
1

Business Case for a Product Line of Legacy Application Data-Middleware

Marcelo López H. M.Cecili a Bastarrica
 mlopez@dcc.uchile.cl cecili a@dcc.uchile.cl

DCC, Universidad de Chile
Blanco Encalada 2120

Santiago, Chile

1. Abstract

Legacy applications represent software solutions for
many organizations and businesses. These
applications have been implemented using different
IT platforms and few of these systems have been
standardized or migrated to newer versions. Thus,
there are a lot of heterogeneous applications running
in different platforms, even within one organization.
The need for interchanging strategic information
between organizations or legacy applications is more
common than a few years ago. Data interchange
among these heterogeneous legacy systems is usually
a major project. The solution is not unique and there
might even be many solutions for every pair of legacy
applications. We call data-middleware a product for
interchanging information between two legacy
applications. In order to develop a reusable and non-
legacy implementation dependent solution, this
product could be developed using the software
product line paradigm. The development of this
product as part of a software product line includes
new practice areas that must be defined in a Business
Case. A Business Case (BC) is a tool for making a
business decision, because it predicts the
organizational consequences of this decision. We
describe a BC with three core practice areas: how
the organization should be structured, the base
architecture as the main initial asset, and how the
data-middleware product line organization is
launched and institutionalized.

Keywords: Software product lines, business case,
data middleware.

2. Introduction

Most of the organizations have spent a lot of
resources to build and keep an information
technology platform as well as systems to support
their businesses, in order to incorporate an advantage
with respect to competitors.

During the last years many legacy applications have
been developed using different operating systems,
programming languages, paradigms, software

engineers with different backgrounds, not to mention
hardware and the new concepts involved in the
Internet-based application development. In this
scenario, there is a growing need for interchanging
information among these heterogonous applications
regardless their implementation and localization.

We call data-middleware a product that provides a
common set of standards and technology to support
interfaces and data interchanging between
applications. Data-middleware should consider key
functions and support procedures to be an adequate
tool for managing and controlli ng data interchange
between a pair of legacy applications.

The design, development and implementation of a
data-middleware is not an easy task. Provided that,
there are many opportunities for applying a data-
middleware product, it is convenient to design a
reusable solution. This article shows why the
development of a data-middleware based on the
software product line (SPL) paradigm should be
considered a viable alternative. Following SPL
implementation guidelines [6], we present a Business
Case to show why a data-middleware product should
be developed using a SPL framework.

A Business Case (BC) is a tool for making a business
decision, because it predicts the organizational
consequences of this decision [7]. Following this BC
definition, we propose three major aspects to be
considered: how the organization should be formed,
the base architecture as the most important initial
asset, and how the product line organization is
launched and institutionalized.

The framework for a software product line,
definitions and guidelines are presented in [6]. In [7]
we also find a tool to decide whether it is convenient
to use the software product line approach; this tool is
called a Business Case. We have experience
designing and implementing ad hoc solution for data
middleware, and we realized there is a big
opportunity for large scale reuse in this area. We
reported part of our experience in [3].

2

2.1. Paper Overview

In Section 3 we describe generalities of the software
product line approach. Section 4 presents the
Business Case, our main contribution. We here
include the organizational structure, the base
architecture and the launching and institutionalizing
of the data middleware product line. Finally, in
Section 5 we describe part of our ongoing work and
some of our conclusions.

3. Software Product Line Overview

A software product line (SPL) is a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment or mission and that are developed
from a common set of core assets in a prescribed way
[7].

The principal SPL goal is obtaining substantial
production economies when applications in a product
line are developed from a common set of assets, in
contrast to being developed separately, from scratch,
or in an arbitrary and ad-hoc fashion.

SPL is a new paradigm for developing software
products [6]. In essence, SPL involves core assets
development carried out by the Domain Engineering
and product development using the core assets
implemented by the Product Engineering, both under
the control of an organizational Management [7].

As we mentioned before, SPL is a new idea and new
organizational management practices are required for
the implementation of the entire product line effort. A
Business Case (BC) is a tool that involves the
definition of specific new practice areas that require
preparation, planning and then execution and
implementation. BC helps to decide to make a
business decision for pursuing this opportunity or
approach.

4. Global Business Case

4.1. Objective

The goal of our business case is to decide whether to
develop a tool – called data-middleware - that
supports the interchange of data between two legacy
applications, regardless of their implementation using
the software product line approach. Legacy
implementations include different operating systems,
software and hardware platforms, data structures and
paradigms. The product line involves the
generalization of key data-middleware functions and
procedures in order to be reused in future products.

4.2. General Organization

Product line systems are developed and managed
according to a li fe cycle that differs from the one
used in an ad hoc development [7]. SPL organization
must take the following responsibiliti es:

� Ensure that new products reuse the core
asset base according to the production plan.

� Interact with the domain engineering to
develop and evolve new capabiliti es of the core
asset.

� Negotiate requirements of customers to
discuss if new products fit within the scope of the
SPL.

Bosch proposes five different models for a software
product line organization [4]. The organization for
producing the SPL of data middleware should be
structured based on one of these five models. We
present a brief definition of each model.

• Development department. In this model all
software tasks are concentrated in a single unit.
This model appears in small organizations (no
more than 30 people) and those that provide
consulting services. The principal objective of
this unit is providing support to the rest of the
organization. The key concept in this
organization is that each member of the
development team takes part in the domain
engineering tasks as well as in product
engineering duties.

• Business unit. In this model there are as many
organizational units as assets (the scope
definition, the base architecture, core specific
components, etc). The essential idea is to
develop a shared core asset community. It is
estimated that this kind of model could apply to
organizations with 30 to 100 employees. There is
an obvious risk in this model that is that a
business unit will focus on its own product(s) or
assets first and the product, as an integrated
application and the software product line as a
whole, will only take a second place.

• Domain engineering unit. In this model, a special
unit called domain engineering has the
responsibili ty for developing and maintaining the
core asset base. The product engineering units
build the products using those assets. There may
be as many product engineering units as different
products in the SPL. Bosch indicates that this
model could be applied when the organization
exceeds 100 employees.

3

• Hierarchical domain engineering units. This
model is applied to those organizations with a
very complex or large structure. That is, the
product line organization consists of a series of
subgroups that have more in common with each
other than other members of the product line
unit. Each subgroup is in charge of developing
specialized products of the line. Specialization is
based on some subject, architecture or product
line components.

• Organizational structure for a reuse business.
Jacobson et all [9], called this kind of model a set
of competence units, which contains workers
with similar competencies and entity object types
that these workers are responsible for. Jacobson
defined the following SPL object types:

• Requirements capture unit
• Design unit
• Testing unit
• Component engineering unit
• Architecture unit
• Component support unit

Organization for data-middleware development using
SPL paradigm could be structured following the
domain engineering unit model proposed by Bosh.

Figure 1 proposes the general organization for
developing data-middleware products, following SPL
development [6][7]. This organization should
consider at least one group of engineers for the
domain area and one group for the product
development. Management group also should be
present in every SPL organization. This organization
is the target for a well-established SPL company, but

it is not necessarily there for the first product
development.

There are two possible scenarios for developing the
first product of the SPL: the first one where there is
no prior product and no assets, so everything is new,
and another scenario where there are some assets that
are mined [10] from prior platform dependent
applications. In both cases, the Domain Engineering
group has almost all the work: either developing the
assets or mining them.

There are two kinds of customers who will interact
with the development organization, one that behaves
as the initial customer or the customer of the first
product of the line, and the other is a customer of a
product of the well established SPL. These two
groups have a clearly different relationship with the
SPL organization. The first customer group
participates in the construction of the first product:
they provide definitions and requirements and the
domain engineering collects, generalize and
implement them. The second group of customers
needs a product, but they can negotiate some
variations according to the available assets; this

Figure 2 Base Architecture for a Data Middleware
Product Line

Domain Enginnering Product Engineering

Assets Development Data-MiddleWare
ASSETS PRODUCTS

MANAGEMENT

Customers

CLUSTER-1 CLUSTER-2

CLUSTER-3

Customers

Constructor 1

Scheduler 1

Interface

Legacy 1

Reading 1

Filter 1

Transformation 1

Saving 1Scheduler 2

Constructor 2

Reading 2

Filter 2

Transformation 2

Saving 2

Legacy 2

Figure 1 Legacy Application Data Middleware Global
Organization

4

group mainly interacts with the Product Engineering
group. These relationships with customers suggest
that the domain engineering is indispensable from the
very beginning, and the product engineering is only
necessary when there is a product already built .

The data middleware product line organization could
be structured in three groups or areas we call clusters.

Cluster one is responsible for the domain engineering
and it also includes the customers interacting with the
domain engineering for building the first product.
Cluster two deals with product engineering and also
includes customers of subsequent products. Cluster
three coincides with management.

In cluster one, either customers or domain engineers
might have expertise in one or more similar
implementations and platform-dependent solutions of
a data middleware. If this were the case, the domain
engineering is responsible for mining assets in these
solutions, extracting their general design in a new
generic one that will be the base architecture, and
also some potentiall y reusable components. If nobody
has a prior experience, everything needs to be
developed from scratch. In any case, cluster one
develops the first product of the line, even though
this involves some tasks typically from the product
engineering as system integration and testing.

The second cluster will carry out the implementation
of subsequent products of the line. This group will
receive the SPL scope, the base architecture, and a
list of assets developed by the domain engineering.
The data-middleware implementations should be
developed reusing these assets as much as possible.

4.3. Base Architecture

Based on different real data middleware
implementations and projects implemented [3], figure
2 shows a proposed base architecture for a software
product line of data middleware products. This
architecture contains key functions and components
to be considered in the asset base and will be reused
in future data middleware implementations.

The base architecture follows a pipes and filters
pattern [5]. This pattern defines major processing
components or filters that are the main assets of all
data middleware products [3].

Note that this architecture has been developed for
interchanging data between two legacy applications.
For a data middleware development for more than
two legacy applications, some new assets, including
modifying the base architecture and adding new
components and functions, should be considered.

Table 1 describes each component of the base
architecture in figure 2.

Component Description Input Output

Scheduler 1 This component will keep and control
the trigger of the data middleware
initial process.

Execution plan.
Procedure manually executed
File creation

Trigger executed
Tracking

Constructor 1 Responsible for opening legacy one
files and data structures. Basic
validations are considered.

Files and fields mapping to access
and read

Files open

Reading 1 This component is responsible for
reading the information from legacy
one files

Files open
List of fields to read

Set of registers

Filter 1 Select and filter registers Set of registers Sub set of registers

Transformation 1 Transform and validate the subset of
registers

Sub set of registers
Transformation & Transformation
rules

Sub set of registers
transformed
Subset of registers
rejected

Saving 1 This component is responsible for
saving the subset of registers
transformed in a temporary legacy file

Subset of registers transformed
Temporary legacy file open
Pre conditions

Subset of registers
transformed saved in a
temporary legacy file
Scheduler 2 triggered

Scheduler 2 This component will keep and control
the trigger of the data-middleware
secondary process.

Saving 1 triggered Trigger executed

Constructor 2 Responsible for opening legacy two
files and data structures. Basic
validations are considered.

Legacy two files and fields mapping
to access and read

Legacy two Files open

Reading 2 This component is responsible for
reading the information from legacy
two temporary file

Files open
List of fields to read

Set of registers

5

Saving 2 This component is responsible for
saving the subset of registers
transformed in legacy two files

Set of registers
Legacy two files mapped

Set of registers saved
in legacy two files

Table 1. Base Architecture Component Description

4.4. Launching and Institutionalizing

As we discussed before, the implementation of
product lines is not an easy task. Beyond that,
launching SPL organization will need a clear
interaction between clusters and strategic
reevaluations. We suggest the use of the IDEAL
[4][6][7][8] model for implementing, launching and
institutionalizing because; with some generalizations
this model allows process improvement and manage
changes in an iterative manner.

The IDEAL model consists of five synergic steps as a
process: Initiating, Diagnosing, Establishing, Acting
and Learning. We describe each of these steps for the
data middleware SPL.

Initiating. For the data middleware product line
initiative, this step should involve building the
business case as a well-defined document which will
rule the product line scope, the market analysis and
the way the funds will be acquired to meet the
business objective. This period should take roughly
10-12 months. In this period only cluster 1 and a littl e
cluster 3 are present.

Diagnosing. This step consists of the mining of a
product candidate and its core assets in order to start
building the product line and the first set of assets
[10]. This mining activity is done based on the
business case developed in the initiating step, the
base architecture presented in section 4.3 and the
company organization presented in section 4.2.

Establishing. In this step, a documented plan is
elaborated and key people are trained. The plan
considers all the tasks and responsibiliti es for each
cluster, estimated efforts and cost for each task, and
administration and control procedures for the
management group. Once the plan is defined and
validated, project kick-off is defined and check point
meetings are scheduled and carried out periodically.
All this information is formalized in a document and
distributed to all stakeholders and people responsible
for implementing the product line.

Acting. Given the objectives and the baseline defined
in the business case, as well as the plan defined in the
establishing step, this acting step involves the
development of the products of the data middleware
SPL. It also involves error detection and correction
actions.

Learning. The learning step can identify any place
where the product line effort does not match the

business objectives or the organization context
defined as part of the business case. This activity
considers monitoring the acting and adjusting any of
the prior documents, e.g. business case, plan, etc.

5. Conclusions

The development of a data middleware between two
legacy applications is almost always a very complex
project. Nowadays there are many legacy
applications that need to interact. Developing one
different product from scratch for every pair of
legacy applications we need to communicate is not
only a lot of work, but also a lot of unnecessary risk.

The software product line paradigm seems very
attractive since it promises a very large scale reuse
for a series of similar products as the data
middleware. But developing reusable software
involves many other qualiti es such as portabili ty,
visibility, abstraction, generali ty, configurabili ty,
among others.

The SPL is a new paradigm and new practice areas
need to be considered to start the product line. We
have presented a business case including some of the
most important areas to be defined in order to apply
the SPL paradigm in the development of a series of
data middleware products. Practice areas presented in
this BC involved the conformation of clusters for
organizing the product line, the use of a proposed
base architecture and a methodology for launching
and institutionalizing the product line approach.

We have started building the SPL after building two
ad hoc data middleware applications. We deduced the
base architecture and followed the methodology
described in section 4.4 to build a third data
middleware product, actually the first one of the SPL
adjusting it to the base architecture. We needed
approximately 20 % less effort for building this
product. We also build a second product in the SPL
and we got even better results.

As part of our future work, we need to refine the base
architecture in order to include the actual component
implementations that could be reused in future
products. Only with the base architecture we have
obtained improvements in the software development
process. We still need to define the base architecture
at a lower level of abstraction to make this
implementation reuse more straightforward.

6

6. References

[1] Bass, L.; Chastek, G.; Clements, P.; Northrop, L.;
Smith, D.; & Withey - 2nd Product Line Practice
Workshop Report (CMU/SEI-98-TR-15)., J.
Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1998.

[2] Bass, L.; Clements, P.; Cohen, S.; Northrop, L.; &
Withey, J., Product Line Practice Workshop Report
(CMU/SEI-97-TR-003). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University,
1997

[3] Bastarrica, Cecili a ; Lopez, Marcelo. Software Product
Line in Practice.Jornadas Chilenas de Computación
2001 – I Workshop de Ingeniería de Software.
Universidad de Magallanes – Punta Arenas –
November 2001.

[4] Bosch, J. “Organizing for Software Product Lines,”
Proceedings, 3rd International Workshop on Software
Architectures for Products Famili es (IWSAPF-3). Las
Palmas de Gran Canaria, Spain, March 15-17 2000.
Heidelberg, Germany: Springer LNCS, 2000.

[5] Bushmann, Frank; Meunier, Regine; Rohnert, Hans;
Sommerland, Peter; Stal, Michael – A System of
Patterns – Wiley publishrer 1998 , pages 53 to 70

[6] Carnegie Mellon Software Engineering Institute (SEI)
- A Framework for Software Product Line Practice –
Version 3.0. available in
http://www.sei.cmu.edu/plp/framework.html – 2000.

[7] Clements, Paul; Northrop, Linda - Software Product
Lines (Practices and Patterns) – Addison Wesley
Publications 2002

[8] Gary Chastek et al Software Engineering Institute -
Product Line Analysis: A Practical Introduction -
(CMU/SEI-2001-TR-001 and ESC-TR-2001-001) -
June 2001

[9] Jacobson, I; Griss M; & Jonsson P, Software reuse:
Architecture, Process and Organization for Business
Success. New York, NY: Addison-Wesley, 1997.

[10] John Bergey, Liam O’Brien and Dennis Smith -
Mining Existing Assets for Software Product Line -
(CMU/SEI-200-TN-008) – May 2000

