1997]. With respect to construction of
(plain) indexes in secondary memory, there is a good experimental comparison
for suffix arrays [Crauser and Ferragina 2002], as well as some work on suffix
trees [Farach et al. 1998; Clifford and Sergot 2003]. For further details on the
topic, see [Aluru 2005, Chapter 5].

Dynamism: Most indexes considered are static, in the sense that they have to
be rebuilt from scratch upon text changes. This is currently a problem even
on uncompressed full-text indexes, and not much has been done. Some recent
work on compressed indexes can be found [Ferragina and Manzini 2000; Hon
et al. 2004; Chan et al. 2004; Mäkinen and Navarro 2006].

Extended functionality: We have considered only exact string matching in this sur-
vey, yet classical full-text indexes permit much more sophisticated search tasks,
such as approximate pattern matching, regular expression matching, pattern
matching with gaps, motif discovery, and so on [Apostolico 1985; Gusfield 1997].
There has been a considerable amount of work on extending compressed suffix
arrays functionalities to those of suffix trees [Grossi and Vitter 2000; Munro
et al. 2001; Sadakane 2002; Sadakane 2003; Grossi et al. 2004; Kim and Park
2005; Grossi and Vitter 2006]. The idea in general is to permit the simula-
tion of suffix tree traversals using a compressed representation of them, such
as a compressed suffix array plus a parentheses representation of the suffix tree
shape [Munro and Raman 1997]. In addition, there has been some work on
approximate string matching over compressed suffix arrays [Huynh et al. 2004;
Lam et al. 2005]. Finally, it is also interesting to mention that the idea of
backward searching has been used to search plain suffix arrays in O(m log σ)
time [Sim et al. 2003].

Technology transfer: An utmost important aspect is to make the transfer from
theory to technology. Already several implementations exist for most indexes
surveyed in this article, showing the proof-of-concept and the practicality of
the ideas. It is matter of more people to become aware of the intriguing oppor-
tunities provided by these new techniques, for a successful technology transfer
to take place. The community is working on this: To faciliate the chance
for smooth transfer from prototype implementations to real use, a repository
of standardized library implementations has been made available at mirrors
pizzachili.dcc.uchile.cl and pizzachili.di.unipi.it. There have been
articles about the FM-Index published in popular journals such as DrDobbs
Journal (December 2003) and in CT Magazine (January 2005). Also, the
bioinformatics community is becoming aware of the techniques [Healy et al.
2003]. Finally, several papers on the topic can be found in the latest Workshop
on Efficient and Experimental Algorithms (WEA) conferences.

Overall, we believe that self-indexing is one of the most exciting research direc-
tions within text compression and text indexing, which in a few years has obtained
striking results and has a long way ahead, rich in challenges and possibly new
surprises.

74 · V. Mäkinen and G. Navarro

Acknowledgements

We thank Kunihiko Sadakane for pointing out some mistakes in the original version
of this paper, as well as the anonymous reviewers for improving its readability.

REFERENCES

Abouelhoda, M., Ohlebusch, E., and Kurtz, S. 2002. Optimal exact string matching
based on suffix arrays. In Proc. 9th International Symposium on String Processing and
Information Retrieval (SPIRE), LNCS v. 2476 (2002), pp. 31–43.

Alstrup, S., Brodal, G., and Rahue, T. 2000. New data structures for orthogonal range
searching. In Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS)
(2000), pp. 198–207.

Aluru, S. 2005. Handbook of Computational Molecular Biology. CRC Press.

Andersson, A. and Nilsson, S. 1995. Efficient implementation of suffix trees. Software
Practice and Experience 25, 2, 129–141.

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms
on Words, NATO ISI Series (1985), pp. 85–96. Springer-Verlag.

Arlazarov, V., Dinic, E., Konrod, M., and Faradzev, I. 1975. On economic construc-
tion of the transitive closure of a directed graph. Soviet Mathematics Doklady 11, 1209–
1210.

Arroyuelo, D. and Navarro, G. 2005. Space-efficient construction of LZ-index. In Proc.
16th Annual International Symposium on Algorithms and Computation (ISAAC), LNCS
v. 3827 (2005), pp. 1143–1152.

Arroyuelo, D., Navarro, G., and Sadakane, K. 2006. Reducing the space requirement
of LZ-index. In Proc. 17th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS (2006). To appear.

Baeza-Yates, R. and Ribeiro, B. 1999. Modern Information Retrieval. Addison-Wesley.

Bell, T., Cleary, J., and Witten, I. 1990. Text compression. Prentice Hall.

Bentley, J., Sleator, D., Tarjan, R., and Wei, V. 1986. A locally adaptive compression
scheme. Communications of the ACM 29, 4, 320–330.

Blumer, A., Blumer, J., Haussler, D., McConnell, R., and Ehrenfeucht, A. 1987.
Complete inverted files for efficient text retrieval and analysis. Journal of the ACM 34, 3,
578–595.

Burrows, M. and Wheeler, D. 1994. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation.

Chan, H.-L., Hon, W.-K., and Lam, T.-W. 2004. Compressed index for a dynamic col-
lection of texts. In Proc. 15th Annual Symposium on Combinatorial Pattern Matching
(CPM), LNCS v. 3109 (2004), pp. 445–456.

Chazelle, B. 1988. A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing 17, 3, 427–462.

Clark, D. 1996. Compact Pat Trees. Ph. D. thesis, University of Waterloo, Canada.

Clark, D. and Munro, I. 1996. Efficient suffix trees on secondary storage. In Proc. 7th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (1996), pp. 383–391.

Clifford, R. and Sergot, M. 2003. Distributed and paged suffix trees for large genetic
databases. In Proc. 14th Annual Symposium on Combinatorial Pattern Matching (CPM),

LNCS v. 2676 (2003), pp. 70–82.

Colussi, L. and de Col, A. 1996. A time and space efficient data structure for string
searching on large texts. Information Processing Letters 58, 5, 217–222.

Cover, T. and Thomas, J. 1991. Elements of Information Theory. Wiley.

Crauser, A. and Ferragina, P. 2002. A theoretical and experimental study on the con-
struction of suffix arrays in external memory. Algorithmica 32, 1, 1–35.

Crochemore, M. and Vérin, R. 1997. Direct construction of compact directed acyclic
word graphs. In Proc. 8th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS v. 1264 (1997), pp. 116–129.

Compressed Full-Text Indexes · 75

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. 2000. Computa-

tional Geometry — Algorithms and Applications. Springer-Verlag.

Elias, P. 1975. Universal codeword sets and representation of the integers. IEEE Transac-
tions on Information Theory 21, 2, 194–203.

Farach, M. 1997. Optimal suffix tree construction with large alphabets. In Proc. 38th IEEE
Symposium on Foundations of Computer Science (FOCS) (1997), pp. 137–143.

Farach, M., Ferragina, P., and Muthukrishnan, S. 1998. Overcoming the memory
bottleneck in suffix tree construction. In Proc. 39th IEEE Symposium on Foundations of
Computer Science (FOCS) (1998), pp. 174–185.

Ferragina, P. 2006. String algorithms and data structures. In Algorithms for Massive
Data Sets, Lecture Notes in Computer Science, Tutorial Book (2006). Springer-Verlag. To
appear.

Ferragina, P. and Grossi, R. 1999. The string B-tree: A new data structure for string
search in external memory and its applications. Journal of the ACM 46, 2, 236–280.

Ferragina, P. and Manzini, G. 2000. Opportunistic data structures with applications.
In Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS) (2000), pp.
390–398.

Ferragina, P. and Manzini, G. 2001. An experimental study of an opportunistic index.
In Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001), pp.
269–278.

Ferragina, P. and Manzini, G. 2004. Compression boosting in optimal linear time using
the Burrows-Wheeler transform. In Proc. 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2004), pp. 655–663.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. Journal of the
ACM 52, 4, 552–581.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2004a. An alphabet-friendly
FM-index. In Proc. 11th International Symposium on String Processing and Information
Retrieval (SPIRE), LNCS v. 3246 (2004), pp. 150–160.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2004b. Succinct represen-
tation of sequences. Technical Report TR/DCC-2004-5 (Aug.), Department of Computer
Science, University of Chile, Chile.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2006. Compressed repre-
sentation of sequences and full-text indexes. ACM Transactions on Algorithms. To appear.
Also as TR 2004-05, Technische Fakultät, Universität Bielefeld, Germany, December 2004.

Fredkin, E. 1960. Trie memory. Communications of the ACM 3, 490–500.

Giegerich, R., Kurtz, S., and Stoye, J. 1999. Efficient implementation of lazy suffix
trees. In Proc. 3rd Workshop on Algorithm Engineering (WAE), LNCS v. 1668 (1999), pp.
30–42.

Golynski, A., Munro, I., and Rao, S. 2006. Rank/select operations on large alphabets:
a tool for text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA) (2006), pp. 368–373.

Gonnet, G., Baeza-Yates, R., and Snider, T. 1992. Information Retrieval: Data Struc-
tures and Algorithms, Chapter 3: New indices for text: Pat trees and Pat arrays, pp. 66–82.
Prentice-Hall.

González, R., Grabowski, S., Mäkinen, V., and Navarro, G. 2005. Practical imple-
mentation of rank and select queries. In Poster Proceedings Volume of 4th Workshop on
Efficient and Experimental Algorithms (WEA’05) (Greece, 2005), pp. 27–38. CTI Press
and Ellinika Grammata.

Grabowski, S., Mäkinen, V., and Navarro, G. 2004. First Huffman, then Burrows-
Wheeler: an alphabet-independent FM-index. In Proc. 11th International Symposium on
String Processing and Information Retrieval (SPIRE), LNCS v. 3246 (2004), pp. 210–211.
Short paper. Full version as Technical Report TR/DCC-2004-4, Department of Computer
Science, University of Chile, July 2004.

76 · V. Mäkinen and G. Navarro

Grabowski, S., Mäkinen, V., Navarro, G., and Salinger, A. 2005. A simple alphabet-

independent fm-index. In Proceedings of the 10th Prague Stringology Conference (PSC’05)
(2005), pp. 230–244.

Grossi, R., Gupta, A., and Vitter, J. 2003. High-order entropy-compressed text indexes.
In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2003), pp.
841–850.

Grossi, R., Gupta, A., and Vitter, J. 2004. When indexing equals compression: Exper-
iments with compressing suffix arrays and applications. In Proc. 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2004), pp. 636–645.

Grossi, R. and Vitter, J. 2000. Compressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching. In Proc. 32nd ACM Symposium on Theory of
Computing (STOC) (2000), pp. 397–406.

Grossi, R. and Vitter, J. 2006. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35, 2, 378–407.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press.

He, M., Munro, I., and Rao, S. 2005. A categorization theorem on suffix arrays with
applications to space efficient text indexes. In Proc. 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA) (2005), pp. 23–32.

Healy, J., Thomas, E. E., Schwartz, J. T., and Wigler, M. 2003. Annotating large
genomes with exact word matches. Genome Research 13, 2306–2315.

Hon, W.-K., Lam, T.-W., Sadakane, K., and Sung, W.-K. 2003. Constructing com-
pressed suffix arrays with large alphabets. In Proc. 14th Annual International Symposium
on Algorithms and Computation (ISAAC) (2003), pp. 240–249.

Hon, W.-K., Lam, T.-W., Sadakane, K., Sung, W.-K., and Yu, S.-M. 2004. Compressed
index for dynamic text. In Proc. 14th IEEE Data Compression Conference (DCC) (2004),
pp. 102–111.

Hon, W.-K., Sadakane, K., and Sung, W.-K. 2003. Breaking a time-and-space barrier in
constructing full-text indices. In Proc. 44th IEEE Symposium on Foundations of Computer
Science (FOCS) (2003), pp. 251–260.

Huffman, D. 1952. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the I.R.E. 40, 9, 1090–1101.

Huynh, T., Hon, W.-K., Lami, T.-W., and Sung, W.-K. 2004. Approximate string match-
ing using compressed suffix arrays. In Proc. 15th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS v. 3109 (2004), pp. 434–444.

Irving, R. 1995. Suffix binary search trees. Technical Report TR-1995-7 (April), Computer
Science Department, University of Glasgow, UK.

Itoh, H. and Tanaka, H. 1999. An efficient method for in-memory construction of suf-
fix arrays. In Proc. 6th International Symposium on String Processing and Information
Retrieval (SPIRE) (1999), pp. 81–88. IEEE CS Press.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. 30th IEEE Symposium
on Foundations of Computer Science (FOCS) (1989), pp. 549–554.

Kärkkäinen, J. 1995. Suffix cactus: a cross between suffix tree and suffix array. In Proc.
6th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS v. 937 (1995),
pp. 191–204.

Kärkkäinen, J. 1999. Repetition-Based Text Indexing. Ph. D. thesis, Department of Com-
puter Science, University of Helsinki, Finland.

Kärkkäinen, J. and Rao, S. 2003. Algorithms for Memory Hierarchies, Chapter 7: Full-
text indexes in external memory, pp. 149–170. LNCS v. 2625. Springer.

Kärkkäinen, J. and Sanders, P. 2003. Simple linear work suffix array construction. In
Proc. 30th International Colloquium on Automata, Languages and Programming (ICALP),
LNCS v. 2719 (2003), pp. 943–955.

Kärkkäinen, J. and Sutinen, E. 1998. Lempel-Ziv index for q-grams. Algorithmica 21, 1,
137–154.

Compressed Full-Text Indexes · 77

Kärkkäinen, J. and Ukkonen, E. 1996a. Lempel-Ziv parsing and sublinear-size index

structures for string matching. In Proc. 3rd South American Workshop on String Processing
(WSP) (1996), pp. 141–155. Carleton University Press.

Kärkkäinen, J. and Ukkonen, E. 1996b. Sparse suffix trees. In Proc. 2nd Annual Inter-
national Conference on Computing and Combinatorics (COCOON), LNCS v. 1090 (1996),
pp. 219–230.

Kim, D. and Park, H. 2005. A new compressed suffix tree supporting fast search and its
construction algorithm using optimal working space. In Proc. 16th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS v. 3537 (2005), pp. 33–44.

Kim, D., Sim, J., Park, H., and Park, K. 2003. Linear-time construction of suffix arrays.
In Proc. 14th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS v.
2676 (2003), pp. 186–199.

Knuth, D. 1973. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley.

Ko, P. and Aluru, S. 2003. Space efficient linear time construction of suffix arrays. In
Proc. 14th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS v. 2676
(2003), pp. 200–210.

Kosaraju, R. and Manzini, G. 1999. Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM Journal on Computing 29, 3, 893–911.

Kurtz, S. 1998. Reducing the space requirements of suffix trees. Report 98-03, Technische
Kakultät, Universität Bielefeld, Germany.

Lam, T.-W., Sadakane, K., Sung, W.-K., and Yiu, S.-M. 2002. A space and time efficient
algorithm for constructing compressed suffix arrays. In Proc. 8th Annual International
Conference on Computing and Combinatorics (COCOON) (2002), pp. 401–410.

Lam, T.-W., Sung, W.-K., and Wong, S.-S. 2005. Improved approximate string matching
using compressed suffix data structures. In Proc. 16th Annual International Symposium on
Algorithms and Computation (ISAAC), LNCS v. 3827 (2005), pp. 339–348.

Larsson, N. and Sadakane, K. 1999. Faster suffix sorting. Technical Report LU-CS-
TR:99-214, Department of Computer Science, Lund University, Sweden.

Lempel, A. and Ziv, J. 1976. On the complexity of finite sequences. IEEE Transactions
on Information Theory 22, 1, 75–81.

Mäkinen, V. 2000. Compact suffix array. In Proc. 11th Annual Symposium on Combina-
torial Pattern Matching (CPM), LNCS v. 1848 (2000), pp. 305–319.

Mäkinen, V. 2003. Compact suffix array — a space-efficient full-text index. Fundamenta
Informaticae 56, 1–2, 191–210.

Mäkinen, V. and Navarro, G. 2004a. Compressed compact suffix arrays. In Proc. 15th
Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS v. 3109 (2004), pp.
420–433.

Mäkinen, V. and Navarro, G. 2004b. New search algorithms and time/space tradeoffs for
succinct suffix arrays. Technical Report C-2004-20 (April), University of Helsinki, Finland.

Mäkinen, V. and Navarro, G. 2004c. Run-length FM-index. In Proc. DIMACS Workshop:
“The Burrows-Wheeler Transform: Ten Years Later” (Aug. 2004), pp. 17–19.

Mäkinen, V. and Navarro, G. 2005a. Succinct suffix arrays based on run-length encoding.
In Proc. 16th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS v.
3537 (2005), pp. 45–56.

Mäkinen, V. and Navarro, G. 2005b. Succinct suffix arrays based on run-length encoding.
Technical Report TR/DCC-2005-4 (March), Department of Computer Science, University
of Chile, Chile.

Mäkinen, V. and Navarro, G. 2005c. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12, 1, 40–66.

Mäkinen, V. and Navarro, G. 2006. Dynamic entropy-compressed sequences and full-text
indexes. In Proc. 17th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS (2006). To appear.

78 · V. Mäkinen and G. Navarro

Mäkinen, V., Navarro, G., and Sadakane, K. 2004. Advantages of backward searching

— efficient secondary memory and distributed implementation of compressed suffix arrays.
In Proc. 15th Annual International Symposium on Algorithms and Computation (ISAAC),
LNCS v. 3341 (2004), pp. 681–692.

Manber, U. and Myers, G. 1993. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22, 5, 935–948.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48, 3, 407–430.

Manzini, G. and Ferragina, P. 2004. Engineering a lightweight suffix array construction
algorithm. Algorithmica 40, 1, 33–50.

McCreight, E. 1976. A space-economical suffix tree construction algorithm. Journal of the
ACM 23, 2, 262–272.

Miltersen, P. 2005. Lower bounds on the size of selection and rank indexes. In Proc. 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005), pp. 11–12.

Morrison, D. 1968. PATRICIA – practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM 15, 4, 514–534.

Munro, I. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), LNCS v. 1180 (1996), pp. 37–42.

Munro, I. and Raman, V. 1997. Succinct representation of balanced parentheses, static
trees and planar graphs. In Proc. 38th IEEE Symposium on Foundations of Computer
Science (FOCS) (1997), pp. 118–126.

Munro, I., Raman, V., and Rao, S. 2001. Space efficient suffix trees. Journal of Algo-
rithms 39, 2, 205–222.

Na, J. 2005. Linear-time construction of compressed suffix arrays using o(n log n)-bit work-
ing space for large alphabets. In Proc. 16th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS v. 3537 (2005), pp. 57–67.

Navarro, G. 2002. Indexing text using the ziv-lempel trie. In Proc. 9th International Sym-
posium on String Processing and Information Retrieval (SPIRE), LNCS v. 2476 (2002),
pp. 325–336.

Navarro, G. 2004. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algo-
rithms 2, 1, 87–114.

Navarro, G., Moura, E., Neubert, M., Ziviani, N., and Baeza-Yates, R. 2000. Adding
compression to block addressing inverted indexes. Information Retrieval 3, 1, 49–77.

Pagh, R. 1999. Low redundancy in dictionaries with O(1) worst case lookup time. In
Proc. 26th International Colloquium on Automata, Languages and Programming (ICALP)
(1999), pp. 595–604.

Raman, R. 1996. Priority queues: small, monotone and trans-dichotomous. In Proc. 4th
European Symposium on Algorithms (ESA), LNCS v. 1136 (1996), pp. 121–137.

Raman, R., Raman, V., and Rao, S. 2002. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In Proc. 13th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA) (2002), pp. 233–242.

Rao, S. 2002. Time-space trade-offs for compressed suffix arrays. Information Processing
Letters 82, 6, 307–311.

Sadakane, K. 2000. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Proc. 11th International Symposium on Algorithms and
Computation (ISAAC), LNCS v. 1969 (2000), pp. 410–421.

Sadakane, K. 2002. Succinct representations of lcp information and improvements in the
compressed suffix arrays. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA) (2002), pp. 225–232.

Sadakane, K. 2003. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms 48, 2, 294–313.

Sadakane, K. and Grossi, R. 2006. Squeezing succinct data structures into entropy
bounds. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
(2006), pp. 1230–1239.

Compressed Full-Text Indexes · 79

Schürmann, K. and Stoye, J. 2005. An incomplex algorithm for fast suffix array con-

struction. In Proc. 7th Workshop on Algorithm Engineering and Experiments and 2nd
Workshop on Analytic Algorithmics and Combinatorics (ALENEX/ANALCO) (2005), pp.
77–85. SIAM Press.

Sedgewick, R. and Flajolet, P. 1996. An Introduction to the Analysis of Algorithms.
Addison-Wesley.

Sim, J., Kim, D., Park, H., and Park, K. 2003. Linear-time search in suffix arrays. In
Proc. 14th Australasian Workshop on Combinatorial Algorithms (AWOCA) (2003), pp.
139–146.

Ukkonen, E. 1995. On-line construction of suffix trees. Algorithmica 14, 3, 249–260.

Weiner, P. 1973. Linear pattern matching algorithm. In Proc. 14th Annual IEEE Sympo-
sium on Switching and Automata Theory (1973), pp. 1–11.

Witten, I., Moffat, A., and Bell, T. 1999. Managing Gigabytes (second ed.). Morgan
Kaufmann Publishers.

Ziv, J. and Lempel, A. 1977. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23, 3, 337–343.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable length
coding. IEEE Transactions on Information Theory 24, 5, 530–536.

Ziviani, N., Moura, E., Navarro, G., and Baeza-Yates, R. 2000. Compression: A key
for next-generation text retrieval systems. IEEE Computer 33, 11, 37–44.

