
Searching in Metric Spaces �Edgar Ch�avezy Gonzalo Navarroz Ricardo Baeza-Yatesz Jos�e L. Marroqu��nxAbstractThe problem of searching the elements of a set which are close to a given query under somesimilarity criterion has a vast number of applications in many branches of computer science, frompattern recognition to textual and multimedia information retrieval. We are interested in therather general case where the similarity criterion de�nes ametric space, instead of more restrictedcases of vector spaces. A large number of solutions have been proposed in di�erent areas, inmany cases without cross-knowledge. Because of this, the same ideas have been reinventedseveral times, and very di�erent presentations have been given for the same approaches. Wepresent a uni�ed view of all the known proposals to organize metric spaces, so as to be ableto understand them under a common framework. Most approaches turn out to be variationson a few di�erent concepts. We organize those works in a taxonomy which allows us to devisenew algorithms from combinations of concepts which were not noticed before because of thelack of communication between di�erent communities. Some of the new techniques that appearas combinations are shown to be very competitive. We present experiments validating ourresults and comparing the existing approaches, so as to determine the best existing solutions forthis problem. We �nish with recommendations for practitioners and open questions for futuredevelopment.1 IntroductionSearching is a fundamental problem in computer science, present in virtually every computer ap-plication. Simple applications pose simple search problems, while a more complex application willrequire, in general, a more sophisticated form of searching.The search operation has been traditionally applied to \structured data", i.e. numerical oralphabetical information which is searched for exactly. That is, a search query is given and thenumber or string which is exactly equal to the search query is retrieved. Traditional databasesare built around the concept of exact searching: the database is divided into records, each recordhaving a fully comparable key. Queries to the database return all the records whose keys match thesearch key. More sophisticated searches such as range queries on numerical keys or pre�x searchingon alphabetical keys still rely on the concept that two keys are or are not equal, or that there is atotal linear order on the keys. Even in recent years, when databases have included the ability to�This project has been partially supported by CYTED VII.13 AMYRI Project.yEscuela de Ciencias F��sico-Matem�aticas, Universidad Michoacana. Edi�cio \B", Ciudad Universitaria, Morelia,Mich. M�exico 58000. elchavez@zeus.ccu.umich.mx.zDepto. de Ciencias de la Computaci�on, Universidad de Chile. Blanco Encalada 2120, Santiago, Chile.fgnavarro,rbaezag@dcc.uchile.cl.xCentro de Investigaci�on en Matem�aticas (CIMAT). Callej�on de Jalisco S/N, Valenciana, Guanajuato, Gto. M�exico36000. jlm@fractal.cimat.mx. 1

store new data types such as images, the search has still been done on a predetermined number ofkeys of numerical or alphabetical types.With the evolution of information and communication technologies, unstructured repositories ofinformation have emerged. Not only new data types such as free text, images, audio and video haveto be queried, but also it is not possible anymore to structure the information in keys and records.Such structuring is very di�cult (either manually or computationally) and restricts beforehandthe types of queries that can be posed later. Even when a classical structuring is possible, newapplications such as data mining require to access the database by any �eld, not only those markedas \keys". Hence, new models for searching in unstructured repositories are needed.The above scenarios require more general search algorithms and models than those classicallyused for simple data. A unifying concept is that of \similarity searching" or \proximity searching",i.e. searching for database elements which are similar or close to a given query element1. Similarityis modeled with a distance function that satis�es the triangular inequality, and the set of objectsis called a metric space. Since the problem has appeared in many diverse areas, solutions haveappeared in many unrelated �elds, such as statistics, arti�cial intelligence, databases, computationalbiology, pattern recognition and data mining, to name a few. Since the current solutions comefrom so diverse �elds, it is not surprising that the same solutions have been reinvented many times,that obvious combinations of solutions have not been noticed, and that no thorough analyticalor experimental comparisons have been done. More importantly, there have been no attempts toconceptually unify all those solutions.In many applications, the problem in general metric spaces is translated to a vector space (i.e.objects are represented as k-dimensional points with some geometric interpretation of similarity).This is because the concept of similarity searching appeared in vector spaces in the �rst place. Thisis a natural extension of the problem of searching the closest point in the plane. In this frameworkoptimal algorithms (on the database size) exist in both average and worst case [10] for closest pointsearch. Search algorithms for vector spaces are called spatial access methods (SAM). Among themost popular are kd-trees [8, 9], R-trees [36] and the more recent X-trees [11] (see [57, 35] for goodsurveys). Unfortunately the existing algorithms are very sensitive to the vector space dimension.Closest point search algorithms have an exponential dependency on the dimension of the space(this is called the \curse of dimensionality"). In practical terms, it is considered that the problembecomes intractable in more than 20 dimensions. For this reason, several authors have proposedthe use of distance based indexing techniques, which use only the distance between points andavoid any reference to coordinates, in an attempt to avoid the dimensionality curse. This may beparticularly e�ective when an intrinsically low dimensional set is embedded into an arti�cially highdimensional space (e.g. a plane in a three dimensional space). Hence, one resorts to general metricspaces not only when the problem has not a coordinate structure, but also when the number ofsuch coordinates is very high.With regard to general metric spaces, the problem has been tackled from a variety of viewpoints.The general goal is to build a data structure (or index) to reduce the number of distance evaluationsat query time, since the distance is assumed to be expensive to compute. Some important advanceshave been done, mainly in the database community where a number of distance-based indices and1The term \approximate searching" is also used, but it is misleading and we use it here only when referring toapproximation algorithms. 2

data structures have been developed and studied from di�erent perspectives. In this particularcase, people is concerned additionally with the I/O problem, e.g. e�cient disk arrangements toaccess a (perhaps huge) database [26, 47].The main goal of this work is to present a unifying framework to describe and analyze all theexisting solutions to this problem. We show that all the existing indexing algorithms for proximitysearching consist in building a set of equivalence classes, discarding some classes, and searchingexhaustively the rest. As a consequence of the analysis we are able to build a taxonomy on theexisting algorithms for proximity search, to classify them according to their essential features,and to analyze their e�ectiveness. We are able to identify essentially similar approaches, to pointout combinations of ideas which have not previously been noticed, and to identify the main openproblems in this area. We also present experimental results that help to validate our assertions,to answer some open questions, and to determine the best existing choices for practitioners. Asa byproduct of this work, some unnoticed combinations of previous ideas are shown to be verycompetitive.We remark that we are concerned with the essential features of the search algorithms for generalmetric spaces. That is, we try to extract the basic features from the wealth of existing solutions, soas to be able to categorize and analyze them under a common framework. We focus mainly on thenumber of distance evaluations needed to execute range queries (i.e. with �xed tolerance radius),which are the most basic ones. However, we also pay some attention to the total CPU time, as wellas the time and space cost to build the indices. There are many other features which we are notconsidering in order to keep our scope reasonably bounded, and which deserve a separate study,such as� dynamic capabilities of the indices, i.e. how to add and delete elements once the index is built,since most indices can be naturally updated and considering this adds extra complications;� I/O performance of the indices, since we aim at the essential features and this would introducean extra level of complication;� vector spaces, as there exist already good surveys on this particular case [57, 35];� closest point search, as the algorithms are built systematically over range queries (we explainhow, however);� sub-queries (i.e. searching a small element inside a larger element) since the solutions arebasically the same after a domain-dependent transformation is done.This paper is organized as follows. In Section 2 we present a number of applications thatmotivate proximity searching. In Section 3 we explain some basic concepts. In Section 4 wesurvey all the search algorithms we are aware of. In Section 5 we present our unifying model. InSection 6 we present a taxonomy on the current solutions based on the unifying model and �ndnew combinations not previously noticed. In Section 7 we present experiments validating our ideasand comparing the techniques. Finally, in Section 8 we present our conclusions, give advices forpractitioners, and point out the main open problems in this area.3

2 Motivating ApplicationsWe present now a sample of applications where the concept of proximity searching appears. Sincewe have not presented a formal model yet, we do not try to explain the connections between thedi�erent applications. We rather delay this discussion to Section 3.2.1 Query by Content in Structured DatabasesIn general, the query posed to a database presents a piece of a record of information, and it needsto retrieve the entire record. In the classical approach, the piece presented is �xed (the key).Moreover, it is not allowed to search with an incomplete or an erroneous key. On the other hand,in the more general approach required nowadays the concept of searching with a key is generalizedto searching with an arbitrary subset of the record, allowing or not errors.This type of searching have deserved a number of names, for example range query, query bycontent or proximity searching. It is of use in data mining (where the interesting parts of the recordcannot be predetermined), when the information is not precise, when we are looking for a range ofvalues, when the search key may have errors (e.g. a misspelled word), etc.A general solution to the problem of range queries by any record �eld is the grid �le [46]. Thedomain of the database is seen as a hyper-rectangle of k dimensions (one per record �eld), whereeach dimension has an ordering according to the domain of the �eld (numerical or alphabetical).Each record present in the database is considered as a point inside the hyper-rectangle. A queryspeci�es a sub-rectangle (i.e. a range along each dimension), and all the points inside the speci�edquery are retrieved. This does not address the problem of searching on non-traditional data types,nor allowing errors that cannot be recovered with a range query. However, it converts the originalsearch problem to a problem of obtaining, in a given space, all the points \close" to a given querypoint. Grid �les are essentially a disk organization technique to e�ciently retrieve range queries insecondary memory.2.2 Query by Content in Multimedia ObjectsNew data types such as images, �ngerprints, audio and video (called \multimedia" data types)cannot be meaningfully queried in the classical sense. Not only they cannot be ordered, but theycannot even be compared for equality. No application will be interested in searching an audiosegment exactly equal to a given one. The probability that two di�erent images are pixel-wiseequal is negligible unless they are digital copies of the same source. In multimedia applications, allthe queries ask for objects similar to a given one. Some example applications are face recognition,�ngerprint matching, voice recognition, and in general multimedia databases [1].Think for example in a repository of images. Interesting queries are of the type \�nd an imageof a lyon with a savanna background". If the repository is tagged, and each tag contains a fulldescription of what is inside the image, then our example query can be solved with a classicalscheme. Unfortunately, such a classi�cation cannot be done automatically with the available imageprocessing technology. Object recognition in real world scenes is still in an immature state toperform such complex tasks. Moreover, we cannot predict all the possible queries that will beposed so as to tag the image for every possible query. An alternative to automatic classi�cation4

consists in considering the query as an example image, so that the system searches all the imagessimilar to the query. This can be built inside a more complex feedback system where the userapproves or rejects the images found, and a new query is submitted with the approved images. Itis also possible that the query is just part of an image and the system has to retrieve the wholeimage.These approaches are based on the de�nition of a similarity function among objects. Thosefunctions are provided by an expert, but they pose no assumptions on the type of queries thatcan be answered. In many cases, the distance is obtained via a set of k \features" which areextracted from the object (e.g. in an image a useful feature is the average color). Then each objectis represented as its k features, i.e. a point in a k-dimensional space, and we are again in a case ofrange queries on vector spaces.There is a growing community of scientists deeply involved with the development of such simi-larity measures [20, 12, 13].2.3 Text RetrievalAlthough not considered a multimedia data type, unstructured text retrieval poses similar problemsas multimedia retrieval. This is because textual documents are in general not structured to easilyprovide the desired information. Text documents may be searched for strings that are present ornot, but in many cases they are searched for semantic concepts of interest. For instance, an idealscenario would allow to search a text dictionary for a concept such as \to free from obligation",retrieving the word \redeem". This search problem cannot be properly stated with classical tools.A large community of researchers has been working on this problem from a long time ago[48, 34, 7]. A number of measures of similarity have emerged. The problem is basically solved byretrieving documents similar to a given query. The user can even present a document as a query,so that the system �nds similar documents. Some similarity approaches are based on mapping adocument to a vector of real values, so that each dimension is a vocabulary word and the relevanceof the word to the document (computed using some formula) is the coordinate of the documentalong that dimension. Similarity functions are then de�ned in that space. Notice however that thedimensionality of the space is very high (thousands of dimensions).Another problem related to text retrieval is spelling. Since huge text databases with low qualitycontrol are emerging (e.g. the Web), and typing, spelling or OCR (optical character recognition)errors are commonplace in the text and the query, we have that documents which contain a mis-spelled word are no longer retrievable by a correctly written query. Models of similarity amongwords exist (variants of the \edit distance" [49]) which capture very well those kind of errors. Inthis case, we give a word and want to retrieve all the words close to it. Another related applicationis spelling checkers, where we look for close variants of the misspelled word.In particular, OCR can be done using a low-level-classi�er, so that misspelled words can becorrected using the edit distance to �nd promising alternatives to replace incorrect words.2.4 Computational BiologyADN and protein sequences are the basic object of study in molecular biology. As they can bemodeled as texts, we have the problem of �nding a given sequence of characters inside a longer5

sequence. However, an exact match is unlikely to occur, and computational biologists are moreinterested in �nding parts of a longer sequence which are similar to a given short sequence. The factthat the search is not exact is due to minor di�erences in the genetic streams that describe beingsof the same or closely related species. The measure of similarity used is related to the probabilityof mutations such as reversals of pieces of the sequences and other rearrangements [56, 49].Other related problems are to build phylogenetic trees (a tree sketching the evolutionary pathof the species), to search patterns for which only some properties are known, and others.2.5 Pattern Recognition and Function ApproximationA simpli�ed de�nition of pattern recognition is the construction of a function approximator. In thisformulation of the problem one has a �nite sample of the data, and each data sample is labeled asbelonging to a certain class. When a fresh data sample is provided, the system is required to labelthis new sample with one of the known data labels. In other words, the classi�er can be thought ofas a function de�ned from the object (data) space to the set of labels. In this sense all the classi�ersare considered function approximators.If the objects are m-dimensional vectors of real numbers then a natural choice is neural netsand fuzzy function approximators. Another popular universal function approximator, the k-nearestneighbor classi�er, consists in �nding the k objects nearest to the unlabeled sample, and assigningto this sample the label having majority among the k nearest objects. Opposed to neural nets andfuzzy classi�ers, the k-nearest neighbor rule has zero training time, but if no indexing algorithm isused it has linear complexity [31].Other applications of this universal function approximator are density estimation [30] and re-inforcement learning [52]. In general, any problem where we want to infer a function based on a�nite set of samples is a potential application.2.6 Audio and Video CompressionAudio and video transmission over a narrow-band channel is an important problem, for example inInternet-based audio and video conferencing. A frame (a static picture in a video, or a fragment ofthe audio) can be thought of as formed by a number of (possibly overlapped) subframes (16� 16subimages in a video, for example). In a very succinct description, the problem can be solved bysending the �rst frame as-is and for the next frames sending only the subframes having a signi�cativedi�erence from the previously sent subframes. This description encompasses the MPEG standard.The algorithms use in fact a subframe bu�er. Each time a frame is about to be sent it issearched (with a tolerance) in the subframe bu�er and if it is not found then the entire subframeis added to the bu�er. If the subframe is found then only the index of the similar frame found issent. This implies, naturally, that a fast similarity search algorithm has to be incorporated to theserver to maintain a minimum of frames-per-second rate.3 Basic ConceptsAll the applications presented in the previous section share a common framework, which is in essenceto �nd close objects, under some suitable similarity function, among a �nite set of elements. In6

this section we present the formal model comprising all the above cases.3.1 Metric SpacesWe introduce now the basic notation for the problem of satisfying proximity queries and for themodel used to group and analyze the existing algorithms.The set Xwill denote the universe of fair or valid objects. A �nite subset of them, U, of sizen = jUj, is the set of objects where we search. Uwill be called the dictionary, database or simplyour set of objects or elements. The functiond : X�X�! Rwill denote a measure of \distance" between objects (i.e. the smaller the distance, the closer ormore similar are the objects). Distance functions have the following properties:(p1) 8x; y 2X; d(x; y) � 0 positiveness,(p2) 8x; y 2X; d(x; y) = d(y; x) symmetry,(p3) 8x 2X; d(x; x) = 0 re
exivity,and in most cases(p4) 8x; y 2X; x 6= y) d(x; y)> 0 strict positiveness.The similarity properties enumerated above only ensure a consistent de�nition of the function,and cannot be used to save comparisons in a proximity query. If d is indeed a distance, i.e. if itsatis�es(p5) 8x; y; z 2X; d(x; y) � d(x; z) + d(z; y) triangular inequality,then the pair (X; d) is called a metric space.If the distance function does not satisfy the strict positiveness property (p4) then the space iscalled a pseudo-metric space. Although for simplicity we do not consider pseudo-metric spaces inthis work, all the presented techniques are easily adapted to them by simply identifying all theobjects at distance zero as a single object. This works because, if (p5) holds, one can easily provethat d(x; y) = 0) 8z; d(x; z) = d(y; z).In some cases we may have a quasi-metric, where the symmetry property (p2) does not hold.For instance, if the objects are corners in a city and the distance corresponds to how much acar must travel to move from one to the other, then the existence of one-way streets makes thedistance asymmetric. There exist techniques to derive a new, symmetric, distance function froman asymmetric one, such as d0(x; y) = d(x; y) + d(y; x). However, to be able to bound the searchradius of a query when using the symmetric function we need speci�c knowledge of the domain.Finally, we can relax the triangular inequality (p5) to d(x; y) � �d(x; z)+�d(z; y)+�, and aftersome scaling we can search in this space using the same algorithms designed for metric spaces. Ifthe distance is symmetric we need � = � for consistency.7

3.2 Proximity QueriesThere are basically three types of queries of interest in metric spaces:(a) Range or proximity query Retrieve all elements which are within distance r to q. This is,fu 2 U = d(q; u) � rg. We denote this query by (q; r)d(b) Nearest neighbor query Retrieve the closest elements to q in U. This is, fu 2 U = 8v 2U; d(q; u) � d(q; v)g. In some cases we are satis�ed with one such element (in continuousspaces there is normally just one answer already). We can also give a maximum distance r�such that if the closest element is at distance more than r� we do not want anyone reported.(c) k-Nearest neighbor query Retrieve the k closest elements to q in U. This is, retrieve a setA � U such that jAj = k and 8u 2 A; v 2 U� A; d(q; u) � d(q; v). Note that in case of tieswe are satis�ed with any set of k elements satisfying the condition.The most basic type of query is (a). The left part of Figure 1 illustrates a query on a set ofpoints which will be our running example. We use R2 as our metric space for clarity.A proximity query will be therefore a pair (q; r)d with q a novel element in X and r a realnumber indicating the radius (or tolerance) of the query. The set fu 2 U; d(q; u) � rg will becalled the outcome of the proximity query. The query is indicated as a d-type query since fordi�erent distance functions there are di�erent outcomes of the query.The other two types of queries are normally solved using a variant of the range queries. Forinstance, the query of type (b) is normally solved as a range query where the radius r is initiallyin�nite, and is reduced as closer and closer elements to the query are found. This is normallycoupled with a heuristic that tries to obtain close elements as quickly as possible (as the problemis always easier for smaller radii). Queries of type (c) are normally solved as a variant of type (b),where the k closest elements are kept and the current r is the largest distance from those elementsto the query (as farther elements are not of interest).Another widely used algorithm for queries of type (b) or (c) based on those of type (a) is tosearch with �xed radii r = 2i�, starting with i = 0 and increasing it until the desired numberof elements (or more) lies inside the search radius r = 2i�. Later, the radius is re�ned betweenr = 2i�1� and r = 2i� until the exact number of elements is included.The total CPU time to evaluate a query can be split asT = # of distance evaluations � complexity of d() + extra CPU timeand we would like to minimize T . In many applications, however, evaluating d() is so costly that theextra CPU time can be neglected. This is the model we use in this paper, and hence the numberof distance evaluations performed will be the measure of the complexity of the algorithms. Wecan even allow a linear (but reasonable) amount of CPU work, as long as the number of distancecomputations is kept low. However, we will pay some marginal attention to the so-called extraCPU time.It is clear that either type of query can be answered by examining the entire dictionary U.In fact if we are not allowed to preprocess the data, i.e. to build an indexing data structure,then this exhaustive examination is the only way to proceed. An indexing algorithm is an o�-line8

procedure to build beforehand a data structure (or index) designed to save distance computationswhen answering proximity queries later. This data structure can be expensive to build, but thiswill be amortized by saving distance evaluations over many queries to the database. The aim istherefore to design e�cient indexing algorithms to reduce the number of distance evaluations. Allthese structures work on the basis of discarding elements using the triangular inequality (the onlyproperty that allows saving distance evaluations).3.3 Vector SpacesIf the elements of the metric space (X; d) are indeed tuples of real numbers (actually tuples of any�eld) then the pair is called a �nite dimensional vector space, or vector space for short.A k-dimensional vector space is a particular metric space where the objects are identi�ed withk real-valued coordinates (x1; :::; xk). There are a number of options for the distance function touse, but the most widely used is the family of Ls (or Minkowski) distances, de�ned asLs((x1; :::; xk); (y1; :::; yk)) = kXi=1 jxi � yijs!1=sThe right part of Figure 1 illustrates some of these distances. For instance, the L1 distanceaccounts for the sum of the di�erences along the coordinates. It is also called \block" or \Manhat-tan" distance, since in two dimensions it corresponds to the distance to walk between two pointsin a city of rectangular blocks. The points at the same distance r to a given point p form a boxcentered at the point and rotated 45 degrees, the distance between two opposite corners of the boxbeing 2r.The L2 distance is better known as \Euclidean" distance, as it corresponds to our notion ofspatial distance. The points at the same distance r to a given point p form a sphere of diameter2r centered at the point.The other most used member of the family is L1, which corresponds to taking the limit ofthe Ls formula when s goes to in�nity. The result is that the distance between two points is themaximum di�erence along a coordinate:L1((x1; :::; xk); (y1; :::; yk)) = kmaxi=1 jxi � yijand the points at the same distance r to a given point p form a box of side 2r centered at the point.This distance plays a special role in this survey.4 Overview of Current SolutionsIn this section we explain the existing indices to structure metric spaces. Since we have not yetdeveloped the concepts of a unifying perspective, the description will be kept at an intuitive level,without any attempt to analyze why some ideas are better or worse.We divide the presentation in four parts. The �rst one deals with data structures for discretedistance functions, that is, functions that deliver a small set of values. The second part correspondsto indices for continuous distance functions, where the set of alternatives is in�nite or very large.9

L

L

L

L1 2

6

p10

p13
p5

p4

p11

p2

p12
p3

p7

p1

p15

p14

p6

p8

p9

qFigure 1: On the left, an example of a range query on a set of points. On the right, the set ofpoints at the same distance to a center point, for di�erent Minkowski distances.Third, we consider other methods such as clustering and mapping to vector spaces. Finally, webrie
y consider approximation algorithms for the problem.4.1 Discrete Distance FunctionsWe start by describing data structures that apply to distance functions that return a small set ofdi�erent values. At the end we show how to cope with the general case.BKT Probably the �rst general solution to search in metric spaces was presented in [19]. Theypropose a tree (thereafter called Burkhard-Keller Tree, or BKT), which is suitable for discrete-valued distance functions. It is de�ned as follows: an arbitrary element p 2 U is selected as theroot of the tree. For each distance i > 0, we de�ne Ui = fu 2 U; d(u; p) = ig as the set of all theelements at distance i to the root p. Then, for any nonempty Ui, we build a child of p (labeled i),where we recursively build the BKT for Ui. This process can be repeated until there is only oneelement to process, or until there are no more than b elements (and we store a bucket of size b).All the elements selected as roots of subtrees are called pivots.To answer queries of type (a), where we are given a query q and a distance r, we begin at theroot and enter into all children i such that d(p; q)� r � i � d(p; q) + r, and proceed recursively.If we arrive to a leaf (bucket of size one or more) we compare sequentially all its elements. Eachtime we perform a comparison (against pivots or bucket elements u) where d(q; u) � r, we reportthe element u.The triangular inequality ensures that we cannot miss an answer. All the subtrees not traversedcontain elements x which are at distance d(x; p) = i from some node p, where jd(p; q)� ij > r. Bythe triangular inequality, d(p; q)� d(p; x) + d(x; q), and therefore d(x; q) � d(p; q)� d(p; x)> r.Figure 2 shows an example, where the point p11 has been selected as the root. We have builtonly the �rst level of the BKT for simplicity. A query q is also shown, and we have emphasized the10

branches of the tree that would have to be traversed. In this and all the examples of this sectionwe discretize the distances of our example, so that they return integer values.
p13

p4

p11

p2

p12
p3

p7

p1

p15

p14

p6

p8

p10

p5

p9

p11

2 3 4 5 6

p2 p9 p8p3 p5 p12 p13p1 p10p4 p6 p7 p14 p15qFigure 2: On the left, the division of the space obtained when p11 is taken as a pivot. On the right,the �rst level of a BKT with p11 as root. We also show a query q and the branches that it has totraverse. We have discretized the distances so they return integer values.To answer queries of type (b), we begin at the root and measure i = d(p; q). Now, we considerthe edges labeled i, i� 1, i+1, i� 2, i+2, and so on, and proceed recursively in the children2. Webegin with an estimation of the distance to the closest element, r� = 1, which is re�ned for eachcomparison we perform. Therefore, our exploration ends just after considering the branch i + r�(r� is reduced along the process). At the end r� is the distance to the closest neighbors and wehave already seen all them.Our analytical results on BKTs are extrapolated from those made for FQTs [5], which can beeasily adapted to this case. The only di�erence is that the space overhead of BKTs is O(n) becausethere is exactly one element of the set per tree node.FQT A further development over BKTs is the \Fixed-Queries Tree" or FQTs [5]. This tree isbasically a BKT where all the pivots stored in the nodes of the same level are the same (and ofcourse do not necessarily belong to the set stored in the subtree). The actual elements are allstored at the leaves. The advantage of such construction is that some comparisons between thequery and the nodes are saved along the backtracking that occurs in the tree. If we visit manynodes of the same level, we do not need to perform more than one comparison because all the pivotsin that level are the same. This is at the expense of somewhat taller trees. FQTs are shown tobe superior to BKTs in [5]. Under some simplifying assumptions (experimentally validated in thepaper) they show that FQTs built over n elements are O(logn) height on average, are built usingO(n logn) distance evaluations, and that the average number of distance computations is O(n�),where 0 < � < 1 is a number that depends on the range of the search and on the structure of thespace (this analysis is easy to extend to BKTs as well). The space complexity is superlinear since,unlike BKTs, it is not true that a di�erent element is placed at each node of the tree. An upperbound is O(n logn) since the average height is O(logn).2This order to traverse the children is just one alternative, other choices may be better. However, our experimentalresults show that this is the best ordering to index words under the edit distance (see Section 2.3).11

FHQT In [5, 4], the authors propose a variant which is called \Fixed-Height FQT" (or FHQTfor short), where all the leaves are at the same depth h, regardless of the bucket size. This makessome leaves deeper than necessary, which makes sense because we may have already performedthe comparison between the query and the pivot of an intermediate level, therefore eliminatingfor free the need to consider the leaf. In [6] it is shown that by using O(logn) pivots, the searchtakes O(logn) distance evaluations (although the cost depends exponentially on the search radiusr). The extra CPU time, i.e. number of nodes traversed, remains however O(n�). The space, likeFQTs, is somewhere between O(n) and O(nh). In practice the optimal h = O(logn) cannot beachieved because of space limitations.FQA In [24], the Fixed Queries Array (FQA) is presented. The FQA, although not properly atree, is no more than a compact representation of the FHQT. Imagine that an FHQT of �xed heighth is built on the set. If we traverse the leaves of the tree left to right and put the elements in anarray, the result is the FQA. For each element of the array we compute h numbers representing thebranches to take in the tree to reach the element from the root (i.e. the distances to the h pivots).Each of these h numbers is coded in b bits and they are concatenated in a single (long) number sothat the higher levels of the tree are the most signi�cant digits.As a result the FQA is sorted by the resulting hb-bits number, each subtree of the FHQT cor-responds to an interval in the FQA, and each movement in the FHQT is simulated with two binarysearches in the FQA (at O(logn) extra CPU cost factor, but no extra distances are computed).There is a similarity between this idea and su�x trees versus su�x arrays [34]. This idea of usingless bits to represent the distances appeared also in the context of vector spaces [14].Using the same memory, the FQA simulation is able to use much more pivots than the originalFHQT, which improves the e�ciency. The b bits needed by each pivot can be lowered by mergingbranches of the FHQT, as suggested for FQTs in [5] for the case of distance functions with manydi�erent outcomes. This allows to use even more pivots with the same space usage. For reasonsthat are made clear later, the FQA is also called FMVPA in this work.Figure 3 shows an arbitrary BKT, FQT, FHQT and FQA built on our set of points. Noticethat, while in the BKT there is a di�erent pivot per node, in the others there is a di�erent pivotper level, the same for all the nodes of that level.Hybrid In [51], the use of more than one element per node of the tree is proposed. Those kelements allow to eliminate more elements per level at the cost of doing more distance evaluations.The same e�ect would be obtained if we had a mixture between BKTs and FQTs, so that for klevels we had �xed keys per level, and then we allowed a di�erent key per node of the level k + 1,continuing the process recursively on each subtree of the level k + 1. The authors conjecture thatthe pivots should be selected to be outside the clusters.Adapting to continuous functions If we have a continuous distance or if it gives too manydi�erent values, it is not possible to have a children of the root for any such value. If we did that,the tree would degenerate into a
at tree of height 2, and the search algorithm would be almostlike sequential searching for the BKT and FQT. FHQTs and FQAs do not degenerate in this sense,but they loose they sublinear extra CPU time. 12

BKT p11

2 3 4 5 6

p2 p9 p8p1 p10p7

3 4

p6

p5

5 6 7

p13 p3 p12p14

2 3

p15 p4

0

p11

4

2

p7

3

2

p14

4

p10

3

6

2

p15

3

2

p4

5

2

p6

5

p1

3

3

4

p5

0

4

p13

5

4

p3

6

4

p12

7

5

p2

7

5

p9

7

6

p8

7

3 6543 7 7

FQHT

0 2 3 4 5 6

p5

p11

p11

p5

2 3 4 5 6

p2 p9 p8p1 p10

3 4 5

p7 p15 p14 p4 p6

FQT

0

4

p12p3p13

7650

p5

p11

7650

FQA

p14 p4 p6 p2 p9 p8p7 p15p11 p12p3p13p5p10p1Figure 3: Example BKT, FQT, FHQT and FQA for our set of points. We use b = 2 for the BKTand FQT, and h = 2 for FHQT and FQA.In [5] the authors mention that the structures can be adapted to a continuous distance byassigning a range of distances to each branch of the tree. However, they do not specify how to dothis. Some approaches explicitly de�ned for continuous functions are explained later (VPTs andothers), which assign the ranges trying to leave the same number of elements at each partition.4.2 Continuous Distance FunctionsWe present now the data structures designed for the continuous case. They can be used also fordiscrete spaces with virtually no modi�cations.VPT The �rst approach designed for continuous distance functions is called \Metric Trees" in[54]. A more complete work on the same idea [59] calls them \Vantage-Point Trees" or VPTs. Theybuild a binary tree recursively, taking any element as the root p and taking the median of the set ofall distances, M = medianfd(p; u) = u 2 Ug. Those elements u such that d(p; u) �M are insertedinto the left subtree, while those such that d(p; u) > M are inserted into the right subtree. TheVPT takes O(n) space and is built in O(n logn) worst case time, since it is balanced. To solve aquery of type (a) in this tree, we measure d = d(q; p). If d� r �M we enter into the left subtree,and if d+ r > M we enter into the right subtree (notice that we can enter into both subtrees). Wereport every element considered which is close enough to the query. See Figure 4.Queries of type (b) can be solved by re�ning an estimation of the largest distance as before andexploring subtrees in any heuristically promising ordering. One is proposed in [53].The query complexity is argued to be O(logn) in [59], but as they point out, this is true onlyfor very small search radii, too small to be an interesting case.In trees for discrete distance functions, the exact distance between an element in the leaves and13

p13

p4

p11

p2

p12
p3

p7

p1

p15

p14

p6

p8

p9

p11 VPT

p7 p9

p15

> 2.9 > 4.0

> 3.1

p14 p4

p6

p10 p1

p8

p13 p2

p3

p12 p6

p5

p10
<= 3.1

<= 2.9 <= 4.0Figure 4: Example VPT with root p11. We plot the radius M used for the root. For the �rst levelswe show explicitly the radii used in the tree.any pivot in the path to the root can be inferred. However, here we only know that the distanceis larger or smaller than M . Unlike the discrete case, it is possible that we arrive to an elementin a leaf which we do not need to compare, but the tree has not enough information to discoverthat. Some of those exact distances lost can be stored explicitly, as proposed in [59], to prune moreelements before checking them. Finally, the author of [59] considers the problem of pivot selectionand argue that it is better to take elements far away from the set.A similar structure, easier to update, is presented in [26]. This structure, the M-tree, is designedfor secondary memory and allows overlaps in the areas covered (i.e. a point may belong to morethan one partition). This idea is also present in R-trees [36] for vector spaces.MVPT The VPT can be extended to m-ary trees by using the m� 1 uniform percentiles insteadof just the median. This is suggested in [16, 15]. In [15], the \Multi-Vantage-Point Tree" (MVPT)is presented. They propose the use of many elements in a single node, much as in [51]. It canbe seen that the space is O(n), since each internal node needs to store the m percentiles but theleaves do not. The construction time is O(n logn) if we search the m percentiles hierarchically atO(n logm) instead of O(mn) cost. The authors show experimentally that the idea of m-ary treesslightly improves over VPTs (and not in all cases), while a larger improvement is obtained by usingmany pivots per node. The analysis of query time for VPTs can be extrapolated to MVPTs in astraightforward way.VPF Another generalization of the VPT is given by the VPF (shorthand for Excluded MiddleVantage Point Forest) [60]. This algorithm is designed for radii limited nearest neighbor search (aquery of type (b) with a maximum radius r�). The method consists in excluding, at each level, theelements at intermediate distances to their pivot (this is the most populated part of the set): if r0and rn stand for the closest and farthest elements to the pivot p, the elements u 2 U such thatd(p; r0) + � � d(p; u) � d(p; rn) � � are excluded from the tree. A second tree is built with theexcluded \middle part" of the �rst tree, and so on to obtain a forest. With this idea they eliminatethe backtracking when searching with a radius r� � (rn � r0 � 2�)=2, and in return they have tosearch all the trees of the forest. The VPF, of O(n) size, is built using O(n2��) time and answers14

queries in O(n1�� logn) distance evaluations, where 0 < � < 1 depends on r�. Unfortunately, toachieve � > 0, r� has to be too small to be of use in high dimensions.GHT Another proposal of [54] is the \Generalized-Hyperplane Tree" (GHT). This is a binarytree built recursively as follows. At each node, two pivots p1 and p2 are selected. The elementscloser to p1 than to p2 go into the left subtree and those closer to p2 into the right subtree. Toanswer queries of type (a) in this tree, we evaluate r1 = d(q; p1) and r2 = d(q; p2), and enter intothe left subtree if r1 � r < r2+ r and into the right subtree if r2� r � r1 + r. Again, it is possibleto enter into both subtrees. The reporting is done as always, as well as the extension to handlequeries of type (b). In [54] it is argued that this could work better than VPTs in high dimensions.To avoid performing two distance evaluations at each node, it is proposed in [18] to reuse one ofthe pivots of the previous level. Figure 5 illustrates the �rst step of the tree construction.No analysis is given in [54], but we obtain it by specializing the more general GNATs.
p2 p5

p4 p6 p12 p10 p9 p8 p3 p7 p11 p15 p14 p1 p13

p10

p13
p5

p4

p11

p2

p12
p3

p7

p1

p15

p6

p8

p9
p14Figure 5: Example of the �rst level of a GHT.GNAT The GHT is extended in [16] to an m-ary tree, called GNAT (Geometric Near-neighborAccess Tree), keeping the same essential idea. We select, for the �rst level, m pivots p1:::pm, andde�ne Ui = fu 2 U; d(pi; u) < d(pj; u); 8j 6= ig. That is, Ui are the elements closer to pi than toany other pj . From the root, m children numbered i = 1::m are built, each one recursively with aGNAT for Ui. They also add information at each subtree about the maximum distance between piand an element in Ui, to increase pruning. Finally, they give some criteria to select the pi elementsfar enough. Figure 6 shows a simple example of the �rst level of a GNAT. Notice the relationshipbetween this idea and a Voronoi-like partition of a vector space [3].The authors use a gross analysis to show that the tree takes O(nm2) space and is built in closeto O(nm logn) time. Experimental results show that the GHT is worse than the VPT, which isonly beaten with GNATs of arities between 50 and 100. Finally, they mention that the arities ofthe subtrees could depend on their depth in the tree, but give no clear criteria to do this. A verysimilar structure is later analyzed in [28] under some assumptions on the volume of the data set,and it is shown that the query time is O(polylog n), where the degree of the polynomial dependsin a complex way on the structure of the space. 15

p10

p13
p5

p4

p2

p12
p3

p7

p1

p15

p14

p8

p9

p2 p5 p3 p9

p10 p12 p6 p14 p13 p8p4p7 p11 p15 p1

p11
p6Figure 6: Example of the �rst level of a GNAT with m = 4.AESA An algorithm which is close to many of the presented ideas but performs surprisinglybetter by an order of magnitude is [55] (called AESA, for \Approximating Eliminating SearchAlgorithm"). The structure is simply a matrix with the n(n� 1)=2 precomputed distances amongthe elements ofU. At search time, they select an element p 2 Uat random and measure rp = d(p; q),eliminating all elements u of Uwhich do not satisfy rp � r � d(u; p) � rp + r. Notice that all thed(u; p) distances are precomputed, so only d(p; q) has been calculated at search time. This processof taking a random pivot among the (not yet eliminated) elements of U and eliminating moreelements from U is repeated until few enough elements remain in the set. These are comparedagainst q directly. Figure 7 shows an example with a �rst pivot p11.

p10

p13
p5

p4

p11

p2

p12

p7

p1

p15

p14

p6

p8

p9
q

p3

Figure 7: Example of the �rst iteration of AESA. The points between both rings centered at p11qualify for the next iteration.Although this idea seems very similar to FQTs, there are three key di�erences. The �rstone, only noticeable in continuous spaces, is that there are no prede�ned \rings" so that all theintersected rings qualify (recall Figure 2). Instead, only the minimal necessary area of the ringsquali�es. The second di�erence is that the second element to compare against q is selected fromthe qualifying set, instead of from the whole set as in FQTs. Finally, the algorithm determines onthe
y whether to take more pivots, while FQTs must precompute that decision (i.e. bucket size).16

The problem with the algorithm [55] is that it needs O(n2) space and construction time. Thisis unacceptably high for all but very small databases. In this sense the approach is close to [50],although in this latter case they may take less distances and bound the unknown ones. AESA isexperimentally shown to have O(1) query time.LAESA and variants In a newer version of AESA, called LAESA (for Linear AESA) [42], theypropose to use k �xed pivots, so that the space and construction time is O(kn). In this case, theonly di�erence with an FHQT is that �xed rings are not used, but the exact set of elements in therange is retrieved. FHQT uses �xed rings to implement a search algorithm, while in this case nosearch algorithm is given. In LAESA, the elements are simply linearly traversed, and those thatcannot be eliminated after considering the k pivots are directly compared against the query.A search algorithm is presented later in [41], which builds a GHT-like structure using the samepivots. The algorithm is argued to be sublinear in CPU time. Alternative search structures toreduce CPU time not loosing information on distances are presented in [45, 23], where the distancesto each pivot are sorted separately so that the relevant range [d(q; p)� r; d(q; p)+ r] can be binarysearched3. Extra pointers are added to be able to trace an element across the di�erent orderingsfor each pivot (this needs more space, however).SAT The algorithm SAT (\Spatial Approximation Tree") [44] does not use pivots to split the setof candidate objects, but rather relies on \spatial" approximation. An element p is selected as theroot of a tree, and it is connected to the elements u 2 Usuch that u is closer to p than to any otherelement connected to p (note that the de�nition is self-referential). All the elements connected top are recursively the roots of subtrees, whose elements are those closer to that root than to anyother root connected to p.This allows to search elements with radius zero by simply moving from the root to its \neighbor"(i.e. connected element) which is closest to the query q. If a radius r is allowed, then we considerthat an unknown element of the set is searched with tolerance r, i.e. we search as before andconsider that any distance measure may have an \error" of at most r. Therefore, we may have toenter into many branches of the tree (not only the closest one), since the measuring \error" couldmake that a di�erent neighbor is the closest one. The tree is built in O(n logn= log logn) time,takes O(n) space and inspects n1��(1= log logn) elements. Figure 8 shows an example and the searchpath for a query.4.3 Other TechniquesMapping An interesting and natural reduction of the proximity search problem consists in amapping � from the original metric space into a vector space. In this way, each element of theoriginal metric space will be represented as a point in the target vector space. The two spaceswill be related by two distances: the original one d(x; y) and the distance in the projected spaced0(�(x);�(y)). If the mapping is contractive, i.e. d0(�(x);�(y))� d(x; y) for any pair of elements,then one can search queries of type (a) in the projected space with the same radius. The outcomeof the query in the projected space is a candidate list, which is later re�ned with the original3Although in [45] they consider only vector spaces, the same technique can be used here.17

p13

p4

p2

p12
p3

p7

p15

p6

p8

p9
p14

p11

p1
q

p5

p10Figure 8: Example of a SAT and the traversal towards a query q, starting at p11.distance to obtain the actual outcome of the query. If, on the other hand, the mapping is proximitypreserving, i.e. d(x; y) � d(x; z)) d0(�(x);�(y)) � d0(�(x);�(z)), then queries of type (b) and(c) can be directly performed in the projected space. Indeed, most current algorithms for queriesof type (b) and (c) are based in type (a), and with some care they can be done in the projectedspace if the mapping is contractive, even if it is not proximity preserving.In a theoretical paper [33] it is proven that there exists an algorithm using a constant (in n)number of distance calculations for nearest neighbor search. The idea suggested in [33] is basicallyto use the distances to k �xed pivots as the coordinates to project the metric space into Rk. Theprojected distance function is L1 (later we explain this more in depth). They show that if theproper pivots are selected, it is possible to build an algorithm which is k + O(1) search time.However, the proof is not constructive and does not give any clue to select the \proper pivots".The k value is independent on n and related to the \intrinsic dimension" of the data (a conceptthat we explain later).With this mapping in mind many algorithms (indeed most of them as we see later) can beconsidered as a mapping of certain type. Figure 9 shows an example with only two coordinates.Notice that some points originally quite far away are mapped to the same cell, so the mapping doesnot preserve proximity.
p13

p4

p11

p2

p12
p3

p7

p1

p15

p14

p6

p8

p8

p11

p3

p7p4

p8

p9

p10

p11

p6

p15

q

p5

p5

q

p10

p9
p13

p1

p14

p2

p12Figure 9: Mapping to a vector space of two coordinates, and how a query is transformed.18

A more elaborated version of this idea was introduced under the name fastmap [32]. In thiscase they did the mapping from an n-dimensional into an m-dimensional vector space, for n > m.Fastmap is a heuristic to approximate the behavior of more expensive mappings which try to reducethe dimensionality while preserving the original distances as much as possible [29, 37]. Since thesemethods work only for vector spaces, we do not consider them in depth here (see also [15] for moreon this).This type of mapping is a special case of a general idea in the literature which says that onecan �nd cheaper to compute distances that lower-bound the real one, and use the cheaper distanceto �lter out most elements (e.g. for images, the average color is cheaper to compute than thedi�erences in the color histograms). While in general this is domain-dependent, mapping onto avector space can be done without knowledge of the domain. After the mapping is done and wehave identi�ed each data element with a point in the projected space, we can use a general purposespatial access method (SAM) for vector spaces to retrieve the candidate list. The elements foundin the projected space must be �nally checked using the original distance function.Therefore, there are two types of distance evaluations: �rst to obtain the coordinates in theprojected space and later to check the �nal candidates. These are called \internal" and \external"evaluations, respectively, later in this work. Clearly, incrementing internal evaluations improvesthe quality of the �lter and reduces external evaluations, and therefore we seek for a balance.Notice �nally that the search itself in the projected space does not use evaluations of the originaldistance, and hence it is costless under our complexity measure. Therefore, the use of kd-trees,R-trees or other data structure aims at reducing the extra CPU time.Clustering Clustering is a very wide area with lots of applications [39]. The general goal is todivide a set in subsets of elements close to each other in the same subset. A few approaches toindex metric spaces based on clustering exist.A technique proposed in [19] is to recursively divide the setU in compact subsets Ui and choosea representative pi for each. They compute numbers ri = maxfd(pi; u) = u 2 Uig (which upperbound the \radii" of the subsets). To search for the closest neighbor, the query q is comparedagainst all the pi and the sets are considered from smallest to largest distance. The ri are usedto determine that there cannot be interesting elements in some sets Ui. They propose a complex\clique" criterion to select the sets and their representatives. The experimental results show thatthis method is slightly worse than the BKT, and that the algorithm to �nd the cliques is very slow.They also propose that the elements in a clique could be in turn subdivided into clusters, which isa formulation very similar to (though less complete than) GNATs [16].4.4 Approximate and Probabilistic AlgorithmsFor the sake of a complete overview we include a brief description of an important branch ofsimilarity searching, where a relaxation on the query precision is allowed to obtain a speedupin the query time complexity. This is reasonable in some applications because the metric spacemodelization involves already an approximation to the true answer (recall Section 2), and thereforea second approximation at search time may be acceptable.Additionally to the query one speci�es a precision parameter " to control how far away (insome sense) we want the outcome of the query from the correct result. A reasonable behavior for19

this type of algorithms is to asymptotically approach to the correct answer as " goes to zero, andcomplementarily to speed up the algorithm, loosing precision, as " moves in the opposite direction.This alternative to exact similarity searching is called approximate similarity searching, andencompasses approximate and probabilistic algorithms.Approximation algorithms are considered in depth in [57]. As an example, we mention anapproximate algorithm for nearest neighbor search in real vector spaces using any Minkowski metricLs [2]. They propose a data structure, the BBD-tree, inspired in kd-trees, that can be used to �nd\(1 + ") nearest neighbors": instead of �ndingu such that d(u; q)� d(v; q) 8v 2 Uthey �nd an element u�, an (1 + ")-nearest neighbor, di�ering from u by a factor of (1 + "), i.e.u� such that d(u�; q)1 + " � d(v; q) 8v 2 UThe essential idea behind this algorithm is to locate the query q in a cell (each leaf in the treeis associated with a cell in the decomposition). Every point inside the cell is processed to obtainthe current nearest neighbor (u). The search stops when no promising cells are encountered, i.e.when the radius of any ball centered at q and intersecting a nonempty cell exceeds the radiusd(q; p)=(1+ "). The query time is O(d1 + 6k="ekk logn).An example of a probabilistic algorithm is given in [28]: a data structure somewhat similar toa skip list is presented, with almost linear space and construction time, which can be queried fornearest neighbors in O(K logn) time. The answers are wrong with probability O(log2(n)=K).4.5 SummaryTable 1 summarizes the complexities of the di�erent approaches. These are obtained or inferredfrom the source papers, which as explained use di�erent (and incompatible) assumptions and inmany cases give just gross analyses or no analysis at all. Keep in mind that the query complexityis always on average, as in the worst case we can be forced to compare all the elements.5 A Unifying ModelAt �rst sight, the indexing algorithms and data structures seem to emerge from a great diversity,and di�erent approaches are analyzed separately, often under di�erent assumptions. Currently, theonly realistic way to compare two di�erent algorithms is to apply them to the same data set.In this section we make a formal introduction to our unifying model. Our intention is to providea common framework to analyze all the existing approaches to proximity searching. As a result,we will be able to capture the similarities of apparently di�erent approaches. We will also obtaintruly new ways of viewing the problem.The conclusion of this section can be summarized in Figure 10. All the indexing algorithmspartition the set U into subsets. An index is built which allows to determine a set of candidatesets where the elements relevant for the query can appear. At query time, que index is searched to�nd the relevant subsets (the cost to do this is called \internal complexity") and those subsets arechecked exhaustively (which corresponds to the \external complexity" of the search).20

Data Space Construction Query Extra CPUStructure Complexity Complexity Complexity query timeBKT n pointers O(n logn) O(n�) |FQT n::n logn pointers O(n logn) O(n�) |FHQT n::nh pointers O(nh) O(logn) if h = logn O(n�)FQA nhb bits O(nh) O(logn) if h = logn O(n� logn)VPT n pointers O(n logn) O(logn) (*) |MVPT n pointers O(n logn) O(logn) (*) |VPF n pointers O(n2��) O(n1�� logn)(�) |GHT n pointers O(n logn) O(polylog n) |GNAT nm2 distances O(nm logm n) O(polylog n) |AESA n2 distances O(n2) O(1) O(n)::O(n2)LAESA-like kn distances O(kn) k +O(1) if k is large O(logn)::O(kn)SAT n pointers O(n logn= log logn) O(n1��(1= log logn)) |(*) Only valid when searching with very small radii.Table 1: Average complexities of the existing approaches, according to the source papers. Timecomplexity considers only n, not other parameters such as dimension. Space complexity mentionsthe most expensive storage units used. � is a number between 0 and 1, di�erent for each structure,while the other letters are parameters particular of each structure.
Index

Equivalence classes

Data

Query q

Traverse index
(internal
complexity)

q

Search in candidate classes
(external complexity)

Indexing Querying

Figure 10: The uni�ed model for indexing and querying metric spaces.21

5.1 Equivalence Relations and CosetsGiven a set X, a partition �(X) = f�1; �2; � � �g is a subset of the power set P(X) such that everyelement of the set belongs exactly to one partition, i.e. [�i =Xand 8i 6= j; �i \ �j = ;.A relation, denoted by �, is a subset of the cross product X�X (the set of ordered pairs) ofX. Two elements x; y are said to be related, denoted by x � y, if the pair (x; y) is in the subset.A relation � is said to be an equivalence relation if it satis�es, for all x; y; z 2X, the properties ofre
exivity (x � x), symmetry (x � y , y � x) and transitivity (x � y ^ y � z) x � z).It can be shown that every partition �(X) induces an equivalence relation � and, conversely,every equivalence relation induces a partition [25]. Two elements are related if they belong tothe same partition. Every element �i of the partition is then called an equivalence class. Anequivalence class is often named after one of its representatives (any element of �i can be taken asa representative). An alternative de�nition of an equivalence class of an element x is the set of ally such that x � y. We will denote the equivalence class of x as [x] = fy : x � yg:Given the setXand an equivalence relation �, we obtain the quotient �(X) =X=�. It indicatesthe set of equivalence classes or cosets, obtained when applying the equivalence relation to the setX: In the example above, the cosets obtained from the real numbers with the given equivalencerelation are the intervals [i; i+ 1), for all integers i.The relevance of equivalence classes in this survey comes from the possibility of using them ona metric space so that a new metric space is derived from the quotient set. This new metric spaceis a coarser version of the original one.5.2 Indexing and PartitionsThe equivalence classes obtained with an equivalence relation of a metric space can be consideredthemselves as objects in a new metric space, provided we de�ne a distance function on this newmetric space.We introduce a new function D0 : �(X)� �(X)�! R now de�ned in the quotient. Since D0 isde�ned between equivalence classes, a natural choice is D0([x]; [y]) = infx2[x];y2[y]fd(x; y)g, so thatit gives the maximum possible values that keep the mapping contractive (i.e. D0([x]; [y])� d(x; y)for any x; y). Unfortunately, D0 does not satisfy the triangle inequality, just (p1) to (p3), and inmost cases (p4) (recall Section 3.1). Hence, D0 itself is not suitable for indexing purposes.However, we can use any distance D that satis�es the properties of metric spaces and thatlower bounds D0 (i.e. D([x]; [y]) � D0([x]; [y])). We call such D the extension of d. Since Dis a distance, (X= �; D) is a metric space and therefore we can make queries in the coset inthe same way we have done in the set. We rede�ne the outcome of a query in the coset as([q]; r)D = fu 2 U;D([u]; [q])� rg (although formally we should retrieve classes, not elements).Since the mapping is contractive (D([x]; [y])� d(x; y)) we can convert one search problem intoanother, hopefully simpler, search problem. For a given query (q; r)d we �nd out which equivalenceclass the query q belongs to (i.e. [q]). Then, using the new distance function D the query istransformed into ([q]; r)D. As the mapping is contractive, we have (q; r)d � ([q]; r)D. That is,([q]; r)D is indeed a candidate list, so it is enough to perform an exhaustive search on that candidatelist (now using the original distance), to obtain the actual outcome of the query (q; r)d.22

Our main thesis is that the above procedure is in fact used in virtually every indexing algorithm.In other words:All the existing indexing algorithms for proximity searching consist in building a set ofequivalence classes, discarding some classes, and searching exhaustively the rest.As we see shortly, the most important tradeo� when designing the equivalence partition is tobalance the cost to �nd [q] and to check the �nal candidate list.In Figure 11 we can see a schematic example of the idea. We divide the space in several regions(equivalence classes). The objects inside each region are indistinguishable. We can consider themas elements in a new metric space. To �nd the answer, instead of exhaustively examining the entiredictionary we just examine the classes that contain potentially interesting objects. In other words,if a class can contain an element that should be returned in the outcome of the query, then theclass will be examined (see also the rings considered in Figure 2).
D([x],[y])

y

d(x,y)

x

p

[y]

[x]Figure 11: Two points x and y, and their equivalence classes (the shaded rings). D gives theminimal distance among rings, which lower bounds the distance between x and y.We recall that this property is not enough for any algorithm to �nd the nearest neighbors towork (since the mapping would have to preserve proximity instead), but most existing algorithmsfor nearest neighbors are based on type (a) queries, and these algorithms can be applied as well.Some examples may help to understand the above de�nitions, for both the concept of equivalencerelation and the obtained distance function.Example 1. The void indexing algorithm, i.e. the brute force method of not indexing andexamining every element in the dictionary for each query, creates one equivalence class per objectin the set X. In this case, the coset obtained is the same as the original set �(X) = X=� = Xandin this particular case x � y , x = y: Note that in this case D([x]; [y]) = d(x; y) for any pair x; yand consequently (q; r)d = ([q]; r)D. In other words the candidate list is actually the outcome ofthe query. No further e�ort is done in trimming the candidate list, however all the work have beendone in building the candidate list.Example 2. Another trivial example, situated in the other side of the spectrum, is when allelements in X are assigned to the same equivalence class. The equivalence relation is de�ned as23

x � y , x; y 2X: Since there is only one equivalence class, it is true that [x] = [y] for all elementsin the set X. In this case we have �(X) = X=� = f�g, a set with a single element. The distancefunction is D([x]; [y]) = 0 for every pair of objects. In this case �nding the candidate list is trivial,since it is the dictionary itself, but trimming the list is as di�cult as the original problem.Example 3. A more realistic example, indeed a true indexing algorithm, is when we have anarbitrary reference pivot p 2 Xand the equivalence relation is given by x � y , d(p; x) = d(p; y).In this case D([x]; [y]) = jd(x; p)� d(y; p)j is a safe lower bound for the D0 distance (guaranteedby the triangle inequality). For a query of the form (q; r)d the candidate list ([q]; r)D consists ofall elements x such that D([q]; [x]) � r, or which is the same, jd(q; p)� d(x; p)j � r. Graphically,this distance represents a ring centered at p containing a disk centered at q and radius r (recallFigures 11 and 7). This is the familiar rule used in many independent algorithms to trim the space.Example 4. As explained, the similarity search problem was �rstly introduced in vectorspaces, and the very �rst family of algorithms used there was based on a coset operation. Thesealgorithms were called bucketing methods, and consist in the construction of cells or buckets [10].Searching for an arbitrary point in Rk is converted into an exhaustive search in a �nite set of cells.The procedure used two steps: (1) �rst they �nd which cell the query point belongs to and thenthey build a set of candidate cells using the query range; (2) this set of candidate cells is inspectedexhaustively to �nd the actual points inside the query range4. In this case the equivalence classesare the cells, and the tradeo�: the larger the cells, the cheaper it is to �nd the appropriate ones,but the more costly is the �nal exhaustive search.5.3 Coarsening and Re�ning a PartitionFor a �xed set X; consider two equivalence relations �1 and �2. We say that �1 is a re�nementof �2 if for any pair x; y 2Xsuch that x �1 y it holds x �2 y. Equivalently, a partition �1(X) is are�nement of partition �2(X) if �1i� �2j for every partition element �1i of �1 and some coset �2j of�2. We may also say that �2 (equivalently �2) is a coarsening of �1 (equivalently �1).Re�nement and coarsening are important concepts for the topic we are discussing. They arethe very essence of indexing algorithms. The following theorem formalizes our intuitive assertions.Theorem 1. If �1is a coarsening of �2 then the extended distances D1 and D2 have the propertyD1([x]; [y])� D2([x]; [y]).Proof. D1([x]; [y]) = infx2[x]1;y2[y]1fd(x; y)g � infx2[x]2;y2[y]2fd(x; y)g = D2([x]; [y]), since [x]2 �[x]1 and [y]2 � [y]1. We are using [x]i and [y]i to denote the equivalence class of x and y underequivalence relation �i.An interesting idea arising from the above theorem is to build a hierarchy of coarsening op-erations. Using this hierarchy we could proceed downwards from a very coarse level building acandidate list of equivalence classes of the next level. This candidate list will be re�ned using thenext distance function and so on until we reach the bottom level.4The algorithm is in fact a little more sophisticated because they try to �nd the nearest neighbor of a point.However, the version presented here for range queries is in the same spirit as the original one.24

5.4 Measures of E�ciencyAs sketched previously, most indexing algorithms rely on building an equivalence class. The corre-sponding search algorithms have two parts:1. Find the classes that may be relevant for the query.2. Exhaustively search all the elements of these classes.The �rst part involves performing some evaluations of the d distance, as shown in the Example 3above. It may also involve some extra CPU time (which although not the central point in this paper,must be kept reasonable). The distance evaluations performed in this stage are called internal, andtheir number de�ne the internal complexity.The second part consists of directly comparing the query against the candidate list. Theseevaluations of d are called external. The amount of external evaluations is called external complexityand is related to the discriminative power of the D distance.We de�ne the discriminative power as the ratio between the number of objects in the candidatelist and the actual outcome of a query q, averaged over all q 2 X. Notice that this depends on r.The discriminative power serves as an indicator of the performance or �tness of the equivalencerelation (or equivalently, of the distance function D).In general, it will be more costly to have more discriminative power. The indexing scheme needsto �nd a balance between the complexity to �nd the relevant classes and the discriminative powerof D.Examples 1 and 2 can serve as upper and lower bounds of what is done by the actual indexingalgorithms. The �rst algorithm has minimal external complexity, since the distance function Ddiscriminates as much as the original distance function d. However, the internal complexity ismaximal, in the sense that �nding the relevant classes is as hard as solving the original problem.This case shows maximum discriminative power, as the metric spaces (X; d) and (�(X); D) areisometric [43]. Example 2 has minimal internal complexity, since it is trivial to compute therelevant equivalent class. However, its external complexity is as high as in the original problem,since all the elements are candidates.Example 3 is in between for internal and external complexity. The internal complexity is 1distance evaluation (the distance from q to p), and the external complexity will correspond to thenumber of elements that lie in the selected ring. We could intersect it with more rings (increasinginternal complexity) to reduce the external complexity.The tradeo� is partially formalized with this theorem.Theorem 2. If A1 and A2 are indexing algorithms based on equivalence relations �1 and �2,respectively, and �1 is a coarsening of �2, then A1 has higher external complexity than A2.Proof. We have to show that ([q]; r)D2 � ([q]; r)D1. But this is clear, since D1([x]; [y]) �D2([x]; [y]) implies ([q]; r)D2 = fy 2 U : D2([q]; [y])� rg � fy 2 U : D1([q]; [y])� rg = ([q]; r)D1:Although having more discriminative power normally costs more internal evaluations, one canmake better or worse use of the internal complexity. We elaborate more on this in the next section.25

5.4.1 Locality of a PartitionThe equivalence classes can be thought of as a set of non intersecting cells in the space, whereevery element inside a given cell belongs to the same equivalence class. However, the mathematicalde�nition of an equivalence class is not con�ned to a single cell.A consequence of this is that we need an additional property which will be called locality, thatstands for how much the equivalence class resembles a cell. A non-local partition stands for caseswhere the classes are partitioned (see Figure 12) or span a non-compact area in the space.It is natural to expect better performance, i.e. more discriminative power, from a local partitionthan from a non-local one. This is because in a non-local partition the candidate list obtained withthe distance D will contain elements actually far away from the query.
Two fragments of the same
equivalence class

Figure 12: With two rings we de�ne an equivalence based on being at the same distance to bothpoints. The resulting class is partitioned.Notice that in Figure 12, the fragmentation would disappear if we added a third pivot. In avector space of k dimensions, it su�ces to consider k + 1 pivots in general position5 to obtain alocal partition. In general metric spaces, we should take enough pivots to obtain local partitionsas well.However, obtaining local partitions is not enough, otherwise the bucketing method for vectorspaces [10] explained in Example 4 would have excellent performance. Even with such a localpartition and assuming uniformly distributed data, a number of empty cells are veri�ed, whosenumber grows exponentially with the dimension.5.5 Intrinsic DimensionalityAs explained, one of the motivations for the development of indexing algorithms for general metricspaces is the existence of the so called high dimensional. This is because traditional indexingtechniques for vector spaces have an exponential dependency on the dimension of the space. In otherwords, if a vector space has a large number of coordinates then an indexing algorithm using explicitinformation on the coordinates (such as the kd-tree) will use exponential time (on the dimension) toanswer the query. This motivated the research on the so-called distance-based indexing algorithms,which do not use explicit information on the coordinates.5That is, not lying in a (k� 1)-hyperplane. 26

This works especially well in some vector spaces of apparently high dimension but e�ectivelow dimension. Think for example in a set of 5-dimensional points with the 3 last coordinates inzero, or the more sophisticated example where the points actually reside in a 2-dimensional planeimmersed in a 5-dimensional space. However, it is also possible that the data has intrinsic highdimensionality.As we show next, the concept of high dimensionality is not exclusive of vector spaces, but itcan also be characterized in metric spaces. If a vector space has intrinsically low dimension, thenconsidering it as a metric space may help to take advantage of that fact, while if it has intrinsicallyhigh dimension the resulting metric space will be intractable anyway. In the following we explainthe e�ect of high dimensionality in metric spaces, and why it makes the problem intractable [22].Let us consider the histogram of distances between objects in the dictionary. This informationis mentioned in many papers, e.g. [16, 27]. For a �xed dictionary element u consider the histogramof distances d(u; ui); ui 2 U. It is clear that the number of elements within the range (u; r)d isproportional to the area under the histogram, from 0 to r inclusive.Now, if we calculate the histogram considering all the possible pairs d(ui; uj), the area describedabove is proportional to the average number of elements expected for a query of range r, providedq 2 U.It is reasonable to assume that the query distributes according to the same law as the dictionaryelements. In other words the distribution of distances from the query to the dictionary elementslooks like the computed histogram for the data set. For the range search algorithm, if we selecta ring centered at a dictionary element u�, with radii d(u�; q)� r and d(u�; q) + r the fraction ofdictionary elements captured in the ring is, on the average, approximated by the area under thedensity function in the interval [d(u�; q)�r; d(u�; q)+r]. More precisely, if fd is the density functionfor the distances between elements in the given data set, then the fraction of elements captured isnr = R d(u�;q)+rd(u�;q)�r fd(x)dx.For every pivot-based algorithm the value of the above integral governs the behavior of thealgorithm. At each step the number of elements eliminated is proportional to 1�nr . If nr = 1 thenno elimination is carried out. We show now that in some cases we can infer that the discriminativepower of the algorithm will be very low. Let us assume that the interval where fd is larger thanzero is [ra; rb]. We note that1. ra represents the average distance from an element to its nearest neighbor.2. rb represents the average distance from a given element to the object farthest to it.3. If r < ra then the expected number of dictionary elements inside a ball centered at the queryand with radius r is zero.These properties are direct consequences of the de�nition. Now an elementary but interestingproperty can be stated as a theorem.Theorem 3. If 2ra > rb then nr = 1: In other words, on the average no elements are eliminated.Proof. If we choose an arbitrary element u� as a pivot then d(x; u�) 2 [ra; rb]. From property3, we need to perform queries of range r � ra to retrieve some result. The number of qualifying27

elements is nr = Z d(u�;q)+rad(u�;q)�ra fd(x)dx � Z rbra fd(x)dx = 1since the interval [d(u�; q)� ra; d(u�; q) + ra] clearly contains [ra; rb].The above proposition implies that there are metric spaces in which no eliminations will becarried out (see Figure 13). Moreover, any algorithm using the same elimination rule will belimited in the same way. For example, when the metric space has a density function accordingto this theorem all the branches of an FQT will be visited and O(n) distance calculations will becarried out.
2r2r

q qra rb ra rbFigure 13: A low-dimensional (left) and high-dimensional (right) histogram of distances, showingthat on high dimensions virtually all the elements become candidates for the exhaustive evaluation.Moreover, we should use a larger r in the second plot in order to retrieve some elements.The condition 2ra > rb is a gross measurement of the dependence of the dimensionality inthe performance of pivot-based algorithms. We have not yet established the relationship betweenskewed histograms and high dimensionality. In Rk Euclidean spaces, the distribution of the distancebetween two random points has larger mean and smaller variance as k grows. Therefore, thephenomenon of a skewed histogram moved to the right (i.e. large ra and small rb� ra) is typical ofhigh dimensions. If the objects are intrinsically of high dimension, this behavior is inherited whenthe space is considered as a general metric space. Following this idea, we can de�ne the intrinsicdimensionality of a general metric space by considering the shape of its histogram. This gives adirect and general explanation to the so-called \curse of dimensionality".Many authors stress an extreme case which is a good illustration: a distance such that d(x; x) =0 and d(x; y) = 1 for all x 6= y. Under this distance, we do not obtain any information from acomparison except that the element considered is or is not our query. It is clear that it is not possibleto avoid a sequential search in this case. The histogram of this distance is totally concentrated onits maximum value. The subject of intrinsic dimensionality is discussed also in [59].28

6 A Taxonomy of Search AlgorithmsIn this section we apply our unifying model to organize all the known approaches in a taxonomy.This helps to identify the essential features of all the existing techniques, to �nd possible combi-nations of algorithms not noticed up to now, and to detect which are the most promising areas foroptimization.We �rst notice that almost all the indexing algorithms are built on an equivalence relation.The aim is to group the elements of the set in clusters, so that the partitions are as local aspossible and have good discriminative power. In practice, it turns out that most algorithms tobuild the equivalence relations are based on obtaining, for each element, up to k values (also calledcoordinates), so that the equivalence classes can be considered as points in a k-dimensional vectorspace. Most of these algorithms obtain the k values as the distance of the object to k di�erent(and hopefully independent) pivots. We call them \pivoting" algorithms. The algorithms di�er intheir method to select the pivots, in when is the selection made, and in how much information onthe comparisons is used. We �rst explain in detail this large class of algorithms and then cover theother ones.6.1 The Pivot Equivalence RelationMost of the known algorithms to search in metric spaces are built on this equivalence relation. Thisis based on considering the distances between an element and a number of preselected \pivots" (i.e.elements of the universe, called also vantage points, keys, queries, etc. in the literature).The equivalence relation is de�ned in terms of the distances of the elements to the pivots, sothat two elements are equivalent if they are at the same distance to all pivots. If we consider onepivot p, then this equivalence relation isx �p y () d(x; p) = d(y; p)The equivalence classes or partition elements correspond to the intuitive notion of the familyof sphere shells with center p. Points falling in the same sphere shell are said to be equivalent orindistinguishable from the view point of p.The above equivalence relation is easily generalized to k pivots or reference points pi to givex �fpig y () 8i; d(x; pi) = d(y; pi)and a graphical representation of the partition in the general case corresponds to the intersectionof several balls centered at the points pi (recall Figure 12).The distance d(x; y) cannot be smaller than jd(x; p)� d(y; p)j for any element p, because of thetriangular inequality. Hence D([x]; [y]) = jd(x; p)�d(y; p)j is a safe lower bound to the D0 functioncorresponding to the class of sphere shells centered in p. This is easy to generalize to k pivots,namely D([x]; [y]) = maxifjd(x; pi)� d(y; pi)jg. This D distance lower bounds d and hence can beused as our distance in the quotient space.Alternatively, we can consider the equivalence relation as a projection to the vector space Rk,being k the number of pivots used. The i-th coordinate of an element is the distance of theelement to the i-th pivot. Once this is done, we can identify points in Rk with elements in the29

original space with the L1 distance. As we have described in Section 5, the indexing algorithmwill consist in �nding the set of equivalence classes such that they fall inside the radius of thesearch when using the extension of d in the quotient of the metric space. In this particular casefor a query of the form (q; r)d we have to �nd the candidate list as the set ([q]; r)D, i.e. the set ofequivalence classes [y] such that D([q]; [y])� r. In other words, we want the set of objects y suchthat maxifjd(q; pi)� d(y; pi)jg � r. This is equivalent to search with the L1 distance in the vectorspace Rk where the equivalence classes are projected. Figure 14 illustrates this concept (Figure 9is also useful).
p1

p2

q

q

a1

b1

a2

b2

d(x,p1)

d(x,p2)

a2

b1a1

b2

Figure 14: Mapping from a metric space onto a vector space under the L1 space, using two pivots.Yet a third way to see the technique, less formal but perhaps more intuitive, is as follows: tocheck if an element u 2 Ubelongs to the query outcome, we try a number of random pivots pi. If,for any such pi, we have jd(q; pi) � d(u; pi)j > r, then by the triangular inequality we know thatd(q; x) > r without need to actually evaluate d(q; x). At indexing time we precompute the d(u; pi)values and at search time we compute the d(q; pi) values. Only those elements u that cannot bediscarded by looking at the pivots are actually checked against q.6.2 Selecting the PivotsWe have to �nd the proper balance for the number of pivots, k. If k is too small, then �nding theclasses will be cheap, but the partition will be very coarse and probably non-local (as explained inprevious sections), and we will pay a high cost at the exhaustive search. If k is too large then the�nal partitions will be small and cheap to traverse, but the cost to compute them will be high. Asexplained before, the number of pivots needed to obtain a good partition is related to the intrinsicdimensionality of the data set.In [33], they prove formally that if the dimension is constant, then after properly selecting aconstant number k of pivots the exhaustive search costs O(1) (but their theorem does not showhow to select the pivots). In AESA [55], they show empirically that O(1) pivots are necessary toachieve this goal, so that they can have O(1) overall search time (recall that their algorithm isimpractical). On the other hand, in [6], they show that O(logn) pivots are necessary to have a�nal exhaustive cost of O(logn). This di�erence is due to di�erent models of the structure of thespace (e.g. �niteness in volume) and the statistic behavior of the distance function. The correct30

answer probably depends on the particular metric space considered.A related issue is how to select the pivots. All the current schemes select the pivots at randomfrom the set of objects U. This is done for simplicity, although tackling this problem could yielddramatical improvements. For instance, in [51] it is recommended to select pivots outside theclusters while in [5] they suggest to use one pivot from each cluster. All authors agree in thatthe pivots should be far apart from each other, which is evident since close pivots will give almostthe same information. On the other hand, pivots selected at random are indeed far apart in ahigh-dimensional space.The distances histogram gives a formal characterization of good pivots. A good pivot has a
atter histogram, which means that it will discard more elements at query time (note that we couldselect pivots outside U, although this needs speci�c knowledge of the application). Unfortunately,this depends on the query q and the search radius r. However, a Monte Carlo algorithm could beused to heuristically evaluate the goodness of the pivots for random queries and a prede�ned radiusr, as done in [21].The histogram characterization explains a well-known phenomenon: to discriminate among acompact set of candidates, it is a good idea to select a pivot from those same candidates. Thismakes it more probable to select an element close to them (the ideal would be a centroid). In thiscase, the distances tend to be smaller and the histogram is not so concentrated in large values. Forinstance, for LAESA [42] they do not use the pivots in a �xed order, but the next one is that withminimal L1 distance to the current candidates. We do not try to plot an example, because thee�ect in two dimensions seems to be the opposite.6.3 Search AlgorithmsOnce we have determined the equivalence relation to use (i.e. the k pivots), we preprocess theset by storing, for each element of U, its k coordinates (i.e. distance to the k pivots). This takesO(kn) preprocessing time and space overhead. The \index" can be seen as a table of n rows andk columns as shown in the left part of Figure 15.
p1 pkp2

u1

un

u2

d(xi,pj)

.

.

.

.

.

.

. . .

. . .

Vertical traversal Horizontal traversalFigure 15: Schematic view of a pivot index, as well as vertical and horizontal traversal.31

At query time, we �rst compare the query q against the k pivots, hence obtaining its k coordinate(y1; :::; yk) in the target space. This corresponds to determining which equivalence class the querybelongs to, i.e. computing [q] = (y1; :::; yk). The cost of this is k evaluations of the distance functiond, which corresponds to the internal complexity of the search. We have now to determine, in thetarget space, which classes may be relevant to the query (i.e. which ones are at distance r or lessin the L1 metric, which corresponds to the D distance). This does not use further evaluationsof d, but it may take extra CPU cost. Finally, the elements belonging to the qualifying classes(i.e. those that cannot be discarded after considering the k pivots) are directly compared againstq (external complexity).The simplest search algorithm proceeds row-wise: consider each element of the set (i.e. each row(x1; :::; xk) of the table) and see if the triangular inequality allows to discard that row, i.e. whethermaxi=1::kfjxi � yijg > r. For each row not discarded using this rule, compare the element directlyagainst q. This is equivalent to traversing the quotient space, using D to discard uninterestingclasses.Although this traversal does not perform more evaluations of d than necessary, it is not thebest choice. The reasons will be made clear later, as we discover the advantages of alternativeapproaches. First, notice that the amount of CPU work is O(kn) in the worst case. However, aswe abandon a row as soon as we �nd a di�erence larger than r along a coordinate, the average caseis much closer to O(n) for queries of reasonable selectivity.The �rst improvement is to process the set column-wise. That is, we compare the query againstthe �rst pivot p1. Now, we consider the �rst column of the table and discard all the elements whichsatisfy jx1 � y1j > r. Then, we consider the second pivot p2 and repeat the process only on theelements not discarded up to now. An algorithm implementing this idea is LAESA.It is not hard to see that the amount of evaluations of d and the total CPU work remains thesame as for the row-wise case. However, we can do better now, since each column can be sortedso that the range of qualifying rows can be binary instead of sequentially searched [45, 23]. This ispossible because we are interested, at column i, in the values [yi � r; yi + r].This is not the only trick allowed by a column-wise evaluation which cannot be done row-wise.A very important one is that it is not necessary to consider all the k coordinates (recall that we haveto perform one evaluation of d to obtain each new query coordinate yi). As soon as the remainingset of candidates is small enough, we can stop considering the remaining coordinates and directlyverify the candidates using the d distance. This point is di�cult to estimate beforehand: despitethe (few) theoretical results existing [33, 6], one cannot normally understand the application wellenough to predict the actual optimal number of pivots (i.e. the point where it is better to switchto exhaustive evaluation).Another trick that can be used with column-wise evaluation is that the selection of the pivotscan be done on the
y instead of �xed as we have presented it. That is, once we have selected the�rst pivot p1 and discarded all the uninteresting elements, the second pivot p2 may depend on whichwas the result of p1. However, for each potential pivot we have to store the coordinates of all theelements of the set for this pivot (or at least some, as we see later). That is, we select k potentialpivots and precompute the table as before, but we can choose in which order are the pivots used(according to the current state of the search) and where we stop using pivots and compare directly.An extreme case of this idea is AESA, where k = n, i.e. all the elements are potential pivots,32

and the new pivot at each iteration is randomly selected among the remaining elements. Despiteits practical inapplicability because of its O(n2) preprocessing time and space overhead (i.e. all thedistances among the known elements are precomputed), the algorithm performs a surprisingly lownumber of distance evaluations, much better than when the pivots are �xed. This shows that it is agood idea to select pivots from the current set of candidates (as discussed in the previous section).Finally, we notice that instead of a sequential search in the mapped space, we could use analgorithm to search in vector spaces of k dimensions (e.g. kd-trees or R-trees). Depending ontheir ability to handle larger k values, we could be able to use more pivots without signi�cantlyincreasing our extra CPU cost. Recall also that, as more pivots are used, the search structures forvector spaces perform worse. This is a very interesting subject which has not been pursued yet,that accounts for balancing between distance evaluations and CPU time.6.4 Coarsening the Equivalence RelationThe alternative of not considering all the k pivots if the remaining set of candidates is small is anexample of coarsening an equivalence relation. That is, if we do not consider a given pivot p, weare merging all the classes that di�er only in that coordinate. In this case we prefer to coarsify thepivot equivalence relation because computing it with more precision is worse than checking it as is.There are many other ways to coarsify the equivalence relation, and we cover them here. How-ever, in these cases the coarsi�cation is not done for the sake of reducing the number of distanceevaluations, but to improve space usage and precomputation time, as O(kn) can be prohibitivelyexpensive for some applications. Another reason is that, via coarsening, we obtain search algo-rithms that are sublinear in their extra CPU time. We consider in this section range coarsening,bucket coarsening and adaptive coarsening. Their ideas are roughly illustrated in Figure 16.
Adaptive CoarseningBucket CoarseningRange Coarsening

of cell values
Restricted domain

Original

Last coordinates
not always computed

Pivots have
only local scopeFigure 16: Di�erent coarsi�cation methods. Shorter cells mean smaller domain in cell values.It must be clear that all these types of coarsenings reduce the discriminative power of theresulting equivalence classes, making it necessary to exhaustively consider more elements that inthe uncoarsened versions of the relations. In the example of the previous section this is amortizedby the lower cost to obtain the coarsened equivalence relation. Here we reduce the e�ectiveness of33

the algorithms via coarsening, for the sake of reduced preprocessing time and space overhead.However, space reduction may have a counterpart in time e�ciency. If we use less space, thenusing the same memory as before we can have more pivots (i.e. larger k). This can result in anoverall improvement. The fair way to compare two algorithms is to give them the same space touse.6.4.1 Range CoarseningThe auxiliary data structures proposed by most authors for continuous distance functions are aimedto reduce the amount of space needed to store the coordinates of the elements in the mapped space,as well as the time to �nd the relevant classes. The most popular form is to reduce the precisionof d. This is written asx �p;frig y () 9i; ri � d(x; p) � ri+1 and ri � d(y; p) � ri+1with frig a partition of the interval [0;1). That is, we assign the same equivalence class toelements falling in the same range of distances with respect to the same pivot p. This is obviouslya coarsening of the previous relation �p.As in the previous example we can naturally extend our de�nition to more than one pivot:x �fpjg;frig y () 8pj ; 9i; ri � d(x; pj) � ri+1 and ri � d(y; pj) � ri+1Figure 2 exempli�es a pivoting equivalence relation where range coarsening is applied, for onepivot. Points in the same ring are in the same equivalence class, despite that their exact distanceto the pivot may be di�erent.A number of actual algorithms use one or another form of this coarsening technique. VPTs andMVPTs divide the distances in slices so that the same number of elements lie in each slice (notethat the slices are di�erent for each pivot). VPTs use two slices and MVPTs use many. Their goalis to obtain balanced trees. BKTs, FQTs and FHQTs, on the other hand, propose range coarseningfor continuous distance functions but do not specify how to coarsify.In this work we consider that the \natural" extension of BKTs, FQTs and FHQTs assigns slicesof the same width to each branch: the tree has a uniform arity across all its nodes. At each node,the slice width is recomputed so that using slices of that �xed width the node has the desired arity.This motivates us to de�ne a new data structureFHQA Is similar to an FQA except because the slices are of �xed width. At each level the slicewidth is recomputed so that a maximum arity is guaranteed.The di�erence between FHQTs and FHQAs is not just a matter of storage. In the FHQT eachnode has a di�erent slice width, while in the FHQA we have a �xed slice width for all the nodes ofthe same level. This width ensures that the maximum arity in the level does not exceed the desiredvalue, although some nodes may have smaller arity.The FHQA is not the same FQA of [24], since there they use variable width slices to ensurethat the subtrees are balanced in size. This is another form of range coarsening, closer to MVPTs.The original FQA will be called FMVPA to distinguish it from the FHQA.For completeness of the scheme, we de�ne now a new structure which is a combination of FHQTsand MVPTs. 34

FMVPT The range of values is divided using the m� 1 uniform percentiles to balance the tree,as in MVPTs. The tree has a �xed height h, as FHQTs. At each node the ranges are recomputedaccording to the elements lying in that subtree. This di�erentiates the structure from FQAs, whichrecompute the slices once per level of the tree according to all the elements of the set. The particularcase where m = 2 will be called FHVPT. We could add bucket coarsening to obtain a percentileversion of the FQT, but the results are not good.The combinations we have just created allow us to explain some important concepts. Firstconsider FHQAs and FMVPAs. They are no more than LAESA with di�erent forms of rangecoarsening (and di�erent algorithms to reduce extra CPU time). They use k �xed pivots and useb bits to represent the coordinates (i.e. the distances from each point to each of the h pivots). Soonly 2b di�erent values can be expressed. The two structures di�er only in how they coarsify thedistances to put them into 2b ranges. Their total space requirement is kbn bits.For example, imagine that we select b = 1, i.e. one bit per coordinate. This needs 1/32 to 1/64of the space required to store the actual coordinates. The price is that the equivalence relation iscoarsened, and therefore less elements will be eliminated using the k pivots. For each pivot we havejust two equivalence classes, represented by the bit. The criterion to discard an element is that,along some coordinate, the query plus its tolerance area is totally inside the other class.However, range coarsening is not just a technique to reduce space. The same space can be usedin a di�erent way. In the example above, if we have reduced the space per pivot, say, 32 times,then we may have 32 times more pivots at the same space usage. It is not immediate how much isit convenient to coarsify in order to use more pivots, but it is clear that this technique can improvethe overall e�ectiveness of the algorithm.Consider the example of a FMVPA with two pivots with one bit per pivot versus one pivot usingtwo bits. In the �rst case, after two comparisons against the pivots, we have divided the set in fourmore or less equal classes. In the second case we do the same with just one comparison. Despite thatthe partitions di�er, it is clear that in general using less pivots with more precision should improvethe performance. On the other hand, when we have enough bits to discriminate well between allthe outcomes of the distance function, adding more bits will not improve the discriminative power,and in return we will have less pivots at the same space usage. This shows that the optimum rangecoarsening for a �xed space usage is an intermediate value, which unfortunately depends stronglyon the speci�c metric space under consideration.Another unclear issue is whether �xed slice is better or worse than percentile splitting. Onone hand, a balanced data structure has obvious advantages because the internal complexity maybe reduced (think on a balanced or unbalanced BKT). Fixed slices produce unbalanced structuressince the outer rings have much more elements (since their volume is larger, especially on highdimensions). On the other hand, in high dimensions the outer rings tend to be too narrow ifpercentile splitting is used (because a small increment in radius gets many new elements inside theball). If the rings are too narrow, many rings will be frequently included in the radius of interestof the queries (see Figure 17).An alternative idea (still very preliminary) is shown in [21], where the slices are optimized tominimize the number of branches that must be considered. In this case, each class can be anarbitrary set of slices.We consider the tree structures now. FHQTs and FMVPTs are almost tree versions of FHQAs35

Uniform slices Uniform percentiles

Figure 17: The same query intersects more rings when using uniform percentiles.and FMVPAs, respectively. They are m-ary trees where all the elements belonging to the samecoarsened class are stored in the same subtree. Instead of explicitly storing the m coordinates, thetrees store them implicitly : the elements are at the leaves, and their path from the root spell outthe coarsened coordinate values. This makes the space requirements closer to O(n) in practice,instead of O(bkn) (although the constant is very low for the array versions, which actually takeless space). Moreover, the search for the relevant elements can be organized using the tree: if allthe interesting elements have their �rst coordinate in i, then we just traverse the i-th subtree. Thisreduces the extra CPU time. Indeed, the search algorithm described for FQA in Section 4.1 isborrowed from the tree.Since under our complexity model there would be no di�erence between trees and array versions,we have given the trees the ability to de�ne the slices at each node instead of at each level as thearray versions. This allows them to adapt better to the data, but the values of the slices used needmore space. It is not clear whether it pays o� or not to store all these slice values.A particular case where a tree can be built without coarsening the equivalence relation is thatof discrete distance functions, i.e. when the set of values returned by d is �nite and reasonablysmall. In FHQTs the pivots are �xed at each level, and at depth i each element x is stored atsubtree d(x; pi). If compared to simply storing the k discrete values for each element, we can seethat an FHQT is a trie [40] data structure storing n strings, where each string is the sequence ofk \symbols" (coordinates) that identify each class. The leaves are the classes. This allows us tostructure the search using the tree, since we have to traverse only the subtrees numbered d(q; pi)�rto d(q; pi) + r. FQAs can be used on discrete distance functions as well, without any coarsening.They implement a similar search strategy without using a tree.If the distance is too �ne-grained, the root will have near n children and the subtrees will havejust 1 children. Hence, the structure will be very similar to a table of k coordinates per element.The FHQT reduces extra CPU time assuming that the distance is not �ne grained, otherwise itdegenerates to a row-wise linear search. If this is the case, the equivalence relation can be coarsenedas in the previous examples to improve extra CPU time at the expense of more distance evaluations.BKTs and FQTs are similar to FHQTs, but they involve other techniques that are explained shortly.Summarizing, range coarsening can be applied using �xed-width or �xed-percentile slices, andother optimized schemes are possible. They can reduce the space necessary to store the coordinates,36

which can allow to use more pivots with the same amount of memory. Therefore, it is not just atechnique to reduce space but it can improve the search complexity. Range coarsening can also beused to organize tree-like search schemes which are sublinear in extra CPU time.6.4.2 Bucket CoarseningTo reduce space requirements in the above trees, we can avoid building subtrees which have fewelements. Instead, all their elements are stored in a bucket. When the search arrives to a bucket,it has to exhaustively consider all the elements.This is a form of coarsening, since for the elements in the bucket we do not consider the lastpivots, and resembles the previous idea (Section 6.3) of not computing the k pivots. However, inthis case the decision is taken o�-line, at index construction time, and this allows reducing spaceby not storing those coordinates. In the previous case the decision was taken at search time. Thecrucial di�erence is that if the decision is taken at search time, we can know exactly the totalamount of exhaustive work to do by not taking further coordinates. On the other hand, in ano�-line decision we can only consider the search along this branch of the tree, while we cannotpredict how many branches will be considered at search time.This idea is used for discrete distance functions in FQTs, which are similar to FHQTs exceptfor the use of buckets. It has been also applied to continuous setups to reduce space requirementsfurther.6.4.3 Adaptive CoarseningThe last and least obvious form of coarsening is the one we call \adaptive coarsening". In fact, theuse of this form of coarsening makes it di�cult to notice that many algorithms based on trees arein fact pivoting algorithms.This coarsening is based on, instead of storing all the coordinates of all the elements, juststoring some of them. Hence, comparing the query against some pivots helps to discriminate onsome subset of the database only. To use this fact to reduce space, we must determine o�-linewhich elements will store their distance to which pivots. There is a large number of ways to usethis idea, but it has been used only in the following way.In FHVPTs there is a single pivot per level of the tree, as in FHQTs. The left and right subtreesof VPTs, on the other hand, use di�erent pivots. That is, if we have to consider both the left andright subtrees (because the radius r does not allow to completely discard one), then comparing thequery q against the left pivot will be useful for the left subtree only. There is no information storedabout the distances from the left pivot to the elements of the right subtree, and vice-versa. Hence,we have to compare q against both pivots. This continues recursively. The same idea is used forBKTs and MVPTs.Although at �rst sight it is clear that we reduce space, this is not the direct way in which theidea is used in those schemes. Instead, they combine it with a huge increase in the number ofpotential pivots. For each subtree, an element belonging to the subtree is selected as the pivot anddeleted from the set. If no bucketing is used, the result is a tree where each element is a nodesomewhere in the tree and hence a potential pivot. The tree takes O(n) space, which shows that37

we can successfully combine a large number of pivots with adaptive coarsening to have low spacerequirements (n instead of n2 as in AESA).The possible advantage (apart from guaranteed linear space and slightly reduced space in prac-tice) of this structure over those that store all the coordinates (as FQTs and FHQTs) is that thepivots are better suited to the searched elements in each subtree, since they are selected fromthe same subset. This same property is which makes AESA such a good (though impractical)algorithm.In [51, 15] they propose hybrids (for BKT and VPT, respectively) where a number of �xedpivots are used at each node, and for each resulting class a new set of pivots is selected. Note that,historically, FQTs and FHQTs are an evolution over BKTs.6.5 Voronoi Equivalence PartitionsA very good algorithm for proximity searching in 2-dimensional Euclidean spaces is obtained withthe Voronoi partition [3, 58]. The entire space is divided into n equivalence classes, each oneassigned to one dictionary element. The equivalence relation is de�ned as in
uence zones: a pointx 2 X is assigned to the j-th equivalence class if uj 2 U is the nearest neighbor of x. It is clearthat this partition is as local as possible, and that it has maximum discriminative power since itassigns one dictionary element per equivalence class.A \Voronoi graph" is de�ned, where the nodes are the elements ofUand the edges connect pointswhose in
uence zones have borders in common. Using this graph, an O(logn) algorithm exists to�nd the nearest neighbor of an arbitrary point. Unfortunately, this algorithm does not generalizeto more than two dimensions. The Voronoi graph, which has O(n) edges in two dimensions, canhave even O(n2) edges in three and more dimensions.A simple search algorithm that can be used in more than two dimensions is to start at anypoint and move to any neighbor6 closer to the query. When this is not possible anymore we arealready in the element closest to the query.This idea can be generalized to an arbitrary metric space. Unfortunately neither the Voronoigraph nor a non-trivial superset of it can be built using only the distance matrix as input, as provedin [44]. Speci�c knowledge of the particular metric space is necessary.The algorithm SAT is a simpli�cation of this idea, where the search can only start at a �xedelement of U. The Voronoi partitions are built considering only the elements of U, not X. Theresult would be a structure able to search only queries of type (b) for q 2 U (quite useless). Tosearch general queries q 2Xof type (a), the algorithm assumes that an unknown element u 2 U issearched (type (b) query), from which one only knows that it is at distance at most r to q. Thisallows to bound the possible distances from u to other elements via comparing them against qinstead of u. Since the exact distance is not known, the algorithm has to explore many neighborswhich could be the closest to u (some can be discarded thanks to the known bounds).The other algorithms which rely on a Voronoi-like partition of the space are GHT and GNAT.This time, however, the search for the relevant classes is exhaustive (not as in SAT), and thealgorithms resort to a hierarchical partitioning to improve the search time.6In the graph sense, i.e. directly connected to the point by a direct link.38

In the GHT, two pivots p1 and p2 are selected and the elements closer to p1 are in one classand those closer to p2 are in the other. GNAT is a generalization of GHT to m pivots. The actualalgorithms are simply a hierarchical partition idea used on this equivalence relation. That is, theydivide the space using m pivots and recursively continue inside each partition.Notice, however, that we have to perform m distance evaluations to discriminate among mclasses, which may be expensive. Moreover, what we need is basically to �nd the pivots close toour query q, i.e. basically our same original problem with less elements. If m is large, this could bedone by using another search algorithm (e.g. AESA) to �nd the relevant classes instead of testingall them. This has not been attempted up to now, and the O(m2) distances needed by AESA arealready stored in the GNAT.GHTs and GNATs use many of the coarsening techniques presented before. For instance, whenwe compute the distance to the m pivots, we have mapped the space onto an m-dimensional vectorspace. However, from that coordinate information we only store, for each element in the set, whichis the smallest coordinate (i.e. which is the closest pivot). This is, again, to reduce space7. Theyalso use bucket and adaptive coarsening. A GHT or GNAT with �xed pivots per level has not beenproposed up to now. Since it �ts well in our taxonomy, we de�ne such a structure now.FGNAT Is a GNAT where there is a selected set of m pivots per level (not per node). Hence,the subsets obtained after the �rst partition are partitioned in the second level according to a newset of pivots which is the same for all the sets. The case m = 2 is called FGHT.The Voronoi partition is an attempt to obtain local classes, more local than those based onpivots. A general technique to do this is to identify clusters of close objects in the set. There existmany clustering algorithms to build equivalence relations. However, most are de�ned on vectorspaces instead of general metric spaces. An exception is [17], which reports very good results.However, it is not clear that good clustering algorithms directly translate into good algorithms forproximity searching. Another clustering algorithm, based on cliques, is presented in [19], but theresults are similar to the simpler BKT. This area is largely unexplored, and the developments herecould be converted into improved search algorithms.Given any equivalence relation, the hierarchical partitioning scheme can be applied to obtaina new search algorithm. That is, we �rst partition the set in very coarse classes, and �nd therelevant ones. Then, instead of exhaustively searching in the resulting classes, we partition themagain into subclasses and search again. When the classes have few enough elements, we searchthem exhaustively. Of course the partitioning into classes is done beforehand, not at query time.The algorithm resulting from this hierarchical scheme is qualitatively di�erent from the basepartitioning and searching algorithm used. We can also use di�erent search algorithms at each levelof the partition, resulting in hybrid algorithms which have not been considered up to now.As an example, the tree data structures covered previously can be considered as di�erent hier-archical extensions to the simple algorithm that takes only one pivot and groups the elements inclasses according to their distance to the pivot. The same can be said of GHTs and GNATs.7It is interesting that for both VPTs and GNATs they suggest to store some of the actual distances between theelements and the pivots to reduce the coarsening. 39

Range coarsening With Adaptive Coarsening Without Adaptive CoarseningFixed slices BKT FQT, FHQT, FHQAFixed quantiles VPT, MVPT, VPF FMVPT, FMVPANo range coarsening AESA, LAESA-likeVoronoi-like GHT, GNAT, SAT FGNATTable 2: Taxonomy of the existing algorithms. The methods in italics are combinations that appearnaturally as soon as the taxonomy is built. The Voronoi-like coarsening is separated because it isnot a type of range coarsening. All adaptive coarsening structures, as well as FQTs, can do bucketcoarsening as well.6.6 SummaryTable 2 summarizes our classi�cation of methods attending to the most important features (e.g.we left aside the algorithm to traverse the set in order to reduce extra CPU time).7 ExperimentsIn this section we experimentally test and validate many of the facts and open questions discussedin the paper. We also compare the existing approaches and �nd their best combinations, obtainingrecommendations on what to use depending on the case.We concentrate only on the number of distance evaluations as our complexity measure. All thedata structures have been carefully implemented by us as prototypes, and despite that their CPUtime could be reduced by better coding, their number of distance evaluations reported dependsonly on the algorithm.In our attempt to be fair with the memory usage of the algorithms and at the same time simplifythe implementation, we have not optimized their main memory implementation but have been verycareful to count their space usage. For instance, the trees can be stored with no pointers. In anextreme case one could work with those representations (perhaps at extra CPU cost). Carefulimplementations may obtain better CPU performance and approach the space requirements of ourrepresentations. We consider that real numbers take 4 bytes, element identi�ers of U take 4 bytes,and arities and others small numbers take as many bytes as necessary.We have implemented the data structures and search algorithms in ANSI C, and ran the codeon a Dual Pentium II of 333 Mhz, 256 Mb of RAM, under Linux kernel 2.2.1.In which follows we describe the structures we have implemented, including how we computetheir most signi�cant space usage in addition to the n identi�ers of the elements of U that need tobe stored.BKT We use slices of �xed width, which is de�ned to keep a desired arity m in the tree (m isa free parameter). The bucket size is always 1, which gives the optimal time performancefor this data structure. The pivot at the root of each subtree is randomly selected from theelements that lie into that subtree. The space usage is n distances, to store the slice widthsused. 40

FQT The same as BKT, except that the pivots are randomly selected from U. The pivot ids aretoo few to be signi�cant. The space usage is a distance per node of the tree (for the slicewidths). This data structure does not appear in the experiments because it took too muchtime and space to build. This shows that the extension of �xed slices that we designed doesnot work well in this case.FHQT The same as FQT, but this time the height is �xed at h. We have used di�erent h valuesdepending on the case, but the optimal h is unreachable with our machine. The space usageis n distances (to store the slice widths at each node) plus that of FHQAs, which give a morecompact implementation.FHQA Given b bits to represent the coordinates, the ranges are split in 2b slices. The slice widthsare computed once per level to obtain at most 2b slices in that level. The performance dependsalso on the parameter h, i.e. number of pivots used. The pivots are randomly chosen fromU. The space usage is hbn bits, the rest is not signi�cant.MVPT We use buckets of size 1 to maximize the performance and leave the aritym as a parameter.The root of each subtree is randomly chosen from the elements that lie into that subtree. VPTsare the particular case m = 2. We have not included extensions such as storing some actualdistances at the leaves because this is a hybrid with LAESA that would complicate isolatingthe e�ectiveness of the ideas. For the same reason we have not extended the structure to morethan one pivot per node (a hybrid with FMVPT). The space usage is n distances. Despitethat the BKT needs just a distance (slice width) per node and here we need m distances pernode, we can charge the cost of the distances to the corresponding edges and then realize thatthere are n � 1 edges.FMVPT Same as FHQT, except that instead of �xed slices we use �xed percentiles. The spaceusage is similar to FHQTs.FMVPA Same as FHQAs, except that �xed percentiles are used instead of �xed slices. The spaceusage is the same as FHQAs.GNAT We leave the aritym as a parameter and use buckets of minimal size (alsom) to optimizethe number of distance evaluations. The arity m is kept constant across the tree. Althoughthe authors suggest to reduce the arity at deeper nodes, they give no clear criterion to modifythe arity. The m pivots at each node are randomly selected from the subtree. The authorssuggest to take elements far away from each other, but we obtained worse results doing this,and in any case random elements are quite far away in high dimensions. GHT is the particularcase m = 2. The space requirements are n distances (the maximum radii of the subtrees).FGHT Same as GHT but the pivots are the same for all nodes at each level. The height h is aparameter. The space usage is hn bits.LAESA We leave the number k of pivots as a parameter. We use indeed the implementation of[23] (spaghettis), which is much faster in terms of CPU time, but count the space of LAESAwhich is minimal (kn distances). The reason is that LAESA would perform the same number41

of distance evaluations (but our experiments would take many days). In particular, AESAhas not been implemented because either a real implementation or a simulation would takeweeks in our machine. In the cases where LAESA has been compared against other structuresand it was restricted to use the same amount of memory, it should have used just 1 pivot (32bits). Since it performed poorly and it can be argued that real values could need less bits, wehave allowed it to use 4 pivots in this case. In other cases, where it has been allowed to usemore memory, we assume that each pivot needs 32 bits to compute the amount of memoryused.SAT There are no tuning parameters in this algorithm. The space is n arities plus n distances(radii of subtrees).As our metric space, we have used synthetic points in vector spaces with Euclidean (L2) distance.Our coordinates are randomly chosen in the real interval [0; 1]. Despite that the set is actuallya vector space, we take it as an abstract metric space and do not make any use of coordinateinformation. The reason to use this set instead of real-world metric spaces is that with this setupwe can control exactly the dimensionality of the space and show how the performance is a�ectedas the dimension varies. If we used abstract metric spaces or real-world data on vector spaces,the intrinsic dimensionality would not be obvious (either because there is no explicit dimension orbecause real vector data normally has lower dimension than the space it is in). Hence, we wouldhave to guess the intrinsic dimension by considering the histograms or the behavior of the structureand the observations would be complicated. Despite that considering real world data is interesting,using synthetic data where the dimension is clear �ts better our purposes of understanding the basicfeatures of the problem with a clean experiment. We use n = 100; 000 to n = 500; 000, and up to20 dimensions (as seen later, no method works well for more than 20 dimensions). Nevertheless,we present at the end an example using a real-world set and a discrete distance function.We use a search radii that on average retrieves 0.01% of the dictionary. This is a reasonableoutput size in many applications. However, we include at the end a test with radii retrieving up to0.1% of the set.We have repeated 1000 times the experiments. Since, however, most indexing algorithms involveselecting pivots at random and the �nal performance strongly depends on that selection, we havebuilt 10 di�erent indices on the same data and run 100 random queries on these indices. Pointsand queries are generated at random.In which follows, we present our experimental results. The sequence of experiments correspondsto the order in which the main concepts are introduced and the open questions appear.7.1 Optimal Number of PivotsThe �rst important concept in the model of k �xed pivots is that by incrementing their numberthe internal complexity increases and the external complexity decreases, and therefore an optimalnumber of pivots exists. We would like to (1) show that there exists an optimal k�, (2) show howthe optimal k� grows quickly with the dimension of the space and that it is O(1) or O(logn) withrespect to the set size (recall that there exist di�erent analysis concluding either choice), and (3)show that the cost using the optimal k� is O(k�).42

Unfortunately, we need too much space to obtain serious �gures of (2) and (3). Storing 4-bytecoordinates for n = 100; 000 needs 100 Mb for k = 256 pivots, which is smaller than the optimumfor more than 12 dimensions. So we content ourselves by showing that for 8 dimensions thereexists an optimum near k� = 110. Figure 18 shows internal, external and total distance evaluationsin 8 dimensions, using a LAESA-like algorithm with up to 256 pivots. Recall that the algorithmsimply compares the query against the k pivots (internal complexity) and then compares the queryagainst the elements that cannot be discarded using the triangular inequality with the k distancescomputed (external complexity).Despite that with 256 pivots we reach an optimum only until 8 dimensions, it seems clear thatthe optimal k� grows much faster than the number of dimensions. The optimal k is 15, 30 and 110for 4, 6, and 8 dimensions, respectively. This matches with many theoretical predictions that saythat k� is exponentially depending on the dimension, and therefore even if we were able to have k�pivots the cost would grow exponentially with the dimension (just to compare the query againstthe pivots). This can be improved with a more careful selection of pivots, a problem quite poorlyunderstood today. Figure 18 shows also the case of higher dimensions, where the optimum is notachieved with 256 pivots.
0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [pivots] 100,000 elements. Radius captures 0.01% of N

 8 [ext]
 8 [in+ext]

 8 [in]

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [pivots] 100,000 elements. Radius captures 0.01% of N

4
6
8

10
12
14
16
18
20

Figure 18: On the left, internal, external and overall distance evaluations in 8 dimensions, usingdi�erent number of pivots. On the right, overall distance evaluations for di�erent number ofdimensions.7.2 Amount of Range CoarseningWe have presented many choices related to range coarsening. A �rst question is how much rangecoarsening is desirable. It is clear that, if the number of pivots is �xed, range coarsening reducesmemory usage but degrades the complexity. As explained, however, range coarsening can be usedto improve the overall e�ectiveness of the algorithm if the memory is �xed, because if one needsless space to store the distances then more pivots can be added. The appropriate tradeo� betweennumber and precision of the pivots is not obvious.Figure 19 shows the e�ect of trading number for precision in the pivots, so that the total numberof bits used is the same. The top four �gures correspond to the four forms of range coarsening43

(FHQT, FHQA, FMVPT, FMVPA). FHQTs and FMVPTs need more space because they haveto store n extra distances. We use 16 bits per element in the trees and 32 bits per element inthe arrays. This still favors the trees (which are using 48 bits per element when one counts the ndistances), but even in this case they are inferior, as seen later. The results show that the optimalarity is always an intermediate value. The reason can be found in Section 6.4.1.The two bottom plots of Figure 19 show the e�ect of range coarsening combined with adaptivecoarsening: BKTs and MVPTs are studied. The optimal type and amount of range coarsening isdi�erent if we have adaptive coarsening, since the height is not �xed. Larger arity implies betterdiscrimination, but also less pivots in the path to a leaf. Another way to see it is that the resultof a comparison is useful for more elements if the arity is reduced. Interestingly, all achieve theirbest performance when their arity is minimal (2).7.3 Type of CoarseningNow that the optimum amount of range coarsening for each structure has been identi�ed, weproceed to compare the di�erent types of range and adaptive coarsening. From now on, eachstructure uses its optimal amount of range coarsening.The two �rst plots of Figure 20 compare the type of range coarsening used in the structuresthat have or do not have adaptive coarsening, separately. The goal is to determine which type ofadaptive coarsening is better: with �xed slices or with �xed percentiles.The plots make clear that the arrays work better than the trees (even when they are usingless memory), which shows that it is not a good idea to pay so much memory to ensure a betterpartitioning at each node. Finally, FMVPAs work better than FHQAs on low dimensions, andthe situation is reversed for high dimensions, where the phenomenon discussed in Section 6.4.1(especially in Figure 17) becomes more noticeable. Balancing the tree as is done in VPTs andMVPTs has impact only in low and medium dimensions, but in high dimensions the price ofhaving to traverse more children at search time shows up. Adaptive coarsening techniques showthe same e�ect, but in that case BKTs (�xed slices) are superior to MVPTs (percentile slices) forall dimensions.The four last plots of Figure 20 aim at determining which is better between having or not havingadaptive coarsening. BKTs and FHQAs are compared among them; and MVPTs and FMVPAsare compared among them. In both groups we have added LAESA (no range coarsening). The treeversions (FHQTs and FMVPTs) were excluded because we know already that they make worse useof the memory than their array versions.Since BKTs and MVPTs use �xed amount of memory and FHQAs, FMVPAs and LAESA canuse more and more memory by incrementing h (or k), two questions are of interest: (1) which isbetter if they are allowed to use the same amount of memory? (2) how much memory needs thesecond kind of algorithms to beat the algorithms of the �rst kind?The two middle plots answer question (1), and the last two, question (2). The ranges used arethe best for each structure. Recall that LAESA uses 4 pivots for the case (1), despite it shoulduse just one. As it can be seen, the structures that use adaptive coarsening improve over thosethat do not, if all use the same amount of memory. On the other hand, these last structures beatthe �rst ones if more memory is used: LAESA and FMVPA need 16 and 2 times more memory,respectively, than MVPTs to beat them; LAESA and FHQA need 128 and 32 times, respectively,44

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FHQT 1-16
FHQT 2-8
FHQT 4-4
FHQT 8-2
FHQT 16-1

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FHQA 8-4
FHQA 4-8
FHQA 2-16
FHQA 1-32

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FMVPT 16-1
FMVPT 8-2
FMVPT 4-4
FMVPT 2-8
FMVPT 1-16

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FMVPA 16-2
FMVPA 8-4
FMVPA 4-8
FMVPA 32-1

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT 1
BKT 2
BKT 4

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

MVPT 1
MVPT 4
MVPT 8
MVPT 16

Figure 19: Optimal arity for the di�erent structures, using �xed memory for those without adaptivecoarsening. The legends for the top four structures use the format STR h-b, where STR is thestructure, the arity is 2b and the number of pivots is h. The last two use the format STR b, withthe same meaning. 45

more memory to beat BKTs. In particular, beating BKTs becomes harder as the dimension grows.Finally, we note that the results for BKTs are too good to leave them without further analysis.Studying them in more detail, we �nd that the height of the trees is extremely large, so the treesare very ill balanced. The reason is quite clear: as the dimension grows, dividing the distances intwo equal slices leaves very few elements in one branch of the tree and almost all the rest in theother. What we �nally obtain is a clustering (or Voronoi-like) scheme, where all the internal nodesare the cluster representatives (indeed, they are good candidates for centroids), and the smallestof the two subtrees has all the elements of the cluster (see Figure 21). There is a clear criterionto select the clusters and their radii and to put the other elements in the clusters. This shows aninteresting (although loose) connection between clustering and pivoting algorithms. The turningpoint where this pivoting schemes behaves more like a clustering scheme seems to be 14 dimensions.We therefore consider the binary BKT as a new clustering (or Voronoi-like) algorithm, byprod-uct of this survey. This structure takes linear space and close to quadratic construction time. Thiscost could be lowered using another structure to build the tree, so as to perform the required queriesto �ll the subtrees more e�ciently.7.4 Voronoi Equivalence AlgorithmsFigure 22 shows a comparison between GHTs and FGHTs, letting FGHTs use di�erent amounts ofmemory (GHTs are equivalent in memory usage to FGHTs of height 32). It is clear that FGHTsonly behave well for very low dimensions. The reason is that the partitions have high locality, andselecting a new partition from the global set of elements (instead of the local set of elements) makesit quite possible that all the objects lie in a single partition at the second level, and so on.With respect to GNATs, we need also to determine the best arity. Figure 22 shows the resultswith GNATs using di�erent arities. In general m = 128 seems a good choice. Another interestingfact is that GNATs seem more resistant do the dimension than other structures. SATs, on theother hand, do not have parameters to tune, and we defer this structure for the �nal comparison.7.5 Final ComparisonWe compare now the di�erent resulting approaches, using their optimal setup. These are: BKTswith arity 2, FHQAs, FMVPAs, LAESA, GNATs with arity 128, and SAT. These are comparedin two ways. First, we make a comparison using the same amount of memory for all. This turnsout to be 32 bits per element. Second, we show how much more space do FHQAs, FMVPAs andLAESA need to beat the other approaches.Figure 23 shows the comparative results. Using the same amount of memory, the binary BKTis de�nitively the most e�cient data structure, followed in high dimensions by other Voronoi-likeschemes. It becomes clear that the Voronoi-like techniques are more e�cient than pivot-basedalgorithms on high dimensions. This shows that the locality of the partition becomes important atsome point.On the other hand, FHQAs, FMVPAs and LAESA have the ability to improve their performanceby using more pivots. LAESA needs 128 times more memory and FHQAs and FMVPAs need 32times more memory to beat the binary BKT in 20 dimensions.46

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FHQA
FHQT

FMVPA
FMVPT

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT
MVPT

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT
FHQT
FHQA

LAESA

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

MVPT
FMVPA
FMVPT
LAESA

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT
FHQA 1024 bits

LAESA 4096 bits

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

MVPT
FMVPA 64 bits

LAESA 512 bits

Figure 20: The �rst two plots compare the di�erent range coarsening techniques. The middle plotscompare the use or not of adaptive coarsening, at the same space usage. The lower plots show howmuch space need the structures that do not use adaptive coarsening to beat those that use. Theleft plots show range coarsening of �xed slices and the right plots show �xed percentile slices.47

a1 a1

a2

a3

cluster of a3

cluster of a2

cluster of a1

cluster of a1 cluster of a2 cluster of a3

a3a2

etc

a1

a2

a3Figure 21: The biased binary BKT is similar to a clustering scheme.
10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

GHT
FGHT 32
FGHT 64
FGHT 128
FGHT 256
FGHT 512

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

GNAT 2
GNAT 4
GNAT 8
GNAT 16
GNAT 32
GNAT 64
GNAT 128
GNAT 256

Figure 22: The left plot compares GHTs and FGHTs using di�erent amounts of memory. The rightplot compares GNATs using di�erent arities.It is interesting to notice that, as the dimension grows, pivoting algorithms need more and morepivots to beat Voronoi-like partition algorithms. On the other hand, there are no good methodsto allow Voronoi-like algorithms using more memory to increase their e�ciency, but if they existedprobably they would need less space to obtain the same results of the other algorithms on highdimensions. Note also that only array implementations of FHQTs and FMVPTs make the necessaryheights possible in practice.We believe that a data structure where the idea of a Voronoi-like partition is combined with ak-pivoting algorithm may provide the best tradeo�.Figure 24 shows a comparison among the structures for increasing n and 8 dimensions, usingthe same amount of memory. The goal is to study how the costs grow with n.It can be seen that the costs grow linearly if we retrieve 0.01% of the data set. It is not hardto see that the cost cannot be sublinear if we retrieve a linear proportion of the set. Since ourset has limited volume in the space (recall that all points lie in [0; 1]k for k dimensions) the radiusto retrieve 0.01% of the set remains the same as n grows, since all the volume gets uniformlydenser and therefore a �xed volume remains holding a �xed proportion of the points. If the spacewere unbounded (e.g. uniform density as n grows) a �xed radius would retrieve lower and lower48

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT
FHQA

FMVPA
GNAT

LAESA
SAT

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT
GNAT
SAT

FHQA 1024 bits
FMVPA 1024 bits
LAESA 4096 bits

Figure 23: Comparing the best data structures. The left plot uses the same amount of memory forall, while in the right one the pivoting algorithms use more space.percentages of the set as n grew. We see shortly an example of such a set.Figure 24 also shows how time grows as the proportion of retrieved elements increases. As itcan be seen, the e�ciency degrades slowly as the radius grows. Some structures, like SATs, adaptbetter to larger search radii.
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100 150 200 250 300 350 400 450 500

D
is

ta
nc

e
co

m
pu

ta
tio

ns

[8 Dimensions] Size of the database

BKT
GNAT

SAT
FHQA

FMVPA
LAESA

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

[100,000 elements] Percent of database captured

SAT
MVPT

BKT
FHQA

FMVPA
LAESA
GNAT

Figure 24: Comparing the data structures using the same amount of memory and in terms of n,for 8 dimensions. The left plot retrieves 0.01% of the set, while the right plot retrieves from 0.01%to 0.1% of the set.7.6 Construction TimeWe have left aside the cost to build the data structures. Since this is done o�-line, it has lessimportance than querying complexity, but nevertheless it is worhwhile to present some results.Figure 25 shows the construction complexity (number of distance evaluations) for the structurescompared in the previous subsection, using the same amount of memory. We show the growth in49

terms of the set size and the dimension. As it can be seen, Voronoi-like schemes (SATs, GNATsand binary BKTs) are much more expensive to build than the other data structures.With respect to the dimension, the schemes with �xed pivots of course do not depend on thedimension, while Voronoi-like schemes become more expensive to build as the dimension grows. Anexception seems to be GNATs, which are �xed with the dimension because the arity is so large (128)that the height is always two. With less arity they would be cheaper to build but less competitive.In particular, the cost of the best structure, BKTs, increases sharply as the dimension grows. Thisshows that there is a high price at construction time for Voronoi-like schemes, which are the mostcompetitive in high dimensions.With respect to the set size, most schemes are linear (except SATs, which are slightly superlinearas predicted). The only one which deviates from the prediction is the binary BKT, for which wepredicted a quadratic construction time. More speci�cally, if the left subtree holds M elements(where M is much smaller than n) then the tree will be of height n=M and the construction timewill be n2=M . However, our set is compact in [0; 1]k, and therefore the distance that divides theleft and right subtree keeps basically unchanged as n grows, and so does the volume of the ballthat corresponds to the left subtree. Hence, as n grows, M grows proportionally. If we double nand M , the construction cost doubles too: (2n)2=(2M) = 2(n2=M).
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

2 4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 [c

on
st

ru
ct

io
n]

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT
GNAT

SAT
FHQA

FMVPA
LAESA

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

100 150 200 250 300 350 400 450 500

D
is

ta
nc

e
co

m
pu

ta
tio

ns

[8 Dimensions] Size of the database

BKT
GNAT

SAT
FHQA

FMVPA
LAESA

Figure 25: Construction times, as a function of the dimension (left) and as a function of the setsize (right). LAESA, FHQAs and FMVPAs are very close and superimposed in some cases.7.7 A Real-World Discrete CaseWe �nish our experiments with a real-world example related to text processing. Our set is composedof 500,000 di�erent lower-case words, namely the vocabulary of a subset of the TREC collection[38]. The distance is the edit distance (recall Section 2.3), which is the minimal number of characterinsertions, deletions and replacement needed to make two strings equal. This returns a small integernumber in most cases, and the histogram is quite concentrated.We compare the di�erent data structures on this set, searching with radius 1, 2 and 3. Thequeries were selected at random from the same dictionary. The structures included are BKT, FQT,FHQT (h = 16, so that an FQA implementation uses roughly the same space as the rest), GNAT50

(m = 50, which had the best performance) and SAT. No range coarsening was performed, sincethe outcome of the distance function has just a few di�erent values.It can be seen that GNATs and SATs are not competitive in this case (probably because ofthe discretization). FQTs, BKTs and FHQTs are quite similar, but FQTs and FHQTs are slightlybetter.Their time sublinearity is also clear from the �gures, which may be unexpected because weare using �xed radii (1, 2 and 3) and therefore a �xed proportion of the set should be retrieved.However, the space is discrete and the number of elements in Xat small distance from a string isseverely limited, so it does not grow with n. As n grows, �xed radii retrieve lower percentages ofthe set.This shows that the structure of the metric space has a strong in
uence in all aspects of thethe behavior of the algorithms.
0

10000

20000

30000

40000

50000

60000

70000

80000

0 50000 100 150000 200 250 300 350 400 450 500

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 Dictionary size (thousands). Radius = 1

SAT
BKT

GNAT
FHQT

FQT

0

50000

100000

150000

200000

250000

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 Dictionary size (thousands). Radius = 2

SAT
BKT

GNAT
FHQT

FQT

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 Dictionary size (thousands). Radius = 3

SAT
BKT

GNAT
FHQT

FQT

Figure 26: Comparison on the TREC dictionary, for radius from 1 to 3. FHQT uses h = 16 andGNAT uses m = 50. No range coarsening is done.51

8 ConclusionsMetric spaces are becoming a popular model for similarity retrieval in many unrelated areas. Wehave surveyed the algorithms that index metric spaces to answer proximity queries. We have notjust enumerated the existing approaches to discuss their good and bad points. We have, in addition,presented a uni�ed framework that allows to understand the existing approaches under a commonview. It turns out that most of the existing algorithms are indeed variations on a few commonideas, and by identifying them, previously unnoticed combinations have naturally appeared, someof them extremely e�cient. We have also analyzed the main factors that a�ect the e�ciency whensearching metric spaces. Finally, we have presented experimental results validating our assertionsand comparing the existing approaches. As a result, we have been able to recommend the bestchoices among the existing solutions.The main conclusions of our work are summarized as follows1. The factors that a�ect the e�ciency of the search algorithms are the intrinsic dimensionalityof the space and the proportion of the set that is retrieved.2. We have identi�ed the use of equivalence relations as the common ground underlying all theindexing algorithms, and classi�ed the search cost in terms of internal and external complexity.3. A large class of search algorithms rely on taking k pivots and mapping the metric space ontoRk using the L1 distance. Another important class uses Voronoi-like partitions.4. The equivalence relations can be coarsened to save space or to improve the overall e�ciencyby making better use of the pivots.5. Although there is an optimal number of pivots to use, this number is too high in terms ofspace requirements. Hence, in practical terms, this type of index will outperform those thatuse �xed space if it has enough memory. However, among them, range coarsening allows tomake better or worse use of the same amount of memory. We found that intermediate valuesfor the number of bits per pivot are the best options.6. The algorithms based on a Voronoi-like partition of the space are the most resistant to thedimensionality.7. Among the structures considerered, our experimental results show that the best one is ouradaptation of BKTs to continuous spaces with arity 2. We have shown that this structure\degenerates" into a very e�cient clustering scheme. If more memory is available, otherstructures �nally improve over binary BKTs. Among these, those that use best the availablememory are FHQAs and FMVPAs.This work, however, has left a number of open issues requiring further attention. The mainones follow.� Work more on clustering schemes in order to devise new algorithms, to �nd ways to reduceconstruction times (which is extremely high to be practical in many cases) and to allow themusing more memory in order to reduce search times.52

� Search for good hybrids between clustering and pivoting algorithms. The �rst ones cope betterwith high dimensions and the second ones improve as more memory is given to them. Afterthe space is clustered the intrinsic dimension of the clusters is lower, so a top-level clusteringstructure joined with a pivoting scheme for the clusters is an interesting alternative. Thosepivots should be selected from the cluster because the cluster is already compact in the space.� Understand better how the structure of the space a�ects the e�ciency of the search algorithms.Parameters like the histogram of distances may allow us to �nd worst or average case boundsto the complexity of the problem. Another issue is related to whether the space is limited involume or not as n grows. We found along the survey that in many cases the behavior of thealgorithms strongly depends on the fact that if there are more points they must be closer toeach other, which is true in the [0; 1]k space but false in the space of strings.� Understand better the e�ect of pivot selection, devising methods to choose e�ective pivots.The subject of the appropriate number of pivots and its relation to the intrinsic dimensionalityof the space plays a role here. The histogram of distances may be a good tool for pivotselection. Another related issue is the optimum arity, which is always �xed and could dependon the level in the tree or other parameters, as suggested in [16]. Finally, space overlappingtechniques have not been attempted in metric spaces and they yielded good results in vectorspaces (R-trees).� Take extra CPU complexity into account, which we have barely considered in this work. Insome applications the distance is not so expensive that one can disregard any other typeof CPU cost. The use of specialized search structures in the mapped space (especially Rk)and the resulting complexity tradeo� deserves more attention. Another area left aside is I/Ocosts.� Focus on nearest neighbor search. Most current algorithms for this problem are based on rangesearching, and despite that the existing heuristics seem di�cult to improve, truly independentways to address the problem could exist.� Consider approximate and probabilistic algorithms, which may give much better results at acost that, especially for this problem, seems acceptable.References[1] P. Apers, H. Blanken, and M. Houtsma. Multimedia Databases in Perspective. Springer, 1997.[2] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for ap-proximate nearest neighbor searching in �xed dimension. In Proc. 5th ACM-SIAM Symposiumon Discrete Algorithms (SODA'94), pages 573{583, 1994.[3] F. Aurenhammer. Voronoi diagrams { a survey of a fundamental geometric data structure.ACM Computing Surveys, 23(3), 1991. 53

[4] R. Baeza-Yates. Searching: an algorithmic tour. In A. Kent and J. Williams, editors, Ency-clopedia of Computer Science and Technology, volume 37, pages 331{359. Marcel Dekker Inc.,1997.[5] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using �xed-queriestrees. In Proc. 5th Combinatorial Pattern Matching (CPM'94), LNCS 807, pages 198{212,1994.[6] R. Baeza-Yates and G. Navarro. Fast approximate string matching in a dictionary. In Proc.5th South American Symposium on String Processing and Information Retrieval (SPIRE'98),pages 14{22. IEEE CS Press, 1998.[7] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.[8] J. Bentley. Multidimensional binary search trees used for associative searching. Comm. of theACM, 18(9):509{517, 1975.[9] J. Bentley. Multidimensional binary search trees in database applications. IEEE Trans. onSoftware Engineering, 5(4):333{340, 1979.[10] J. Bentley, B. Weide, and A. Yao. Optimal expected-time algorithms for closest point problems.ACM Trans. on Mathematical Software, 6(4):563{580, December 1980.[11] S. Berchtold, D. Keim, and H. Kriegel. The X-tree: an index structure for high-dimensionaldata. In Proc. 22nd Conference on Very Large Databases (VLDB'96), pages 28{39, 1996.[12] B. Bhanu, J. Peng, and S. Qing. Learning feature relevance and similarity metrics in imagedatabases. In Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries,pages 14{18, Santa Barbara, California, 1998. IEEE Computer Society.[13] A. Del Bimbo and E. Vicario. Using weighted spatial relationships in retrieval by visualcontents. In Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries,pages 35{39, Santa Barbara, California, 1998. IEEE Computer Society.[14] S. Blott and R. Weber. A simple vector-approximation �le for similarity search in high-dimensional vector spaces. Technical report, Institute for Information Systems, ETH Zentrum,Zurich, Switzerland, 1997.[15] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces.In Proc. ACM SIGMOD International Conference on Management of Data, pages 357{368,1997. Sigmod Record 26(2).[16] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conference on Very LargeDatabases (VLDB'95), pages 574{584, 1995.[17] M. Brito, E. Ch�avez, A. Quiroz, and J. Yukich. Connectivity of the mutual k-nearest neighborgraph in clustering and outlier detection. Statistics & Probability Letters, 35:33{42, 1996.54

[18] E. Bugnion, S. Fhei, T. Roos, P. Widmayer, and F. Widmer. A spatial index for approximatemultiple string matching. In R. Baeza-Yates and N. Ziviani, editors, Proc. 1st South AmericanWorkshop on String Processing (WSP'93), pages 43{53, 1993.[19] W. Burkhard and R. Keller. Some approaches to best-match �le searching. Comm. of theACM, 16(4):230{236, April 1973.[20] M. La Cascia, S. Sethi, and S. Sclaro�. Combining textual and visual cues for content-basedimage retrieval on the world wide web. In Proc. IEEE Workshop on Content-Based Accessof Image and Video Libraries, pages 24{28, Santa Barbara, California, 1998. IEEE ComputerSociety.[21] E. Ch�avez. Optimal discretization for pivot based algorithms. Manuscript. ftp://-garota.fismat.umich.mx/pub/users/elchavez/minimax.ps.gz, 1999.[22] E. Ch�avez and J. Marroqu��n. Proximity queries in metric spaces. In R. Baeza-Yates, editor,Proc. 4th South American Workshop on String Processing (WSP'97), pages 21{36. CarletonUniversity Press, 1997.[23] E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates. Spaghettis: an array based algorithm for similar-ity queries in metric spaces. In Proc. String Processing and Information Retrieval (SPIRE'99),Cancun, Mexico, September 1999. To appear. ftp://garota.fismat.umich.mx/pub/users/-elchavez/spa.ps.gz.[24] E. Ch�avez, J. Marroqu��n, and G. Navarro. Overcoming the curse of dimensionality. In EuropeanWorkshop on Content-Based Multimedia Indexing (CBMI'99), 1999. To appear. ftp://-garota.fismat.umich.mx/pub/users/elchavez/fqa.ps.gz.[25] L. Childs. A Concrete Introduction to Higher Algebra. Springer-Verlag, 1995.[26] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an e�cient access method for similarity searchin metric spaces. In Proc. of the 23rd Conference on Very Large Databases (VLDB'97), pages426{435, 1997.[27] P. Ciaccia, M. Patella, and P. Zezula. A cost model for similarity queries in metric spaces. InProc. 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems(PODS'98), 1998.[28] K. Clarkson. Nearest neighbor queries in metric spaces. Discrete Computational Geometry,22(1):63{93, 1999.[29] T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, 1994.[30] L. Devroye. A Course in Density Estimation. Birkhauser, 1987.[31] R. Duda and P. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.[32] C. Faloutsos and K. Lin. Fastmap: a fast algorithm for indexing, data mining and visualizationof traditional and multimedia datasets. ACM SIGMOD Record, 24(2):163{174, 1995.55

[33] A. Farag�o, T. Linder, and G. Lugosi. Fast nearest-neighbor search in dissimilarity spaces.IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(9):957{962, September 1993.[34] W. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures and Algo-rithms. Prentice-Hall, 1992.[35] V. Gaede and O. G�unther. Multidimensional access methods. ACM Computing Surveys,30(2):170{231, 1998.[36] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. ACM SIGMODInternational Conference on Management of Data, pages 47{57, 1984.[37] J. Hair, R. Anderson, R. Tatham, and W. Black. Multivariate Data Analysis with Readings.Prentice-Hall, 4th edition, 1995.[38] D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third Text REtrievalConference (TREC-3), pages 1{19, 1995. NIST Special Publication 500-207.[39] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.[40] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley, 1973.[41] L. Mic�o, J. Oncina, and R. Carrasco. A fast branch and bound nearest neighbour classi�er inmetric spaces. Pattern Recognition Letters, 17:731{739, 1996.[42] L. Mic�o, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approximating andeliminating search (AESA) with linear preprocessing-time and memory requirements. PatternRecognition Letters, 15:9{17, 1994.[43] J. Munkres. Topology, A First Course. Prentice-Hall, 1975.[44] G. Navarro. Searching in metric spaces by spatial approximation. In Proc. String Processingand Information Retrieval (SPIRE'99), Cancun, Mexico, September 1999. To appear. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/metric.ps.gz.[45] S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high dimensions.IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(9):989{1003, 1997.[46] J. Nievergelt and H. Hinterberger. The grid �le: an adaptable, symmetric multikey �le struc-ture. ACM Trans. on Database Systems, 9(1):38{71, March 1984.[47] S. Prabhakar, D. Agrawal, and A. El Abbadi. E�cient disk allocation for fast similaritysearching. In Proc. ACM SPAA'98, Puerto Vallarta, Mexico, 1998.[48] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.[49] D. Sanko� and J. Kruskal, editors. Time Warps, String Edits, and Macromolecules: the Theoryand Practice of Sequence Comparison. Addison-Wesley, 1983.56

[50] D. Sasha and T. Wang. New techniques for best-match retrieval. ACM Trans. on InformationSystems, 8(2):140{158, 1990.[51] M. Shapiro. The choice of reference points in best-match �le searching. Comm. of the ACM,20(5):339{343, May 1977.[52] R. Sutton and A. Barto. Reinforcement Learning : an Introduction. MIT Press, 1998.[53] J. Uhlmann. Implementing metric trees to satisfy general proximity/similarity queries. Man-uscript, 1991.[54] J. Uhlmann. Satisfying general proximity/similarity queries with metric trees. InformationProcessing Letters, 40:175{179, 1991.[55] E. Vidal. An algorithm for �nding nearest neighbors in (approximately) constant average time.Pattern Recognition Letters, 4:145{157, 1986.[56] M. Waterman. Introduction to Computational Biology. Chapman and Hall, 1995.[57] D. White and R. Jain. Algorithms and strategies for similarity retrieval. Technical ReportVCL-96-101, Visual Computing Laboratory, University of California, La Jolla, California, July1996.[58] A. Yao. Chapter 7, pages 345{380. Elsevier Science, 1990. J. Van Leeuwen, editor.[59] P. Yianilos. Data structures and algorithms for nearest neighbor search in general metricspaces. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms (SODA'93), pages 311{321, 1993.[60] P. Yianilos. Excluded middle vantage point forests for nearest neighbor search. In DIMACSImplementation Challenge, ALENEX'99, Baltimore, MD, 1999.
57

