
Sequential and Indexed Two-DimensionalPattern Mat
hing Allowing RotationsKimmo Fredriksson� Gonzalo Navarroy Esko Ukkonen zAbstra
tWe present new and faster algorithms to sear
h for a 2-dimensional pattern in a 2-dimensionaltext allowing any rotation of the pattern. This has appli
ations su
h as image databases and
omputational biology. We 
onsider the 
ases of exa
t and approximate mat
hing under severalmat
hing models, improving all previous results. We fo
us on sequential algorithms, where onlythe pattern 
an be prepro
essed, as well as on indexed algorithms, where the text is prepro
essedand an index built on it. On sequential sear
hing we derive average-
ase lower bounds and thenobtain optimal average-
ase algorithms for all the mat
hing models. At the same time, thesealgorithms are worst-
ase optimal. On indexed sear
hing we obtain sear
h time polylogarithmi
on the text size, as well as sublinear time in general for approximate sear
hing.Keywords: Template mat
hing, 
ombinatorial algorithms, image pro
essing, string mat
hing.1 Introdu
tionWe 
onsider the problem of �nding the exa
t and approximate o

urren
es of a two-dimensionalpattern of size m�m 
ells in a two-dimensional text of size n� n 
ells, when all possible rotationsof the pattern are allowed. This problem is often 
alled rotation invariant template mat
hing inthe signal pro
essing literature. Template mat
hing has numerous important appli
ations froms
ien
e to multimedia, for example in image pro
essing, 
ontent based information retrieval fromimage databases, �ngerprint pro
essing, opti
al 
hara
ter re
ognition, geographi
 information sys-tems, pro
essing of aerial and astronomi
al images, and sear
hing for known substru
tures (su
has proteins) from three dimensional models of biologi
al viruses, to name a few.In many appli
ations, \
lose enough" mat
hes of the pattern are also a

epted. To this end,the user may spe
ify a parameter k, su
h that mat
hes that have at most k di�eren
es with thepattern should be a

epted.The traditional approa
h to the problem [9℄ is to 
ompute the 
ross 
orrelation between ea
htext lo
ation and ea
h rotation of the pattern template. This 
an be done reasonably eÆ
ientlyusing the Fast Fourier Transform (FFT), requiring time O(Kn2 log n) where K is the number ofrotations sampled. Typi
ally K is O(m) in the 2-dimensional (2D) 
ase, and O(m3) in the 3D
ase, whi
h makes the FFT approa
h very slow in pra
ti
e. Other approa
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Re
ently, a di�erent approa
h to template mat
hing, 
alled 
ombinatorial template mat
hing,has emerged. The idea is to generalize well-studied string mat
hing te
hniques. String mat
hingdeals with the problem of sear
hing for a one-dimensional pattern on a one-dimensional text, andthe aim is to generalize the problem to two and more dimensions.Examples of 
ombinatorial template mat
hing algorithms are [21, 8, 2, 26, 7, 31, 32, 25℄. Theyaddress di�erent sear
h problems, from exa
t pattern mat
hing to handling insertion and deletionerrors. However, they do not permit sear
hing for the pattern in rotated form. This was stated asa major open problem already in 1992 [5℄.Rotation invariant template mat
hing was �rst 
onsidered from a 
ombinatorial point of viewin [17, 19℄. The �rst problem was to de�ne what was to be 
onsidered a mat
h. If we 
onsider thepattern and text as regular grids, then de�ning the notion of mat
hing be
omes nontrivial whenwe rotate the pattern: Sin
e every pattern 
ell interse
ts several text 
ells and vi
e versa, it isnot 
lear what should mat
h what. They proposed a simple model su
h that (1) the geometri

enter of the pattern has to align with the 
enter of a text 
ell (this is 
alled the 
enter-to-
enterassumption); (2) the text 
ells involved in the mat
h are those whose geometri
 
enters are 
overedby the pattern; (3) ea
h text 
ell involved in an o

urren
e should mat
h the value of the pattern
ell that 
overs its 
enter. This mat
hing model is 
alled Exa
t in this paper. They presented anO(n2) average time algorithm for this model. An O(m3n2) worst-
ase time algorithm for a rathersimilar model was presented in [3℄. They show that this algorithm is worst-
ase optimal.An extension of the exa
t mat
hing model more suitable for gray level images states that thevalue of ea
h text 
ell involved in a mat
h must be between the minimum and maximum valueof the 9 neighboring 
ells surrounding the 
orresponding pattern 
ell [19℄. This model is 
alledMinMax. We are not aware of any previous algorithm for this model.The exa
t model (in fa
t a 3D version) was extended in [20℄ su
h that there may be a limitednumber k of mismat
hes between the pattern and its o

urren
e. Under this Mismat
hes modelan O(k4n3) average time algorithm was obtained, as well as an O(k2n3) average time algorithmfor 
omputing a lower bound on the distan
e. We show here that a 2D version of the same ideayields O(k3=2n2) average time for any 0 � k < m2. For very small k < �r2e��r2=� (r = O(m)), anO(k1=2n2) average time algorithm was given in [12℄.Finally, a more re�ned model [12, 20℄ suitable for gray level images adds up the absolute valuesof the di�eren
es in the gray levels of the pattern and text 
ells supposed to mat
h, and putsan upper limit k on this sum. Under this A

umulated model average time O((k=�)3=2n2) wasa
hieved, assuming that the 
ell values are uniformly distributed among � gray levels.In this paper we address all the above de�ned mat
hing models. We (1) �nd tight lower boundsfor the average 
omplexity of the sear
h problem, for all the mat
hing models (worst-
ase 
omplexityis already known); (2) show a te
hnique to make all the algorithms that follow optimal in the worst
ase, without a�e
ting their average 
omplexity; and (3) 
onsider ea
h of the models in turn anddevelop optimal average-
ase sear
h algorithm for them. Therefore, we solve the sear
h problemfor all the mat
hing models 
onsidered in optimal worst- and average-
ase time simultaneously.Our main te
hnique is to extra
t linear strips from the pattern at every possible rotation, andsear
h for those strips simultaneously along some text rows, permitting or not mismat
hes. Theuse of optimal exa
t and approximate one-dimensional multipattern sear
h algorithms is 
ru
ialto obtain optimality in our problem. Our spa
e requirement and prepro
essing time is always2



polynomial in the pattern size.All the algorithms 
onsidered up to now are sequential. This means that they 
an prepro
essthe pattern but not the text. An alternative s
enario is that the text (that is, the large image)is known in advan
e and 
an be prepro
essed to speed up sear
hes later. This is 
alled indexedsear
hing.In this work we give the �rst algorithms for indexed sear
hing. The data stru
ture we useis based on tries. SuÆx trees for two-dimensional texts have been 
onsidered, for example, in[22, 23, 24℄. The idea of sear
hing for a rotated pattern using a \suÆx" array of spiral-like stringsis mentioned in [24℄, but only for rotations of multiples of 90 degrees. The problem is mu
h more
omplex if we want to allow any rotation.Our sear
h times are polylogarithmi
 for exa
t sear
hing and sublinear1 on average when some
onditions on the mismat
h threshold are met. In most the 
ases the index needs O(n2) (that is,linear) spa
e and it 
an be 
onstru
ted in average time O(n2 log� n).Model Sear
h time Type Comments/
onditionsExa
t n2 Seq Previous result
(n2 log�(m)=m2) n2 log�(m)=m2 Seq Optimal(log� n)5=2 Ind �m2=4 � 2 log� nMinMax O(n2 log(m)=m2) Seq Optimal
(n2 log(m)=m2) (log� n)3=2n2(1�log�(5=4)) Ind �m2=4 � 2 log� nMismat
hes n2k3=2 Seq Previous result, adapted by us
(n2(k + log�m)=m2) n2k1=2 Seq Previous resultk < �r2e��r2=�, r = O(m)n2(k + log�m)=m2 Seq Optimal, � < 1=2(1 �O(1=�))(2 log� n)k+3=2�k Ind �m2=4 � 2 log� n > kHn2(�+HH� (�))m3k Ind m2 � max(kH ; 2 log� n)A

umulated n2(k=�)3=2 Seq Previous result, adapted by us
(n2(k=� + log�m)=m2) n2(k=� + logm)=m2 Seq � < �=(4e). Optimalex
ept log�m � k � (�=e) logm(k + 2 log� n)k+3=2n2 log� 2 Ind �m2=4 � 2 log� n > kAn2(log� 2+HA� (�))m3k Ind m2 � max(kA; 2 log� n)Table 1: Simpli�ed average sequential and indexed time 
omplexities a
hieved under di�erentmodels. We in
lude the average-time sequential lower bounds we have proved. All our sequentialalgorithms are worst-
ase optimal.Table 1 shows our main a
hievements. All the results are on the average, using a probabilisti
model where � is the alphabet size and the 
ell values are uniformly and independently distributedover those � values. We have several di�erent results for ea
h model. In parti
ular, some algorithmsare sequential and others are indexed. In the mismat
hes and a

umulated models we 
all � = k=m2(note that � < 1 for mismat
hes and � < � for a

umulated) and kH and kA denote the maximum1Throughout this paper we speak of \sublinearity" to mean less than n2, whi
h is the input size.3



k values up to where some te
hniques work: kH = k=(1� e=�) and kA = k=(�=(2e)�1). Moreover,HH� (�) = �� log�(�) � (1� �) log�(1� �) and HA� (�) = �� log�(�) + (1 + �) log�(1 + �).The algorithms are easily generalized for handling large databases of images. That is, we maystore any number of images in the index, and sear
h the query pattern simultaneously in all theimages. The time 
omplexities remain the same, if we now 
onsider that n2 denotes the size of thewhole image library.We have also 
onsidered alternative models where pattern 
enters are used instead of text
enters to de�ne what should mat
h what, where no 
enter-to-
enter assumption holds, and wherethere are more dimensions. In most 
ases we obtain basi
ally the same algorithms, but there are afew interesting ex
eptions.Partial preliminary versions of this work appeared in [14, 16, 15℄.The organization of the paper follows. We start by proving giving some preliminary 
on
eptsthat are used throughout the paper, in Se
tion 2. In Se
tion 3, a lower bound on the averagesequential 
omplexity of the sear
h problem, both for exa
t and for approximate sear
hing, is given.In Se
tion 4 we give optimal worst-
ase algorithms for all the mat
hing models in one shot. Se
tions5 to 8 are devoted to optimal/eÆ
ient average-
ase algorithms for the exa
t, minmax, mismat
hesand a

umulated models, respe
tively. Se
tion 9 deals with some alternative formulations of theproblem and brie
y shows how the results 
ould be extended to more dimensions. We give our
on
lusions and future work dire
tions in Se
tion 10.2 Preliminaries2.1 Mat
hing Fun
tionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, 
alled 
ells, in the (x; y)-plane.Ea
h 
ell has a value in ordered �nite alphabet �, whi
h we sometimes 
all \
olors". The size of thealphabet is denoted by � = j�j. The 
orners of the 
ell for T [i; j℄ are (i�1; j�1); (i; j�1); (i�1; j)and (i; j). The 
enter of the 
ell for T [i; j℄ is (i � 12 ; j � 12). The array of 
ells for pattern P isde�ned similarly. The 
enter of the whole pattern P is the 
enter of the 
ell in the middle of P .We assume for simpli
ity that m is odd, hen
e the 
enter of P is the 
enter of 
ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (translation and rotation),su
h that the 
enter of P 
oin
ides exa
tly with the 
enter of some 
ell of T (this is 
alled the 
enter-to-
enter assumption). The lo
ation of P with respe
t to T 
an be uniquely given as ((i; j); �) where(i; j) is the 
ell of T that mat
hes the 
enter of P , and � is the angle between the x-axis of T andthe x-axis of P . The (approximate) o

urren
e between T and P at some lo
ation is de�ned by
omparing the values of the 
ells of T and P that overlap. We will use the 
enters of the 
ells ofT for sele
ting the 
omparison points. That is, for the pattern at lo
ation ((i; j); �), we look whi
h
ells of the pattern 
over the 
enters of the 
ells of the text, and 
ompare those 
ell values. See theleftmost plot of Figure 1.More pre
isely, assume that P is at lo
ation ((i; j); �). For ea
h 
ell [r; s℄ of T whose 
enter be-longs to the area 
overed by P , let [r0; s0℄ be the 
ell of P whose area 
overs the 
enter of [r; s℄. ThenM(i;j);�([r; s℄) = [r0; s0℄. Our algorithms 
ompare the 
ell T [r; s℄ against the 
ell P [M(i;j);�([r; s℄)℄.Hen
e the mat
hing fun
tion M(i;j);� is a fun
tion from the 
ells of T to the 
ells of P . Now
onsider what happens to M(i;j);� when (i; j) is �xed and angle � grows 
ontinuously, starting from4



� = 0. Fun
tion M 
hanges only at the values of � su
h that some 
ell 
enter of T hits some
ell boundary of P . It was shown in [17℄ that this happens O(m3) times, when P rotates full 360degrees. This result was shown to be also a lower bound in [3℄. Hen
e there are �(m3) relevantorientations of P to be 
he
ked. The set of angles for 0 � � � �=2 isA = f�; �=2 � � j � = ar
sin h+ 12pi2 + j2 � ar
sin jpi2 + j2 ;i = 1; 2; : : : ; bm=2
; j = 0; 1; : : : ; bm=2
;h = 0; 1; : : : ; bqi2 + j2
g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [ A+ �=2 [ A+ � [ A+ 3�=2:
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α α αFigure 1: Ea
h text 
ell is mat
hed against the pattern 
ell that 
overs the 
enter of the text 
ell.For ea
h angle �, a set of features is read from P .For the rest of the paper, it is important to understand how the O(m3) bound is obtained.Consider a given pattern 
ell, at Eu
lidean distan
e ` from the pattern 
enter. As the patternrotates 360 degrees around its 
enter, the pattern 
ell des
ribes a 
ir
le of 
ir
umferen
e 2�`, andhen
e its 
ell borders tou
h O(`) di�erent text 
enters. Ea
h su
h hit de�nes a border between twoangle ranges that must be taken as di�erent, be
ause there is at least one text 
ell that will di�er inits mat
hing fun
tion M . If we add up the O(`) di�erent angles de�ned for all the m2 pattern 
ells,at distan
es 1 to O(m) from the 
enter, we get the O(m3) di�erent angles. Mu
h more diÆ
ult isto prove that a suÆ
ient number of these angles are indeed di�erent and hen
e there are �(m3)di�erent rotations, see [3℄.In general, note that if we 
onsider a set of 
 pattern 
ells whi
h are up to distan
e ` from the
enter, then there will be only �(
`) relevant angles to mat
h them. Note that the set of anglesB de�ned by the 
 
ells 
hosen is a subset of A. The exa
t size of B depends on how the 
ells are
hosen. If a mat
h of su
h 
ell set is found and we want to extend it to an o

urren
e of P , thenthere are O(jAj=jBj) = O(m3=(
`)) possible orientations where the mat
hing fun
tion M for thewhole P 
an 
hange as long as it does not 
hange for those 
 
ells. Hen
e we may have to 
he
kO(m3=(
`)) possible orientations. The reason is that the O(m3) angles distribute uniformly enoughover the 360 degrees.More pre
isely, assume that B = (
1; : : : ; 
K), and that 
i < 
i+1. Therefore, the text 
ells
orresponding to the 
hosen 
 
ells 
an be read for angle 
i using any � su
h that 
i � � < 
i+1.5



On the other hand, there are O(jAj=jB)j angles � 2 A su
h that 
i � � < 
i+1. If there is an angle
i su
h that the 
 
ells of P mat
h the text, then P may o

ur with any su
h angle �.2.2 Mat
hing ModelsWe 
onsider four mat
hing models in this paper. These 
an be de�ned on top of the mat
hingfun
tion just de�ned. Assume P is at lo
ation ((i; j); �) and let us 
all M = M(i;j);�. Hen
e thefollowing models are de�ned:Exa
t: de�nes 
onditionT [r; s℄ = P (M [r; s℄); 8[r; s℄ 2 [1 : : : n; 1 : : : n℄ su
h that M [r; s℄ 2 [1 : : : m; 1 : : : m℄MinMax: de�nes 
onditionminfP (M [r; s℄+[Æ; Æ0 ℄); �1 � Æ; Æ0 � 1g � T [r; s℄ � maxfP (M [r; s℄+[Æ; Æ0 ℄); �1 � Æ; Æ0 � 1g;8[r; s℄ 2 [1 : : : n; 1 : : : n℄ su
h that M [r; s℄ 2 [1 : : : m; 1 : : : m℄where we have de�ned + as the pairwise summation over 
ells.Mismat
hes: de�nes numberXfif T [r; s℄ = P (M [r; s℄) then 0 else 1; [r; s℄ 2 [1 : : : n; 1 : : : n℄; M [r; s℄ 2 [1 : : : m; 1 : : : m℄gA

umulated: de�nes numberXfjT [r; s℄ � P (M [r; s℄)j; [r; s℄ 2 [1 : : : n; 1 : : : n℄; M [r; s℄ 2 [1 : : : m; 1 : : : m℄gGiven the models, the exa
t and minmax sear
h problems are to report all the triples (i; j; �)su
h that their mat
hing 
ondition is met, while the mismat
hes and a

umulated sear
h problemsare to report all the triples (i; j; �) su
h that their de�ned value at that point does not ex
eed agiven threshold k.2.3 FeaturesAs shown in [17℄, any mat
h of a pattern P in a text T allowing arbitrary rotations must 
ontaina so-
alled \feature", that is, a one-dimensional string obtained by reading a line of the pattern insome angle and 
rossing the 
enter. These features are used to build a �lter for �nding the positionand orientation of P in T .We now de�ne a set of linear features (strings) for P (see Figure 1). The length of a parti
ularfeature is denoted by u, and the feature for angle � and row q is denoted by F q(�). Assume forsimpli
ity that u is odd. To read a feature F q(�) from P , let P be on top of T , on lo
ation ((i; j); �).Consider 
ells T [i � m+12 + q; j � u�12 ℄; : : : ; T [i � m+12 + q; j + u�12 ℄. Denote them as tq1; tq2; : : : ; tqu.Let 
qi be the value of the 
ell of P that 
overs the 
enter of tqi . The (horizontal) feature of P withangle � and row q is now the sequen
e F q(�) = 
q1
q2 � � � 
qu. Note that this value depends only on q,� and P , not on T . 6



The sets of angles for the features are obtained the same way as the set of angles for the wholepattern P . As explained in Se
tion 2.1, the set of angles Bq for the feature set F q is subset of A.The size of B varies from �(u2) (for features 
rossing the 
enter of P ) to �(um) (for features atdistan
e �(m) from the 
enter of P ). Therefore, if a mat
h of some feature F q(�) is found, and thefeature is at distan
e r from the 
enter of P , then there are O(m3=(ur)) possible orientations to beveri�ed for an o

urren
e of P . For those orientations, M 
hanges but F q(�) does not 
hange.2.4 Spiral Reads and SistringsEa
h 
ell of the text de�nes a string whi
h is obtained by reading text positions at in
reasingEu
lidean distan
es from the 
enter of the 
ell. The �rst 
hara
ter is that of the 
ell, then 
omethe 4 
losest 
enters (from the 
ells above, below, left and right of the 
entral 
ell), then the other4 neighbors, and so on. The 
ells at the same distan
e are read in some prede�ned order, theonly important thing is to read the 
ells in order of in
reasing distan
es from the 
entral 
ell. Ifsu
h a string hits the border of the text it is 
onsidered �nished there. We will 
all sistrings (for\semi-in�nite strings") [24℄ the strings obtained in this way. Figure 2 shows a possible readingorder.
1213 2021 24

0 249 11

1016 1722 23

15 615 18

3 7814 19

1213 222 4

2 52831 23

3 1963 1

2 5 9

1256 12 3

1 7

(a) (b) (c)Figure 2: A spiral reading order for the sistring that starts in the middle of a text of size 5�5. Figure(a) shows the reading order by enumerating the 
ells, and �gure (b) shows the enumeration graphi-
ally. Figure (
) shows the 
olor values of the 
ells of the image, so for that image the sistring 
orre-sponding to the reading order is h3; 2; 19; 2; 6; 7; 5; 5; 28; 3; 12; 1; 12; 13; 31; 1; 56; 1; 9; 23; 22; 2; 2; 3; 4i.Note that, by reading 
ells in in
reasing distan
e from the 
enter, we are making good use of theO(m3) bound on the number of angles. Say that we have read ` 
ells in spiral order from patternand text and want to determine whether there is a mat
h or not. Sin
e we are at distan
e O(p`)from the 
enters, there are only O(`3=2) relevant rotations to 
onsider, a

ording to Se
tion 2.1.2.5 Sistring Trie and TreeOur index data stru
ture is a trie [6℄, a well-known tree stru
ture for storing strings. Ea
h trie nodedenotes a pre�x of some string. Ea
h tree edge is labeled by a 
hara
ter. The root node representsthe empty string, and if node v des
ends from node u by an edge labeled a, and if u representspre�x s, then v represents pre�x sa. Nodes that represent a 
omplete string in the set are markedwith a pointer to that string. 7



It should be 
lear that it is possible to sear
h for string s in time O(s) over a trie that storesany set of strings of any size. It is just a matter of stepping down from the root node following the
hara
ters of s. If at any point there is no proper edge to follow, then s is not in the set. If wetraverse the whole s, then the whole subtree of the 
urrent node 
ontains the strings with pre�x s.In parti
ular, if the 
urrent node is marked then we have found string s. At this point it should be
lear that a trie 
an be built in time proportional to its size, by inserting the strings one by one.To save spa
e, we assume that the strings in the set are stored separately. Hen
e, as soon assome trie node represents the pre�x of a unique string, we remove all the unary path that des
endsfrom it and make the node a leaf in the trie, with a pointer to the proper string. The sear
halgorithm must be slightly modi�ed so as to 
ontinue 
omparing s dire
tly against the string on
ea leaf node has been rea
hed. As a result, internal trie nodes represent pre�xes shared by at leasttwo strings, and leaf nodes represent the whole unique strings.As explained in Se
tion 2.4, ea
h text 
ell de�nes a sistring of length O(n2). A trie built onthose strings will be 
alled the sistring trie. This time, pointers to strings are repla
ed by text
oordinates, whi
h represent the starting point of the spiral that reads the 
orresponding sistring.It is well known that a trie built on n2 random strings has on average O(n2) nodes (insteadof the worst 
ase O(n4)) and O(log�(n2)) depth. In fa
t this also happens when strings are notindependent, under rather general 
onditions [29, 30℄. It is not hard to see that su
h a trie 
an bebuilt in O(n2 log� n) time by su

essive insertions.Alternatively, the unary paths of su
h a trie 
an be 
ompressed so as to form a sistring tree, justlike when 
ompressing suÆx tries to suÆx trees [6℄. Ea
h edge is labeled now by a string, whi
h isrepresented in 
onstant spa
e by a text 
enter and a range of values in a spiral read from that 
enter.This will yield the 
hara
ters of the string represented. Sin
e the resulting tree is at least binaryand has O(n2) leaves, it follows that it has O(n2) nodes overall, in the worst 
ase. For simpli
ity,we des
ribe our algorithms on a sistring trie, although they run with the same 
omplexity oversistring trees.We �nish with folklore property of the sistring trie that is important for some analyses in thispaper. We show that, under a uniform model, the number of sistring trie nodes at depth ` is onaverage �(min(�`; n2)). Roughly, this is to say that in levels ` � h, for h = log�(n2) = 2 log� n,all the di�erent strings of length ` exist, while from that level on the �(n2) sistrings are alreadydi�erent. In parti
ular, this means that nodes deeper than h have O(1) 
hildren be
ause there existsonly one sistring in the text with that pre�x of length h (note that a sistring pre�x is graphi
allyseen as a spiral inside the text, around the 
orresponding text 
ell).To prove this property we 
onsider that there are n2 sistrings uniformly distributed a
ross �`di�erent pre�xes of length `, for any `. The probability of a given pre�x not being \hit" after n2\attempts" (sistrings) is (1� 1=�`)n2 , so the average number of di�erent pre�xes hit (i.e., existingsistring trie nodes) is�`(1� (1� 1=�`)n2) = �`(1� e��(n2=�`)) = �`(1� e�x)for x = �(n2=�`). Now, if n2 = o(�`) then x = o(1) and 1� e�x = 1 � (1 � x+ O(x2)) = �(x) =�(n2=�`), whi
h gives the result �(n2). On the other hand, if n2 = 
(�`) then x = 
(1) and theresult is �(�`). Hen
e the number of sistring trie nodes at depth ` is on average �(min(�`; n2)),whi
h is the same as in the worst 
ase. Indeed, in the worst 
ase the 
onstant is 1, that is, thenumber of di�erent strings is at most min(�`; n), while on average the 
onstant is smaller.8



2.6 Optimal Multipattern Exa
t String Mat
hingIn [11℄ a one-dimensional multipattern exa
t sear
h algorithm using a suÆx automaton was pro-posed. A suÆx automaton built on a set of strings is the smallest deterministi
 automaton able ofre
ognizing any suÆx of any string in the set. The automaton is not 
omplete, that is, edges that
annot lead to a

eptan
e are not present. When traversing it, we will have an edge to follow aslong as we have read a substring of some of the patterns.The algorithm works basi
ally as follows. Assume all the patterns are of the same length m.We build the suÆx automaton over the set of reversed patterns (that is, read ba
kwards). Thenwe slide a window of length m over the text. Ea
h window is read from right to left, and the
hara
ters are input to the suÆx automaton. This pro
ess 
an �nish in two possible ways. First,it may happen that we have no edge to follow in the automaton. This means that the suÆx of thewindow read is not a substring of any pattern in the set, so no window 
overing the suÆx read
an 
ontain a mat
h. In this 
ase we 
an safely shift the window so it starts right after the last
hara
ter read. Se
ond, we 
an rea
h the beginning of the window, whi
h means that we have reada string of length m whi
h is a substring of some pattern of length m, that is, we have re
ognizeda pattern in the set and we report it. We shift the window by one position.The above s
heme is a bit simpli�ed. In fa
t the algorithm uses the suÆx automaton also toremember the last position in the suÆx read where the automaton re
ognized a suÆx of somereversed pattern. SuÆxes of reverse patterns are reverse pre�xes of patterns. It is not hard to seethat, no matter how the pro
essing of the 
urrent window �nished, we 
an shift it so that it isaligned to the last pre�x re
ognized.We show now that this algorithm takes average time O(n log�(rm)=m) to sear
h a text oflength n for r patterns of length m. Let us say that we have read ` 
hara
ters from the suÆx ofa text window with the suÆx automaton. Let us 
all s the string just read. There are r di�erentpatterns where s 
ould mat
h. Inside ea
h of these, there are m � ` + 1 positions where s 
ouldmat
h. Hen
e the probability of s mat
hing any substring of any sear
h pattern is at most rm=�`.This is smaller than 1=m2 provided ` � log�(rm3), so for now on let this be the value of `. Letus pessimisti
ally assume that ` 
hara
ters are always read, that if at that point s mat
hes anysubstring of any pattern (with probability 1=m2) then we read the whole window (at 
ost O(m))and shift the window by 1 position, and that otherwise we shift the window by m� ` positions.On a text of length n the number of window veri�
ations is on average O(n=m2), and ea
h 
ostsO(m), so this part adds a negligible O(n=m) 
ost. The s
anning time dominates. The averagenumber of windows pro
essed is O(n=(m � `)) and ea
h 
osts O(`) 
hara
ter inspe
tions, yieldingan overall average sear
h time of O(n log�(rm3)=(m� log�(rm3))), whi
h is O(n log�(rm)=m). Weshow that this 
omplexity is indeed optimal in [13℄.An additional improvement in [11℄ is to 
ombine the ba
kward s
anning with a Aho-Corasi
k-like forward s
anning [1℄, so as to ensure linear worst 
ase time for the algorithm.The spa
e requirement of the suÆx automaton is O(rm), one state per ea
h suÆx of ea
hpattern.
9



2.7 Optimal Multipattern Approximate String Mat
hingIn [13℄, two algorithms for one-dimensional multiple approximate string mat
hing were presented.They permit sear
hing for r patterns of length m allowing up to k insertions, deletions and substi-tutions in a text of length n. The �rst has optimal average sear
h time O(n(k + log�(rm))=m) fork=m < 1=3�O(1=p�). The se
ond has average sear
h time O(n) for k=m < 1=2 �O(1=p�).The algorithms pre
ompute, for every possible string of length `, the minimum number of
hara
ter insertions, deletions and substitutions needed to mat
h them somewhere inside somepattern in the set, that is, the minimum Levenshtein distan
e against any substring of any pattern.Hen
e, an optimal algorithm works as follows. It divides the text into blo
ks of length (m�k)=2,so that every possible mat
h must 
ontain a 
omplete blo
k. Then, ea
h blo
k is pro
essed asfollows: su

essive non-overlapping `-grams (that is, substrings of length `) are read from theblo
k, and their pre
omputed minimum distan
es are a

umulated. If, before rea
hing the endof the blo
k, the a

umulated di�eren
es ex
eed k, then the blo
k 
an be safely abandoned sin
ethere is no way to mat
h those `-grams inside any parti
ular pattern with few enough di�eren
es.Otherwise, we rea
h the end of the blo
k without totalizing k + 1 di�eren
es and must verify theblo
k with a 
lassi
al algorithm.For the purposes of this paper, the analysis 
an be rephrased as follows. Let p(`; 
) be theprobability of two random strings of length ` mat
hing under a given mat
hing model (Levenshteinin [13℄) with at most 
` di�eren
es. Pessimisti
ally, assume that we will verify the blo
k as soonas we �nd one `-gram whose pre
omputed minimum distan
e is less than 
`, for some 
onstant 
to �x later. Otherwise we will abandon the blo
k after testing 1 + dk=(`
)e `-grams. For this tobe 
orre
t it must hold ` k=(`
) � (m � k)=2, or 2k=(m � k) < 
, otherwise we pro
ess all theblo
ks anyway without any sublinearity. Pro
essing ea
h `-gram takes time O(`). The probabilityof verifying a blo
k is O(p(`; 
)mrk=(`
)) be
ause ea
h of the k=(`
) `-grams 
an mat
h any patternat any position, and the 
ost of veri�
ation is O(m2r). Hen
e the sear
h 
ost has two 
omponents:O(n(`+k=
)=(m�k)) to s
an the `-grams of ea
h window, and O(nm2r(p(`; 
)mrk=(`
))=(m�k))for the veri�
ations.In order to make veri�
ations negligible 
ompared to s
anning, it is suÆ
ient that p(`; 
) =O(1=(m3r2)). Under the Levenshtein model, it holds p(`; 
) = 
`=` where 
 = 1=(�1�

2
(1 �
)2(1�
)). Hen
e it is ne
essary that 
 < 1 � e=p� to make 
 < 1, as otherwise veri�
ation
ost is very high. For su
h 
, 
hoosing ` = log1=
(m3r2) = �(log�(mr)=(1 � 
)) gives an overallsear
h 
ost of O(n(log�(mr)=(1 � 
) + k=
)=(m � k)), whi
h must be optimized for 
 in the range2k=(m � k) < 
 < 1 � e=p�. For the range of 
 values to be nonempty we need k=m < (1 �e=p�)=(3 � e=p�) = 1=3 � O(1=p�). In fa
t, any 
onstant 
 in the range will yield the optimal
omplexity, and it will be within bounds as long as k=m is bounded away from 1=3. Hen
e thealgorithm is O(n(k + log�(rm))=m) for k=m < 1=3�O(1=p�).A se
ond algorithm 
onsists of s
anning all the `-grams of the text one by one, and keep thea

umulated sum over a sliding text window of length m � k, whi
h will be veri�ed wheneverthe a

umulated sum does not ex
eed k. The sear
h time is 
learly O(n) and the analysis of thepermissible k=m values yields k=m < 1=2�O(1=p�), be
ause the window is of length m�k insteadof (m� k)=2.The spa
e requirement of the algorithm is O(m3r2�O(1)) = O(m3r2).10



3 Problem ComplexityIn this se
tion we prove that the lower bound for the average time of the rotation invariant sear
hproblem in d dimensions is 
(dnd log�m=md) for the exa
t model, 
(dnd logm=md) for the minmaxmodel, 
(nd(k + d log�m)=md) for the mismat
hes model, and 
(nd(k=� + d log�m)=md) for thea

umulated model. Worst 
ase 
omplexity is known to be O(m3n2) for all these models, in twodimensions [3℄.For the average 
ase results of this proof and the rest of the paper, we state our probabilisti
model. We assumed that the 
ells of pattern and text are independent random variables 
hosenuniformly from an alphabet of size �. Several of our results 
an be extended to nonuniform proba-bilities, as long as we repla
e � by 1=p, where p < 1 is the probability that two random 
ells 
hosenfrom the pattern and the text mat
h.The exa
t number of relevant rotations in d dimensions is unknown. Parti
ular 
ases are knownfor d = 2 (O(m3) [17℄) and d = 3 (O(m11) [20℄). However, it seems 
lear that it is 
(md�1) be
auseea
h 
ell of P 
an be for
ed, by rotations, to mat
h any of the O(md�1) text 
ells that are atthe same distan
e to the 
enter. On the other hand, there 
annot be more than mO(d3) relevantrotations. The reason is that there are �d2� = O(d2) rotation planes. For ea
h su
h plane we 
anassume that, on
e all the other rotations at other planes are �xed, ea
h 
ell of P 
an be made tomat
h O(m) di�erent 
ells of P , for a total of O(md+1) rotations regarding that rotation plane.We �nally 
an assume that ea
h 
hoi
e of rotation for ea
h rotation plane produ
es a di�erent
ombination, so we have overall O((md+1)d2) = O(md3) possibilities. Therefore, although we knowvery little about the number of rotations in d dimensions, we have that they are �(m�(d)), where�(d) = poly(m) (in parti
ular, d� 1 � �(d) � (d� 1)d(d + 1)=2. This will be enough for us.3.1 Exa
t and MinMax ModelsUnder our probabilisti
 model, there exists a general lower bound for d-dimensional exa
t patternmat
hing. In [34℄ Yao showed that the one-dimensional string mat
hing problem requires at least
(n log�m=m) 
omparisons on average, where n and m are the lengths of the text string and thepattern respe
tively. In [25℄ this result was generalized for the d-dimensional 
ase, for whi
h thelower bound (without rotations) is 
(nd log�(md)=md) = 
(dnd log�(m)=md).The above lower bound also holds for the 
ase with rotations allowed, as exa
t pattern mat
hingredu
es (as a spe
ial 
ase) to mat
hing with rotations. To sear
h for the pattern exa
tly, we �rstsear
h for it allowing rotations, and on
e we �nd an o

urren
e we verify whether or not the rotationangle is zero. Sin
e in 2D there are O(m3) rotations [17℄, on average there are O(n2m3=�m2) o

ur-ren
es. Ea
h rotated o

urren
e 
an be veri�ed in O(m2) time (indeed, O(1) average time using theresults of the present paper, but this is not relevant). Hen
e the total exa
t sear
h time (et) is thatof sear
hing with rotations (rt) plus O(n2m5=�m2) = o(n2 log�(m)=m2) for veri�
ations. Be
ause ofthe bound in [25℄, et = 
(n2 log�(m)=m2) = rt+o(n2 log�(m)=m2), and so rt = 
(n2 log�(m)=m2)as well. This argument 
an be easily generalized to d dimensions be
ause there are O(ndm�(d)=�md)mat
hes to verify at O(md) 
ost ea
h, and hen
e ndmd+�(d)=�md = o(nd log�(md)=md). Hen
e weget a general bound of 
(nd log�(md)=md) = 
(dnd log�(m)=md) 
omparisons.This result is easily generalizable to the minmax model if we 
onsider that ea
h text 
ell mat
hesa range of values. The size of the range is the average di�eren
e between the maximum and11



minimum of 9 values (that is, its neighboring 
ells) uniformly distributed over �. It is easy to seethat the maximum over t uniformly distributed dis
rete random variables in the interval 1 : : : �is on average � �t=(t + 1), and the minimum is � �=(t + 1), hen
e the average di�eren
e isbounded above by �(t � 1)=(t + 1). Sin
e in our 
ase t = 9, we have that the average size ofour range is (4=5)� (this pessimisti
 bound is tight, as the relative error is O(1=�)). Hen
e themat
hing probability is 4=5 instead of 1=� and log�m be
omes O(logm), yielding a lower boundof 
(n2 log(m)=m2). In d dimensions t = 3d, so the 4=5 be
omes (3d � 1)=(3d + 1) and log5=4mbe
omes log(m)=(log(3d + 1)� log(3d � 1)) = log(m)=�(1=3d). Therefore the lower bound for theminmax model in d dimensions is 
(d3dnd log(m)=md).3.2 Mismat
hes and A

umulated ModelsA lower bound for the k di�eren
es problem (approximate string mat
hing with � k mismat
hes,insertions or deletions of 
hara
ters) was given in [10℄ for the one dimensional 
ase. This bound is
(n(k + log�m)=m), where n is the length of the text string and m is the length of the pattern.This bound is tight; an algorithm a
hieving it was also given in [10℄.This lower bound 
an be generalized to the d-dimensional 
ase also. By [25℄, exa
t d-dimensionalsear
hing needs 
(nd log�(md)=md) 
omparisons, and this is a spe
ial 
ase of approximate mat
hing.Following [10℄, we divide the text into nd=md disjoint \windows", that is, hyper
ubes of size md.Hen
e, at least k + 1 symbols of ea
h window have to be examined to guarantee that the window
annot mat
h the pattern. So a se
ond lower bound is 
(knd=md). The lower bound 
(nd(k +log�md)=md) = 
(nd(k + d log�m)=md) follows, without 
onsidering rotations.We 
an apply the same redu
tion as before to show that the bound is also valid when ro-tations are permitted. The only deli
ate part of the redu
tion is to ensure that ndmd+�(d)p =o(n2 log�(md)=md), where p is the probability that the pattern mat
hes some text position at somegiven rotation. A

ording to Appendix A, p � �mdk �=�md�k. Substituting we get that our bound isvalid for k=md < 1=(1 + d log�m)(1 + o(1)). However, for larger k the lower bound is also valid,simply be
ause the number of o

urren
es to report by a rotation invariant sear
h is on averagendm�(d)p = 
(n2 log�(md)=md), and we 
annot work less than the size of the output.To generalize this result for the a

umulated model, we have to take into a

ount that (k+1)=�
ell inspe
tions may be suÆ
ient to dis
ard a window, so the lower bound be
omes just 
(nd(k=�+d log�m)=md). Considering the results of this paper, however, we 
onje
ture that this bound is nottight, and that it 
ould be improved to 
(nd(k=�+ d logm)=md). If we 
onsider that the alphabetsize is a 
onstant, however, both bounds are indistinguishable.3.3 Worst Case ComplexityWith respe
t to worst 
ase 
omplexity, it has been shown in [3℄ to be O(m3n2), for the exa
t andany other of our models. They give an optimal worst-
ase algorithm for exa
t sear
hing. In thispaper we show that this 
an be obtained simultaneously with average-
ase optimality.In d dimensions, this worst-
ase lower bound generalizes to O(m�(d)nd), although unfortunatelywe know little about the exa
t value of �(d), ex
ept that it is between d� 1 and (d� 1)d(d+1)=2.
12



4 A Worst-Case Optimal AlgorithmIn [3℄ it was shown that for the problem of two dimensional pattern mat
hing allowing rotations theworst 
ase lower bound is 
(n2m3). They give an algorithm with su
h 
omplexity. In this se
tionwe show a simple algorithm with the same 
omplexity that works for any of our mat
hing models.In [20℄, a 3D algorithm is presented for the mismat
hes model whi
h involves an idea that 
anbe exploited mu
h further. We reuse that idea and 
onvert it into an optimal worst-
ase algorithm.Assume that, when 
omputing the set of angles A = (�1; �2; : : :) to mat
h the pattern, we alsosort those angles so that �i < �i+1, and asso
iate with ea
h angle �i the set Ci 
ontaining the
orresponding text 
ell 
enters that must hit a pattern 
ell boundary at �i. Hen
e we 
an evaluatethe number of mismat
hes for su

essive rotations of P in
rementally. That is, assume that thenumber of mismat
hes has been evaluated for �i, then to evaluate the number of mismat
hes forrotation �i+1, it suÆ
es to re-evaluate the 
ells restri
ted to the set Ci+1. This is repeated for ea
h� 2 A. Therefore, the total time for evaluating the number of mismat
hes for P 
entered at someposition in T , for all possible angles, is O(Pi jCij). This is O(m3) be
ause ea
h �xed 
ell 
enter ofT , 
overed by P , 
an belong to O(m) di�erent Ci sets. To see this, note that when P is rotated thewhole 360 degrees, any 
ell 
enter of T is tou
hed by O(m) 
ell boundaries of P (see Se
tion 2.1).Therefore, it suÆ
es to apply the above algorithm for ea
h of the n2 possible text positionsin order to solve the exa
t, minmax2, and mismat
hes problem in O(n2m3) worst 
ase time. Thea

umulated problem is easily solved in the same time by (re)
omputing absolute di�eren
es insteadof number of mismat
hes.In fa
t, the algorithm is very 
exible, and 
an be adapted to many other mat
hing models aswell. Its spa
e requirement is O(m3).All the algorithms that follow from now on are �lters that dis
ard most of the text positionsand orientations, and 
he
k a small subset of the 
andidates. Although we will use a di�erentveri�
ation algorithm that is faster on average, their same average 
omplexity 
an be a
hieved ifwe repla
e their veri�
ation algorithm with the one we have just des
ribed. Hen
e, without a�e
tingtheir good average 
omplexity (optimal in most 
ases), we have that all these algorithms will bealso optimal in the worst 
ase, sin
e the worst that 
an happen is that they have to verify all thetext positions and orientations, just as we have assumed here. We only have to make sure that wedo not verify the same text position more than on
e.5 The Exa
t ModelIn [17℄ only a set of features of length m 
rossing the 
enter of P is extra
ted from P , that is,q = m+12 and u = m (see Se
tion 2.3). The text is then s
anned row-wise for the o

urren
e ofsome feature, and upon su
h an o

urren
e the whole pattern is 
he
ked at the appropriate angles.A

ording to Se
tion 2.1, they have to 
he
k O(m) angles per o

urren
e, and sin
e ea
hveri�
ation takes O(1) time on average, their average veri�
ation 
ost is O(m). Overall, theiralgorithm is O(n2), dominated by multipattern text sear
h for the features using an Aho-Corasi
kma
hine [1℄.2In this 
ase re
omputing a 
ell means 
onsidering a new 9-
ell set. This is 
onstant but depends on the dimension.A truly 
onstant-time solution is to pre
ompute, for ea
h 
ell of P , the range of values permitted given its neighbors.13



In [19℄ the possibility of using features of length u � m is 
onsidered, sin
e it redu
es the spa
eusage and number of rotations.We show now how to improve both sear
h and veri�
ation time. In whi
h follows we assumethat the features are of length u � m, and later �nd the optimal u.5.1 Faster Sear
hIn [8℄ a 2-dimensional sear
h algorithm (not allowing rotations) is proposed whi
h works by sear
h-ing for all the pattern rows in the image. Only every m-th row of the image needs to be 
onsideredbe
ause one of them must 
ontain some pattern row in any o

urren
e.We take a similar approa
h. Instead of taking the O(u2) features that 
ross the 
enter of thepattern, we also take some not 
rossing the 
enter. More spe
i�
ally, we take features for q inthe range m�r2 + 1 : : : m+r2 , where r is an odd integer for simpli
ity. For ea
h su
h q, we read thefeatures at all the relevant rotations. This is illustrated in Figure 1.This allows us to sear
h only one out of r image rows, but there are O(rumax(r; u)) featuresnow (sin
e the farthest feature 
ell is at distan
e max(r; u) from the pattern 
enter). Figure 1 alsoshows that the features may be
ome shorter thanm when they are far away from the 
enter and thepattern is rotated. On the other hand, there is no point in taking features farther away than m=2from the 
enter, sin
e in the 
ase of unrotated patterns this is the farthest we 
an go. Therefore wehave the limit r � m. If we take features from r = m rows then the shortest ones (for the patternrotated at 45 degrees) are of length (p2� 1)m = �(m). Note that some features do not 
ross thepattern 
enter, but they are still �xed if the pattern 
enter mat
hes a text 
enter.The sear
h time per 
hara
ter is independent on the number of features if an Aho-Corasi
kma
hine [1℄ is used. Alternatively, we 
an use a suÆx automaton (dawg-mat
h algorithm) [11℄ toget optimal average sear
h time. The worst 
ase time for the suÆx automaton is the same as forthe Aho-Corasi
k automaton.5.2 Faster Veri�
ationWe show how veri�
ations 
an be performed faster, inO(1) average time instead of O(m). Note that,between to 
onse
utive angles of this O(m)-size set, there are many text 
ells that a
tually mat
hthe same pattern 
ell, so by 
he
king ea
h rotation separately we are unne
essarily re
omparing alot of 
ells. Our idea is to re
ompare 
ells only when ne
essary.Imagine that a feature taken at angle � has been found in the text. Sin
e the feature has lengthu and its farthest 
ell 
an be at distan
e at least u from the 
enter, there at most O(m3=u2) di�erentangles to 
he
k, whose limits we 
all 
1 to 
K , and we have 
i � � < 
i+1.We will show �rst an overkill te
hnique that is O(1), and then will turn into pra
ti
al eÆ
ien
y
onsiderations. Let us assume that we want to 
he
k for an o

urren
e 
entered at a given textposition, for any possible orientation.The idea is that, instead of 
he
king ea
h orientation separately, we interleave 
he
king andorientation re�ning. We perform a spiral read of the text around the position of interest, as inSe
tion 2.4. If the text 
enter does not mat
h the pattern 
enter, we �nish immediately. Otherwise,at any moment, we have a set of ranges of orientations in whi
h the pattern has mat
hed the text14



up to now. In the beginning, after we see that the 
enters mat
h, our range set 
ontains a singlerange of 360 degrees.Ea
h time we read a new text 
ell, we 
onsider all the a
tive orientation ranges. For ea
h su
hrange, the text 
ell 
enter may be 
overed by one or more di�erent pattern 
ells. If there is morethan one 
hoi
e of pattern 
ells, then we split the orientation range under 
onsideration into severalsmaller ranges and repla
e them in the set. After this operation, ea
h range gives us a single 
hoi
eof whi
h pattern 
ell should mat
h the 
urrent text 
ell. Now, we remove from the a
tive rangesall those where the text 
ell does not mat
h the pattern 
ell. We repeat the pro
ess until eitherthere are no more a
tive ranges or we have 
he
ked all the pattern 
ells for a given range. In thelatter 
ase we report the o

urren
e of P .Let us analyze this algorithm. Say that we are reading the `-th text 
ell in a spiral read. Thismeans that we are at distan
e O(p`) from the 
enter, and therefore there are O(`3=2) relevantorientations up to now (Se
tion 2.1). For ea
h su
h orientation, we will read the new text 
ell onlyif all the previous ` � 1 
ells have mat
hed in this �xed orientation, and if the text and pattern
enters have mat
hed initially. Hen
e the total 
ost of the algorithm is the sum of the text 
ellsread for ea
h orientation for every `, whi
h isO(m2)X̀=1 O(`3=2)=�` = O(1)This shows that even the least orientation-restri
ted veri�
ation 
an be done in 
onstant averagetime if we 
leverly interleave 
he
king and orientation restri
tion. Note that the algorithm 
an useba
ktra
king instead of a
tually keeping a set of a
tive orientations.It is interesting that, using this smart veri�
ation te
hnique, we would obtain O(n2) averagesear
h time, just by 
he
king every text 
ell.If we use the te
hnique for veri�
ation of mat
hing features, then the initial angle range will bemu
h smaller than the 360 degrees we start with. Indeed, all the pattern 
ells 
loser to the 
enterthat the farthest feature 
ell are 
he
ked with a single orientation, and the in
remental pro
essdes
ribed above is started only in order to 
he
k 
ells that are farther away.Note that this result holds even if the 
ell values are not uniformly distributed in the range1 : : : �. It is enough that there is an independent probability p < 1 of mat
h between a randompattern 
ell and a random text 
ell, in whi
h 
ase � is repla
ed by 1=p.5.3 AnalysisThe average sear
h time of the suÆx automaton for s features of length u is O(n2 log�(su)=(r(u�log�(su)))): There are su feature suÆxes to mat
h, so we examine O(log�(su)) 
hara
ters onaverage before abandoning ea
h text window, and shift the window by O(u � log�(su)) positions.We are sear
hing for s = O(rumax(r; u)) features (
ounting all their rotations). Finally, we s
anonly every r-th row of the text.The veri�
ation time per feature that mat
hes is O(1) as explained, and there areO(rumax(r; u)=�u) features mat
hing ea
h text position on average. This results in a total sear
h
ost of O n2r  log�(ru2max(r; u))u� log�(ru2max(r; u)) + rumax(r; u)�u !!15



The optimum is at r = u = �(m), whi
h leads to total average timeO(n2(log�(m)=m2 +m2=�m)) = O(n2 log�(m)=m2)whi
h is average-optimal. So the exa
t mat
hing problem 
an be solved in optimal average timeO(n2 log�(m)=m2). The spa
e requirement of the suÆx automaton is O(m4).Again, this analysis is valid for non-uniformly distributed 
ell values, by repla
ing 1=� by p, theprobability of a mat
h between random pattern and text 
ells.If we want to make this algorithm worst-
ase optimal at the same time, we must resort to theO(m3) veri�
ation te
hnique of Se
tion 4 instead of our 
onstant-time veri�
ation. In this 
ase theaverage sear
h 
ost with r = u = �(m) stays optimal:O(n2(log�(m)=m2 +m3 m2=�m)) = O(n2 log�(m)=m2)5.4 Indexed Sear
hingLet us now 
onsider that we have built a sistring trie over T (Se
tion 2.5). A simple sear
h approa
his to 
onsider all the O(m3) pattern orientations in turn and sear
h ea
h one in the sistring trie.To 
he
k the pattern at a given orientation we have to see in whi
h order the pattern 
ells have tobe read so that they mat
h the reading order of the sistring trie 
onstru
tion.Figure 3 shows the reading order indu
ed in the pattern by a rotated o

urren
e, using thespiral reading order given in Figure 2. For ea
h possible rotation we 
ompute the indu
ed readingorder, build the string obtained by reading the pattern in that order from its 
enter, and sear
h thatstring in the sistring trie. Note in parti
ular that some pattern 
ells may be read twi
e and othersmay not be 
onsidered at all. Observe that in our example the 
ells numbered 30, 32, 34, and 36are outside the maximum 
ir
le 
ontained in the pattern, and are therefore ignored in the sistringtrie sear
h. This is be
ause those values 
annot be used unless some trie levels are skipped in thesear
h, whi
h would mean entering into all the bran
hes after reading 
ell number 20. Rather, weprefer to 
he
k the surviving 
andidates dire
tly in the text. Finally, text 
ells 21-29, 31, 33, 35,and 37- all fall outside the pattern.As in Se
tion 5.2, we 
an do better. We do not need to 
onsider all the O(m3) orientationsfrom the beginning, be
ause of two reasons: (1) when we are not reading far away from the pattern
enter, many of those rotations are indistinguishable; (2) we may have found no string in the textequal to the pattern long before reading all the pattern 
ells.The main idea is to use the sistring trie to verify all the text positions simultaneously. Justas in Se
tion 5.2, we start by 
onsidering the pattern 
enter and a single orientation range of 360degrees. We re�ne the relevant angles as we get farther away from the 
enter, so that there isalways a single pattern 
ell to mat
h. However, instead of dire
tly 
omparing a parti
ular text 
ellagainst our pattern 
ell, we try to des
end in the trie using the 
urrent pattern 
ell value. In thisway, we sear
h all the possible text positions at the same time.Our algorithm reads deeper and deeper 
ells in the sistring trie, and 
onsiders �ner rotations(hen
e entering more than one trie bran
h at times) as it gets farther away from the pattern 
enter.When the pattern 
ells are exhausted (that is, we have rea
hed the end of the pattern in our spiralread), the rest of the pattern 
ells are dire
tly veri�ed in the text individually, for ea
h text positionthat has survived up to now, using the algorithm of Se
tion 5.2.16
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(a) (b) (c)Figure 3: Reading order indu
ed in the pattern by a rotated o

urren
e. (a) shows thepattern superimposed on the image, (b) shows the enumeration of the indu
ed reading or-der, and (
) shows the 
olor values for the pattern 
ells. The 
orresponding string ish3; 2; 4; 2; 6; 7; 5; 5; 12; 9; 19; 9; 5; 6; 7; 3; 1; 7; 1; 1; 3i. Cells numbered 30, 32, 34, and 36 are ignored inthe trie sear
h.Let us analyze this algorithm. The number of rotations grows as we get farther from the 
enter,and they are tried only on the existing bran
hes of the sistring trie. That is, when we rea
h depth` in the sistring trie we are 
onsidering a pattern 
ell whi
h is at distan
e O(p`) from the 
enter,and hen
e we need to 
onsider O(`3=2) di�erent rotations (Se
tion 2.1).The fa
t that on average every di�erent string up to length h = O(log� n2) exists in the sistringtrie (Se
tion 2.5) means that we always enter until depth h. The number of sistring trie nodes
onsidered up to depth h is thus hX̀=1 `3=2 = O(h5=2)At this point we have O(h3=2) 
andidates that are sear
hed deeper in the sistring trie. Now,ea
h su
h 
andidate 
orresponds to a node of the sistring trie at depth h, whi
h has O(1) 
hildrenbe
ause there exist O(1) text sistrings that share this pre�x with the pattern (Se
tion 2.5, a \pre�x"here means a spiral around the pattern 
enter).A simple way to see this pro
ess is to 
onsider that following a unary path is equivalent todire
tly 
he
king in the text ea
h 
andidate that arrived at depth h, instead of using the sistringtrie. Indeed, this is what a
tually happens be
ause the trie does not store the �nal unary path,but stores a pointer to the text 
oordinate as soon as the pre�x be
omes unique. Hen
e, we mayresort to dire
t text veri�
ation long before rea
hing a border of the pattern. There are O(h3=2)
andidates and ea
h one 
an be 
he
ked in O(1) time using the result of Se
tion 5.2. Hen
e thispart of the sear
h is dominated by the O(h5=2) time spent in the top part of the trie.Therefore we have a total average sear
h 
ost of O((log� n)5=2). This assumes that the patternis large enough, that is, that we 
an read h 
hara
ters from the pattern 
enter in spiral form withouthitting the border of the pattern. This is equivalent to the 
onditionm2 � 4� log� n2whi
h is a pre
ondition for our analysis. Smaller patterns leave us without the help of the sistring17



trie long before we have eliminated enough 
andidates, so their text veri�
ation is expensive(O(m3n2=�m2�=4), that is, on average O(�m2(1��=4)) time per result delivered). Note, in
iden-tally, that this would be optimal if we sear
hed for 
ir
ular instead of square patterns, be
ause evenif the pattern were very small, on
e the pattern 
ells were all used we would have all the results inthe subtrees of our 
urrent trie node. Hen
e we would work O(1) time per delivered result, whi
his optimal.6 The MinMax ModelIn the MinMax model a mat
h requires that the 
olor of ea
h text 
ell must be between the minimumand maximum pattern 
olors in the 9-
ell neighborhood of the 
orresponding pattern 
ell. As itwas shown in Se
tion 3.1, the probability of mat
hing between a random pattern and text 
ell inthis model is p = 4=5. In pra
ti
e p is mu
h smaller than 4=5, as images do not usually have many
olor 
hanges between neighboring 
ells [19℄.6.1 Sequential Sear
hingIn prin
iple, we 
an apply our exa
t sear
h algorithm as is, just taking 
are of pre
omputing therange of 
olor values that mat
h ea
h pattern 
ell in O(m2) time before the sear
h.The simultaneous sear
h for multiple pattern features, however, is rather di�erent now. Ea
hpattern 
ell has a range of values rather than a single value. Standard string mat
hing algorithmsdo not work in this s
enario. The most similar problem is 
alled \string mat
hing with 
lasses",where ea
h pattern position mat
hes a set of alphabet values. Although there are some solutionsfor single-pattern sear
hing, no good multipattern sear
h algorithms exist [28℄.We opt for expanding the pattern set into the full set of all simple patterns that may resultfrom the given ranges. That is, if a pattern of length 2 has the ranges h[1 : : : 3℄; [2 : : : 3℄i then weexpand it into the 6 patterns h1; 2i, h1; 3i, h2; 2i, h2; 3i, h3; 2i, h3; 3i.If we 
all �, where 1 � � � �, the random variable telling the range of values of ea
h feature
ell, then this expansion yields O(�u) simple features for ea
h feature of length u. Hen
e, returningto the analysis in Se
tion 5.3, we are now sear
hing for O(�urumax(r; u)) simple features of lengthu. It is not 
onvenient, however, to analyze the sear
h time of a a suÆx automaton for this numberof patterns, be
ause the set is not a general set of patterns, but a rather parti
ular one.Let us redo the analysis of Se
tion 2.6 for our parti
ular 
ase. Assume that we have read `
hara
ters from the suÆx of a text window with the suÆx automaton. Let us 
all s the string justread. There are rumax(r; u) di�erent patterns where s 
ould mat
h. Inside ea
h of these, thereare u� `+ 1 positions where s 
ould mat
h. Finally, for ea
h su
h position, there are �` possiblevalues for s that mat
h that position. Overall, the probability of s mat
hing any substring of anysear
h pattern is ru2max(r; u)�`=�`. This is smaller than 1=u2 provided ` � log�=� ru4max(r; u),so for now on let this be the value of `. Now pessimisti
ally assume that ` 
hara
ters are alwaysread, that if at that point s mat
hes any substring of any pattern (with probability 1=u3) thenwe 
he
k the window (at 
ost O(u) with an Aho-Corasi
k ma
hine [1℄) and shift the window by1 position, and that otherwise we shift the window by u � ` positions. On a text of length nthe number of window veri�
ations is on average O(n=u2), and ea
h 
osts O(u), so this part adds18



a negligible O(n=u) 
ost. The other 
ase dominates, yielding an overall average sear
h time ofO(n log�=�(ru4max(r; u))=(u � log�=�(ru4max(r; u))).To 
ontinue, 
onsider that the expe
tation of � is (4=5)�, and therefore log�=� x = log5=4 x.Substituting, we have that the sear
h 
ost for all the features isO n2r  log5=4(ru4max(r; u))u� log5=4(ru4max(r; u))!!where the optimum is 
learly r = u = �(m), so as to obtain O(n2 log(m)=m2) sear
h time.Veri�
ations still 
ost O(1) time using the te
hnique of Se
tion 5.2, but their number has raisedto O(n2�urumax(r; u)=�u) = O(n2rumax(r; u)=(5=4)u). This is smaller than the sear
h 
ostprovided we 
hoose u > 5 log5=4m. This is no problem sin
e u = �(m).A remaining problem is that the size of the automaton is exponential in m, be
ause we store�u = �O(m) features. A way to 
ir
umvent this is as follows. We store every `-sized substring ofevery pattern. Instead of running the real dawg-mat
h algorithm, we run something mu
h 
loserto its pessimisti
 (but still a

urate) analysis: We read at most ` 
hara
ters in the window, andif the string read still appears in some pattern, then we verify the window with Aho-Corasi
k andshift it by 1 position. As shown with our analysis, this still has the optimal 
omplexity. However,now the spa
e usage is O(�`ru2max(r; u)) = O(m7 log5=4(�)�3), whi
h is polynomial in m.If we wish to retain the optimal worst-
ase 
omplexity, then we would pay O(m3) for veri�
a-tions. We need to 
hoose u > 8 log5=4m and spend a bit more spa
e for the automaton (but stillpolynomial in m).6.2 Indexed Sear
hingIndexed sear
hing 
an be adapted as well. In this 
ase, we do not enter into a single bran
h of thesistring trie. Rather, for ea
h pattern 
ell we follow all the bran
hes whose 
olor is between theminimum and maximum neighbor of that pattern 
ell. The number of bran
hes qualifying for thenext pattern 
ell is again a random variable �.Sin
e there are now O(�`) possible strings that mat
h the pattern pre�x of length `, and O(`3=2)rotations for ea
h, we tou
h hX̀=1 `3=2�` = O(h3=2�h)sistring trie nodes up to depth h, be
ause all those qualifying strings exist up to that depth. Fromthat depth on, we verify the remaining O(h3=2�h) 
andidates one by one using the O(1) veri�
ationte
hnique. Therefore, the total 
omplexity isO(h3=2�h) = O �(log� n)3=2n2 log��� = O �(log� n)3=2n2(1�log� 5=4)� :where the last step is based on that � = (4=5)� on average.7 The Mismat
hes ModelThis model is an extension of the exa
t mat
hing model. An additional parameter k is providedto the sear
h algorithm, su
h that a mismat
h o

urs only when more than k 
hara
ters have not19



mat
hed. In this se
tion we use � = k=m2. We require 0 � � < 1, as otherwise the pattern wouldmat
h everywhere.7.1 A Robust AlgorithmWe �rst present a 2D version of the in
remental algorithm of [20℄, whi
h runs in O(k3=2n2) averagetime to sear
h for a pattern in a text allowing rotations and at most k mismat
hes. This algorithmworks for any k and 
onverges smoothly to the worst 
ase O(m3n2) when k tends to m2.Re
all the veri�
ation te
hnique proposed in Se
tion 4. Then 
onsider the k mismat
hes prob-lem. As proven in Appendix A, the mat
hing probability with k mismat
hes be
omes exponentiallyde
reasing as soon as we 
ompare more than kH = �(k) 
hara
ters.This suggests the following algorithm for the k-mismat
hes 
ase. Che
k, for every text position,whether or not it mat
hes the pattern with k mismat
hes. However, do not use the whole patternP , but rather the smallest subpattern P 0 of P , with the same 
enter 
ell, of size m0 �m0 > kH .Then use the veri�
ation algorithm of Se
tion 4 at ea
h text position. This has a worst 
ase 
ostof O(m03n2).Now, for those text positions where P 0 has been found, 
ontinue the veri�
ation until the wholeP has been mat
hed or dis
arded. For this stage, use the veri�
ation algorithm of Se
tion 5.2.Sin
e at this point we have examined more than m02 > kH 
ells, the probability of 
ontinuing theveri�
ation is exponentially de
reasing at any moment, and therefore 
ompleting the veri�
ationadds only O(1) 
ost per text 
ell on average.Overall, we have an average sear
h time of O(m03n2), whi
h is O(k3=2n2). Note that thisalgorithm assumes nothing on how we 
ompare the 
ell values, so any other distan
e measure than
ounting the mismat
hes 
an be also used.We show now how to improve this time 
omplexity. The results we present next 
ompletelyovershadow our previous results for this model [16℄.7.2 Approximate FeaturesIf there are k mismat
hes or less in an o

urren
e of P and we 
hoose r features as for exa
tsear
hing, then at least one of the features must appear in the o

urren
e with at most bk=r
mismat
hes. Otherwise, ea
h of the r features appears with at least bk=r
 + 1 mismat
hes, for atotal of r(bk=r
+ 1) > r(k=r) = k mismat
hes.This folklore property 
an be used as follows. Instead of s
anning one text row out of r as inSe
tion 5.1, we s
an one text row out of br=`
, for some 1 � ` � r. This guarantees that at least `features of every potential o

urren
e are s
anned. Hen
e the above argument implies that we 
ansear
h for all the r features allowing bk=`
 mismat
hes in their o

urren
es. When we �nd su
h afeature, we 
he
k the 
omplete pattern.It turns out that it is trivial to simplify the one-dimensional multipattern approximate sear
halgorithms presented in Se
tion 2.7 so that they permit only mismat
hes (that is, Hamming dis-tan
e). Just the prepro
essing has to be 
hanged to pre
ompute Hamming instead of Levenshteindistan
es.Let us now adapt the analysis. For the optimal algorithm, the windows 
an be of length m=2now, instead of (m � k)=2. The reason is that an approximate o

urren
e has length m (instead20



of a minimum length of m � k under Levenshtein model). Hen
e the �rst requirement on 
 is2k=m < 
. Also, we show in Appendix A that, under the mismat
hes model, p(`; 
) = 
`=p`, where
 = 1=(�1�


(1 � 
)1�
) and 
 < 1 for 
 < 1 � e=�. Therefore we get again ` = log1=
(m3r2) =�(log�(m3r2)=(1� 
)) and the analysis follows the same. The 
hange only a�e
ts the 
ondition ofappli
ability, to 2k=m < 
 < 1� e=�. We 
an obtain an optimal algorithm by 
hoosing a 
onstant
 in the interval, whi
h is not empty as long as k=m < (1� e=�)=(2 � e=�) = 1=2 � e=(4� � 2e) =1=2 � O(1=�). The linear time algorithm follows the same path, the only 
ondition on k=m beingnow k=m < 1� e=�.7.2.1 Using an Optimal AlgorithmWe sear
h one out of r=` text rows. Our r features are of length u, and the number of relevantrotations for ea
h is O(umax(r; u)). Hen
e the total number of length-u strings sear
hed for isO(rumax(r; u)). The number of mismat
hes permitted is k=`. So the sear
h 
ost isO n2r=` �k=`+ log�(ru2max(r; u))�u ! = O n2ru �k + ` log�(ru2max(r; u))�!It is 
lear that ` should be as small as possible. Yet, we have to ful�ll the 
ondition that thenumber of mismat
hes divided by pattern length should be away from 1=2. This means (k=`)=u �1=2 � O(1=�), and therefore ` � 2k=u(1 + O(1=�)). Sin
e we want the smallest possible `, let usset ` = max(1; 2k=u(1 +O(1=�))).Let us �rst assume u > 2k(1 +O(1=�)) and hen
e ` = 1. The sear
h 
ost be
omesO n2ru �k + log�(ru2max(r; u))�!where it is 
lear that we prefer the maximum possible u = r = �(m), whi
h yields the optimalsear
h time O n2m2 (k + log�m)!under the 
ondition u > 2k(1 + O(1=�)). The maximum possible value for u su
h that r =�(m) and still r features of length u 
an be extra
ted from the pattern rotated 45 degrees isu = mp2� �2 and r = �m. Hen
e the 
ondition under whi
h we 
an rea
h optimal sear
h time is� < 1=(p2m)(1 +O(1=�)).Let us now assume u � 2k(1 + O(1=�)) and ` = 2k=u(1 + O(1=�)). Hen
e we have that thesear
h 
ost is O n2ru  k + k log�(ru2max(r; u))u !!where again the best 
hoi
e is to have the largest possible u and r, so we set r = �(m) andu = min(2k(1+O(1=�));p2m). First assume 2k(1+O(1=�)) � p2m and hen
e u = 2k(1+O(1=�)).Then the sear
h 
ost is O n2mk (k + log�m)!21



whi
h is valid only for 2k(1 +O(1=�)) � p2m, that is, � � 1=(p2m)(1 +O(1=�)). This bran
h isnot interesting, as it is not optimal and is valid in the same k range of the optimal result. Hen
eassume p2m � 2k(1 +O(1=�)) and then u = �(m). The sear
h 
ost be
omesO n2m2 �k + km log�m�! = O n2km2 !and this is valid for � � 1=(p2m)(1+O(1=�)). There is another 
ondition of appli
ability, however,namely ` � r. This means 2k=u(1 +O(1=�)) � r, that is, 2k(1 +O(1=�)) � ru. The maximum ruthat works for all rotations (in parti
ular, 45 degrees) is rea
hed for r = u = m=p2, and thereforethe appli
ability 
ondition is � � 1=4(1 +O(1=�)).To summarize, we have optimal sear
h time O(n2(k+log�m)=m2) for � < 1=(p2m)(1+O(1=�))(
hoosing u = mp2� �2, r = �m, ` = 1) and sear
h time O(n2k=m2) for 1=(p2m)(1 + O(1=�)) �� � 1=4(1 +O(1=�)) (
hoosing u = r = m=p2, ` = 2k=u(1 +O(1=�))).7.2.2 An Algorithm for Higher Error LevelsThe se
ond algorithm in [13℄ is O(n) time for an error level of at most 1 � O(1=�). If we useit for sear
hing we get O(n2`=r) sear
h time. Again, we want to minimize ` and therefore ` =max(1; k=u(1 + O(1=�))). The same options as before appear. If k=u(1 + O(1=�)) < 1 then ` = 1and we get a sear
h time of O(n2=m) that works for � < p2=m(1+O(1=�)). If k=u(1+O(1=�)) � 1then ` = k=u(1 + O(1=�)) and we have u = min(k(1 + O(1=�));p2m). If k(1 + O(1=�)) � p2mwe get again O(n2=m) time, so this bran
h is not interesting. If k(1 + O(1=�)) > p2m thenwe get O(n2k=m2) time. The other appli
ability 
ondition is ` � r, whi
h translates into � �1=2(1 +O(1=�)).This algorithm gives us two interesting results. First, for the range 1=(p2m)(1 + O(1=�)) �� � p2=m(1 +O(1=�)), we have O(n2=m) time (
hoosing u = mp2� �2, r = �m, ` = 1). Se
ond,for the range p2=m(1 + O(1=�)) � � � 1=2(1 + O(1=�)), we have O(n2k=m2) time (
hoosingu = r = m=p2, ` = k=u(1 + O(1=�))). Both are better or equal than the O(n2k=m2) resultobtained with the optimal algorithm, and hen
e using the optimal algorithm remains interestingonly for � � 1=(p2m)(1 +O(1=�)).Finally, to simplify the presentation of the results, noti
e that all the three relevant 
omplexitiesare indeed the optimal O(n2(k + log�m)=m2) in the range of k values where they are appli
able.So, overall, we have an optimal algorithm for k=m2 � 1=2(1 + O(1=�)). The spa
e requirement ofthe feature sear
h algorithm is O(u5r4) = O(m9), polynomial in m.7.3 Veri�
ationWe have not 
onsidered up to now how the pattern should be veri�ed on
e a mat
hing feature hasbeen found. This time veri�
ation at O(1) 
ost is not possible be
ause we must let k+1 mismat
heso

ur before abandoning the veri�
ation.The te
hnique des
ribed in Se
tion 7.1 is useful here. As we have shown, we 
an 
he
k for allthe potential o

urren
es 
entered any text 
ell in O(k3=2) average time.The next 
on
ern is how many veri�
ations we perform on average. Using the same reasoningof Appendix A, the probability of a pie
e of length u mat
hing with k=` mismat
hes is O(
u=pu),22



where 
 < 1 as long as � = (k=`)=u < 1� e=�. On the other hand, we sear
h for rumax(r; u) su
hfeatures, so the total veri�
ation 
ost isO(n2k3=2rumax(r; u)
u=pu) = O(n2k3=2m5=2
�(m))where the equality is based on our previous de
isions r = u = �(m). This is negligible 
omparedto the sear
h time as long as 
 < 1, that is, � = k=(u`) < 1 � e=�. In our algorithms we havetwo 
ases: (i) ` = 1, u = p2m and k=m2 � p2=m(1 + O(1=�)), where � = k=(p2m) � 1 � e=�implies k=m � p2(1� e=�), whi
h mat
hes our previous 
onditions; and (ii) ` = k=u(1 +O(1=�)),u = m=p2 and k=m2 � 1=2(1 + O(1=�)), where � = k=(k(1 + O(1=�))) = 1 + O(1=�) < 1 � e=�,also mat
hing our previous 
onditions. Hen
e veri�
ations do not introdu
e any new 
onstraints.In order to a
hieve O(m3n2) worst 
ase time simultaneously, we should use the algorithm ofSe
tion 4 for veri�
ations. This does not 
hange the 
onditions under whi
h veri�
ations arenegligible (that is, 
 < 1), so the average 
ase stays the same.7.4 Indexed Sear
hingThe idea of traversing all the relevant bran
hes of the sistring trie gives several 
ompli
ations now.Even for a �xed rotation, the number of sistring trie nodes to 
onsider grows exponentially withk. To see this, note that at least k 
hara
ters have to be read in all the sistrings, whi
h gives aminimum of 
(�k) nodes to pro
ess. This means in parti
ular that if k � h then we will 
onsiderall the n2 sistrings and the index will be of no use, so we assume k < h; still stri
ter 
onditions willappear later. We �rst present a standard te
hnique and then a pattern partitioning te
hnique.As in Se
tion 6.2, we enter into the trie and at the same time perform the rotations in
rementally.This time, however, we do not follow only the bran
h whose label 
oin
ides with the next 
hara
terof the pattern. Rather, we enter into all bran
hes and keep a 
ount of the number of mismat
hesfound up to now. Only when this 
ounter ex
eeds k 
an we abandon a bran
h.As explained, up to depth k we enter into all the bran
hes of the trie. Sin
e we assume h > k,we have to analyze whi
h bran
hes we enter at depths k < ` � h. Sin
e all those strings exist inthe sistring trie, this is the same as to ask how many di�erent strings of length ` mat
h a patternpre�x of length ` with at most k mismat
hes. Resorting again to Appendix A, we have that �k̀��kis a tight upper bound. To this we have to add the fa
t that we are sear
hing for O(`3=2) di�erentstrings at depth `. Hen
e, the total number of trie nodes tou
hed up to level h iskX̀=1 `3=2�` + hX`=k+1 `3=2 k̀!�k = O h3=2�k hk!!After level h we are left with a number of 
andidate text positions to verify. There are two
ases to distinguish here, a

ording to Appendix A. First, if h > kH = k=(1� e=�), then when westart the veri�
ation we have already seen enough 
hara
ters so that the mat
hing probability isexponentially de
reasing. Hen
e we 
an apply an in
remental veri�
ation as in Se
tion 5.2 and itwill 
ost O(1) time per veri�
ation. Se
ond, if h � kH , then it holds that �hk�=�h�k = 
(h�1=2),and therefore just the trie sear
h 
osts h3=2�k�hk� = 
(hn2), whi
h is not sublinear.23



Therefore, the 
ondition for a sublinear sear
h time is kH < h < m2. This in parti
ular impliesthat � < 1� e=�. In this 
ase the sear
h 
ost isO h3=2�k hk!! = O �(2 log� n)k+3=2�k�7.5 Partitioning the Pattern into Pie
esThe above sear
h time is polylogarithmi
 in n, but exponential in k. We present now a patternpartitioning te
hnique that obtains a 
ost of the form O(n2�) for � < 1. The idea is to split thepattern into j2 pie
es (j divisions a
ross ea
h 
oordinate). If there are at most k mismat
hes in ano

urren
e, then at least one of the pie
es must have at most bk=j2
 mismat
hes. Otherwise, ea
hpie
e would need at least bk=j2
 + 1 mismat
hes, and the total number of mismat
hes would bej2(bk=j2
+ 1) > j2(k=j2) = k.So the te
hnique is to sear
h for ea
h of the j2 pie
es (of size (m=j)�(m=j)) separately allowingbk=j2
 mismat
hes, and for ea
h (rotated) mat
h of a pie
e in the text, go to the text dire
tly and
he
k if the mat
h 
an be extended to a 
omplete o

urren
e with k mismat
hes. Note that the �value for the pie
es stays the same as for the whole pattern, k=m2.The 
enter-to-
enter assumption does not hold when sear
hing for the pie
es. However, forea
h possible rotation of the whole pattern with the 
enter-to-
enter assumption, it is possible to�x some position of the 
enter of ea
h pie
e inside its text 
ell. The te
hniques developed to readthe text in rotated form 
an be easily adapted to introdu
e su
h a �xed o�set at the 
enter of themat
hing subpattern.Let us 
onsider a pie
e of size (m=j)� (m=j) whi
h is at distan
e �(m) from the 
enter of thepattern. The number of relevant rotations for that pie
e is O((m=j)2m) = O(m3=j2) (Se
tion 2.1).Sin
e it is problemati
 to 
onsider a spiral sear
h with in
remental rotations for a pie
e that is not
entered, let us devise a more brute-for
e approa
h. We sear
h for ea
h of the O(m3=j2) rotationsof ea
h of the j2 pie
es separately, for a total of O(m3) independent sear
hes in the trie.Hen
e the sear
h 
ost for this te
hnique be
omes O(m3) times the 
ost to sear
h for a pie
e(with a �xed rotation and 
enter o�set) in the sistring trie plus the 
ost to 
he
k for a 
ompleteo

urren
e if the pie
e is found.If we 
onsider that (m=j)2 � h, then all the strings 
orresponding to pattern pie
es exist in thetrie. Therefore the 
ost to traverse the sistring trie for a pie
e at a �xed rotation is equivalent to thenumber of strings that 
an be obtained with k=j2 mismat
hes from it. A

ording to Appendix A,this is U =  (m=j)2k=j2 !�k=j2On average there are n2=�(m=j)2 text sistrings mat
hing ea
h string in U . Ea
h of these stringshas to be 
he
ked in the text for a 
omplete o

urren
e. Sin
e the rotation is �xed, the 
ost to 
he
kan o

urren
e is O(k), whi
h is the average time needed to �nd k mismat
hes when 
omparing twostrings (Appendix A). So the total amount of veri�
ation work per pie
e is Ukn2=�(m=j)2 and theoverall 
ost is m3 U + Uk n2�(m=j)2 !24



A

ording to Appendix A, U=�(m=j)2 is of the form 
(m=j)2=(m=j), where 
 < 1 if � < 1� e=�.Sin
e in 
ase � � 1 � e=� the se
ond term is not sublinear, let us assume 
 < 1. It 
an alsobe seen in Appendix A that 
 � 1=�. Hen
e, the �rst term of the formula, U , is of the form
(m=j)2�(m=j)2=(m=j) = (
�)(m=j)2=(m=j), whi
h de
reases with j. The se
ond term of the formulais of the form kn2
(m=j)2=(m=j) and in
reases with j.The optimum is therefore found when both terms meet, that is, j = m=p2 log� n(1 + o(1)),whi
h in
identally is away by a lower order term from our limiting 
ondition (m=j)2 � h. (Thefa
t that it is away only means that the analysis is pessimisti
, be
ause in the last levels not all thedi�erent sistrings exist in the trie.)Expanding the value of 
, we 
an writeU = � ����(1� �)1���(m=j)2 = (m=j) = (kn2)�+HH� (�)=qlog� nwhere the equality holds be
ause the optimal j satis�es (m=j)2 = log�(kn2). For this sake we havede�ned HH� (�) = �� log�(�) � (1� �) log�(1� �):Hen
e the overall sear
h time isO m3kplog� n n2(�+HH� (�))!This bound is sublinear as long as � < 1 � e=�. On the other hand, we 
an 
onsider to use alarger j, violating the assumed 
ondition (m=j)2 � h so as to redu
e the veri�
ation time. However,the sear
h time will not be redu
ed and therefore the time bound will not de
rease.Note that this time there is no need that the trie be deep enough, as we indeed expe
t thatthe sear
h for the pie
es will stop before rea
hing the end of the trie. This time the sublinearityis obtained by making the pie
es large enough to ensure that they will not appear in the text onaverage. All we require is kH � m2 and h � m2 (so j � 1).8 The A

umulated ModelEven more powerful is the a

umulated model, whi
h provides a mismat
hes-like sear
h 
apabilityfor gray-level images. Here, the sum of the absolute di�eren
es between text and pattern 
olorsmust not ex
eed k. In this se
tion we 
all � = k=m2 as before, but this time 0 � � � �.8.1 Sequential Sear
hingA �rst relevant 
hoi
e is to apply the algorithm of Se
tion 7.1 to this model. A

ording to Ap-pendix B, on
e we have tried more than kA = O(k=�) 
ells, the probability of mat
hing withthreshold k be
omes exponentially de
reasing. With the same method of Se
tion 7.1 we get anO((k=�)3=2n2) average time algorithm for this model.We 
an improve the sear
h by using again the redu
tion to one-dimensional multipattern ap-proximate sear
hing, as in Se
tion 7.2. Again, it is trivial to adapt the one-dimensional algorithms25



des
ribed in Se
tion 2.7 so that they use a distan
e de�ned as the sum of the absolute di�eren
esbetween pattern and text 
hara
ters. Just the prepro
essing has to be 
hanged to pre
ompute thesenew distan
es instead of Levenshtein distan
es.The analysis follows the same lines of Se
tion 7.2, although this time 0 < 
 < �. As inSe
tion 7.2, windows are of length m=2 and m instead of (m � k)=2 and m � k. The probabilityp(`; 
) is obtained in Appendix B; we have p(`; 
) = 
`=p`, where 
 = 2(1 + 
)1+
=(�

), whi
h issmaller than 1 provided 
 < �=(2e) � 1. Hen
e we get again ` = log1=
(m3r2), but now we havelog(1=
) = log � + 
 log 
� (
+ 1) log(
+ 1)� log 2 = log � � log 
� log 2 +O(1=
)= log(�=(2
)) +O(1=
)and the sear
h 
ost of the optimal algorithm be
omesO� nm �log�=(2
)(rm) + k
��whi
h is not optimal in the range log�mr < k < � log(rm). In fa
t, it is simpler to assume 
 = �(�)to obtain O� nm �log(rm) + k���whi
h is not optimal in the same range, and only by an O(log �) fa
tor3. The range of appli
abilityof this solution is given by 2k=m < �=(2e) � 1, that is k=m < �=(4e) � O(1). For the linear-timealgorithm we get a limit of appli
ability of the form k=m < �=(2e) �O(1).We 
an repeat step by step the development of Se
tion 7.2, repla
ing variable k there byk0 = k=�, to make formulas as similar as possible. The only 
hanges are (1) sear
h time ofthe sublinear algorithm is O(n(log(rm) + k0)=m), (2) appli
ability of the sublinear algorithm isk0=m < 1=(4e)(1 +O(1=�)), (3) appli
ability of the linear algorithm is k0=m < 1=(2e)(1 +O(1=�)).By following all the details one arrives at O(n2(k=� + logm)=m2) time for � < �=(4e). Thespa
e remains O(m9). In
identally, the same would be obtained if we applied the te
hnique of
oarsening gray levels presented in [14℄, and 
ombined it with the algorithms for the mismat
hesmodel presented in this paper.As usual, we 
an use the veri�
ation algorithm of Se
tion 4 to a
hieve O(m3n2) worst 
ase timesimultaneously, without major 
ompli
ations.8.2 Indexed Sear
hingAs in Se
tion 7.4, we have to enter, for ea
h relevant rotation, into all the bran
hes of the sistringtrie until we obtain an a

umulated di�eren
e larger than k. We present �rst a standard approa
hand then a pattern partitioning te
hnique.We enter into all the bran
hes of the sistring trie until we 
an report a mat
h or the sum of thedi�eren
es ex
eeds k. As we show in Appendix B, the number of strings mat
hing a given string3In fa
t, this 
an be regarded as optimal if we 
onsider that the alphabet size is a 
onstant. We have not donethat in this paper for time 
omplexities. 26



of length ` under this model is at most 2`�k+`k �. Sin
e up to length h all them exist, we traversehX̀=1 `3=22` k + `k ! = O h3=22h k + hk !!nodes in the trie. As in Se
tion 7.4, we have that the 
andidate-wise veri�
ation that follows isO(1) per 
andidate provided h > kA (where kA = k(�=(2e)�1) is the limit de�ned in Appendix B),and it is not sublinear for h � kA.Hen
e for k > kA the total sear
h 
ost isO h3=22h k + hk !! = O �(k + 2 log� n)k(log� n)3=2n2 log� 2�whi
h is sublinear in n2 for � > 2. On the other hand, � = 2 means that the image is bilevel, andin that 
ase the mismat
hes model is the adequate 
hoi
e. Hen
e we obtain sublinear 
omplexity(albeit exponential in k) for kA < 2 log� n.8.3 Partitioning the Pattern into Pie
esAs in Se
tion 7.5, we 
an partition the pattern into j2 subpatterns that are sear
hed exhaustivelyin the sistring trie. Again 
onsidering (m=j)2 � h we have a total sear
h 
ost ofm3 U + Uk n2�(m=j)2 !where this time U = 2(m=j)2 (m=j)2 + k=j2k=j2 !a

ording to Appendix B. Again, looking at the detailed formula, we have that the �rst termde
reases and the se
ond term in
reases as a fun
tion of j. The optimum is found when both termsmeet, whi
h is again j = m=p2 log� n(1 + o(1)), 
onsistent with our 
ondition (m=j)2 � h. Infa
t, the se
ond term is de
reasing only for � < �=(2e) � 1 (or kA < m2), otherwise the optimumis j = 1, i.e., no pattern partitioning.For this optimal j, the overall 
omplexity isO m3kplog� n n2(log� 2+HA� (�))!where we have de�ned HA� (�) = �� log�(�) + (1 + �) log�(1 + �):This 
omplexity is sublinear as long as � < �=(2e) � 1. Again, we 
an 
onsider to use a largerj value but the 
omplexity does not improve. 27



9 Alternative Mat
hing ModelsIn this se
tion we 
onsider the impli
ations of 
hanging some of the assumptions we have beenworking on. We re
onsider the de
isions of (1) de�ning mat
hing in terms of text 
ell 
entersrather than pattern 
ell 
enters; (2) assuming the pattern 
enter has to mat
h a text 
enter; and(3) sti
king to the bidimensional 
ase.9.1 Considering Pattern CentersWe have 
onsidered up to now that text 
enters must mat
h the value of the pattern 
ells theylie in. This has been done for te
hni
al 
onvenien
e, although an equally reasonable alternativemodel is that the pattern 
ells must mat
h the text 
olor where their 
enters lie in the text. Inappli
ations it is most likely that one 
an 
hoose either way.With respe
t to sequential algorithms, the main problem is related to extra
ting pattern featuresto sear
h for. There may be more than one pattern 
enter lying at the same text 
ell, and even nopattern 
enter at all. This means that, when sear
hing for features in the text, it might be thatour sear
h pattern has some positions that do not have to be mat
hed against the text, or severalpositions that have to be mat
hed against the same text 
hara
ter. The resulting string mat
hingproblem 
an hardly be solved in optimal or even linear time, so all the average-optimal 
omplexitieswould be lost.Veri�
ation, on the other hand, will not be a�e
ted by this model 
hange, be
ause ea
h pattern
ell read will have to mat
h against some text 
ell. We will still be able to 
he
k ea
h text position inO(1) time for the exa
t and minmax model, O(k3=2) time on the mismat
hes model and O((k=�)3=2)time on the a

umulated model. Probably the only reasonable 
hoi
e to deal with this situationis to use these veri�
ation algorithms to 
he
k every text position, with a 
omplexity equal to n2times the veri�
ation 
ost per 
ell.Indexed sear
hing presents similar 
ompli
ations, but some surprising opportunities too. Usingpattern 
enters means that in some bran
hes of the sistring trie we may have more than one
ondition to meet (whi
h may be in
ompatible and then the bran
h 
an be abandoned under somemodels) or there may be no 
ondition at all, in whi
h 
ase we have to follow all the bran
hes atthat level of the trie.On average, however, we still have �(`) 
onditions when entering in the sistring trie with apattern string of length `, and therefore all the time bounds remain the same. The reason behindthis is the same that permits retaining the 
omplexity of veri�
ation.We present two 
ases where it turns out to be possible to develop new algorithms. The �rst isfor the exa
t mat
hing model, where we 
an have a larger index that sear
hes faster than with thestandard model. The se
ond is for the minmax model.9.1.1 The Exa
t ModelIn the normal index the text sistrings are indexed on
e at a �xed rotation (zero). When a givenpattern rotation is tried, the pattern is read in rotated form, in an order driven by the text 
enters.This be
omes problemati
 when using pattern 
enters, be
ause some text 
ells must be skipped andothers read more than on
e. However, the dual approa
h be
omes feasible. Imagine that the text28



sistrings are read in all the rotated forms. The way to do this is to assume that a rotated patternis superimposed onto it and to read the text 
ells where the pattern 
ells, read in order, fall. Thise�e
tively 
orresponds to the model we are 
onsidering in this se
tion, and would be problemati
under the text-
enters model.We 
onsider then indexing the rotated versions of the text sistrings, instead of 
onsidering therotated versions of the pattern at sear
h time. Hen
e, the pattern is just sear
hed with no rotations.Imagine that we index all the rotations of the text up to depth H. This means that there will beO(n2H3=2) sistrings, and the size of the sistring trie will grow a

ordingly.The bene�t 
omes at sear
h time: In the �rst part of the sear
h we do not need to 
onsiderrotations of the pattern, sin
e all the rotated ways to read the text are already indexed. Sin
e weindex O(n2H3=2) strings now, all the di�erent sistrings will exist until depth h0 = log�(n2H3=2) =2 log� n + 3=2 log�H. We �rst assume that H � h0. This means that until depth H we payO(H). After that depth all the surviving positions and rotations are individually 
onsidered. Sin
eH � h0, there are O(1) 
andidates, whi
h are 
he
ked in 
onstant time ea
h. Hen
e the overall 
ostis O(H), and the best 
hoi
e is to take H = h0. Therefore h0 must satisfy h0 = 2 log� n+3=2 log� h0,so h0 = x log� n, for any x > 2, will do.This makes the total sear
h time O(log� n) on average. The spa
e 
omplexity be
omes nowO(n2(log� n)3=2). The same te
hnique 
an be used for the mismat
hes and a

umulated model, butin that 
ase the 
omplexity does not improve signi�
antly.9.1.2 The MinMax ModelIn a model where pattern 
enters are used, it might be more natural to require that the 
olor ofea
h pattern 
ell is between minimum and maximum 
olors of the text 
ells neighboring the onewhere the 
enter of the pattern 
ell lies. However, this time the indexed algorithm 
annot be used.This is be
ause the 
ondition to enter into a bran
h of the sistring trie does not depend only on itsvalue but also on its neighbors.A possible solution to this problem is to generate a new text from the 
urrent one, wherethe value of ea
h 
ell is repla
ed by a range of values. This range goes from the minimum to themaximum over its 9 neighbors. After this transformation we 
an sear
h for the pattern, in prin
iple,as in the exa
t model, where equality is rede�ned as that the pattern value must belong to the textrange.However, some problems arise. First, the alphabet of the text is of size O(�2) to a

ount forall the possible ranges. This 
hanges h to h = log�2(n2) = log� n. Se
ond, the sear
h has to enterinto all the bran
hes whose value (a range) 
ontains the value of the 
urrent pattern 
ell. Let us
all � the number of ranges mat
hing a random pattern 
ell. Then, using the same te
hniques asbefore, the sear
h 
ost of this ba
ktra
king isO �(log� n)3=2nlog��� = O �(log� n)3=2n2�log�(5=4)�where for the last step we have 
onsidered that � � (4=5)�2 on average. This is only a bit worsethan the 
omplexity under the standard model. Some 
onsiderations for eÆ
ient implementationof this type of trie 
an be found in [19℄. 29



9.2 Center to Center AssumptionIt is possible to extend the model by removing the 
enter-to-
enter assumption [18℄. In this 
asethe number of mat
hing fun
tions goes as high as O(m7) instead of O(m3). Despite the algorithmi

ompli
ations, sequential 
omplexities are not a�e
ted: The exponent of m is either inside loga-rithms (so it is translated just into worse 
onstant fa
tors) or is divided by fun
tions exponentialin m (and hen
e any polynomial in m is the same). The only ex
eptions are the robust algo-rithms for mismat
hes and a

umulated models, whi
h now be
ome O(k7=2n2) and O((k=�)7=2n2),respe
tively.Indexing te
hniques do 
hange their 
omplexity. Sin
e there are O(`7=2) sistrings to sear
h for atdepth `, the sear
h time for the exa
t model be
omes O((log� n)9=2). By indexing all the rotationsand 
enter displa
ements we get O(log� n) time again, but at a spa
e 
ost of O(n2(log� n)7=2).An interesting te
hnique that 
an be used as a pre-�lter based on the 
enter-to-
enter assump-tion, is as follows. Assume that P is at some lo
ation ((u; v); �) on top of T , su
h that (u; v) 2 T [i; j℄is not a 
enter-to-
enter translation, and that the number of mismat
hes is k for that position ofP . Then assume that P is translated to ((i; j); �), that is, 
enter-to-
enter be
omes true while therotation angle stays the same. As a 
onsequen
e, some 
ell 
enters of T may have moved to the 
ellof P that is one of its eight neighbors. Now 
ompute the number of mismat
hes su
h that T [r; s℄is 
ompared against M(T [r; s℄) and its eight neighbors as well. If any of those 9 
ells mat
h T [r; s℄,then we 
ount a mat
h, otherwise we 
ount a mismat
h. Let the number of mismat
hes obtainedthis way be k0.This means that k0 � k, be
ause all mat
hes that 
ontribute to m2 � k must be present inm2 � k0 too. Hen
e this gives a lower bound on the number of mismat
hes that o

ur in a mat
h.Hen
e we use the algorithm with the 
enter-to-
enter assumption, but 
ount a mismat
h onlywhen the text 
ells di�ers from all the 9 pattern 
ells that surround the one it mat
hes with. Thenet result in eÆ
ien
y is that the alphabet size be
omes �0 = 1=(1� (1�1=�)9), meaning that 
ellsmat
h with probability 1=�0.This is useful both for the exa
t and mismat
hes models, and is easy to adapt to the minmaxand a

umulated models.9.3 Three and More DimensionsRotation invariant template mat
hing in three dimensions has important appli
ations in mi
robi-ology, when sear
hing some known substru
tures (e.g., proteins) from three dimensional models ofbiologi
al viruses. Mat
hing models in three dimensions have been de�ned in [20℄.The te
hniques we have developed 
an be extended to d dimensions in a straightforward manner.As seen in Se
tion 3, in d dimensions, a pattern of size md 
an be rotated in O(m�(d)) ways, whered� 1 � �(d) = �(poly(m)) � (d� 1)d(d + 1)=2.For exa
t sequential sear
hing, for example, we 
an extra
t rd�1 = O(md�1) features of lengthu = O(m), and sear
h for all them together in the text. It is enough to sele
t one out of r text rowsalong ea
h dimension, sin
e this still ensures that a 
ube of size md mat
hing the pattern will tou
hone of the sele
ted rows [7℄. Therefore, we have to traverse nd=md�1 text 
ells, with a multipattern
30



sear
h for rd�1 features, rotated in O(m�(d)) ways ea
h. The sear
h 
ost isO0� ndmd�1 log� �md�1m�(d)�m 1A = O poly(d)nd log�mmd !whi
h, at least for 
onstant d, is optimal (Se
tion 3.1). It is easy to see that all the other optimal
omplexities 
an be a
hieved as well.Similarly, it is possible to adapt the robust algorithms (Se
tion 7.1) for the mismat
hes model.After 
omparing O(k) 
ells, we are at distan
e O(k1=d) from the 
enter, and therefore we have
onsidered O(k�(d)=d) rotations. Hen
e the average sear
h time is O(k�(d)=dnd). For the a

umulatedmodel this is O((k=�)�(d)=dnd).Finally, it is possible to apply the te
hniques of Se
tion 4 to limit the worst 
ase to O(m�(d)nd),whi
h we 
onje
ture is worst-
ase optimal.With respe
t to indexing, the index needs O(nd) spa
e and is able of exa
t sear
hing inO((d log� n)1+�(d)=d) time. For the minmax model there will be 3d neighboring 
ells, and the 5=4be
omes (3d+1)=(3d�1). Hen
e the sear
h time will be O((d log� n)�(d)=dnd(1�log�((3d+1)=(3d�1)))) =O((d log� n)�(d)=dnd(1�1=�(3d log �))). For the Hamming model we get O((k + d log� n)k+�(d)=d�k) orO(m�(d)knd(�+HH� (�))=(d log� n)1=d. The formulas for the a

umulated model are similar.10 Con
lusions and Future WorkWe have addressed the problem of sear
hing for a two-dimensional pattern in a large two-dimensional image (text), so that the pattern 
an appear with any rotation in the image. Theproblem has appli
ations in image pro
essing, image databases, geographi
 information systems,and 
omputational biology, to name a few areas.We have 
onsidered not only the exa
t mat
hing problem but also several mat
hing models thatpermit a few di�eren
es between the pattern and its o

urren
es.We have derived average-
ase lower bounds for the problem, and designed sear
h algorithmsthat are optimal on average and in the worst 
ase simultaneously, for all the mat
hing modelsunder 
onsideration. We have also 
onsidered text prepro
essing te
hniques, whi
h have resultedin sear
h times whi
h are sublinear in the text size. These indexing te
hniques 
an be used tosear
h all the images of a library in one shot.The te
hniques we des
ribe here 
an be implemented, and have been su

essfully used to solvesome 
omputational biology problems [20℄. These 
ombinatorial te
hniques are mu
h faster thanthose based on the FFT. However, despite that our mat
hing models permit relaxing the mat
hing
onditions, even more 
exible mat
hing models should be addressed in order to 
losing the gaptowards more ambitious appli
ations in image retrieval.� In real appli
ations, images may su�er from deformations be
ause of several fa
tors. Somemodels permit handling displa
ement errors su
h as insertions/deletions along rows and
olumns and in any dimension [7℄, but these do not address rotations. Combining bothwould make up a stronger model. 31



� It would be interesting to generalize the method for s
aling invarian
e also, so that the patternand the text do not have to be exa
tly of the same size. Some work on s
aling invarian
e hasbeen 
arried out [4℄, but rotations have not been addressed.� Another problem that should be addressed is due to di�erent lighting 
onditions. The patternand the image might have been obtained under di�erent 
onditions, and hen
e one image maybe brighter than the other. The pixel values in this 
ase may di�er 
onsiderably, even if theimages are taken from the very same obje
t. In this respe
t, some re
ent work on transpositioninvariant string mat
hing, aimed at musi
 retrieval, 
an be adapted to sear
h under lightinginvarian
e [27℄.� One general problem for this kind of pattern mat
hing algorithms is that the pattern templatemay 
ontain di�erent ba
kground than the o

urren
e of the pattern in the text, or some partsof the pattern or its 
ounterpart in the text may be o

luded by some other obje
ts. Onepossible way to solve this to spe
ify whi
h parts of the pattern are a
tually relevant and whi
hare ba
kground. In pattern partitioning te
hniques, we 
ould require that only some pie
esmat
h.On the other hand, our basi
 ideas (approximate feature sear
h, spiral reads) are rather generaland 
an be applied to address several other mat
hing models. For example, our approximate featuresear
h algorithm 
an be easily adapted to a variant of the a

umulated model where the squaresof the 
olor di�eren
es (rather than their absolute values) are a

umulated, with the same time
omplexity. This model is 
loser to the traditional 
ross-
orrelation approa
h usually addressedvia FFT. The 
ross-
orrelation 
omes from the model (a � b)2 = a2 + b2 � 2ab, and the basi
traditional 
ross-
orrelation uses the term ab (normalized, sometimes), sin
e ab 
orresponds to the
onvolutions that 
an be eÆ
iently 
omputed using FFT. Using our algorithms would yield a mu
hmore eÆ
ient te
hnique.Referen
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A Probability of Mat
hing under the Mismat
hes ModelWe are interested in the probability of two strings of length ` mat
hing with at most k mismat
hes.For this to hold, at least `� k 
hara
ters must mat
h. Hen
e, the probability of mat
hing is upperbounded by �k̀��k�` = 1�`�k k̀!where the 
ombinatorial 
ounts all the possible lo
ations for the mismat
hing 
hara
ters and �kall the ways to 
hoose their value. Note that we are permitting to repla
e a 
hara
ter by itself,and hen
e we are in
luding the probability of mat
hing with less than k mismat
hes as well. Theformula is an upper bound be
ause, when less than k mismat
hes exist, we are 
ounting the samestrings more than on
e.In the analysis that follows, we 
all � = k=` and take it as a 
onstant (whi
h is our 
aseof interest, as seen later). We will prove that, after some length `, the mat
hing probability isO(
(�)`), for some 
(�) < 1. By using Stirling's approximation x! = (x=e)xp2�x(1+O(1=x)) overthe mat
hing probability we have1�`�k  ``p2�`kk(`� k)`�kp2�kp2�(`� k)!�1 +O� 1̀��whi
h is � 1�1����(1� �)1���` `�1=2  1p2��(1 � �) +O� 1̀�!This formula is of the form 
(�)` �(1=p`), where we de�ne
(x) = 1�1�xxx(1� x)1�xTherefore the probability is exponentially de
reasing with ` if and only if 
(�) < 1, that is,� > � 1��(1� �)1��� 11�� = 1� �1�� (1� �)It is easy to show analyti
ally that e�1 � � �1�� � 1 if 0 � � � 1, so it suÆ
es that � > e=(1��),or equivalently, � < 1�e=� is a suÆ
ient 
ondition for the probability to be exponentially de
reasingwith `.Hen
e, the result is that the mat
hing probability is very high (a
tually, �(1=p`)) for � =k=` � 1� e=�, and otherwise it is exponentially de
reasing, O(
(�)`=p`), where 
(�) < 1.Seen another way, we have that the probability of mat
hing is large as long as` � kH = k1� e=�but from then on it is exponentially de
reasing. 35



B Probability of Mat
hing under the A

umulated ModelWe are interested in the probability of two random strings of length ` mat
hing with threshold k.Our model is as follows: we 
onsider the sequen
e of ` absolute di�eren
es between both stringsÆ1 : : : Æ`. The mat
hing 
ondition states that Pì=1 Æi � k.The number of di�erent sequen
es of di�eren
es satisfying this is �k+`` �, what 
an be seen asthe number of ways to insert ` divisions into a sequen
e of k elements. The ` divisions divide thesequen
e into ` + 1 zones. The sizes of the �rst ` zones are the Æi values and the last allows thesum to be � k instead of exa
tly k. Note that we are pessimisti
ally forgetting about the fa
t thatindeed Æi � �.Finally, ea
h di�eren
e Æi 
an be obtained in two ways: 
i + Æi and 
i � Æi, where 
i is the i-th
hara
ter of the other string (we pessimisti
ally 
ount twi
e the 
ase Æi = 0). Therefore, the totalmat
hing probability is upper bounded by 2`�` `+ kk !In the analysis that follows, we 
all � = k=` and take it as a 
onstant (whi
h is our 
aseof interest, as seen later). We will prove that, after some length `, the mat
hing probability isO(
(�)`), for some 
(�) < 1. By using Stirling's approximation x! = (x=e)xp2�x(1+O(1=x)) overthe mat
hing probability we have2`�`  (k + `)k+`p2�(k + `)kk``p2�kp2�` !�1 +O� 1̀��whi
h is  2(1 + �)1+���� !` `�1=2  s1 + �2�� +O� 1̀�!This formula is of the form 
(�)` �(1=p`), where we de�ne
(x) = 2(1 + x)1+x�xxTherefore the probability is exponentially de
reasing with ` if and only if 
(�) < 1, that is,2(1 + �)� �1 + 1��� < 1It 
an be easily seen analyti
ally that (1+1=�)� � e, so � < �=(2e)�1 is a suÆ
ient 
onditionfor the probability to be exponentially de
reasing with `.Hen
e, the result is that the mat
hing probability is very high (�(1=p`)) for � = k=` ��=(2e) � 1, and otherwise it is O(
(�)`=p`), where 
(�) < 1.Seen another way, we have that the probability is exponentially de
reasing for` > kA = k�=(2e) � 136


