
A New Data Model:Persistent Attribute-Centric Objects�Ricardo A. Baeza-YatesDept. of Computer ScienceUniversity of ChileBlanco Encalada 2120Santiago 6511224, Chilerbaeza@dcc.uchile.cl Terry JonesDistributed Cognition & HCI LabCognitive Science Dept.Univ. of CaliforniaSan Diego, La JollaCA 92093-0515, USAterry@cli�s.ucsd.eduGregory J. E. RawlinsDept. of Computer ScienceIndiana UniversityBloomingtonIN 47405, USArawlins@cs.indiana.eduJune 16, 1999AbstractTrying to �nd information on the Web is like trying to �nd something at a jumble sale: it'sfun, and you can make serendipitous discoveries, but for directed search it's better to go to adepartment store; there, someone has already done most of the arranging for you. Unfortunately,the Web's continuing explosion in size, its enormous diversity of topics, and its great volatility,make unaided human indexing impossible.This problem is just a special case of the general problem of organizing information to createknowledge. A similar problem arises on the desktop when dealing with �le systems, where usersmust search by name, and often they do not remember the �le's name or location. File namesare artifacts of current operating systems, but human understanding neither requires objectsto be named, nor does it have problems with multiple objects sharing properties|names, forinstance.The limitations mentioned above result because today's computer systems do not analyzethe �les they are asked to store. Instead they note only simple attributes like creation date and�le type and leave the bulk of organizing, naming, annotating, and �nding those �les to theirusers. This may have made sense in the 1970s when computers were slow and expensive, but itmakes no sense today.We argue for a new data model to information representation based on the use of persis-tent objects with dynamic attributes and search operations over them. This representation is�The work of the �rst author was supported by Chile Fondecyt Grant #1990627, and the second author by DARPAContract #N66001-94C-6039 and by a grant from Intel. 1

organization-neutral, thereby giving a
exible substrate for anyone to build multiple simultane-ous organizations. In addition, it is uniform, allows easy sharing of objects, and can be simplyextended to the Web. We present an initial prototype of this idea (AVS), and to show its po-tential, two system prototypes that have as their main goal to organize personal information:DomainView and KnownSpace.1 IntroductionStoring and organizing information is the kernel of any computer application. The widespread useand exponential growth of the World Wide Web, as well as other data sources, has had a crucialimpact on the problem of managing personal information. Currently, the abstraction of �les andfolders is ubiquitous as the main way to organize and store documents. This abstraction, however,arose when computer resources were expensive, which is not true nowadays.The real limitations of any information system are not storage space or computing power. Theyare the narrow communication pipelines between the computer and the human user (typicallythrough a screen), and between the user's eyes and brain. In that sense, any information systemshould not depend on the abilities of the user, it should try to represent information as closelyas possible to the user's model of it, and any internal representation should be transparent to theuser. However, the paradigms that are used today, do not satisfy any of these goals. Why? Onemain reason is that the historical development of software has forced the user to be aware of manyunnecessary things.The question is how to organize personal information and how to present it to the user in ameaningful way through a simple but e�ective user interface. Any system for managing information,implemented either on top of a �le system or a database, is limited by the underlying data modelof the storage mechanism. On the other hand, if we write down as the goals of the system whatfunctionality the underlying data model should provide, we do not necessarily obtain a known datamodel.We can think of information as organized data which has to be comprehended and managed.So, there are two main problems to be solved: how to organize data, and how to communicate toa person that data through a user interface. In this paper we present a new approach for the �rstproblem: a new model of the storage, representation, and organization of information based onwhat we call persistent attribute-centric objects (PACO). PACO is based on:� storing data in objects having attributes and values in a uniform way, each having a dynamicstructure.� being able to organize objects in collections which are also dynamic and independent of thestorage mechanism, through powerful search capabilities.We present our vision of how to manage information relative to our data model in [1]. That paperalso discusses a few user interfaces.This paper is organized as follows. We �rst present some of the motivations behind this paper,which are the basic functions needed to build e�cient user interfaces for managing informationtogether with a list of the main limitations of today's �le systems and databases. Next, we presentthe main concepts behind the new data model and how they can be used to manage information,2

clearly separating the storage, representation, and organization layers of the data being handled.We also compare our data model with previous work and discuss some of the main di�erences andconsequences of it. Next, we show a speci�c generic prototype of this datamodel, AVS, the AttributeValue System [14], which maintains a collection of objects composed solely of attribute/value pairs,and which provides facilities for creating, altering, and locating these objects. This simple substrateprovides
exibility in the representation of information, emphasizes the role of search, generalizeshierarchical �le systems, provides for the dynamic construction of arbitrary data structures andinter-object relationships, emphasizes the distinction between informational objects and structuresthat contain and organize them, facilitates multiple views of the same information, and provides anovel form of object ownership.To show the potential of our model we summarize the functionality of two systems to managepersonal information: DomainView [2] and KnownSpace [15]. Although they were developed with-out using the data model proposed, their essence is based on it. In fact, the main ideas of thisdata model were developed independently by the three authors and later were uni�ed into a singleview. We �nish by presenting work in progress of the authors, and the consequences of our visionof organizing information with respect to programming, user interfaces, and the Web. Since wechange basic assumptions, we have to start from basic principles and levels, which may seem naivefor some readers or very radical for others.2 Motivation: Organizing InformationWeb search engine queries now often return millions of irrelevant pages. Those pages are notspatially arranged, collected by topic, or distinguished in any way other than by their titles, sowe have no idea of the relevance of any page before reading it. The same is true for mail andnews. After we save webpages, mail messages, news articles, ftp pages, or any pages producedwith an editor or any other application, those pages then become lost on our desktops. They arenot analyzed in any way, grouped according to our interests, or laid out spatially to show theirsimilarities to other pages already there.Even after we organize the pages on our desktops by hand there is no automation to help usreorganize them, search them, navigate through them, or �nd more pages like them. In short, ourcomputers don't help us manage our own data, and, as we discuss in the next section, we must dothat task ourselves by organizing information in a �le system.Hierarchical �le systems are valid as an internal storage mechanism for operating systems, butthe user need not be aware of them. Many users do not even understand this concept and typicallyuse applications that each put all their �les in one directory (a
at hierarchy). Not all informationcan be classi�ed as a tree; there are many other ways to classify a group of objects, and manyhierarchical ways to classify the same information.Let us start over, without assuming anything about computer resources. What might be theright way to store and organize information? Which functionality should a data model provide tobest help users manage their information? We give one possible answer to this question.To help make our claims concrete we present them in the context of aiding the development oftwo prototypes that organize personal information. They are DomainView (DV) and KnownSpace(KS). DomainView [2] is a desktop user interface that organizes information in domains chosen by3

the user using a uniform and simple interface. The interface is based on retrieval of documents byattribute values, including the content, in a
at and dynamic universe of domains. The desktopis tailored to and by a user, who creates his or her own document-driven and knowledge-domainworld. KnownSpace [15] is an adaptive, visual, and autonomous information manager of all of auser's information, whether that information is data or programs, and whether it originates on theWeb, via mail, news, ftp, an editor, or any other application. It is not a search engine, browser,desktop, or operating system, although it shares elements of all four programs.Both prototypes manage information using collections of objects, each object having attributeswith values. In our systems, objects are also called entities, pages, or documents, and collectionsare also called clusters or domains. In both DV and KS the basic data relationship is the collectionof objects. While interacting with the DV or KS interface, the user may want to do any of thefollowing:1. navigate through a space of objects,2. search for various kinds of objects,3. organize objects into groups and regroup objects already in groups,4. markup various objects, either singly or in groups, and edit or delete markups, and5. browse, create, and delete objects.Note that these groupings are not mutually exclusive. A single object can be in several dozen, ormore, di�erent groupings of objects, simultaneously. The user may choose to view any of thesegroupings at any time.To support these actions, the interface needs to be able to pose the following queries to objectsof the underlying data model:� do you have attribute X? do your attributes satisfy property X?� are you an attribute of any object? which objects are you an attribute of?� what collections do you belong to? do you belong to collection X?� what are your readable/modi�able attributes?� are you locked at the moment? is your attribute X locked at the moment?� can I read/write your attribute X? can I add/delete your attribute X?and the following requests:� give me read/append/modify access to all the objects with property X� tell me the value of your attribute X� change the value of your attribute X to Y� add attribute X to yourself 4

� delete your attribute X� tell me when your attribute X changes� tell me when your attributes no longer satisfy property X� attach the following (new or old) object to yourself� delete object X from yourself� give me a list of all the objects attached to you whose attributes satisfy property X� delete all objects attached to you whose attributes satisfy property XNote that we don't really need all these requests|some can be expressed in terms of others.The only way we have found to support all of these abilities is to use the
exible data modeloutlined in this paper. Any object may have any other object (of whatever type) as an attribute.Further, those attributes may in turn have yet more attributes of their own, and so on recursively.This underlying data model gives both DV and KS the ability to do arbitrarily sophisticated thingsin their interfaces (each of which may be replaced by another at runtime). However, presently thiscomes at great cost, since to maintain maximum
exibility, our current implementation is quiteslow. This is the single biggest issue to be worked on next and by formalizing the model, we makeone more step on that direction. In the next section we discuss why current data models does notallow easy implementation of the capabilities above.3 What is Wrong with File Systems and DatabasesFile systems and databases have the same �nal goal: to store and organize information. However,in both cases, they trade
exibility of data organization for access speed and reduced space used.Although more recent database models (object oriented, multimedia) are more generic, they stillhave limitations. For example, typically, object structure is static, and cannot change at run-time. Other limitations are the lack of a standard query language (for example, SQL in relationaldatabases) and the power of the query language itself. File systems, on the other hand, are evenmore rigid and we will concentrate on this issue, as our proposal aims to replace both �le systemsand databases, which in fact should be the same thing. In fact, the �nal goal should be to have thecapabilities of �le systems as well as all database models, without the current problems arising whenwe use di�erent data types or if we try to integrate two di�erent database models. In particular,we would like to have at the same time all the good things of relational databases and of full-textdatabases.A collection of named �les of information located in a hierarchical �le system (HFS) is perhapsthe most ubiquitous feature of modern operating systems. Virtually everyone who sits in front ofa computer stores information in �les and places these �les within a HFS. As well as explicitlystoring information in �les, we store information in the hierarchical structure itself|mainly in �lenames|and rely on our memory to maintain information about what we create. Our applicationsalso operate within this framework, often encoding information in speci�c formats within �les.5

This working environment is so widespread that it is easy to forget that computational systemswere once without the luxury of convenient information containers (�les) and a structure in which toplace them (directories). It has become hard to imagine an operating system without the familiarbackdrop of �les and folders. However, although there are occasions when it makes good senseto store information in a hierarchy of named �les, being obliged to do so is a burden when theinformation being stored does not �t this paradigm, or has little or no relevance to the rest of thehierarchic structure.The semantics of a document/�le depends on its use. It could depend on information aboutits creation and de�nition, a speci�c context, associations, structure, and, of course, its content.Some proposals, like semantic �le systems, try to cover all these views using several approaches [12].A subtle assumption is that a document has content as well as metadata (that is, attributes withvalues|which are data related to the content). This asymmetry is based on our physical abstractionof a document, but it is not necessary for the storage mechanism. A document could be just a setof attributes and values, only one of them being the content. For di�erent applications, di�erentattributes will be more important than others, but intrinsically there is no reason to separate dataand metadata.There are several studies about how users organize and retrieve documents in a desktop metaphor.Retrieval is usually based on location (that is, where the document is on the screen), content (byusing a �le searching tool), history (which �le was being used before in an application|this isknown as reminding), and in most cases by name, that is, where it is stored in the HFS (knownas archiving) [3]. In all cases we are relying on the user's memory of past events, positions, andnames. There is no real model for the user's actions.Although searching by content is closer to a semantic search, it too can return non-relevant doc-uments because in a di�erent context the same search keywords are valid (these are problems withpolysemy and synonymy). This problem can be partially solved by adding additional information|for example, if we know that the document is not too old and is small. However, this kind of fuzzyinformation usually cannot be used, and even when it can, there is a lack of good systems thatintegrate search by content (text databases) and search by attribute values (relational databases).Part of the problem is due to the asymmetry mentioned before.Users accept HFS's because they are not hard to understand, they resemble physical archiving,and|mainly|because there is no alternative. However, HFS's have several disadvantages. First,they try to simultaneously solve di�erent problems: storing, representing, and organizing infor-mation. Second, they rely on the user's memory because every �le and folder has to be named(and named consistently). Third, the only semantic information about a �le is given by the namepath to it, which could have been named by another person or without enforcing a speci�c namingstrategy. Fourth, naming is not easily scalable (typically there are limitations on how long namescan be and what symbols can be used as well). Fifth, many �les could conceptually belong to morethan one folder, and although feasible in some systems using symbolic links (or their equivalent),it is too awkward to be done routinely by most users. In summary, we often have problems �ndinga speci�c �le because we do not remember where it is and what it is named.Speci�c problems with the HFS usually include the following:� Files can only live in one HFS. Although UNIX symbolic links and roughly equivalent mech-anisms in other operating systems can be used to point at objects in another �le system, �les6

actually live in a single �le system. These mechanisms are really just stopgap attempts to �xa fundamental problem. They create problems of their own since they essentially maintain acopy of a name of a �le that is elsewhere. Problems arise when the destination �le disappearsor moves, and attempts to deal with these issues are expensive. Not dealing with these issues(as in some types of UNIX), leaves dangling symbolic links, another problem.� A HFS is the only organizational structure in which a �le can appear, and every �le mustbe in a HFS. It is not possible to natively maintain a set of �les in (for example) a priorityqueue, or a linked list or other organizational structure. Of course this illusion can be createdwith external programs and interfaces, but the underlying storage is still a HFS. A �le cannotbe on disk but not in a HFS. Thus there is no native provision for the organization of �les,other than in a hierarchical tree.� Files cannot be annotated without being disturbed. File formats and �le and directorypermissions often make it impossible to annotate existing �les. Permissions will typicallyprevent a users from modifying another user's �les, and speci�c �le formats often make itimpossible to read or alter an existing �le using anything but a single application (which maynot be available or even known to a user wanting to annotate a �le).� A single organization of �les into directories must be chosen. The problem with choosing thedirectory structure ahead of time is that very often one's �rst choice of organization will not bethe best. Once made, the directory structure in use can be awkward to change, Reorganizinglarge collections of �les and directories into an alternate organization is not a well-supportedactivity and is fraught with dangers. Once done, there is no support for reverting to theformer organization.� It can be di�cult to �nd �les, either by name or content, or (especially) both. UNIX, forexample, stores �le information in three locations: i-nodes (permissions, size, dates, etc.),directory �les (�le name), and the �les themselves (content). This organization makes itawkward to, for example, simultaneously search for �les by name and content as di�erenttools to read these di�erent sources of informationmust be invoked and their results somehowcombined. While this at least can be done, it is very awkward.� The hierarchical structure can only contain �les. A hierarchical organization structure can beappropriate for many tasks, but a HFS only makes this structure available for the organizationof �les. It is not possible to maintain a hierarchy of desktops or databases, unless informationrepresenting these complex objects is somehow encoded into and decoded from �les. The HFSdoes not separate the logical organization of �les into a hierarchy from the objects (�les) thatit organizes into this structure. With a separation between these two, hierarchies of otherobjects could be supported.� The use and organization of an HFS relies heavily on our brains. People typically maintain atremendous amount of information about a HFS in their heads. For example, we know whatkinds of names we tend to use for �les and that email correspondence can be found in a toplevel directory called \mail". Users are often forced to deal with �le name extensions, whosemeaning the are expected to remember. Users are expected to remember the structure of7

the hierarchies they create, as well as aspects of the underlying system hierarchy, and, often,equally idiosyncratic hierarchies created by other users.� File names must be chosen and remembered. A big part of working with a HFS requires usersto constantly be choosing and remembering �le names. Conventions arise and must also beremembered.� File locations must be chosen and remembered. As well as remembering names and namingconventions, users must remember positional information about the placement within the treeof �les and directories.� Further symptoms of the problems with the hierarchical structure found in today's operatingsystems are the very presence of symbolic links, magic numbers used to indicate �le contenttype, so-called \invisible" �les that follow a naming convention that applications can beseparately written to optionally ignore, and the very frequent encoding of information about�le content in �le names. All of these mechanisms were afterthoughts designed to get aroundproblems inherent in the original underlying organizational design.Note that some of these problems are also valid for databases.Adding to the restrictions inherent in the HFS, today's applications and user interfaces providealmost nothing to help the user deal with these problems. There is typically little or no support fordeducing potential names or locations of �les, for retrieval based on content rather than name, forcategorizing existing �les into more useful organizational structures, for navigation other than theone-dimensional up and then down walk through a hierarchy, for helping to re-organize hierarchicalstructures or to support multiple simultaneous organizations, or for anything but the most primitivenotions of history of user behavior.In short, being forced to operate on �les with coarse ownership, often holding data in �xedformats, all organized within a single hierarchical tree presents a wide range of problems. Makingmatters worse, applications and user interface software typically o�er virtually nothing to helpalleviate these problems.4 A New Data ModelWe can distinguish three di�erent layers in a data model: data storage (physical), data represen-tation (logical), and data relationships (organizational). In most data models used today, such asa data structure implemented in a programming language, a HFS, or a relational database, thosethree layers are closely bound together for di�erent reasons (e�ciency, consistency, etc.). We believethat this binding restricts the way programmers, designers, and users can manipulate data; and itforces early design decisions that a�ect whole systems, and even, as we've seen, user interfaces.Our data model explicitly separates these three layers. First, we do not impose any conditionon how objects should be stored as that depends on technology. We only want our objects tobe persistent. In fact, AVS uses a relational database to store objects, DV uses a HFS to storedocuments, and KS uses Java objects to store entities. Moreover, our model allows objects to bedistributed, and it makes that transparent to the programmer and to the user.8

The second layer of our data model, the representation layer, is crucial, for it is that whichpresents: objects with dynamic attributes and values. In normal programming, objects have a �xednumber of attributes and dynamic values. In most OO programming languages, objects with moreattributes can be created through inheritance or delegation. In our case we go one step further: wecan add and delete attributes to an existing object at run-time, as in prototyping languages likeSelf [7]. This means that we can also add and delete attributes to a collection of objects. Formally,an object in our model is:� A set of attribute instances, which may be empty.� Each attribute instance is a value and an object, either or both of which may be empty.� A value can be any prede�ned atomic data type or it can be a reference to an object.Hence, our objects have identity as in OO programming, attributes have names, and values aretyped. An attribute may contain an object because we want to have attributes of attributes, andso on. As attributes are dynamic, ownership and permissions should be on attribute instances andnot on objects. The same is true for concurrency, and locking is also done on attribute instances.This representation choice has some fundamental consequences on the relationship layer. Inparticular, it does not restrict the relationships to compile time, or to tables in a database, etc.By adding attributes we can create any and many relationships between di�erent groups of objectsat any time. For example, the same data can simultaneously appear in a search tree and a hashtable simply by manipulating attributes. This is di�cult to do in a normal programming language.To stress this idea, we allow search capabilities on attributes and their values, such that we candynamically create a set of objects satisfying any given attribute-value query. Consequently, therepresentation layer gives power and
exibility to the relationship layer.Formally, we want support for the following type of queries and operations on objects:� Search for objects having a given attribute or with an attribute value satisfying a certainproperty. The property will depend on the value type and could be a range if it is a number,or a regular expression if it is a string, and so on. We do not impose any restriction on whatthis property can be.� Same as before, but with any level of recursion, such that we can query on sub-attributes andso on.� Operations on sets of objects: union, intersection, and subtraction.� The addition or removal of attributes (or sets of them) to sets of objects.Although a PACO system might use a back-end relational database as a storage tool, it isnot itself a database. The data model we advocate prescribes only object structure (attributesand values). It is independent of object content and says nothing about information organization.A relational database does just the opposite. The design of a set of database tables is heavilydependent on a priori knowledge of content. Given this knowledge of content, a database implementsa single organization of the data. The prior conditions and the result are quite di�erent. Ourdata model contains no a priori view of how information should be organized, and permits many9

simultaneous organizations, but a database is an explicit implementation of a single view of theorganization of given information. This is notwithstanding database research on materialized views,since, for the most part, they are merely subsets of the database, and not truly new extensions ofthe data. However, recent work on adapting traditional relational databases to the exigencies ofthe web is increasing along the lines of evolvable materialized views [16].An important part of our data model is that objects have no special piece of content to whichattributes are attached. Although this has been done in the past (see the discussion of relatedwork), it seems to be a move that has been ignored by more recent work. We believe this is animportant step because:� It allows objects that have no content (but other useful attributes). Such objects might, forexample, hold attributes that serve to organize other objects.� Objects may have many pieces of content. For example, di�erent translations of the samedocument, all equally important, or various versions of a document or program.� Attributes may exist before the content does. For example, notes by various people regardinga meeting may collect as attributes of an object before the minutes of the meeting (the maincontent) is available and added to the object (as the value of yet another attribute).� Attributes may exist after the content goes away. Attributes may summarize a large objectsuch as an image or book. It should be possible to remove the original content and not haveall attributes suddenly vanish too.� The focus of an object may change. The content which provokes the creation of a new objectmay, over time, become less important than some other attribute in the same object. By nottreating the original material in a special fashion, there is no problem with changing focus.� It increases uniformity of storage and access. Special content does not have to be stored oraccessed di�erently from other information in the object. This means that awkward situationsrequiring the use and combination of multiple tools to access the same conceptual object donot arise.� It is in accord with our general aims of providing more freedom to people who end up usingour system.While it is true that some of these problems can be avoided in a system that adds attributes to aspecial content object by simply leaving that object empty, that approach is less attractive. Underthat approach, everyone using the system must deal with the decision to always have a specialcontent object around which attributes aggregate. Instead, with no special content, systems thatrequire all objects to have such content can simply add it as an attribute and treat it specially.Systems that do not require this do not inherit the obligation to deal with this irrelevant (to them)content object. 10

5 Comparison with Related WorkUsing attributes as a mechanism of avoiding the di�culties of �les or simply as a
exible storagelayer is an approach that has been taken in several earlier projects. We can classify the majorityof related work by the characteristics described in the following sections.5.1 Object PersistencePersistent objects are not new. They are the core of object oriented databases, which tipicallyare implemented over the standard �le system. Another related topic is persistent programminglanguages, where everything persist from one run to the next, storing the state of a program insecondary memory. The main di�erence of our proposal to standard object oriented databases isthat objects have dynamic attributes. That changes completely how they should be stored and alsohow the database can be queried. This di�erence also applies to persistent programming languages.In addition, our proposal replaces both, a database and a �le system layer. It is a diiferent paradigmto access information.5.2 Adding Attributes to Existing ObjectsThe addition of attributes to special objects: Placeless Documents (documents) [9]; Tapestry (mailmessages, news articles) [13]; Semantic File Systems (�les) [12, 10]; SHORE (�les) [6]; the BeOSFile System (�les) [10]; the Synopses File System (�les) [4].Our data model does not treat as special any pre-existing object, such as a document or �leor other content. This approach was taken earlier in work on Entities [18] and Self [7], but is adeparture from more recent work in which attributes were added to special objects, as mentionedabove. A discussion on this can be found in the section on our data model.Our objects could be implemented using associative arrays as in AWK or perl, or string hashingtables in Java. However, in these contexts, implementing the search capabilities of our model wouldbe extremely ine�cient. On the other hand, object persistence is related to persistent programminglanguages and object oriented databases.Our work is closely related in spirit to the Placeless Documents project at Xerox PARC [8,9]. That project has a wide range of aims for building document management systems based onattributes and search.5.3 Emphasis on Automated ProcessesSome related work on attributes emphasizes automated processes which are used to gather infor-mation and incorporate it into the system as attributes - either from outside sources or by lookingat local objects (mainly �les): Semantic File Systems [12], Harvest [5].As well as allowing for the automated addition of attributes to objects, especially in KnownSpace,our work also explicitly emphasizes the importance of ad hoc addition of attributes to objects, par-ticularly by normal users interacting with information through graphical interfaces. In this it hassimilarities with the Presto's Vista browser [8], with a distinct focus on enabling the end user tointeract in a
exible fashion with information by means of attributes.11

5.4 Applications Versus PlatformsVery often, the move to use attributes is made as a means to an end: building a single application.It is clear that information processing via attributes is a
exible and powerful approach, but ithas not resulted in the separation into an attribute-based information system that may be used tobuild multiple applications. Exceptions to this rule are Entities [18] and the BeOS �le system [10].We believe it is time that the power and
exibility of the attribute-based approach was separatedfrom any given application and taken down to a more fundamental level in computational systems.In this way, the advantages of the approach will be available to any application that cares to buildon this foundation. This seems to have been an aim in the BeOS �le system (BFS) [10], the NT�le system, and others. The AVS system described in this paper will eventually aim for a low-level implementation, such as that taken with the BFS, though the aims of the BFS implementersseem to have been less broad: directed mainly towards allowing attributes for a small number ofapplications (e.g., a mail reader) using a small number of attributes. An important di�erence isour move away from monolithic �le objects with coarse ownership to which attributes are attached.Instead, we use PACO's, persistent objects composed solely of attributes and values.5.5 TuplesOur work has similarities with Linda [11] and its derivatives (Java Spaces from SUN and T Spaces[19]). Both present a
exible persistent forum for communications amongst applications, and theobjects involved have a uniform representation that is not based on any pre-existing content. Thefocus of these tuple systems is centered on communication, probably re
ecting the initial focus ofLinda. The AVS system described in this paper also provides a persistent forum for this kind ofinter-application communication, though that is not its main focus. We are more concerned with
exible persistent information representation and organization.6 An Instance of Our Model: Attribute Value SystemsAVS is a prototype implementation of the above data model. Its explicit aim is to provide aconvenient and
exible storage substrate, and hence computational environment. Many of theproblems that AVS seeks to address stem from the di�culties inherent in a HFS discussed earlier.A traditional HFS provides just one organizational structure for information, and modern operatingsystems insist that we use it as a basis for storage. The object storage (�les) and organization (ahierarchy) are tightly bound. While it is clearly possible to use this base for many things, there areimportant common operations that are very awkward. AVS is designed to make these operationssimple.6.1 Conceptual ModelAVS attempts to provide a
exible information management environment for programmers, users,groups of user, and applications running on their behalf. It does this by providing a very generalform of object to hold information and a
exible attribute-based method of creating relationshipsbetween these objects. AVS is based on: 1) Objects composed solely of attribute/value pairs; 2)12

Editing of these attributes and values; and 3) Object relationships built via assigning attributes toobjects and discovered via subsequent search. These mechanisms generalize the HFS and providea natural basis for dealing with information.There is no a priori set of attributes that objects contain. Objects, by virtue of their attributes,may exist in many organizational structures (e.g., on graphs, on spreadsheets, on a desktop, inhierarchies), simultaneously, and exist there for real (not just as a copy of the name of an object ina distant structure which then has to be used to fetch the actual object|supposing it still exists).The search system provides access to attribute names and values equally, allowing searches forobjects based on their properties. Objects may be annotated by the addition of attributes, withoutdisturbing the original content.The remainder of this section presents a broad outline of a systemwhich provides an environmentin which all these objectives are satis�ed in a natural fashion.6.1.1 Attribute Value ObjectsIn AVS, objects are collections of named attributes and their corresponding values. There are nospecial attributes, and there is no separate entity to which the attributes are attached. An objectcorresponding to what we call a �le will have an attribute (perhaps named content) whose valuecontains the content of the �le. It will likely have other attributes to hold information such asname, size, date, etc.Any user or application may attach attribute/value pairs to any object they are able to �nd.This allows the addition of information to the object without disturbing the existing content.Content in a proprietary format can be augmented by attributes containing comments, annotations,summaries, questions, additional content, etc. The addition of these attributes does not requiretools (which may not be known, available, or usable) to edit the existing attribute values.Attribute names exist within namespaces. Namespaces allow applications to use simple attributenames. AVS always contains a namespace called public with common attributes that applicationsmight want to attach to objects and share (e.g., text, creation-date).There are a small number of basic operations in AVS. These are the addition and removal ofattributes to/from objects, the altering of attribute names and values, and search. This simplicitymeans that implementations can be small and easily written, and increases the potential for codere-use. Operations such as moving an object within a �le system, changing the name of an object,adding comments to an object, causing the object to appear in an application, all reduce to theseoperations.6.1.2 SearchIn AVS, search based on attribute names and values is fundamental and ubiquitous. Applicationsuse search to locate objects and collections of objects. Objects are assigned attributes that causethem to be found in later searches. A hierarchy manager will add attributes to an object to causethat object to appear at some location in the hierarchy. An application putting objects onto agraph gives the objects attributes whose values store the coordinates of the object. These will laterbe retrieved, via search, by the application that displays the graph. A desktop manager will addattributes that cause an object to appear on a desktop, at a given location. All these attributes13

may be completely independent of one another, or they may be shared by various applications. Ineach case, the object is as much a member of the hierarchy, graph, desktop, etc., as it is of anyother structure.Information about searches need not be discarded. Objects may contain 1) a search query(allowing a later identical or similar search); 2) a copy of search results, or 3) references to foundobjects. Search and its results are treated as important members of the information system. Thereis low level support to ensure that saving search information is a natural operation.In AVS, all actions reduce to attribute editing and search. All applications and users wishingto operate on objects within the system must �rst �nd the objects they wish to act on (thoughreferences to previously found objects may also be used). Search does not discriminate amongstattribute names or values. There are no special attributes. Finding a �le with content matching aregular expression and whose name has a certain su�x is di�cult in an HFS, because the contentand name are stored separately, and treated di�erently by the �le system. In AVS, such distinctions(and thus problems) simply do not exist.6.1.3 Objects are not Owned, Attributes AreThe objects in AVS are not owned. They are composed of owned attributes. Objects may frequentlybe composed of attribute/value pairs added by several users or applications. The original attributesmay be later deleted, but the object continues to exist. The object remains even if all its attributesare deleted. Such an empty object might be used for later communication between applications, asa place to announce events, etc.This arrangement re
ects the aggregation of information into and around objects in the realworld. Memories, opinions, comments, and various other attributes exist regarding objects, andthe fact that some attributes may disappear (or never appear) does not alter the fact that there isstill an ownerless conceptual ball of information concerning the original material.6.1.4 Ubiquity of Attribute Editing OperationsThere are a small number of basic operations in AVS. These are the addition and removal ofattributes to/from objects, the altering of attribute names and values, and search. This extremeconceptual simplicity means that implementations can be small and easily written, and increasesthe potential for code re-use. Operations such as moving an object within a �le system, changing thename of an object, adding comments to an object, causing the object to appear in an application,all reduce to these simple operations.6.1.5 An Interpreted Object LanguageThe AVS will provide an interpreted language allowing operations on objects and attributes. Thislanguage will be used by applications to specify operations to be executed upon speci�ed events(attribute assignment or deletion, object found in a search, etc.). The language may also serve asan extension language for applications. 14

6.1.6 PermissionsThe permissions model of AVS places restrictions on attribute names and their values. A user orapplication that creates an attribute controls whether other users and applications can: 1) see thenew attribute name (i.e., that the attribute exists, and/or that an object has an instance of theattribute), 2) create or delete instances of the new attribute, and 3) read or write the value ofattribute instances.This allows users to assign private attributes to objects. A user may build objects composedentirely of attributes that cannot be seen by other users or applications. This o�ers a form ofprivacy: In AVS if you cannot �nd an object by search, you cannot view or alter it. Objects maythus be inaccessible (no attributes visible), partly accessible (some attributes visible, alterable, etc.),or fully accessible (all attributes visible) according to the permissions on its individual attributes.Attribute permissions exist independent of any instance of an attribute, and serve to implementa permissions policy for future instances of the attribute. In addition, attribute instances may carrypermissions information relevant to the instance in the object that is associated with each attribute.In the absence of these instance-speci�c permissions, the permissions for an attribute instance areinherited from those of its attribute.In order to prevent normal users from altering permissions on arbitrary attributes or attributeinstances, the system initially creates various important attributes and gives itself the permissionto add, delete, and alter these in objects. Various system properties that exist in normal PACOobjects are protected in this way with attributes that are owned by the system. It is envisagedthat tools such as compilers will have attributes (such as "executable") that only the compiler mayattach to objects.6.1.7 Attribute ManagersApplications in AVS will usually implement an Attribute Manager component. A standard taskfor an application will be to manage a set of attributes which it routinely attaches to and managesin objects that are or become relevant to the application. A hierarchy manager might add aname attribute whose value encodes the location of the object in the hierarchy. Although noother attributes are necessary to maintain a hierarchy, such a manager might also manage otherattributes, such as dates and access history, or may split the name into a path attribute and a nameattribute, etc. Other applications will manage sets of attributes in a similar fashion. For example, adesktop application might manage a set of attributes desk-x, desk-y, desk-icon which it attachesto objects that should appear on its desktop, and an annotation application might manage a set ofcomment, offset, date and author attributes.6.2 Data Relationships via Attributes and SearchIn AVS, as relationships between objects arise they are made real by the addition of attributeslinking the objects involved. These objects and their relationships are dynamic, and are laterdiscovered via search rather than through formal prede�ned data structures or following pointers.There are no a priori assumptions about data structures. Multiple relationships between objectscan exist simultaneously, allowing multiple views of the same objects, no one more important thanany other. 15

An object with a collection of attributes and corresponding values is an instance of some datastructure (recall that data structures in programming languages are composed of �elds and values).However, unlike data structures as they are used in programming languages, in AVS no-one needanticipate the relationships that may exist amongst objects or the �elds (attributes) that mightcomprise an object. Similarly, building relationships via the addition of attributes is quite di�erentfrom building the same relationships through the design of object-oriented class hierarchies.Predetermined data structures and class hierarchies are of limited use in a world full of un-expected relationships between objects, programmers, and users with widely di�ering brains, per-spectives, and needs. By using attributes and search in place of formal data structures, classes andpointers, AVS eliminates the need to anticipate relationships or to support a �xed number of them.Similar comments apply to the restrictions imposed by traditional databases.7 Applications of the ModelIn this section we brie
y present two prototypes of systems that use the proposed data model tomanage personal information.7.1 DomainViewDomainView [2] is a desktop metaphor which tries to address the user interface problems mentionedin Section 2. Although the initial motivation for DomainView was to use retrieval by content ina smarter way and to present a simpler interface for the user, we later realized that a di�erentconceptual frameworkwas needed to organize information and store documents. We now summarizehow the proposed data model is used in DV.An object is a document which has a dynamic number of attributes. Naming an object isoptional (its name is just one of the possible attributes of a document). Attributes can be poten-tially added by the user or by applications. Some initial attributes are creation time and creatingapplication, size, and content. User documents are organized in collections, each one de�ning aninformation or application domain. Domains have a
at organization. That is, there is no hierar-chy associated with them. Nevertheless, domains can naturally nest or overlap. However, they aredynamic, so those set relationships are not �xed. Hence, a document may belong to more than onedomain.Domains can be prede�ned and/or created by the user and are dynamic. Each domain hasassociated a set of words which de�nes it, chosen from a global thesaurus. Prede�ned domains coulddepend on speci�c user tasks or applications. As documents, domains may have a name, but thisis optional. The thesaurus can be initially de�ned by a system manager, extracted automaticallyfrom a subset of documents, or created by the user. In all cases, the thesaurus is dynamic and ismodi�ed by user actions. Documents or a set of documents can be retrieved by using a set of wordswhich will be searched on all attributes and/or speci�c values in speci�c document attributes suchas date, size, etc. Queries are stored and their result can de�ne a new domain. Notice that thereis no notion of a HFS and a document can only be retrieved using the value (or a range of values)of one or more attributes.Documents can only be used through the desktop interface. That means that the concept ofan application opening a document does not exist (moreover, it is forbidden as was the original16

intent of one of the Apple Macintosh designers [17]). Applications are associated with domainsand executed by documents, and not the other way around. To create a new document, thereis a generic new document with no attributes, which can call any application or the applicationsassociated to the document domain, if any.The user interface allows the following capabilities:� Visualizing domains, that is, sets of objects. In particular their intersection.� Visualizing a given domain or the result of a search, that is, a set of documents.� Retrieving sets of documents by searching on document attributes (by ranges in numericalattributes or by full-text retrieval operations in strings).Clearly, all these capabilities are easily implemented in our data model. Our user interface prototypehas been implemented in Java, and has almost all the functionality already described.Our desktop can be seen as a simple interface to a di�erent operating system where there isno HFS, but a uniform universe of objects (in our case called documents). We think that thismetaphor is closer to reality and does not rely so much on the user of the memory, although weexpect normal users to name all domains. However, the number of domains will be in general small,so this organization is much more scalable than a HFS. On the other hand, a user can have justone domain (his/her universe) and retrieve everything by content. That should be the �nal goal.7.2 KnownSpaceData within KnownSpace is stored in Entities with Attributes. Entities may be anything (emails,webpages, desktop documents, or more abstract things like Persons, Organizations, and Websites).Attributes may also be arbitrary (date added, phones numbers contained in, website pointed to by,and so on).As with DomainView, a typical KnownSpace interface presents a universe of entities, eachof which may represent a document|a webpage, an email message, and so on, but it may alsopresent entities representing more abstract things that seemingly have nothing whatsoever to dowith documents in the traditional sense{like a Person. A Person however, if a powerful organizingprinciple in daily life. A Person sends email, a Person has a phone number (and that phone numbermay be stored in an email form yet another Person). A Person has an address, and so on. All thesepieces of information can be hung on one entity inside KnownSpace. These users can browse, notjust traditional "documents", but also any arbitrary collection of pieces of information the interfacechooses to support.Further, interfaces in KnownSpace are not tied to the system in the sense that most otherinterfaces are tied to their systems. KnownSpace has many faces. It already has �ve interfaces,and more are on the way. Each user can (potentially) have a unique interface, since part of whatKnownSpace supports is the ability to build new interfaces inside KnownSpace (this work is not yetcomplete). Consequently, users may even have one KnownSpace interface they use when they're atwork, and at home use a completely di�erent one (although perhaps carrying over the same set oficons for each entity).Within a particular interface, users may browse, delete, create, edit, or markup any entity. How-ever, KnownSpace itself further marks up those entities, and any entities it fetches autonomously17

for presentation to the user. KnownSpace uses all that markup (all those attributes) to cluster theentities in many di�erent ways, each of which is available to any KnownSpace interface. It is upto the interface designer to choose which particular views of the data space it will emphasize to itsusers.To make all of this
exibility possible KnownSpace depends heavily on the
exible object-attribute model we presented earlier.8 Concluding RemarksArguments for our data model include its underlying simplicity and
exibility, the removal of apriori assumptions about data structures and relationships between information objects, ease of useand implementation, its natural representation of real world information, the support for multipleviews of the same information, and the fact that it generalizes the current structural imperative(the hierarchical �le system).The new data model should make it simpler for users, programmers, and applications to workwith information: to accumulate it, share it, add to it, delete it, and to organize, retrieve, and viewit in many ways. This data model is intended to replace or supplement the traditional HFS witha substrate that better re
ects the types of operations on information that we hope to perform inmany modern computational environments.Our model can also easily be extended to the Web. For example, all Web objects could bewrapped in XML, where we have attributes and values independent of the type of object (HTML,image, etc). To maintain the XML philosophy, binaries would be converted to visible ASCII withno distinction between data and metadata, although for complex objects it would be better to usea link to them and maintain them in their native format. We think that this is a very uniformand portable object model for the Web. Consequently, searching the Web with agents would bemuch easier and any search engine index would be much more powerful because attributes givesemantics to the data, which is also one of the goals of XML. All of our systems add richer layersof markup/interpretation to data which may (or may not) already be in some XML format.Future work for AVS will revolve around evaluating how programmers �nd the task of designingapplications using the data model that we propose. Based on our experience with DV and KS,having AVS would have greatly simpli�ed the development of those prototypes. Another importantevaluation is how e�ciently this model can be implemented, either from scratch or on top of a HFSor a relational data model, although the later imposes many restrictions that are already mentioned.Finally, our model leaves open many problems that we have not being able to address (yet).References[1] Ricardo Baeza-Yates, Terry Jones, and Gregory Rawlins. New Approaches to ManagingInformation: Attribute-Centric Data Systems. Submitted, 1999.[2] Ricardo Baeza-Yates and Claudio Mecoli. DomainView: A Desktop Metaphor based onUser De�ned Domains, Dept. of Computer Science, Univ. of Chile, 1999.18

[3] Deborah Barreau, and Bonnie A. Nardi. Finding and Reminding: File Organization fromthe Desktop. SIGCHI Newsletter, Vol. 27 No. 3, July 1995.[4] Mic Bowman and Ranjit John. The Synopsis File System: From Files to File Objects.Position paper for the Joint W3C/OMG Workshop on Distributed Objects and MobileCode. June 1996.[5] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.Schwartz. The Harvest information discovery and access system. In Proc. 2nd Int. WWWConf., pages 763{771, October 1994.[6] Carey, M., DeWitt, D., Naughton, J., Solomon, M., et al., Shoring Up Persistent Appli-cations. Proc. of the 1994 ACM SIGMOD Conference, Minneapolis, MN, May 1994.[7] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs H�olzle. Parents are Shared Parts:Inheritance and Encapsulation in Self. In Lisp and Symbolic Computation 4(3), KluwerAcademic Publishers, June, 1991.[8] Paul Dourish, W. Keith Edwards, Anthony LaMarca, John lamping, Karin Petersen,Michael Salisbury, Douglas B. Terry and james Thornton. Extending Document Manage-ment Systems with User-Speci�c Active Properties. Xerox PARC Working Paper, 1999.[9] Paul Dourish, W. Keith Edwards, Anthony LaMarca, and Michael Salisbury. Presto: AnExperimental Architecture for Fluid Interactive Document Spaces. Xerox PARC WorkingPaper, 1999.[10] Dominic Giampaolo. Practical File System Design with the Be File System, Morgan Kauf-mann, 1999.[11] David Gelernter. Generative communication in Linda. ACM Transactions on Program-ming Languages and Systems, 2(1):80{112, January 1985.[12] David K. Gi�ord, Pierre Jouvelot, Mark Sheldon, and James O'Toole. Semantic �le sys-tems. In 13th ACM Symposium on Principles of Programming Languages, October 1991.[13] David Goldberg, David Nichols, Brian M. Oki and Douglas Terry. Using CollaborativeFiltering to Weave an Information Tapestry. Communications of the ACM, v. 35(12) pp.61-70, December 1992.[14] Terry Jones. Attribute Value Systems: An Overview, Dept. of Cognitive Science, Univ. ofCalifornia at San Diego, 1998.[15] Gregory J. Rawlins. KnownSpace, http://www.knownspace.org//, 1999.[16] Elke A. Rundensteiner, Andreas Koeller, Xin Zhang, Amy J. Lee, and Anisoara Nica;Evolvable View Environment (EVE): Non-Equivalent View Maintenance under SchemaChanges, SIGMOD'99, Software system demonstration, Philadelphia, USA, May 1999.[17] Bruce Tognazzini. Tog on Software Design, Addison Wesley, 1996.19

[18] Andrew John Wilkes. Workstation Design for Distributed Computing (see Chapter 4,Entities). Ph.D. Dissertation, University of Cambridge, 1984. Reproduced as HewlettPackard Technical Report ACS-88-32, April 1988.[19] P. Wycko�, S. W. McLaughry, T. J. Lehman and D. A. Ford. T Spaces. IBM SystemsJournal, v. 37, No. 3 - Java Technology, Aug 1998.

20

