Equivalence of OLAP Dimension Schemas

Carlos A. Hurtado and Claudio Gutiérrez
Department of Computer Science
University of Chile
{churtado,cgutierr}@dcc.uchile.cl
Blanco Encalada 2120, Santiago, Chile , C.P. 6511224

Paper ID: 156

1 Introduction

OLAP dimensions are data hierarchies that popu-
late data warehouses. These entities are hierarchi-
cally organized information that define the perspec-
tive upon which the data is viewed. As an example,
in a data warehouse we may have dimensions describ-
ing products, stores and time, which may be used to
visualize the facts generated by a sales process. Fig-
ure 1 depicts a dimension that models financial ser-
vices offered by a bank: accounts, credit cards and
loans. The products are classified through the hi-
erarchy path Product- ProdType- ProdCategory-All.
Some types of products, like personal loans and some
sorts of accounts, are handled by branches, whereas
others, like mortgage and corporate loans, are han-
dled by departments. The products handled by
branches are also classified according to the category
BranchProdType. There is a manager in charge of
each branch and department. Finally, it happens that
all departments handle products in only one category.
On the left hand side of Figure 1, there is a graph
called hierarchy schema which models the structure
of the dimension. The vertices of this graph are called
categories. On the right hand side, there is another
graph, called hierarchy domain, whose vertices, called
members, are grouped by categories and ordered by a
child/parent relation. For example, in the dimension
at hand, we may say that member pl belongs to the
category Product and pl has d1 as a parent in the
category Department.

Dimension Schema A dimension schema is an
abstract model of a dimension commonly used to
support summarizability reasoning in OLAP applica-
tions [HMO1], that is, to test whether aggregate views
defined for some categories can be correctly derived
from a set of precomputed views defined for other cat-
egories. In previous work [HMO02] we have introduced

semantically reach dimension schemas to support this
inference task. A dimension schema, being an ab-
stract representation of a dimension, represents the
set of possible dimensions that conforms to it. This
set reflects the information capacity of the schema.
Thus when we perform reasoning on the schema, we
infer properties of all the dimensions in the set.

Dimension schemas are modeled as a hierarchy
schema (i.e. the structure of the dimension) along
with a set of integrity constraints, called dimen-
The hierarchy schema is a di-
rected acyclic graph whose vertices are the cate-

sion constraints.

gories, and whose edges capture the child/parent
relation among the members. The constraints are
used to place further restrictions to let the schema
capture more precisely different sets of dimensions.
The most basic constraints are statements about
paths arising in the child/parent relation. For ex-
ample, we may require that all the products han-
dled by some branch are not handled by depart-
ments, and viceversa. This is stated by the con-
straint saying that for each product, it can have
ancestors in either the path (Product, Branch) or
the path (Product, Department), but not in both.
Other constraints may express that the ancestor of
some members is another particular member. For
example we may state “the manager of the Asia
branch is Mr. Huang” as “(Branch = Asia) im-
plies (Branch,.., Manager = Huang)”. The ex-
pressions in brackets are atomic statements (called
atoms). It turns out that Boolean combinations of
atoms are needed to support summarizability reason-
ing [HMO02].

Simple forms of these constraints characterize typ-
ical classes of OLAP schemas. In this sense, this ex-
tended class of schemas with constraints subsumes
other well known classes in OLAP.

All

ProdClass

Manager

ProdType

Department Branch

Product

A)

®)

Figure 1: The dimension Product: (A) hierarchy schema; (B) child/parent relation.

Problem Statement Similarly to the case of gen-
eral database schemas, two dimension schemas could
be compared with respect to their information ca-
pacity. Schemas with the same information capacity
can be used to simulate each other. Having differ-
ent equivalent schemas give users flexibility to choose
among several options the best suited for the appli-
cation at hand. In a typical modeling scenario the
user starts with some schema and proceed to restruc-
ture it. In the context of OLAP, it is very impor-
tant that the restructuring process preserves schema
equivalence because the schema is more useful for rea-
soning about data than it is just as a container of
data. So we would like to keep the information on
the schema as precise as possible to capture the set
of instances as tight as possible.

Formal notions of schema equivalence are needed
to sit restructuring mechanisms and schema design
techniques on solid grounds. For example, Miller et
al. [MIR94] argue that the restrestructuringcess may
be addressed following two different strategies: (i)
build a desired schema and then test whether it is
equivalent to the original schema; (ii) use a set of
primitives to transform the original schema into a
desired schema. In both approaches, we need to de-
fine under which conditions two dimension schemas
are equivalent. In the first approach we need algo-
rithms for the equivalence test. The second approach
requires a set of well defined dimension transforma-
tions. The central desirable properties of such a set,
soundness and completeness [Alb00], depend on the
notion of schema equivalence used as well.

Different notions of schema equivalence have been
around in the database field. The most general notion
of schema equivalene, absolute equivalence [Hul86)
characterizes the minimum requirements that two
schemas must satisfy in order for them to have the
same information capacity. Absolute equivalence is

formalized by requiring the existence of a bijection
between the instances of the schemas. Absolute
equivalence is independent of the data model. A
problem that arises with this notion of equivalence is
that any arbitrary mapping may be used to guaran-
tee absolute equivalence; furthermore, as observed by
Miller et al. [MIR93], the mappings are not required
to be finitely specifiable (they can be an infinite list
of pairs of schema instances).

A hierarchy of more restricted notions of equiva-
lence have been proposed [Hul86]. For example: in-
ternal equivalence requires the existence of a bijec-
tion that neither creates nor destroy elements in the
instances; query equivalence requires the mappings
to be expressible in the query language of the data
model. We claim that they are of no practical use
in the context of OLAP, because dimension instances
with no intuitive relationship betweem tbetweenld be
allowed to be associated via the mappings. This hap-
pens because these mapping do not necessarily pre-
serve the hierarchical arrangement of OLAP data.
We sustain that two dimension instances must be re-
lated via a mapping only if they have the same hierar-
chical domain. In order words, in the OLAP context,
we conceive restructuring as a process in which we
change the structure of the dimension (i.e. its hierar-
chy schema) without modifying its data hierarchy (hi-
erarchical domain). As members are associated with
facts in datacubes, this mapping restriction guar-
antees that the aggregate data are preserved, thus
avoiding aggregate data re-computations, and keep-
ing users to browse aggregate data using the same
hierarchical domain.

As an example, Figure 2 depicts two possible hier-
archy schemas to represent the instance on the right
hand side of Figure 1. Both preserve the hierarchy
domain. The constraints allow different graphs to
represent the same information. For example, con-

ProdType

\Depanment Branch

Product

ProdClass
M anage(

ProdType

Y&As aBranch Branch

Product

) (Branch = Asia) &

Figure 2: Product

straints (c) and (d) for the hierarchy schema on the
top translate to (¢’) for the hierarchy schema on the
bottom. Observe that dimension on the top is homo-
geneous, i.e., every pair of members in the same cate-
gory have ancestors in the same set of categories; the
on in the bottom is heterogeneous because it models
departments and branches in a single category called
Dept& AsiaBranch.

Contributions and Outline This paper proposes
a notion of equivalence, hierarchical equivalence,
which naturally captures dimension schema equiv-
alence in OLAP. We prove that hierarchical equiv-
alence can be characterized in terms of graph and
schema isomorphisms in two known classes of dimen-
sion schemas, called here canonical and balanced.
This result proves that canonical schemas are more
expressive than balanced schemas, hence formally
Justifying the introduction of canonical schemas. We
study hierarchical equivalence in dimension schemas
enriched with dimension constraints. We present
characterizations of hierarchical equivalence in terms
of mapping between minimal dimensions contained
by the schemas. We give a class of schemas —frozen
schemas— that act as normal forms for dimensions
schemas, in the sense that any dimension schema can
be reduced via some well defined transformation to
a unique (up to isomporhism) frozen schema. We
prove that hierarchy equivalence test for frozen di-

{Product, ProdType)
Department, Manager, ProdClass)

All
ProdClass
a roduct, Branch) @ roduct, Department
Naneger () (P duct, B h) (P duct, Dep)
(b) {Product, Branch) & ,
(c) {
(d

{Branch, Manager, ProdClass)

(a’) (Product, Dept& AsiaBranch) @ {Product, Branch)
(b)) ({Product, Branch) v
(¢)) {Dept& AsiaBranch, Manager, ProdClass)

{Product, .., Dept& AsiaBranch = Asia) &

dimension schemas.

mension reduces to a simple form of schema isomor-
phism, which leads to an algorithm for testing hier-
archical equivalence. Additionally this result shows
that schemas enriched with dimension constraints are
more expressive than canonical schemas. Finally we
prove complexity bounds and study algorithmic as-
pects of hierarchical equivalence testing.

The remainder of the paper is organized as follows.
In Section 2 we review the main concepts related
to schemas and state the notation. Section 3 intro-
duces hierarchical equivalence and show its relation
with balanced schemas. Section 4 studies hierarchi-
cal equivalence of canonical schemas, and shows that
in this context hierarchical equivalence corresponds
exactly with graph isomorphism of the correspond-
ing hierarchy schemas. In Section 5 we generalize
this result to dimension schemas, that is allowing to
compare different hierarchy schemas and constraints.
The notion of frozen schema is introduced and stud-
ied, along with the algorithmic aspects of hierarchical
equivalence are studied. In Section 6 we present re-
lated work. Finally, in Section 7 we briefly conclude
and outline further work. The complete proofs are
presented in the appendix.

{Product, ProdType)

2 Preliminaries

2.1

A (directed) graph G is a pair of sets (V, E) where
E CV x V. Elements v € V are called vertices and
pairs (u,v) € E (directed) edges; v and v are adjacent
vertices. A path in G from v to w is a sequence of
vertices v = vg, ..., v, = w such that (v;,v;41) € E.
We say that v reaches w. The length of a path is n.
A cycle is a path with v = w. A dag is a directed
acyclic graph. A sinkin a dag is a distinguished ver-
tex w reachable from every other vertex in the graph.
A source in a dag is a distinguished vertex v from
which every other vertex of the graph is reachable.
A shortecut in a dag is a path of length > 1 between
two adjacent vertices. Given a vertex v of G, an up-
graph is the subgraph of G generated by v and all the
vertices reachable from it.

Given two graphs G = (V, E) and G' = (V', E'), a
graph morphism is a function ¢ : V — V' preserving
edges, that is, (u,v) € E implies (¢(u), ¢(v)) € E'.
The morphism ¢ is called an isomorphism (resp.
monomorphism, epimorphism) if ¢ as a function is
bijective (resp. injective, onto).

Basic Graph Terminology

2.2 Dimension Instance

Assume the existence of (possibly infinite) sets of cat-
egories C, and of members M.

Definition 1 (Hierarchy Schema) A hierar-
chy schema is a dag H = (C,), where C C C,
having a distinguished category A1l € C which is a
sink.

Definition 2 (Hierarchy Domain) A Hierarchy
domain is a dag h = (M, <) where M C M, hav-
ing a distinguished member all € M which is a sink,
and without shortcuts.

The last condition in Definition 2 (no shortcuts)
avoids redundancies (transitive edges) in the repre-
sentation of the data.

Given a child/parent relation <, we denote by «
the transitive closure of <. The reflexive and transi-
tive closure of <, denoted <, is called rollup relation,
and is a partial order between members.

Definition 3 (Dimension instance) A dimension
instance d over a hierarchy schema (C,) is a graph
morphism d : (M, <) — (C,) such that:

1. (M, <) is a hierarchy domain;

2. d(all) = All;

3. foralz andy £ z, if e K yANz K z then
d(y) 7 d(z).

The fact that d is a graph morphism in Defini-
tion 3 states that whenever we have a child/parent
relationship m; < my between some pair of mem-
bers my € ¢; and mg € c2, then there is an edge
c¢1 ' ¢y in the hierarchy schema representing links
between categories ¢; and ¢;. Condition 3 of Defi-
nition 3 is a basic restriction in OLAP data model-
ing [HMV99, CT97, Kim97, LAW98], and states that
the rollup relation < is functional (i.e., single valued)
between every pair of categories. This motivates to
introduce the rollup mapping between two categories
c1 and ¢z of a dimension d, denoted I';2d, which is
the restriction of < to d=!(c1) and d=1(c2).

2.3 Dimension Schema

A dimension schema can be viewed as an abstract
model of a dimension. It is used to visualize the data
and to reason about summarizability. In previous
work [HMO02] we showed that the hierarchy schema
itself is not enough expressive to support summa-
rizability reasoning, and should be extended with
constraints. This motivated us to introduce a class
of constraints, dimension constraints, which together
with the hierarchy schema forms a suitable schema
to support summarizability reasoning. In this view-
point, a dimension schema consists of a hierarchy
schema, along with a set of dimension constraints.
This notion of schema generalizes most well known
classes of dimension schema. In what follows we for-
malize these notions.

Definition 4 (Dimension Constraint) Let H =
(C,) be a hierarchy schema, ¢ € C, K C M. The
language of constraints (with root c) has the following
atoms:

1. Path atoms: {c,c1,---,¢n), where the ¢; must
satisfy that ccy - - -¢cn 18 a path in H;

2. Equality atoms: {(c,..,c' = k), where ¢’ is such
that there is a path from c toc', and k € K.

A dimension constraint with root ¢ is a Boolean
combination ¢ of atoms of the above kind.

Dimension constraints consider the usual connec-
tives =, A, V, =, <, and & for exclusive disjunction.
In addition, 1 and T will denote the false and the
true proposition, respectively.

Definition 5 (Semantics of Constraints) Let d:

(M,<) = (C,) be a dimension instance, and ¢ a

constraint with root c. Then d = ¢ if and only if
for allm € d7(c), d = ¢[c/m],

where d = ¢[c/m] is defined recursively as follows:
1. d E {e,e1,...,¢n)[c/m] iff there is a path

may - - oy in (M, <) with d(z;) € ¢;.

2. dE{c,...c = k)c/m] iff d(k) € ¢ and m < k.

5. d (3 A)e/m] i d | dle/m] and d =
Ple/m]. Similarly for V and the other Boolean con-
nectives.

Given a hierarchy schema H and two sets of con-
straints X, Y’ over H, we say that X is equivalent to
Y, if for all dimension instances d over H it holds:
dEZIfdE Y.

Now we are ready to introduce the concept of Di-
mension Schema. The following definition extends
Definition 3 in the presence of constraints.

Definition 6 (Dimension Schema) A dimension
schema is a pair (H,X) where H is a hierarchy
schema and % s a set of constraints.

A dimension instance d over a dimension schema
D = (H,X) is a dimension instance d over H such
that d = . The set of dimensions instances over D
will be denoted by I(D).

Definition 7 (Schema Equiv. and Isom.)
Let D = (H,X) and D' = (H',%') be to dimension
schemas.

1. D and D' are equivalent, denoted D =
H = H' and X s equivalent to X'.

2. D and D' are isomorphic, denoted D = D', iff
there exists a graph isomorphism f : H — H' such
that (f(H), f(X)) = (H',Z'), where f(X) stands for

3 modulo renaming by f.

D', off

2.4 Classes of Dimension Schemas

The model we have presented subsumes the dimen-
sion models presented in the literature. The following
definition formalizes two classes of dimension schemas
that arise in OLAP.

Definition 8 (Classes of Dimension Schemas)
Let D = (H,X) be a hierarchy schema.

1. D is canonical if H has no shortcuts and & s
equivalent to {{c,c') | ¢ /S ¢'}.

2. D is balanced if D is canonical and H has a
source.

A dimension instance d is homogeneous if for ev-
ery pair of categories ¢; " ¢5 it holds that the rollup
mapping I';2d is a total function. Note that the con-
straint (c, ¢') where ¢ ¢’ forces the rollup mapping
from c to ¢’ to be total. Therefore, canonical schemas
convey all the homogeneous instances over its hierar-
chy schema. In this sense, in canonical schemas, X
captures exactly homogeneity. Also notice that we
have defined a canonical schema to be shortcut-free,
because otherwise X would force the categories from

All

ProdCl

Dept& AsiaManager BranchManager

/\ e

Department AsiaBranch Branch

DeptProduct AsiaBranchProduct — BranchProduct

Figure 3: A canonical schema for the bank products.

which the shortcut start to be empty in every di-
mension conveyed by the schema. Balanced schemas
correspond to the basic class of schemas introduced
in early works on OLAP. They are the logical rep-
resentation of dimension schemas in early snowflake
schemas [CD97]. Canonical schemas were introduced
by Jagadish et al. [JLS99] to overcome some of the
weaknesses of balanced schemas. Canonical schemas
allow unbalancedness, that is, they can have dimen-
sion instances with two members in the bottom cate-
gories having ancestors in different sets of categories.
This has been shown to be an important feature to
provide flexibility in OLAP modeling.

Example 1 Figure 2.4 depicts the hierrachy schema
of canonical schema for modeling the bank products.
The set of dimension constraints has a constraint
{c,c"), for all edges (c,c') in the hierarchy schema.
Observe that the products are now split in three cate-
gories depending on where their roll up (only to De-
partment, to AsiaBranch and ProdType, etc.), allow-
ing to think of as if there were one hierarchy (the up-
graph) for each kind of product. This illustrates the
flexibility in modeling given by canonical schemas.

Given two classes of schemas S, S3, we define S; C
Sy iff for each schema in S;, there is an equivalent
schema in S;. Then it holds Balanced Schemas [C
Canonical Schemas [Dimension Schemas.

3 Hierarchical Equivalence

In this section we present the notion of hierarchical
equivalence in which dimension schemas are related
via mappings that preserve the hierarchical domain
of the dimensions.

The following definition generalizes Definition 7 for
schemas over arbitrary hierarchy schemas.

Definition 9 (Hierarchical Equivalence) Two

dimension shemas D and D' are hierarchically equiv-
alent (h-equivalent) if and only if there is a bijective
funetion f : I(D) — I(D') such that for all d € I1(D),
dom(d) = dom(f(d)). In this case we write D=, D’.

Observe that the relation = is an equivalence rela-
tion. Also, it is worth noting that the instance map-
ping f required for h-equivalence is internal [Hul86],
l.e., it does neither create nor destroy members or
constants in the instances. Moreover, the mapping is
generic [Hul86], that is, given a pair of dimension in-
stances d and d' with d' = f(d), if we apply the same
permutation 7 of members to d and to d', if 7(d) is

in the domain of f then n(d') = f(w(d)).

Example 2 Consider the dimension schemas D; =
(4,%1), D2 = (B,X2) and D3 = (C,X3), where
A, B, C are the hierarchy schemas in Figure 4, X1 =
Y3 =0 and X2 = {~{e, f) V ~{e,g)}. Then D1=pD;
via mapping the members of ¢ to f, the members
of d to g, and the members of a and b to e. How-
ever, it is not the case that D1=pD3. Indeed, given
a member m, there is a unique dimension instance
in I(D3) whose child/parent relation is {m < all},
but there are two dimension instances in I(Dz) whose
child/parent relation is {m < all}.

It is not difficult to check that if D = D' then
D=,D'. We end this section by showing that it is
straightforward to show that the converse also holds
for balanced schemas.

A dimension instance d is ezact if d is bijective. It
is easily verified that all canonical dimension schemas
have an exact dimension instance.

Theorem 1 (h-Equiv. of Balanced Schemas)
Two balanced dimension schemas D = (H,X) and
D' = (H',X') are h-equivalent if and only if H and
H' are (graph) isomorphic.

Proof of Theorem 1 One direction is obvious.

Assume that D=, D’ via f. Consider an exact di-
mension d of D. Then, as graphs, H = dom(d) =
dom(f(d)). Now, because D' is balanced there is a
(graph) monomorphism p : dom(f(d)) — H' with
w(all) = A1l (if u(v) = p(w) for v # w, the source
of dom(f(d)) would have two ancestors in the same
category, violating condition 3 of Definition 3.) Hence
there is a monomorphism H — H'. By the same ar-
gument on the reverse direction, there is a monomor-
phism H' — H. Hence H = H'. O

4 Hierarchical Equivalence of
Canonical Schemas

This sections extends the results of Theorem 1 to
canonical dimensions. The importance of this re-
sult is twofold: (1) The notion of h-equivalence has
a simple and intuitive characterization as graph iso-
morphism. (2) This proves that canonical schemas
are strictly more expressive than balanced schemas
(because given a canonical and not balanced schema
there is no balanced schema isomorphic to it.) So we
have now a formal argument that justifies the intro-
duction of canonical schemas for OLAP modeling.

First, observe that the argument in the proof of
Proposition 1 does not necessarily work in this setting
(there could be no injective u).

4.1 Hierarchical Equivalence and Iso-

morphism

The following is the main result of the section.

Theorem 2 (h-Equiv. of Canonical Schemas)
Let D = (H,X) and D' = (H', ') be two canonical
schemas. Then, D=p D' if and only if H is (graph)
isomorphic to H'.

Proof of Theorem 2 Let us sketch the non-trivial
direction of the proof. Let H = (C,) and H' =
(C', /") and f: I(D) — I(D'") be the bijection given
by =h-

(*) Let dy : (M, <) — H be an exact dimension of
D (hence H = (M, <)). Let f(d1) : (M,<) = H' be
the image of d; under f (by hypothesis f(d;) has the
same domain of d;). Let d} be an exact dimension of
f(d1)(M). Let d2 be an exact dimension of f=1(d}).
Continue this process until H; = Im(d;) = Im(d}) =
Hj. Denote by p; this isomorphism. Note that H;
is well defined because the process terminates by a
graph theoretic argument.

For each dimension instance d : M; — H with
d(M;) = H; do: Redefine f by performing the fol-
lowing operations: y := f(d); f(d) := (p1 o d);
ff Y (p10d) := y. Recall from Section 2 that an
instance d takes its domain from a possibly infinite
set M. Here we assume that the set M is finite, hence
the loop ends. The extension to the infinite case is
straightforward. It is easily verified that at the end
of this process we will have that for all complete d of
Hj, it holds that f(d) = (p10d). Call f; this new f.

Now we repeat the whole process starting from (*)
with f1. This process generates a Hy, Hj and a new

fa.

All

(A)

All

(8 ©

Figure 4: Three hierarchy schemas.

Observe that Hy # H;, because otherwise there
must be a complete dimension d of H; which is not
map to the complete dimension (p1 o d) via fi.

By repeating this process we generate a series
(H1, Hi, f1), (H2, Hj, f2), - . . This series has the prop-
erty H; # H; for © # j by an argument similar to the
case ¢ = 1.

Finally just note that this series must be infinite.
O

The following examples illustrates the main idea of
the previous proof.

Example 8 Let D and D' be the dimension schemas
of Figures 5(A) and 5(B). Clearly they are not graph
isomorphic. Assume that D= D' via an instance
mapping f. Figure 6 depicts, on the top, the triple
(H1, Hi, f1), and in the bottom (Hz, H}, f2), in a pos-
sible sequence generated in the proof for D and D'. f;
sends the complete dimension of the subschema un-
derlined to the one underlined in H,. Similarly for
fa. This property forces the schema Hy (resp. H})
to be different from Hy (resp. Hi). This series is in-
finite, but it can be checked now that there is no next
triple (Hs, HY, f3), yielding a contradiction. Hence
D#,D'.

5 Hierarchical Equivalence in
Dimension Schemas

In this section we present a characterization of h-
equivalence for dimension schemas, which yields an
algorithm for testing h-equivalence.

5.1 Frozen Equivalence

We introduce a notion of equivalence, frozen equiv-
alence, defined in terms of injective mappings be-
tween a special kind of dimension instances, called
frozen. Intuitively, a frozen dimension is a minimal
model conveyed by a dimension schema. (We refer

the reader to previous work [HMO2] for details.) The
notion of frozen dimension is essential for giving an
algorithmic version of h-equivalence.

Let D = (H,X) and H = (C, /). We need to de-
fine two functions, NotKnown : C — M, an injective
function that assigns a fix member to each category,
and Constp : C — K, defined by Constp(c) to be
the set of constants k& appearing in X.

Definition 10 (Frozen Dimension) Given a di-
mension schema D and ¢ € C, a frozen dimension
with root ¢ is a dimension instance d : (M,<) —
(C, <) such that:

1. d is injective;

2. ¢ € Im(d);

3. d71(c) is a source of (M, <);

4. For all ¢ € M, z € Constp(d(z)) U
NotKnown(d(z)).

We denote by Frozen(D, c) the set of frozen dimen-
sion of D with root ¢, and by Frozen(D) the union
of all Frozen(D, ¢) for all categories ¢ of D.

Example 4 Figure 7 depicts the frozen relation be-
tween the product schemas of Figure 2. (We are only
showing the frozen dimensions with root Product.)

Definition 11 (Frozen Equivalence) Given a
pair of dimension schemas D = (H,X) and D' =
(H', X", where H = (C, /) and H' = (C', V)

1. A category correspondence between D and D’
is a binary relation @ C C x C'.

2. A correspondence C D x D' induces a binary
relation Fq C Frozen(D) x Frozen(D'), called frozen
relation, defined as the pairs (d,d') € Frozen(D) x
Frozen(D') such that there is a graph isomorphism
w: Im(d) — Im(d') with 1 C 2, and for each ¢ € C
and k € Constp(c), d(k) = c implies d'(k) = u(c).
In this case we say that d = d' (frozen dimension
isomorphism).

3. Two schemas D and D' are frozen equivalent
(in the sequel f-equivalent) if there is a bijective frozen
relation between them.

(A)

ﬁf

(B)

Figure 5: Two hierarchy schemas.

N

Figure 6: A series of matchings illustrating proof of Theorem 2

Proposition 1 (f-Equiv. implies h-Equiv.)
Let D and D' be two dimension schemas. If D and
D' are f-equivalent, then D and D' are h-equivalent.

Proof of Proposition 1 The proof of this Propo-
sition builds a bijective mapping f : I(D) — I(D')
using the bijective frozen relation r : Frozen(D) —
Frozen(D').

Now we define Function f. Given a dimension in-
stance d : (M, <) — (C,), such that d € I(D),
d' : (M,<) = f(d) is defined as follows: for every
member z in M:

(1) let e be d restricted to the upgraph of (M, <)
with source z; It holds that e € I(D) (e is a dimension
tuple and it has been proved [Hur02] that if d € I(D),
all the dimension tuples of d are also in I(D))

(2) for each member y in dom(e) we rename y with
NotKnown(e(y)) if y ¢ Constp(e(y)), obtaining the
dimension instance g,. It is easily verified by inspec-
tion that ¢, is a frozen dimension of D with root
¢ =d(z);

(3) We have that g, = r(g,) via some isomorphism
2 C Q, where €2 is the category correspondence that
defines 7. Then, we have d'(z) = p.(c).

Notices that steps 1-3 above define ¢’ = d'(z), for
each member z in M.

The above procedure has the following properties:
For each pair of members z; and z; in M: (P1)

if 21 < z3 then py, C pe,; and (P2) if 21 < 22
then p,,(d(z1)) ' te,(d(z2)). Property 1 follows
from the fact that if z; < %3, gz, C ¢»,. Property
2 follows from the fact that if z; < z3, the source
of dom(g,,) is a child, in the dimension g,,, of the
source of dom(gy,).

It is easily verified that d’ is unique. Now, we prove
that d’ is a dimension instance over H, i.e., we prove
that d' is a graph morphism and it satisfies condi-
tions 1-3 of Definition 3. Assume d’ is not a graph
morphism, then there are members z; < z3 € M
such that d'(z1) /' d'(z2) does not hold. Thus
te,(d(21)) /' pz,(dz,) does not hold, contradict-
ing Property 2. Conditions 1-2 of Definition 3 are
easy to verify. Now, assume d' does not satisfy
Condition 3, then there are members z,y,z in M,
such that z < y, z < z and d'(y) = d'(z). Then,
ty(d(y)) = p2(d(2)). Then, by Property 1, we have
that p.(d(y)) = pz(d(2)). But, because d satisfies
Condition 3 of Definition 3, d(y) # d(z), and hence
ty 1s not bijective (and not an isomorphism), yielding
a contradiction.

Now, we prove that d' | X, assume not, then by
a basic property of dimension schemas proved in pre-
vious work [HMO02], there must be some dimension
tuple e of d', such that e £ X. Now, we obtain a
dimension g from e similarly as done in Step 2 above.
Because e [£ X, we have that g [~ Z. By construction

Prodcl Bss

ProdType

Prodci Sss

ProdType

Manager

Department

Product

1

Dept& Asi

Product

Manager

ranch

=3

Br

ranch

anch

ProdcClass

Manager

ProdType

Department Branch

Prodci Sss

Manager

ProdType

Dept& AsiaBranch Brahch

Product

ProdcClass

Manager

ProdType

Department Branch:Asia

Prodci Sss

Manager

ProdType

Dept& AsiaBranch Branch

Product

a1 2

3

Figure 7: Frozen relation

of d', g must be in Im(r), thus g € Frozen(D'), and
g = 3, leading to a contradiction.

So far, we have proved that f is well defined, i.e.,
f is a function (thus total) from I(D) to I(D'). It
remains to prove that f is surjective and injective.
That is, f~! is also a function. This follows from
the fact that, applying steps 1-2, modulo replacing D
with D', and vice versa, we obtain f~! (instead of
7). o

If we pre-compute and keep a frozen mapping
stored, the computation of f(d) (see proof of Propo-
sition 1) can be accomplished in polytime. Conse-
quently, we may compute the instance mapping in-
duced by a bijective frozen relation in polytime in the
size of the input dimension instance and the frozen
relation.

In Section 5.3 we will state and prove the converse
of Proposition 1.

5.2 Frozen Schemas

Firstly, we will introduce frozen schemas, dimension
schemas that are normal forms, in the sense that
every dimension schema is h-equivalent to a frozen
schema.

Definition 12 (Frozen Schema) A frozen schema
is a dimension schema D such that each category c
in D has a unique frozen dimension d and Im(d) is
exactly the upgraph of c.

Notice that a frozen schema does not have short-
cuts. Also, it is easily verified that canonical schemas
are frozen schemas.

Example 5 The bottom schema given in Figure 2 is
a frozen schema. The category AsiaBranch is the
only category whose frozen dimension has a constant
(Asia) different than NotKnown(AsiaBranch).

Next, we show that testing h-equivalence of frozen
schemas defined over the same set of constants re-
duces to testing whether the schemas are isomorphic.
This result generalizes Theorem 2 because canonical
schemas are frozen schemas.

Theorem 3 (h-Equiv. in Frozen Schemas)

Let D and D' be two frozen dimension schemas such
that for all ¢ € C and ¢’ € C' it holds Constp(c) =
Constp:(c'). Then D and D' are h-equivalent iff they
are isomorphic (i.e., D=p D' iff D = D').

Proof of Theorem 3 The proofis a generalization
of the proof of Theorem 2. O

This theorem also shows that dimension schemas
are more expressive than canonical schemas because
some frozen schemas are not isomorphic to any canon-
ical schema.

5.3 h-Equivalence and f-Equivalence

In this section we show that h-equivalence implies
f-equivalence. This result along with Proposition 1
shows that f-equivalence characterizes h-equivalence.

Theorem 4 (h-Equiv. in dimension Schemas)
Let D and D' be two frozen dimension schemas such
that for all ¢ € C and ¢’ € C' it holds Constp(c) =
Constp:(c'). Then D and D' are f -equivalent iff they
are h-equivalent.

Proof of Theorem 4 One direction is Proposi-
tion 1.

So assume that D and D' are h-equivalent. First
define a schema transformation that takes D and pro-
duces a frozen schema Dj; h-equivalent to D. The
transformation works as follows: (1) Compute the
frozen dimensions of D using the DIMSAT algorithm
in previous work [HMO02]; (2) Do a topological sort of
the graph (C, /) with the edges reversed. (3) Fol-
lowing the topological sort, for each category ¢ with
more than one frozen dimension, split ¢ into ¢y, ..., ¢,
(preserving adjacent edges) yielding a new hierarchy
schema with a single frozen dimension in each ¢;; (4)
For each c; delete adjacent edges that do not match
the frozen dimension.

Each split in step (3) induces induces the follow-
ing category correspondence between the hierarchy
schemas before and after the split: (c,¢;) for all
1 < j < n, and for the remaining categories ¢’ that
appear in both hierarchy schemas we have (¢, ¢').

It is not difficult to verify that this category cor-
respondence induces a bijective frozen mapping be-
tween the old and the new schema. By composing
these frozen mappings we get a bijective frozen map-
ping between D and Dy.

In the same manner, we build a frozen schema D/
and a bijective frozen mapping between D’ and D}.
Hence, we have bijective frozen mappings D — Dy
and D' — D}. Also, from Theorem 3 we know that
Dy = D} via some y. From u we can build a bijective
frozen relation between D and D}. Composing these
mappings we get the statement of the theorem. O

Example 6 The bijective frozen relation of Figure 7
shows that the two schemas of Figure 2 are h-
equivalent.

5.4 Algorithmic aspects

From the proof of Theorem 4, we can derive an al-
gorithm for testing h-equivalence and prove that this
problem is decidable. The naive application of the
procedure in the proof yields a double exponential
time algorithm. In fact, we can test whether D=, D’
in the following two steps:

1. Apply the transformation in step (4) in the proof
to transform D into D; and D' into D};

2. Test whether H; is graph isomorphic to H},
where Hy (resp. H}) is the hierarchy schema of Dy
(resp. D}).

The number of categories in the frozen schemas
is in O(n2"K), where n is the number of categories
and K is the number of constants mentioned in the
schema. This bound is the order of the number of

10

splits used in each transformation. Essentially, we
may have as many categories in the resulting schema
as frozen dimensions in the original schema. Since
the size of D; (resp. D}) is exponential in the size
of the initial schema D (resp. D') we get the stated
bound due to the test in 2.1

The following result shows that the problem is
hard.

Theorem 5 (Lower bound for Testing h-Equiv.)
Testing whether two dimension schemas D and D'
are h-equivalent is co-NP hard.

Proof of Theorem 5 We will present a polytime
transformation from VALIDITY, which is known to
be CoNP-complete. In VALIDITY we are given a
proposition P and we are asked whether P is valid,
1.e., whether P is satisfied by all truth assignments.
From an instance P of VALIDITY we obtain the di-
mension schemas D and D’. Both schemas have the
same hierarchy schema H with a bottom category
cp, a top category All, and a set C}, containing one
category c, for each propositional variable p in P.
In addition, ¢ is connected to every category in Cp,
and every category in C, is connected to A11. The
schema D has a unique constraint | (false), and D’
has a single constraint —ap, where ap is the dimen-
sion constraint obtained from P by replacing each
propositional variable p with {cs, ¢p). Now, we show
that D=, D' iff P is valid. (If) If P is valid, cp is
unsatisfiable in D', then the schemas are equivalent
and thus h-equivalent. (Only If) If the schemas are
h-equivalent and P is not valid, ¢; is satisfiable in
D'. Thus, the instances d with members in d=1(cp)
cannot be mapped to instances of D, yielding a con-
tradiction. O

We end this section by sketching an exponential
time algorithm for testing h-equivalence.

1. Compute the frozen dimensions of D and D’;

2. For every binary relation between categories,
test whether it induces a bijective frozen mapping.

Step 1 can be done in exponential time in the size
of the schema. (See [HMO02] for detailed bounds.)
The number of binary relations between categories we
need to test in Step 2 is 0(2”2). For each such rela-
tion, we have to compute the induced frozen relation
R, i.e. we need to test for each pair of frozen dimen-
sions d € Frozen(D) and d' € Frozen(D') whether
(d,d") € R. This test can be done in 2" operations
of O(n) steps each, since we need to check at most

IDAG isomorphism is graph isomorphism complete. Recall
that the “exact” complexity of deciding whether two graphs
are isomorphic is still not known. The problem has neither
been proved to be NP complete nor in P.

on’ possible isomorphisms between d and d'. Also,
we have to perform one test for each pair of frozen
dimensions d and d’. Since the number of frozen di-
mensions of a given schema is exponential in the size
of the schema, Step 2 can be accomplished in time
exponential in the size of the schemas.

In Section 5.3, we showed that a bijective frozen
relation induces a bijection between the instances of
the schemas, and that we may implement this func-
tion as a polytime function in the size of the instance
and frozen relation. Thus, it is always possible to ef-
ficiently translate instances between two h-equivalent
schemas.

6 Related Work

There has been abundant work on OLAP dimension
modeling over the past few years [CT97, HMV99,
LAW98, PJE99, JLS99]. However, to the best of our
knowledge, there are no studies regarding dimension
schema equivalence. Other notions of equivalence and
their testing have been studied for generic graph data
models by Miller et al. [MIR94] and nested data mod-
els [VL00]. Several sets of schema transformations
[MIR94, RR98] have proven successful in supporting
the restructuring of schemas in a variety of data mod-
els. These notions are not suitable for restructuring
data in OLAP for the same reasons given before.

Furthermore, Hurtado [Hur02] shows that di-
mension constraints although being first order con-
straints, are orthogonal to traditional constraints
studied in the database literature [AV97] (the extra
expressiveness is needed to support summarizability
reasoning). As the test for equivalence depends on
the class of constraints the models have, the problem
we address in this paper is not related to previous
work on schema equivalence. In the next two para-
graphs we explain this point into more detail.

Let us first explain the relationship between dimen-
sion constraints and First Order Logic (FOL) con-
straints, that may expressed over the relational repre-
sentation described above. An important property of
the hierarchical domain < of a dimension instance is
that the size of its largest path should be smaller than
the size of the largest path without cycle in the hi-
erarchy schema. This turns the ancestor/descendant
relation < to be FOL definable. Consequently, the
conditions that a child/parent relation must satisfy
and the conditions 3 in Definition 3 are FOL defin-
able. In addition, it is easily verified that dimension
constraints are FOL constraints; therefore, dimension
constraints along with the partitioning property may
be expressed as FOL constraints over a snowflake rep-

11

resentation of the dimension instance.

Abiteboul et al. [AV97] study a class of FOL con-
straints called embedded constraints that formalizes
a wide variety of constraints studied in the database
literature. Embedded constraints essentially say that
the presence of some tuples in the instance implies
the presence of some tuples in the instance or implies
that certain tuple components are equal. Dimen-
sion constraints cannot be expressed with embedded
constraints, since we cannot express with them con-
straints that assert dependences such as “some tuples
or some other tuples appear in the instance”.

Example 7 Consider the dimension constraint
{c,c1) V {¢c,c2). This constraint is equivalent to the

following FOL expression:
Va(d=(e)(z) = Fz132a(TC (2, 21) V T3 (z, 22))).

This constraint cannot be expressed with an em-
bedded constraint, since an embedded constraint is an
expression of the form

Ve, ..o on(d(T1, ..., T0) =
Elzla .. -,Zk'l/)(yl, . '7ym))f
where {z1,..., 2z} = {1, - s YmtL{2Z1, ..., 20}, and

¢ and Y are conjunctions of atoms.

Some researchers have considered the problem of
restructuring multidimensional OLAP data. Gyssens
and Lakshmanan [GL96] proposed restructuring op-
erators that interchange categories and measures in
fact tables without losing information content. Using
these operators, it is possible to drop, add, or rename
a category; drop or add measures; and to change a
category to a measure and vice versa. Similar op-
erators are introduced by Gupta et al. [GHQ95]. In
these approaches, dimension hierarchies are not mod-
eled explicitly and their results are hence orthogonal
to the problem of restructuring dimensions. Lehner et
al. [LAW98] model a class of dimension schemas that
allows structural heterogeneity, and propose an oper-
ator for transforming them into balanced schemas,
which they say to be in dimensional normal form
(DNF). The transformation is done by treating cate-
gories causing heterogeneity as attributes, which flat-
tens the hierarchical structure of the schema, causing
a loss of information capacity.

All these works are over setting where no formal
notion of schema equivalence is provided.

Pedersen et al. [PJE99] propose instance mappings
to transform heterogeneous dimensions into homoge-
neous dimensions by adding null members (thus the
mappings are non-internal mappings). These map-
pings are used to normalize dimensions in order to

apply traditional OLAP summarizability reasoning.
The proposed mappings, however, are only applicable
to arestricted class of dimension instances. An exten-
sion of the mappings to deal with the general case of
heterogeneity may generate very intricate dimension
instances, with lots of null values, and many-to-many
rollup mappings (thus violating Condition 3 of Def-
inition 3). (For further details see [Hur02].) In this
paper, we have proved that any dimension schema
may be transformed into a frozen schema (which con-
veys only homogeneous dimensions), and that their
instances can be related via a polytime computable
mapping which does not add null values and preserves
hierarchical domains.

7 Conclusion and Further

Work

In this paper we have presented a series of results that
give conceptual insights into the problem of model-
ing OLAP hierarchies. In particular, our framework:
allowed us to compare different classes of dimension
schemas introduced in a variety of OLAP models; and
provides a formal basis to further research on schema
integration and restructuring in OLAP warehouses.

Further work includes the definition of normal
forms, restructuring operators, notion of information
dominance and implementation issues.

References

[AlIb00] J. Albert. Theoretical foundations of
schema restructuring in heterogeneous
multidatabase systems. In Proceedings of
the ACM Conference on Information and
Knowledge Management, Washington, DC,

USA, 2000.

[AV97] S. Abiteboul and V. Vianu. Regular path
queries with path constraints. In Proceed-
ings of the 16th ACM Symposium on Prin-
ciples of Database Systems, Tucson, Ari-

zona, USA, 1997.

[CD97] S.Chaudhuri and U. Dayal. An overview of
data warehousing and OLAP technology.
In ACM SIGMOD Record 26(1), March

1997.

[CT97] L. Cabibbo and R. Torlone.
multidimensional databases.

ings of the 6th International Workshop on

Querying
In Proceed-

12

[GHQY5]

[GL96]

[HMO1]

[HMO02]

[HMV99]

[Hul86]

[Hur02]

[JLS99]

[Kim97]

[LAW9S]

Database Programming Languages, East
Park, Colorado, USA, 1997.

A. Gupta, V. Harinarayan, and D. Quass.
Aggregate query processing in data ware-
housing environments. In Proceedings of
the 21st International Conference on Very
Large Data Bases, Zurich, Switzerland,
1995.

M. Gyssens and L. Lakshmanan. A foun-
dation for multi-dimensional databases. In
Proceedings of the 22nd International Con-
ference on Very Large Data Bases, Bom-
bay, India, 1996.

C. Hurtado and A. Mendelzon. Rea-
soning about summarizability in heteroge-
neous multidimensional schemas. In Pro-
ceedings of the 8th International Confer-
ence on Database Theory, London, UK,
2001.

C. Hurtado and A. Mendelzon. OLAP di-
mension constraints. In Proc. PODS 2002,
Madison, USA, 2002.

C. Hurtado, A. Mendelzon, and A. Vais-
man. Maintaining data cubes under dimen-
sion updates. In Proceedings of the 15th
IEEE International Conference on Data
Engineering (ICDE), Sydney, Australia,
1999.

R. Hull. Relative information capacity of
simple relational database schemata. In
SIAM Journal of Computing 15(3):865-
886, 1986.

C. Hurtado. Structurally heterogeneous
OLAP dimensions. In Doctoral Thesis,
Computer Science Dep. Toronto, 2002.

H. V. Jagadish, L. V. S. Lakshmanan, and
D. Srivastava. What can hierarchies do for
data warehousesI' In Proc. of the 25th In-
ternational Conference on Very Large Data
Bases, Edinburgh, Scotland, UK, 1999.

R. Kimball. A dimensional modeling man-
ifesto. DBMS and Internet Systems Mag-
azine, hitp://www.dbmsmag.com, August
1997.

W. Lehner, H. Albrecht, and H. Wedekind.
Multidimensional normal forms. In Pro-
ceedings of the 10th Statistical and Seci-

[MIR93]

[MIR94]

[PIE99]

[RR98]

[VLOO]

entific Database Management Conference,
Capri, Italy., 1998.

R. Miller, Y. Ioannidis, and R. Ramakr-
ishnan. The use of information capacity in
schema integration and translation. In Pro-
ceedings of the 19th International Confer-
ence on Very Large Data Bases (VLDB),
Dublin, Ireland, 1993.

R. Miller, Y. Ioannidis, and R. Ramakrish-
nan. Schema equivalence in heterogeneous
systems: Bridging theory and practice. In
Information Systems, vol. 19, no.1, 1994.

T. B. Pedersen, C. S. Jensen, and Dyre-
son C. E. Extending practical pre-
aggregation in on-line analytical process-
ing. In Proceedings of the 25th Inter-
national Conference on Very Large Data
Bases, Edinburgh, Scotland, 1999.

S. Ram and V. Ramanesh. Schema in-
tegration: Past, present, and future. In
A. Elmagarmid, M. Rusinkiewicz, and A.
Sheth, editors, Management of Heteroge-
neous and AutonomousDatabase Systems.
Morgan-Kaufmann, San Mateo,C.A., USA,
1998.

Millist W. Vincent. and Mark Levene. Re-
structuring partitioned normal form re-
lations without information loss. SIAM
Journal on Computing, 29(5):1550-1567,
2000.

13

