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Abstract

The problem of searching the elements of a set which are close to a given query under some
similarity criterion has a vast number of applications in many branches of computer science, from
pattern recognition to textual and multimedia information retrieval. We are interested in the
rather general case where the similarity criterion defines a metric space, instead of more restricted
cases of vector spaces. A large number of solutions have been proposed in different areas, in
many cases without cross-knowledge. Because of this, the same ideas have been reinvented
several times, and very different presentations have been given for the same approaches. We
present a unified view of all the known proposals to organize metric spaces, so as to be able
to understand them under a common framework. Most approaches turn out to be variations
on a few different concepts. We organize those works in a taxonomy which allows us to devise
new algorithms from combinations of concepts which were not noticed before because of the
lack of communication between different communities. Some of the new techniques that appear
as combinations are shown to be very competitive. We present experiments validating our
results and comparing the existing approaches, so as to determine the best existing solutions for
this problem. We finish with recommendations for practitioners and open questions for future
development.

1 Introduction

Searching is a fundamental problem in computer science, present in virtually every computer ap-
plication. Simple applications pose simple search problems, while a more complex application will
require, in general, a more sophisticated form of searching.

The search operation has been traditionally applied to “structured data”, i.e. numerical or
alphabetical information which is searched for exactly. That is, a search query is given and the
number or string which is ezactly equal to the search query is retrieved. Traditional databases
are built around the concept of exact searching: the database is divided into records, each record
having a fully comparable key. Queries to the database return all the records whose keys match the
search key. More sophisticated searches such as range queries on numerical keys or prefix searching
on alphabetical keys still rely on the concept that two keys are or are not equal, or that there is a
total linear order on the keys. Even in recent years, when databases have included the ability to

*This project has been partially supported by CYTED VII.13 AMYRI Project.

iEscuela de Ciencias Fisico-Matematicas, Universidad Michoacana. Edificio “B”, Ciudad Universitaria, Morelia,
Mich. México 58000. elchavez@zeus.ccu.umich.mx.

‘Depto. de Ciencias de la Computacién, Universidad de Chile. Blanco Encalada 2120, Santiago, Chile.
{gnavarro,rbaeza}@dcc.uchile.cl.

$Centro de Investigacién en Mateméticas (CIMAT). Callején de Jalisco S/N, Valenciana, Guanajuato, Gto. México
36000. jlm@fractal.cimat.mx.



store new data types such as images, the search has still been done on a predetermined number of
keys of numerical or alphabetical types.

With the evolution of information and communication technologies, unstructured repositories of
information have emerged. Not only new data types such as free text, images, audio and video have
to be queried, but also it is not possible anymore to structure the information in keys and records.
Such structuring is very difficult (either manually or computationally) and restricts beforehand
the types of queries that can be posed later. Even when a classical structuring is possible, new
applications such as data mining require to access the database by any field, not only those marked
as “keys”. Hence, new models for searching in unstructured repositories are needed.

The above scenarios require more general search algorithms and models than those classically
used for simple data. A unifying concept is that of “similarity searching” or “proximity searching”,
i.e. searching for database elements which are similar or close to a given query element!. Similarity
is modeled with a distance function that satisfies the triangular inequality, and the set of objects
is called a metric space. Since the problem has appeared in many diverse areas, solutions have
appeared in many unrelated fields, such as statistics, artificial intelligence, databases, computational
biology, pattern recognition and data mining, to name a few. Since the current solutions come
from so diverse fields, it is not surprising that the same solutions have been reinvented many times,
that obvious combinations of solutions have not been noticed, and that no thorough analytical
or experimental comparisons have been done. More importantly, there have been no attempts to
conceptually unify all those solutions.

In many applications, the problem in general metric spaces is translated to a vector space (i.e.
objects are represented as k-dimensional points with some geometric interpretation of similarity).
This is because the concept of similarity searching appeared in vector spaces in the first place. This
is a natural extension of the problem of searching the closest point in the plane. In this framework
optimal algorithms (on the database size) exist in both average and worst case [10] for closest point
search. Search algorithms for vector spaces are called spatial access methods (SAM). Among the
most popular are kd-trees [8, 9], R-trees [36] and the more recent X-trees [11] (see [57, 35] for good
surveys). Unfortunately the existing algorithms are very sensitive to the vector space dimension.
Closest point search algorithms have an exponential dependency on the dimension of the space
(this is called the “curse of dimensionality”). In practical terms, it is considered that the problem
becomes intractable in more than 20 dimensions. For this reason, several authors have proposed
the use of distance based indexing techniques, which use only the distance between points and
avoid any reference to coordinates, in an attempt to avoid the dimensionality curse. This may be
particularly effective when an intrinsically low dimensional set is embedded into an artificially high
dimensional space (e.g. a plane in a three dimensional space). Hence, one resorts to general metric
spaces not only when the problem has not a coordinate structure, but also when the number of
such coordinates is very high.

With regard to general metric spaces, the problem has been tackled from a variety of viewpoints.
The general goal is to build a data structure (or indez) to reduce the number of distance evaluations
at query time, since the distance is assumed to be expensive to compute. Some important advances
have been done, mainly in the database community where a number of distance-based indices and

!The term “approximate searching” is also used, but it is misleading and we use it here only when referring to
approximation algorithms.



data structures have been developed and studied from different perspectives. In this particular
case, people is concerned additionally with the I/O problem, e.g. efficient disk arrangements to
access a (perhaps huge) database [26, 47].

The main goal of this work is to present a unifying framework to describe and analyze all the
existing solutions to this problem. We show that all the existing indexing algorithms for proximity
searching consist in building a set of equivalence classes, discarding some classes, and searching
exhaustively the rest. As a consequence of the analysis we are able to build a taxonomy on the
existing algorithms for proximity search, to classify them according to their essential features,
and to analyze their effectiveness. We are able to identify essentially similar approaches, to point
out combinations of ideas which have not previously been noticed, and to identify the main open
problems in this area. We also present experimental results that help to validate our assertions,
to answer some open questions, and to determine the best existing choices for practitioners. As
a byproduct of this work, some unnoticed combinations of previous ideas are shown to be very
competitive.

We remark that we are concerned with the essential features of the search algorithms for general
metric spaces. That is, we try to extract the basic features from the wealth of existing solutions, so
as to be able to categorize and analyze them under a common framework. We focus mainly on the
number of distance evaluations needed to execute range quertes (i.e. with fixed tolerance radius),
which are the most basic ones. However, we also pay some attention to the total CPU time, as well
as the time and space cost to build the indices. There are many other features which we are not
considering in order to keep our scope reasonably bounded, and which deserve a separate study,
such as

e dynamic capabilities of the indices, i.e. how to add and delete elements once the index is built,
since most indices can be naturally updated and considering this adds extra complications;

e I/0 performance of the indices, since we aim at the essential features and this would introduce
an extra level of complication;

e vector spaces, as there exist already good surveys on this particular case [57, 35];

e closest point search, as the algorithms are built systematically over range queries (we explain
how, however);

e sub-queries (i.e. searching a small element inside a larger element) since the solutions are
basically the same after a domain-dependent transformation is done.

This paper is organized as follows. In Section 2 we present a number of applications that
motivate proximity searching. In Section 3 we explain some basic concepts. In Section 4 we
survey all the search algorithms we are aware of. In Section 5 we present our unifying model. In
Section 6 we present a taxonomy on the current solutions based on the unifying model and find
new combinations not previously noticed. In Section 7 we present experiments validating our ideas
and comparing the techniques. Finally, in Section 8 we present our conclusions, give advices for
practitioners, and point out the main open problems in this area.



2 Motivating Applications

We present now a sample of applications where the concept of proximity searching appears. Since
we have not presented a formal model yet, we do not try to explain the connections between the
different applications. We rather delay this discussion to Section 3.

2.1 Query by Content in Structured Databases

In general, the query posed to a database presents a piece of a record of information, and it needs
to retrieve the entire record. In the classical approach, the piece presented is fixed (the key).
Moreover, it is not allowed to search with an incomplete or an erroneous key. On the other hand,
in the more general approach required nowadays the concept of searching with a key is generalized
to searching with an arbitrary subset of the record, allowing or not errors.

This type of searching have deserved a number of names, for example range query, query by
content or proximity searching. It is of use in data mining (where the interesting parts of the record
cannot be predetermined), when the information is not precise, when we are looking for a range of
values, when the search key may have errors (e.g. a misspelled word), etc.

A general solution to the problem of range queries by any record field is the grid file [46]. The
domain of the database is seen as a hyper-rectangle of k dimensions (one per record field), where
each dimension has an ordering according to the domain of the field (numerical or alphabetical).
Each record present in the database is considered as a point inside the hyper-rectangle. A query
specifies a sub-rectangle (i.e. a range along each dimension), and all the points inside the specified
query are retrieved. This does not address the problem of searching on non-traditional data types,
nor allowing errors that cannot be recovered with a range query. However, it converts the original
search problem to a problem of obtaining, in a given space, all the points “close” to a given query
point. Grid files are essentially a disk organization technique to efficiently retrieve range queries in
secondary memory.

2.2 Query by Content in Multimedia Objects

New data types such as images, fingerprints, audio and video (called “multimedia” data types)
cannot be meaningfully queried in the classical sense. Not only they cannot be ordered, but they
cannot even be compared for equality. No application will be interested in searching an audio
segment exactly equal to a given one. The probability that two different images are pixel-wise
equal is negligible unless they are digital copies of the same source. In multimedia applications, all
the queries ask for objects similar to a given one. Some example applications are face recognition,
fingerprint matching, voice recognition, and in general multimedia databases [1].

Think for example in a repository of images. Interesting queries are of the type “find an image
of a lyon with a savanna background”. If the repository is tagged, and each tag contains a full
description of what is inside the image, then our example query can be solved with a classical
scheme. Unfortunately, such a classification cannot be done automatically with the available image
processing technology. Object recognition in real world scenes is still in an immature state to
perform such complex tasks. Moreover, we cannot predict all the possible queries that will be
posed so as to tag the image for every possible query. An alternative to automatic classification



consists in considering the query as an ezample image, so that the system searches all the images
similar to the query. This can be built inside a more complex feedback system where the user
approves or rejects the images found, and a new query is submitted with the approved images. It
is also possible that the query is just part of an image and the system has to retrieve the whole
image.

These approaches are based on the definition of a similarity function among objects. Those
functions are provided by an expert, but they pose no assumptions on the type of queries that
can be answered. In many cases, the distance is obtained via a set of k “features” which are
extracted from the object (e.g. in an image a useful feature is the average color). Then each object
is represented as its k features, i.e. a point in a k-dimensional space, and we are again in a case of
range queries on vector spaces.

There is a growing community of scientists deeply involved with the development of such simi-
larity measures [20, 12, 13].

2.3 Text Retrieval

Although not considered a multimedia data type, unstructured text retrieval poses similar problems
as multimedia retrieval. This is because textual documents are in general not structured to easily
provide the desired information. Text documents may be searched for strings that are present or
not, but in many cases they are searched for semantic concepts of interest. For instance, an ideal
scenario would allow to search a text dictionary for a concept such as “to free from obligation”,
retrieving the word “redeem”. This search problem cannot be properly stated with classical tools.

A large community of researchers has been working on this problem from a long time ago
[48, 34, 7]. A number of measures of similarity have emerged. The problem is basically solved by
retrieving documents similar to a given query. The user can even present a document as a query,
so that the system finds similar documents. Some similarity approaches are based on mapping a
document to a vector of real values, so that each dimension is a vocabulary word and the relevance
of the word to the document (computed using some formula) is the coordinate of the document
along that dimension. Similarity functions are then defined in that space. Notice however that the
dimensionality of the space is very high (thousands of dimensions).

Another problem related to text retrieval is spelling. Since huge text databases with low quality
control are emerging (e.g. the Web), and typing, spelling or OCR (optical character recognition)
errors are commonplace in the text and the query, we have that documents which contain a mis-
spelled word are no longer retrievable by a correctly written query. Models of similarity among
words exist (variants of the “edit distance” [49]) which capture very well those kind of errors. In
this case, we give a word and want to retrieve all the words close to it. Another related application
is spelling checkers, where we look for close variants of the misspelled word.

In particular, OCR can be done using a low-level-classifier, so that misspelled words can be
corrected using the edit distance to find promising alternatives to replace incorrect words.

2.4 Computational Biology

ADN and protein sequences are the basic object of study in molecular biology. As they can be
modeled as texts, we have the problem of finding a given sequence of characters inside a longer



sequence. However, an exact match is unlikely to occur, and computational biologists are more
interested in finding parts of a longer sequence which are similar to a given short sequence. The fact
that the search is not exact is due to minor differences in the genetic streams that describe beings
of the same or closely related species. The measure of similarity used is related to the probability
of mutations such as reversals of pieces of the sequences and other rearrangements [56, 49].

Other related problems are to build phylogenetic trees (a tree sketching the evolutionary path
of the species), to search patterns for which only some properties are known, and others.

2.5 Pattern Recognition and Function Approximation

A simplified definition of pattern recognition is the construction of a function approximator. In this
formulation of the problem one has a finite sample of the data, and each data sample is labeled as
belonging to a certain class. When a fresh data sample is provided, the system is required to label
this new sample with one of the known data labels. In other words, the classifier can be thought of
as a function defined from the object (data) space to the set of labels. In this sense all the classifiers
are considered function approximators.

If the objects are m-dimensional vectors of real numbers then a natural choice is neural nets
and fuzzy function approximators. Another popular universal function approximator, the k-nearest
neighbor classifier, consists in finding the k objects nearest to the unlabeled sample, and assigning
to this sample the label having majority among the k nearest objects. Opposed to neural nets and
fuzzy classifiers, the k-nearest neighbor rule has zero training time, but if no indexing algorithm is
used it has linear complexity [31].

Other applications of this universal function approximator are density estimation [30] and re-
inforcement learning [52]. In general, any problem where we want to infer a function based on a
finite set of samples is a potential application.

2.6 Audio and Video Compression

Audio and video transmission over a narrow-band channel is an important problem, for example in
Internet-based audio and video conferencing. A frame (a static picture in a video, or a fragment of
the audio) can be thought of as formed by a number of (possibly overlapped) subframes (16 x 16
subimages in a video, for example). In a very succinct description, the problem can be solved by
sending the first frame as-is and for the next frames sending only the subframes having a significative
difference from the previously sent subframes. This description encompasses the MPEG standard.

The algorithms use in fact a subframe buffer. Each time a frame is about to be sent it is
searched (with a tolerance) in the subframe buffer and if it is not found then the entire subframe
is added to the buffer. If the subframe is found then only the index of the similar frame found is
sent. This implies, naturally, that a fast similarity search algorithm has to be incorporated to the
server to maintain a minimum of frames-per-second rate.

3 Basic Concepts

All the applications presented in the previous section share a common framework, which is in essence
to find close objects, under some suitable similarity function, among a finite set of elements. In



this section we present the formal model comprising all the above cases.

3.1 Metric Spaces

We introduce now the basic notation for the problem of satisfying proximity queries and for the
model used to group and analyze the existing algorithms.

The set X will denote the universe of fair or valid objects. A finite subset of them, U, of size
n = |U]|, is the set of objects where we search. U will be called the dictionary, database or simply
our set of objects or elements. The function

d : XxX—R

will denote a measure of “distance” between objects (i.e. the smaller the distance, the closer or
more similar are the objects). Distance functions have the following properties:

(pl) Ve,y € X, d(z,y) > 0 positiveness,
(p2) Ve,y € X, d(z,y) = d(y, z) symmetry,
(p3) Ve € X, d(z,2) =0 reflexivity,

and in most cases
(p4) Ve,ye X, z#y = d(z,y) >0 strict positiveness.

The similarity properties enumerated above only ensure a consistent definition of the function,
and cannot be used to save comparisons in a proximity query. If d is indeed a distance, i.e. if it
satisfies

(p5) Ve,y,z€ X, d(z,y) < d(e,z)+d(z,y) triangular inequality,

then the pair (X, d) is called a metric space.

If the distance function does not satisfy the strict positiveness property (p4) then the space is
called a pseudo-metric space. Although for simplicity we do not consider pseudo-metric spaces in
this work, all the presented techniques are easily adapted to them by simply identifying all the
objects at distance zero as a single object. This works because, if (p5) holds, one can easily prove
that d(z,y) = 0= Vz,d(z, 2) = d(y, 2).

In some cases we may have a quasi-metric, where the symmetry property (p2) does not hold.
For instance, if the objects are corners in a city and the distance corresponds to how much a
car must travel to move from one to the other, then the existence of one-way streets makes the
distance asymmetric. There exist techniques to derive a new, symmetric, distance function from
an asymmetric one, such as d'(z,y) = d(z,y) + d(y,z). However, to be able to bound the search
radius of a query when using the symmetric function we need specific knowledge of the domain.

Finally, we can relax the triangular inequality (p5) to d(z,y) < ad(z, z)+8d(z,y)+46, and after
some scaling we can search in this space using the same algorithms designed for metric spaces. If
the distance is symmetric we need o = 3 for consistency.



3.2 Proximity Queries

There are basically three types of queries of interest in metric spaces:

(a) Range or prozimity query Retrieve all elements which are within distance » to ¢. This is,
{u e U/ d(q,u) <r}. We denote this query by (g,7)4

(b) Nearest neighbor query Retrieve the closest elements to ¢ in U. This is, {u € U / Vv €
U, d(gq,u) < d(g,v)}. In some cases we are satisfied with one such element (in continuous
spaces there is normally just one answer already). We can also give a maximum distance r*
such that if the closest element is at distance more than 7* we do not want anyone reported.

(c) k-Nearest neighbor query Retrieve the k closest elements to ¢ in U. This is, retrieve a set
A C U such that |A] = k and Yu € A,v € U — A,d(q,u) < d(g,v). Note that in case of ties
we are satisfied with any set of k elements satisfying the condition.

The most basic type of query is (a). The left part of Figure 1 illustrates a query on a set of
points which will be our running example. We use R? as our metric space for clarity.

A prozimity query will be therefore a pair (g,7)q with ¢ a novel element in X and r a real
number indicating the radius (or tolerance) of the query. The set {u € U, d(g,u) < r} will be
called the outcome of the proximity query. The query is indicated as a d-type query since for
different distance functions there are different outcomes of the query.

The other two types of queries are normally solved using a variant of the range queries. For
instance, the query of type (b) is normally solved as a range query where the radius r is initially
infinite, and is reduced as closer and closer elements to the query are found. This is normally
coupled with a heuristic that tries to obtain close elements as quickly as possible (as the problem
is always easier for smaller radii). Queries of type (c) are normally solved as a variant of type (b),
where the k closest elements are kept and the current r is the largest distance from those elements
to the query (as farther elements are not of interest).

Another widely used algorithm for queries of type (b) or (¢) based on those of type (a) is to
search with fixed radii » = 2%, starting with i = 0 and increasing it until the desired number
of elements (or more) lies inside the search radius » = 2%. Later, the radius is refined between
r = 2°"1¢ and r = 2%¢ until the exact number of elements is included.

The total CPU time to evaluate a query can be split as

T = # of distance evaluations X complexity of d() + extra CPU time

and we would like to minimize T'. In many applications, however, evaluating d() is so costly that the
extra CPU time can be neglected. This is the model we use in this paper, and hence the number
of distance evaluations performed will be the measure of the complexity of the algorithms. We
can even allow a linear (but reasonable) amount of CPU work, as long as the number of distance
computations is kept low. However, we will pay some marginal attention to the so-called eztra
CPU time.

It is clear that either type of query can be answered by examining the entire dictionary U.
In fact if we are not allowed to preprocess the data, i.e. to build an indexing data structure,
then this exhaustive examination is the only way to proceed. An indezxing algorithm is an off-line



procedure to build beforehand a data structure (or ¢ndez) designed to save distance computations
when answering proximity queries later. This data structure can be expensive to build, but this
will be amortized by saving distance evaluations over many queries to the database. The aim is
therefore to design efficient indexing algorithms to reduce the number of distance evaluations. All
these structures work on the basis of discarding elements using the triangular inequality (the only
property that allows saving distance evaluations).

3.3 Vector Spaces

If the elements of the metric space (X, d) are indeed tuples of real numbers (actually tuples of any
field) then the pair is called a finite dimensional vector space, or vector space for short.

A k-dimensional vector space is a particular metric space where the objects are identified with
k real-valued coordinates (21, ..., 2%). There are a number of options for the distance function to
use, but the most widely used is the family of L, (or Minkowski) distances, defined as
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The right part of Figure 1 illustrates some of these distances. For instance, the L; distance
accounts for the sum of the differences along the coordinates. It is also called “block” or “Manhat-
tan” distance, since in two dimensions it corresponds to the distance to walk between two points
in a city of rectangular blocks. The points at the same distance r to a given point p form a box
centered at the point and rotated 45 degrees, the distance between two opposite corners of the box
being 2.

The L, distance is better known as “Euclidean” distance, as it corresponds to our notion of
spatial distance. The points at the same distance r to a given point p form a sphere of diameter
27 centered at the point.

The other most used member of the family is L,, which corresponds to taking the limit of
the L, formula when s goes to infinity. The result is that the distance between two points is the
mazimum difference along a coordinate:

k
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and the points at the same distance r to a given point p form a box of side 2r centered at the point.
This distance plays a special role in this survey.

4 Overview of Current Solutions

In this section we explain the existing indices to structure metric spaces. Since we have not yet
developed the concepts of a unifying perspective, the description will be kept at an intuitive level,
without any attempt to analyze why some ideas are better or worse.

We divide the presentation in four parts. The first one deals with data structures for discrete
distance functions, that is, functions that deliver a small set of values. The second part corresponds
to indices for continuous distance functions, where the set of alternatives is infinite or very large.
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Figure 1: On the left, an example of a range query on a set of points. On the right, the set of
points at the same distance to a center point, for different Minkowski distances.

Third, we consider other methods such as clustering and mapping to vector spaces. Finally, we
briefly consider approximation algorithms for the problem.

4.1 Discrete Distance Functions

We start by describing data structures that apply to distance functions that return a small set of
different values. At the end we show how to cope with the general case.

BKT Probably the first general solution to search in metric spaces was presented in [19]. They
propose a tree (thereafter called Burkhard-Keller Tree, or BKT), which is suitable for discrete-
valued distance functions. It is defined as follows: an arbitrary element p € U is selected as the
root of the tree. For each distance ¢ > 0, we define U; = {u € U, d(u, p) = i} as the set of all the
elements at distance ¢ to the root p. Then, for any nonempty U;, we build a child of p (labeled 7),
where we recursively build the BKT for U;. This process can be repeated until there is only one
element to process, or until there are no more than b elements (and we store a bucket of size b).
All the elements selected as roots of subtrees are called pivots.

To answer queries of type (a), where we are given a query ¢ and a distance r, we begin at the
root and enter into all children 7 such that d(p,q) — r < ¢ < d(p, ¢) + r, and proceed recursively.
If we arrive to a leaf (bucket of size one or more) we compare sequentially all its elements. Each
time we perform a comparison (against pivots or bucket elements u) where d(g,u) < r, we report
the element u.

The triangular inequality ensures that we cannot miss an answer. All the subtrees not traversed
contain elements # which are at distance d(z, p) = ¢ from some node p, where |d(p, ¢) — i| > r. By
the triangular inequality, d(p, ¢) < d(p, z) + d(z, ¢), and therefore d(z, ¢) > d(p, ¢) — d(p, z) > r.

Figure 2 shows an example, where the point p;; has been selected as the root. We have built
only the first level of the BKT for simplicity. A query ¢ is also shown, and we have emphasized the
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branches of the tree that would have to be traversed. In this and all the examples of this section
we discretize the distances of our example, so that they return integer values.
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Figure 2: On the left, the division of the space obtained when p;; is taken as a pivot. On the right,
the first level of a BKT with p;; as root. We also show a query ¢ and the branches that it has to
traverse. We have discretized the distances so they return integer values.

To answer queries of type (b), we begin at the root and measure ¢ = d(p, ¢). Now, we consider
the edges labeled 4, i — 1, i +1, i — 2, i+ 2, and so on, and proceed recursively in the children?. We
begin with an estimation of the distance to the closest element, r* = oo, which is refined for each
comparison we perform. Therefore, our exploration ends just after considering the branch 7 4 r*
(r* is reduced along the process). At the end r* is the distance to the closest neighbors and we
have already seen all them.

Our analytical results on BKTs are extrapolated from those made for FQTs [5], which can be
easily adapted to this case. The only difference is that the space overhead of BKTs is O(n) because
there is exactly one element of the set per tree node.

FQT A further development over BKTs is the “Fixed-Queries Tree” or FQTs [5]. This tree is
basically a BKT where all the pivots stored in the nodes of the same level are the same (and of
course do not necessarily belong to the set stored in the subtree). The actual elements are all
stored at the leaves. The advantage of such construction is that some comparisons between the
query and the nodes are saved along the backtracking that occurs in the tree. If we visit many
nodes of the same level, we do not need to perform more than one comparison because all the pivots
in that level are the same. This is at the expense of somewhat taller trees. FQTs are shown to
be superior to BKTs in [5]. Under some simplifying assumptions (experimentally validated in the
paper) they show that FQTs built over n elements are O(logn) height on average, are built using
O(nlogn) distance evaluations, and that the average number of distance computations is O(n%),
where 0 < a < 1 is a number that depends on the range of the search and on the structure of the
space (this analysis is easy to extend to BKTs as well). The space complexity is superlinear since,
unlike BKTs, it is not true that a different element is placed at each node of the tree. An upper
bound is O(nlogn) since the average height is O(logn).

2This order to traverse the children is just one alternative, other choices may be better. However, our experimental
results show that this is the best ordering to index words under the edit distance (see Section 2.3).
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FHQT In [5, 4], the authors propose a variant which is called “Fixed-Height FQT” (or FHQT
for short), where all the leaves are at the same depth h, regardless of the bucket size. This makes
some leaves deeper than necessary, which makes sense because we may have already performed
the comparison between the query and the pivot of an intermediate level, therefore eliminating
for free the need to consider the leaf. In [6] it is shown that by using O(logn) pivots, the search
takes O(logn) distance evaluations (although the cost depends exponentially on the search radius
7). The extra CPU time, i.e. number of nodes traversed, remains however O(n®). The space, like
FQTs, is somewhere between O(n) and O(nh). In practice the optimal A = O(logn) cannot be
achieved because of space limitations.

FQA In [24], the Fixed Queries Array (FQA) is presented. The FQA, although not properly a
tree, is no more than a compact representation of the FHQT. Imagine that an FHQT of fixed height
h is built on the set. If we traverse the leaves of the tree left to right and put the elements in an
array, the result is the FQA. For each element of the array we compute h numbers representing the
branches to take in the tree to reach the element from the root (i.e. the distances to the h pivots).
Each of these h numbers is coded in b bits and they are concatenated in a single (long) number so
that the higher levels of the tree are the most significant digits.

As a result the FQA is sorted by the resulting hb-bits number, each subtree of the FHQT cor-
responds to an interval in the FQA, and each movement in the FHQT is simulated with two binary
searches in the FQA (at O(logn) extra CPU cost factor, but no extra distances are computed).
There is a similarity between this idea and suffix trees versus suffix arrays [34]. This idea of using
less bits to represent the distances appeared also in the context of vector spaces [14].

Using the same memory, the FQA simulation is able to use much more pivots than the original
FHQT, which improves the efficiency. The b bits needed by each pivot can be lowered by merging
branches of the FHQT, as suggested for FQTs in [5] for the case of distance functions with many
different outcomes. This allows to use even more pivots with the same space usage. For reasons
that are made clear later, the FQA is also called FMVPA in this work.

Figure 3 shows an arbitrary BKT, FQT, FHQT and FQA built on our set of points. Notice
that, while in the BKT there is a different pivot per node, in the others there is a different pivot
per level, the same for all the nodes of that level.

Hybrid In [51], the use of more than one element per node of the tree is proposed. Those k
elements allow to eliminate more elements per level at the cost of doing more distance evaluations.
The same effect would be obtained if we had a mixture between BKTs and FQTs, so that for k
levels we had fixed keys per level, and then we allowed a different key per node of the level k + 1,
continuing the process recursively on each subtree of the level k 4+ 1. The authors conjecture that
the pivots should be selected to be outside the clusters.

Adapting to continuous functions If we have a continuous distance or if it gives too many
different values, it is not possible to have a children of the root for any such value. If we did that,
the tree would degenerate into a flat tree of height 2, and the search algorithm would be almost
like sequential searching for the BKT and FQT. FHQTs and FQAs do not degenerate in this sense,

but they loose they sublinear extra CPU time.
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Figure 3: Example BKT, FQT, FHQT and FQA for our set of points. We use b = 2 for the BKT
and FQT, and h = 2 for FHQT and FQA.

In [5] the authors mention that the structures can be adapted to a continuous distance by
assigning a range of distances to each branch of the tree. However, they do not specify how to do
this. Some approaches explicitly defined for continuous functions are explained later (VPTs and
others), which assign the ranges trying to leave the same number of elements at each partition.

4.2 Continuous Distance Functions

We present now the data structures designed for the continuous case. They can be used also for
discrete spaces with virtually no modifications.

VPT The first approach designed for continuous distance functions is called “Metric Trees” in
[64]. A more complete work on the same idea [59] calls them “Vantage-Point Trees” or VPTs. They
build a binary tree recursively, taking any element as the root p and taking the median of the set of
all distances, M = median{d(p,u) / u € U}. Those elements u such that d(p, u) < M are inserted
into the left subtree, while those such that d(p,u) > M are inserted into the right subtree. The
VPT takes O(n) space and is built in O(nlogn) worst case time, since it is balanced. To solve a
query of type (a) in this tree, we measure d = d(q,p). If d — » < M we enter into the left subtree,
and if d+r > M we enter into the right subtree (notice that we can enter into both subtrees). We
report every element considered which is close enough to the query. See Figure 4.

Queries of type (b) can be solved by refining an estimation of the largest distance as before and
exploring subtrees in any heuristically promising ordering. One is proposed in [53].

The query complexity is argued to be O(logn) in [59], but as they point out, this is true only
for very small search radii, too small to be an interesting case.

In trees for discrete distance functions, the exact distance between an element in the leaves and
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Figure 4: Example VPT with root p;;. We plot the radius M used for the root. For the first levels
we show explicitly the radii used in the tree.

any pivot in the path to the root can be inferred. However, here we only know that the distance
is larger or smaller than M. Unlike the discrete case, it is possible that we arrive to an element
in a leaf which we do not need to compare, but the tree has not enough information to discover
that. Some of those exact distances lost can be stored explicitly, as proposed in [59], to prune more
elements before checking them. Finally, the author of [59] considers the problem of pivot selection
and argue that it is better to take elements far away from the set.

A similar structure, easier to update, is presented in [26]. This structure, the M-tree, is designed
for secondary memory and allows overlaps in the areas covered (i.e. a point may belong to more
than one partition). This idea is also present in R-trees [36] for vector spaces.

MVPT The VPT can be extended to m-ary trees by using the m — 1 uniform percentiles instead
of just the median. This is suggested in [16, 15]. In [15], the “Multi-Vantage-Point Tree” (MVPT)
is presented. They propose the use of many elements in a single node, much as in [51]. It can
be seen that the space is O(n), since each internal node needs to store the m percentiles but the
leaves do not. The construction time is O(nlogn) if we search the m percentiles hierarchically at
O(nlogm) instead of O(mn) cost. The authors show experimentally that the idea of m-ary trees
slightly improves over VPTs (and not in all cases), while a larger improvement is obtained by using
many pivots per node. The analysis of query time for VPTs can be extrapolated to MVPTs in a
straightforward way.

VPF Another generalization of the VPT is given by the VPF (shorthand for Excluded Middle
Vantage Point Forest) [60]. This algorithm is designed for radii limited nearest neighbor search (a
query of type (b) with a maximum radius r*). The method consists in excluding, at each level, the
elements at intermediate distances to their pivot (this is the most populated part of the set): if 7o
and r, stand for the closest and farthest elements to the pivot p, the elements v € U such that
d(p,m0) + 6 < d(p,u) < d(p,r,) — & are excluded from the tree. A second tree is built with the
excluded “middle part” of the first tree, and so on to obtain a forest. With this idea they eliminate
the backtracking when searching with a radius 7* < (7, — 7o — 24)/2, and in return they have to
search all the trees of the forest. The VPF, of O(n) size, is built using O(n®~*) time and answers
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queries in O(n'~?logn) distance evaluations, where 0 < p < 1 depends on r*. Unfortunately, to
achieve p > 0, * has to be too small to be of use in high dimensions.

GHT Another proposal of [54] is the “Generalized-Hyperplane Tree” (GHT). This is a binary
tree built recursively as follows. At each node, two pivots p; and p, are selected. The elements
closer to p; than to ps go into the left subtree and those closer to ps into the right subtree. To
answer queries of type (a) in this tree, we evaluate r; = d(gq,p1) and r, = d(q,p2), and enter into
the left subtree if r1 —» < 7o + r and into the right subtree if o — » < r; + r. Again, it is possible
to enter into both subtrees. The reporting is done as always, as well as the extension to handle
queries of type (b). In [54] it is argued that this could work better than VPTs in high dimensions.
To avoid performing two distance evaluations at each node, it is proposed in [18] to reuse one of
the pivots of the previous level. Figure 5 illustrates the first step of the tree construction.

No analysis is given in [54], but we obtain it by specializing the more general GNATs.

p2 p5

p4 p6 p12 p10 p9 p8 p3 p7 p1l p15 pl4 pl pi3

Figure 5: Example of the first level of a GHT.

GNAT The GHT is extended in [16] to an m-ary tree, called GNAT (Geometric Near-neighbor
Access Tree), keeping the same essential idea. We select, for the first level, m pivots p;...pm, and
define U; = {u € U,d(p;, v) < d(p;,u),Vj # i}. That is, U; are the elements closer to p; than to
any other p;. From the root, m children numbered i = 1..m are built, each one recursively with a
GNAT for U;. They also add information at each subtree about the maximum distance between p;
and an element in Uj;, to increase pruning. Finally, they give some criteria to select the p; elements
far enough. Figure 6 shows a simple example of the first level of a GNAT. Notice the relationship
between this idea and a Voronoi-like partition of a vector space [3].

The authors use a gross analysis to show that the tree takes O(nm?) space and is built in close
to O(nmlogn) time. Experimental results show that the GHT is worse than the VPT, which is
only beaten with GNATSs of arities between 50 and 100. Finally, they mention that the arities of
the subtrees could depend on their depth in the tree, but give no clear criteria to do this. A very
similar structure is later analyzed in [28] under some assumptions on the volume of the data set,
and it is shown that the query time is O(polylog n), where the degree of the polynomial depends
in a complex way on the structure of the space.
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Figure 6: Example of the first level of a GNAT with m = 4.

AESA An algorithm which is close to many of the presented ideas but performs surprisingly
better by an order of magnitude is [55] (called AESA, for “Approximating Eliminating Search
Algorithm”). The structure is simply a matrix with the n(n — 1)/2 precomputed distances among
the elements of U. At search time, they select an element p € U at random and measure 7, = d(p, q),
eliminating all elements u of U which do not satisfy r, — » < d(u,p) < r, + r. Notice that all the
d(u, p) distances are precomputed, so only d(p, ¢) has been calculated at search time. This process
of taking a random pivot among the (not yet eliminated) elements of U and eliminating more
elements from U is repeated until few enough elements remain in the set. These are compared
against ¢ directly. Figure 7 shows an example with a first pivot py;.
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Figure 7: Example of the first iteration of AESA. The points between both rings centered at pi
qualify for the next iteration.

Although this idea seems very similar to FQTs, there are three key differences. The first
one, only noticeable in continuous spaces, is that there are no predefined “rings” so that all the
intersected rings qualify (recall Figure 2). Instead, only the minimal necessary area of the rings
qualifies. The second difference is that the second element to compare against g is selected from
the qualifying set, instead of from the whole set as in FQTs. Finally, the algorithm determines on
the fly whether to take more pivots, while FQTs must precompute that decision (i.e. bucket size).
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The problem with the algorithm [55] is that it needs O(n?) space and construction time. This
is unacceptably high for all but very small databases. In this sense the approach is close to [50],
although in this latter case they may take less distances and bound the unknown ones. AESA is
experimentally shown to have O(1) query time.

LAESA and variants In a newer version of AESA, called LAESA (for Linear AESA) [42], they
propose to use k fixed pivots, so that the space and construction time is O(kn). In this case, the
only difference with an FHQT is that fixed rings are not used, but the exact set of elements in the
range is retrieved. FHQT uses fixed rings to implement a search algorithm, while in this case no
search algorithm is given. In LAESA, the elements are simply linearly traversed, and those that
cannot be eliminated after considering the k pivots are directly compared against the query.

A search algorithm is presented later in [41], which builds a GHT-like structure using the same
pivots. The algorithm is argued to be sublinear in CPU time. Alternative search structures to
reduce CPU time not loosing information on distances are presented in [45, 23], where the distances
to each pivot are sorted separately so that the relevant range [d(q,p) — r, d(g, p) + r] can be binary
searched®. Extra pointers are added to be able to trace an element across the different orderings
for each pivot (this needs more space, however).

SAT The algorithm SAT (“Spatial Approximation Tree”) [44] does not use pivots to split the set
of candidate objects, but rather relies on “spatial” approximation. An element p is selected as the
root of a tree, and it is connected to the elements u € U such that u is closer to p than to any other
element connected to p (note that the definition is self-referential). All the elements connected to
p are recursively the roots of subtrees, whose elements are those closer to that root than to any
other root connected to p.

This allows to search elements with radius zero by simply moving from the root to its “neighbor”
(i.e. connected element) which is closest to the query g¢. If a radius » is allowed, then we consider
that an unknown element of the set is searched with tolerance », i.e. we search as before and
consider that any distance measure may have an “error” of at most ». Therefore, we may have to
enter into many branches of the tree (not only the closest one), since the measuring “error” could
make that a different neighbor is the closest one. The tree is built in O(nlogn/loglogn) time,
takes O(n) space and inspects n1—©(1/loglogn) ¢lements. Figure 8 shows an example and the search
path for a query.

4.3 Other Techniques

Mapping An interesting and natural reduction of the proximity search problem consists in a
mapping ® from the original metric space into a vector space. In this way, each element of the
original metric space will be represented as a point in the target vector space. The two spaces
will be related by two distances: the original one d(z,y) and the distance in the projected space
d (®(z), ®(y)). If the mapping is contractive, i.e. d (®(z), ®(y)) < d(z,y) for any pair of elements,
then one can search queries of type (a) in the projected space with the same radius. The outcome
of the query in the projected space is a candidate list, which is later refined with the original

% Although in [45] they consider only vector spaces, the same technique can be used here.
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Figure 8: Example of a SAT and the traversal towards a query g, starting at p;;.

distance to obtain the actual outcome of the query. If, on the other hand, the mapping is prozimity
preserving, i.e. d(z,y) < d(z,z) = d(®(z),B(y)) < d (®(z), ®(2)), then queries of type (b) and
(c) can be directly performed in the projected space. Indeed, most current algorithms for queries
of type (b) and (c) are based in type (a), and with some care they can be done in the projected
space if the mapping is contractive, even if it is not proximity preserving.

In a theoretical paper [33] it is proven that there exists an algorithm using a constant (in n)
number of distance calculations for nearest neighbor search. The idea suggested in [33] is basically
to use the distances to k fixed pivots as the coordinates to project the metric space into R*. The
projected distance function is L, (later we explain this more in depth). They show that if the
proper pivots are selected, it is possible to build an algorithm which is k + O(1) search time.
However, the proof is not constructive and does not give any clue to select the “proper pivots”.
The k value is independent on n and related to the “intrinsic dimension” of the data (a concept
that we explain later).

With this mapping in mind many algorithms (indeed most of them as we see later) can be
considered as a mapping of certain type. Figure 9 shows an example with only two coordinates.
Notice that some points originally quite far away are mapped to the same cell, so the mapping does
not preserve proximity.
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Figure 9: Mapping to a vector space of two coordinates, and how a query is transformed.
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A more elaborated version of this idea was introduced under the name fastmap [32]. In this
case they did the mapping from an n-dimensional into an m-dimensional vector space, for n > m.
Fastmap is a heuristic to approximate the behavior of more expensive mappings which try to reduce
the dimensionality while preserving the original distances as much as possible [29, 37]. Since these
methods work only for vector spaces, we do not consider them in depth here (see also [15] for more
on this).

This type of mapping is a special case of a general idea in the literature which says that one
can find cheaper to compute distances that lower-bound the real one, and use the cheaper distance
to filter out most elements (e.g. for images, the average color is cheaper to compute than the
differences in the color histograms). While in general this is domain-dependent, mapping onto a
vector space can be done without knowledge of the domain. After the mapping is done and we
have identified each data element with a point in the projected space, we can use a general purpose
spatial access method (SAM) for vector spaces to retrieve the candidate list. The elements found
in the projected space must be finally checked using the original distance function.

Therefore, there are two types of distance evaluations: first to obtain the coordinates in the
projected space and later to check the final candidates. These are called “internal” and “external”
evaluations, respectively, later in this work. Clearly, incrementing internal evaluations improves
the quality of the filter and reduces external evaluations, and therefore we seek for a balance.

Notice finally that the search itself in the projected space does not use evaluations of the original
distance, and hence it is costless under our complexity measure. Therefore, the use of kd-trees,
R-trees or other data structure aims at reducing the extra CPU time.

Clustering Clustering is a very wide area with lots of applications [39]. The general goal is to
divide a set in subsets of elements close to each other in the same subset. A few approaches to
index metric spaces based on clustering exist.

A technique proposed in [19] is to recursively divide the set U in compact subsets U; and choose
a representative p; for each. They compute numbers r; = maz{d(p;,v) / u € U;} (which upper
bound the “radii” of the subsets). To search for the closest neighbor, the query ¢ is compared
against all the p; and the sets are considered from smallest to largest distance. The r; are used
to determine that there cannot be interesting elements in some sets U;. They propose a complex
“clique” criterion to select the sets and their representatives. The experimental results show that
this method is slightly worse than the BKT, and that the algorithm to find the cliques is very slow.
They also propose that the elements in a clique could be in turn subdivided into clusters, which is
a formulation very similar to (though less complete than) GNATSs [16].

4.4 Approximate and Probabilistic Algorithms

For the sake of a complete overview we include a brief description of an important branch of
similarity searching, where a relaxation on the query precision is allowed to obtain a speedup
in the query time complexity. This is reasonable in some applications because the metric space
modelization involves already an approximation to the true answer (recall Section 2), and therefore
a second approximation at search time may be acceptable.

Additionally to the query one specifies a precision parameter € to control how far away (in
some sense) we want the outcome of the query from the correct result. A reasonable behavior for
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this type of algorithms is to asymptotically approach to the correct answer as € goes to zero, and
complementarily to speed up the algorithm, loosing precision, as € moves in the opposite direction.

This alternative to ezxact stmilarity searching is called approximate similarity searching, and
encompasses approximate and probabilistic algorithms.

Approximation algorithms are considered in depth in [57]. As an example, we mention an
approximate algorithm for nearest neighbor search in real vector spaces using any Minkowski metric
L, [2]. They propose a data structure, the BBD-tree, inspired in kd-trees, that can be used to find
“(1 + €) nearest neighbors”: instead of finding

u such that d(u,q) <d(v,q) YveU

they find an element u*, an (1 + €)-nearest neighbor, differing from u by a factor of (1 + ¢), i.e.

d(u*, q)
+e

u* such that <d(v,q) YvelU

The essential idea behind this algorithm is to locate the query ¢ in a cell (each leaf in the tree
is associated with a cell in the decomposition). Every point inside the cell is processed to obtain
the current nearest neighbor (u). The search stops when no promising cells are encountered, i.e.
when the radius of any ball centered at ¢ and intersecting a nonempty cell exceeds the radius
d(g,p)/(1+¢). The query time is O([1 + 6k/c]*klogn).

An example of a probabilistic algorithm is given in [28]: a data structure somewhat similar to
a skip list is presented, with almost linear space and construction time, which can be queried for
nearest neighbors in O(K logn) time. The answers are wrong with probability O(log?(n)/K).

4.5 Summary

Table 1 summarizes the complexities of the different approaches. These are obtained or inferred
from the source papers, which as explained use different (and incompatible) assumptions and in
many cases give just gross analyses or no analysis at all. Keep in mind that the query complexity
is always on average, as in the worst case we can be forced to compare all the elements.

5 A Unifying Model

At first sight, the indexing algorithms and data structures seem to emerge from a great diversity,
and different approaches are analyzed separately, often under different assumptions. Currently, the
only realistic way to compare two different algorithms is to apply them to the same data set.

In this section we make a formal introduction to our unifying model. Our intention is to provide
a common framework to analyze all the existing approaches to proximity searching. As a result,
we will be able to capture the similarities of apparently different approaches. We will also obtain
truly new ways of viewing the problem.

The conclusion of this section can be summarized in Figure 10. All the indexing algorithms
partition the set U into subsets. An index is built which allows to determine a set of candidate
sets where the elements relevant for the query can appear. At query time, que index is searched to
find the relevant subsets (the cost to do this is called “internal complexity”) and those subsets are
checked exhaustively (which corresponds to the “external complexity” of the search).
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Data

Space Construction Query Extra CPU
Structure Complexity Complexity Complexity query time
BKT n pointers O(nlogn) O(n%) —
FQT n..nlog n pointers O(nlogn) O(n%) —
FHQT n..nh pointers O(nh) O(logn) if h =logn O(n%)
FQA nhb bits O(nh) O(logn) if h =logn O(n*logn)
VPT n pointers O(nlogn) O(logn) (*) —
MVPT n pointers O(nlogn) (log n) (%) —
VPF n pointers O(n?™%) O(n'~*logn)(*) —
GHT n pointers O(nlogn) O(polylog n) —
GNAT nm? distances O(nmlog,, n) O(polylog n) —
AESA n? distances O(n?) 0o(1) O(n)..0(n?)
LAESA-like kn distances O(kn) kE+O(1) if k is large | O(logn)..O(kn)
SAT n pointers O(nlogn/loglogn) | O(n!~®(1/loglogn))

(*) Only valid when searching with very small radii.

Table 1: Average complexities of the existing approaches, according to the source papers

. Time

complexity considers only n, not other parameters such as dimension. Space complexity mentions

the most expensive storage units used. « is a number between 0 and 1, different for each structure
while the other letters are parameters particular of each structure.

Indexing

Data

Querying

Query q

Traverse index
(internal
complexity)

Equivalence classes Search in candidate classes

(external complexity)

Figure 10: The unified model for indexing and querying metric spaces.
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5.1 Egquivalence Relations and Cosets

Given a set X, a partition w(X) = {my, 7, -} is a subset of the power set P(X) such that every
element of the set belongs exactly to one partition, i.e. Ur; = X and Vi # j, mNm; = 0.

A relation, denoted by ~, is a subset of the cross product X X X (the set of ordered pairs) of
X. Two elements z,y are said to be related, denoted by z ~ y, if the pair (z,y) is in the subset.
A relation ~ is said to be an equivalence relation if it satisfies, for all z,y, z € X, the properties of
reflexivity (z ~ z), symmetry (z ~ y < y ~ z) and transitivity (z ~yAy~z = 2 ~ 2).

It can be shown that every partition 7 (X) induces an equivalence relation ~ and, conversely,
every equivalence relation induces a partition [25]. Two elements are related if they belong to
the same partition. Every element m; of the partition is then called an equivalence class. An
equivalence class is often named after one of its representatives (any element of 7; can be taken as
a representative). An alternative definition of an equivalence class of an element z is the set of all
y such that z ~ y. We will denote the equivalence class of # as [2] = {y : ¢ ~ y}.

Given the set X and an equivalence relation ~, we obtain the quotient 7(X) = X/~. It indicates
the set of equivalence classes or cosets, obtained when applying the equivalence relation to the set
X. In the example above, the cosets obtained from the real numbers with the given equivalence
relation are the intervals [¢,7 4 1), for all integers 3.

The relevance of equivalence classes in this survey comes from the possibility of using them on
a metric space so that a new metric space is derived from the quotient set. This new metric space
is a coarser version of the original one.

5.2 Indexing and Partitions

The equivalence classes obtained with an equivalence relation of a metric space can be considered
themselves as objects in a new metric space, provided we define a distance function on this new
metric space.

We introduce a new function Dg : m(X) X m(X) — R now defined in the quotient. Since Dy is
defined between equivalence classes, a natural choice is Do([z], [y]) = inf,c[s] yep1d(2, ¥)}, so that
it gives the maximum possible values that keep the mapping contractive (i.e. Do([z],[y]) < d(z,y)
for any z,y). Unfortunately, Dy does not satisfy the triangle inequality, just (pl) to (p3), and in
most cases (p4) (recall Section 3.1). Hence, Dy itself is not suitable for indexing purposes.

However, we can use any distance D that satisfies the properties of metric spaces and that
lower bounds Dy (i.e. D([z],[y]) < Do([z],[y])). We call such D the eztension of d. Since D
is a distance, (X/ ~, D) is a metric space and therefore we can make queries in the coset in
the same way we have done in the set. We redefine the outcome of a query in the coset as
([g],»)p = {v € U, D([u], [¢]) < r} (although formally we should retrieve classes, not elements).

Since the mapping is contractive (D([z], [y]) < d(z,y)) we can convert one search problem into
another, hopefully simpler, search problem. For a given query (g, r)q we find out which equivalence
class the query ¢ belongs to (i.e. [¢]). Then, using the new distance function D the query is
transformed into ([¢],7)p. As the mapping is contractive, we have (¢,7)q C ([¢],7)p- That is,
([g], 7)p is indeed a candidate list, so it is enough to perform an exhaustive search on that candidate
list (now using the original distance), to obtain the actual outcome of the query (g, 7)4.
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Our main thesis is that the above procedure is in fact used in virtually every indexing algorithm.
In other words:

All the existing indexing algorithms for proximity searching consist in building a set of
equivalence classes, discarding some classes, and searching exhaustively the rest.

As we see shortly, the most important tradeoff when designing the equivalence partition is to
balance the cost to find [¢] and to check the final candidate list.

In Figure 11 we can see a schematic example of the idea. We divide the space in several regions
(equivalence classes). The objects inside each region are indistinguishable. We can consider them
as elements in a new metric space. To find the answer, instead of exhaustively examining the entire
dictionary we just examine the classes that contain potentially interesting objects. In other words,
if a class can contain an element that should be returned in the outcome of the query, then the
class will be examined (see also the rings considered in Figure 2).

[I— |

—_
D(X.IyD)

Figure 11: Two points « and y, and their equivalence classes (the shaded rings). D gives the
minimal distance among rings, which lower bounds the distance between z and y.

We recall that this property is not enough for any algorithm to find the nearest neighbors to
work (since the mapping would have to preserve proximity instead), but most existing algorithms
for nearest neighbors are based on type (a) queries, and these algorithms can be applied as well.

Some examples may help to understand the above definitions, for both the concept of equivalence
relation and the obtained distance function.

Example 1. The void indexing algorithm, i.e. the brute force method of not indexing and
examining every element in the dictionary for each query, creates one equivalence class per object
in the set X. In this case, the coset obtained is the same as the original set 7(X) = X/~ = X and
in this particular case # ~ y < @ = y. Note that in this case D([z], [y]) = d(z,y) for any pair z,y
and consequently (¢,7)s = ([¢],7)p. In other words the candidate list is actually the outcome of
the query. No further effort is done in trimming the candidate list, however all the work have been
done in building the candidate list.

Example 2. Another trivial example, situated in the other side of the spectrum, is when all
elements in X are assigned to the same equivalence class. The equivalence relation is defined as
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z ~y < e,y € X. Since there is only one equivalence class, it is true that [2] = [y] for all elements
in the set X. In this case we have 7(X) = X/~ = {}, a set with a single element. The distance
function is D([z], [y]) = 0 for every pair of objects. In this case finding the candidate list is trivial,
since it is the dictionary itself, but trimming the list is as difficult as the original problem.

Example 3. A more realistic example, indeed a true indexing algorithm, is when we have an
arbitrary reference pivot p € X and the equivalence relation is given by z ~ y < d(p, z) = d(p, y).
In this case D([z],[y]) = |d(z,p) — d(y,p)| is a safe lower bound for the Dy distance (guaranteed
by the triangle inequality). For a query of the form (g, r)q the candidate list ([¢],»)p consists of
all elements # such that D([q], [z]) < », or which is the same, |d(q,p) — d(z,p)| < r. Graphically,
this distance represents a ring centered at p containing a disk centered at ¢ and radius r (recall
Figures 11 and 7). This is the familiar rule used in many independent algorithms to trim the space.

Example 4. As explained, the similarity search problem was firstly introduced in vector
spaces, and the very first family of algorithms used there was based on a coset operation. These
algorithms were called bucketing methods, and consist in the construction of cells or buckets [10].
Searching for an arbitrary point in R is converted into an exhaustive search in a finite set of cells.
The procedure used two steps: (1) first they find which cell the query point belongs to and then
they build a set of candidate cells using the query range; (2) this set of candidate cells is inspected
exhaustively to find the actual points inside the query range?. In this case the equivalence classes
are the cells, and the tradeoff: the larger the cells, the cheaper it is to find the appropriate ones,
but the more costly is the final exhaustive search.

5.3 Coarsening and Refining a Partition

For a fixed set X, consider two equivalence relations ~; and ~,. We say that ~ is a refinement
of ~j if for any pair z,y € X such that z ~; y it holds  ~» y. Equivalently, a partition 7! (X) is a
refinement of partition 7%(X) if 7} C 71'J2~ for every partition element 7} of 7' and some coset 71'J2~ of
7. We may also say that 72 (equivalently ~3) is a coarsening of w! (equivalently ~).
Refinement and coarsening are important concepts for the topic we are discussing. They are
the very essence of indexing algorithms. The following theorem formalizes our intuitive assertions.

Theorem 1. If ~1is a coarsening of ~3 then the extended distances D, and Dy have the property
D ([=], [y]) < D2([=], [y])-

Proof. Dy([e],[y]) = infuete) peis 402, 9)} < infociap yeiep (42, 9)} = Da([e], ), since [zl C
[2]; and [y]2 C [y]i. We are using [z]; and [y]; to denote the equivalence class of z and y under

equivalence relation ~;.

An interesting idea arising from the above theorem is to build a hierarchy of coarsening op-
erations. Using this hierarchy we could proceed downwards from a very coarse level building a
candidate list of equivalence classes of the next level. This candidate list will be refined using the
next distance function and so on until we reach the bottom level.

*The algorithm is in fact a little more sophisticated because they try to find the nearest neighbor of a point.
However, the version presented here for range queries is in the same spirit as the original one.
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5.4 Measures of Efficiency

As sketched previously, most indexing algorithms rely on building an equivalence class. The corre-
sponding search algorithms have two parts:

1. Find the classes that may be relevant for the query.

2. Exhaustively search all the elements of these classes.

The first part involves performing some evaluations of the d distance, as shown in the Example 3
above. It may also involve some extra CPU time (which although not the central point in this paper,
must be kept reasonable). The distance evaluations performed in this stage are called internal, and
their number define the internal complexity.

The second part consists of directly comparing the query against the candidate list. These
evaluations of d are called ezternal. The amount of external evaluations is called external complezity
and is related to the discriminative power of the D distance.

We define the discriminative power as the ratio between the number of objects in the candidate
list and the actual outcome of a query ¢, averaged over all ¢ € X. Notice that this depends on r.
The discriminative power serves as an indicator of the performance or fitness of the equivalence
relation (or equivalently, of the distance function D).

In general, it will be more costly to have more discriminative power. The indexing scheme needs
to find a balance between the complexity to find the relevant classes and the discriminative power
of D.

Examples 1 and 2 can serve as upper and lower bounds of what is done by the actual indexing
algorithms. The first algorithm has minimal external complexity, since the distance function D
discriminates as much as the original distance function d. However, the internal complexity is
maximal, in the sense that finding the relevant classes is as hard as solving the original problem.
This case shows maximum discriminative power, as the metric spaces (X,d) and (7(X), D) are
isometric [43]. Example 2 has minimal internal complexity, since it is trivial to compute the
relevant equivalent class. However, its external complexity is as high as in the original problem,
since all the elements are candidates.

Example 3 is in between for internal and external complexity. The internal complexity is 1
distance evaluation (the distance from ¢ to p), and the external complexity will correspond to the
number of elements that lie in the selected ring. We could intersect it with more rings (increasing
internal complexity) to reduce the external complexity.

The tradeoff is partially formalized with this theorem.

Theorem 2. If A; and Ay are indexing algorithms based on equivalence relations ~q and ~,,
respectively, and ~1 is a coarsening of ~o, then A1 has higher external complexity than A,.

Proof. We have to show that ([¢],7)p, C ([g],7)p,- But this is clear, since D;([z],[y]) <
D;([z], [y]) implies ([g], )p, = {y € U: D2([q],[v]) <7} C {y € U: D1([g], [y]) < r} = ([g], 7) D,

Although having more discriminative power normally costs more internal evaluations, one can
make better or worse use of the internal complexity. We elaborate more on this in the next section.
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5.4.1 Locality of a Partition

The equivalence classes can be thought of as a set of non intersecting cells in the space, where
every element inside a given cell belongs to the same equivalence class. However, the mathematical
definition of an equivalence class is not confined to a single cell.

A consequence of this is that we need an additional property which will be called locality, that
stands for how much the equivalence class resembles a cell. A non-local partition stands for cases
where the classes are partitioned (see Figure 12) or span a non-compact area in the space.

It is natural to expect better performance, i.e. more discriminative power, from a local partition
than from a non-local one. This is because in a non-local partition the candidate list obtained with
the distance D will contain elements actually far away from the query.

- Two fragments of the same
-~ equivalence class

Figure 12: With two rings we define an equivalence based on being at the same distance to both
points. The resulting class is partitioned.

Notice that in Figure 12, the fragmentation would disappear if we added a third pivot. In a
vector space of k dimensions, it suffices to consider k + 1 pivots in general position® to obtain a
local partition. In general metric spaces, we should take enough pivots to obtain local partitions
as well.

However, obtaining local partitions is not enough, otherwise the bucketing method for vector
spaces [10] explained in Example 4 would have excellent performance. Even with such a local
partition and assuming uniformly distributed data, a number of empty cells are verified, whose
number grows exponentially with the dimension.

5.5 Intrinsic Dimensionality

As explained, one of the motivations for the development of indexing algorithms for general metric
spaces is the existence of the so called high dimensional. This is because traditional indexing
techniques for vector spaces have an exponential dependency on the dimension of the space. In other
words, if a vector space has a large number of coordinates then an indexing algorithm using explicit
information on the coordinates (such as the kd-tree) will use exponential time (on the dimension) to
answer the query. This motivated the research on the so-called distance-based indexing algorithms,
which do not use explicit information on the coordinates.

®That is, not lying in a (k — 1)-hyperplane.
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This works especially well in some vector spaces of apparently high dimension but effective
low dimension. Think for example in a set of 5-dimensional points with the 3 last coordinates in
zero, or the more sophisticated example where the points actually reside in a 2-dimensional plane
immersed in a 5-dimensional space. However, it is also possible that the data has intrinsic high
dimensionality.

As we show next, the concept of high dimensionality is not exclusive of vector spaces, but it
can also be characterized in metric spaces. If a vector space has intrinsically low dimension, then
considering it as a metric space may help to take advantage of that fact, while if it has intrinsically
high dimension the resulting metric space will be intractable anyway. In the following we explain
the effect of high dimensionality in metric spaces, and why it makes the problem intractable [22].

Let us consider the histogram of distances between objects in the dictionary. This information
is mentioned in many papers, e.g. [16, 27]. For a fixed dictionary element u consider the histogram
of distances d(u,u;), u; € U. It is clear that the number of elements within the range (u,r)q is
proportional to the area under the histogram, from 0 to » inclusive.

Now, if we calculate the histogram considering all the possible pairs d(u;, u;), the area described
above is proportional to the average number of elements expected for a query of range r, provided
geU.

It is reasonable to assume that the query distributes according to the same law as the dictionary
elements. In other words the distribution of distances from the query to the dictionary elements
looks like the computed histogram for the data set. For the range search algorithm, if we select
a ring centered at a dictionary element w*, with radii d(u*, ¢) — r and d(u*, ¢) + r the fraction of
dictionary elements captured in the ring is, on the average, approximated by the area under the
density function in the interval [d(u*, ¢) —r, d(u*, ¢)+7]. More precisely, if f; is the density function
for the distances between elements in the given data set, then the fraction of elements captured is

_ dwg)+r
ne = fd(u*,q)—r fa(z)de.

For every pivot-based algorithm the value of the above integral governs the behavior of the
algorithm. At each step the number of elements eliminated is proportional to 1 —n,. If n, =1 then
no elimination is carried out. We show now that in some cases we can infer that the discriminative
power of the algorithm will be very low. Let us assume that the interval where f; is larger than
zero is [rq, rp]. We note that

1. r, represents the average distance from an element to its nearest neighbor.
2. 7y, represents the average distance from a given element to the object farthest to it.

3. If r < r, then the expected number of dictionary elements inside a ball centered at the query
and with radius r is zero.

These properties are direct consequences of the definition. Now an elementary but interesting
property can be stated as a theorem.

Theorem 3. If 2r, > 7, then n, = 1. In other words, on the average no elements are eliminated.

Proof. If we choose an arbitrary element u* as a pivot then d(z,u*) € [rq, 7). From property
3, we need to perform queries of range r > r, to retrieve some result. The number of qualifying
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elements is

d(u*,g)+ra T
ne = / fa(z)de > / fa(z)de = 1
d Ta

(U*:Q)_Ta
since the interval [d(u*, ¢) — 74, d(u*, ¢) + 74] clearly contains [rg, 7s].

The above proposition implies that there are metric spaces in which no eliminations will be
carried out (see Figure 13). Moreover, any algorithm using the same elimination rule will be
limited in the same way. For example, when the metric space has a density function according
to this theorem all the branches of an FQT will be visited and O(n) distance calculations will be
carried out.

q

- -

2r 2r

Figure 13: A low-dimensional (left) and high-dimensional (right) histogram of distances, showing
that on high dimensions virtually all the elements become candidates for the exhaustive evaluation.
Moreover, we should use a larger r in the second plot in order to retrieve some elements.

The condition 2r, > 7, is a gross measurement of the dependence of the dimensionality in
the performance of pivot-based algorithms. We have not yet established the relationship between
skewed histograms and high dimensionality. In R* Euclidean spaces, the distribution of the distance
between two random points has larger mean and smaller variance as k grows. Therefore, the
phenomenon of a skewed histogram moved to the right (i.e. large r, and small r, — r,) is typical of
high dimensions. If the objects are intrinsically of high dimension, this behavior is inherited when
the space is considered as a general metric space. Following this idea, we can define the intrinsic
dimensionality of a general metric space by considering the shape of its histogram. This gives a
direct and general explanation to the so-called “curse of dimensionality”.

Many authors stress an extreme case which is a good illustration: a distance such that d(z,z) =
0 and d(z,y) = 1 for all « # y. Under this distance, we do not obtain any information from a
comparison except that the element considered is or is not our query. It is clear that it is not possible
to avoid a sequential search in this case. The histogram of this distance is totally concentrated on
its maximum value. The subject of intrinsic dimensionality is discussed also in [59].
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6 A Taxonomy of Search Algorithms

In this section we apply our unifying model to organize all the known approaches in a taxonomy.
This helps to identify the essential features of all the existing techniques, to find possible combi-
nations of algorithms not noticed up to now, and to detect which are the most promising areas for
optimization.

We first notice that almost all the indexing algorithms are built on an equivalence relation.
The aim is to group the elements of the set in clusters, so that the partitions are as local as
possible and have good discriminative power. In practice, it turns out that most algorithms to
build the equivalence relations are based on obtaining, for each element, up to k values (also called
coordinates), so that the equivalence classes can be considered as points in a k-dimensional vector
space. Most of these algorithms obtain the k values as the distance of the object to k different
(and hopefully independent) pivots. We call them “pivoting” algorithms. The algorithms differ in
their method to select the pivots, in when is the selection made, and in how much information on
the comparisons is used. We first explain in detail this large class of algorithms and then cover the
other ones.

6.1 The Pivot Equivalence Relation

Most of the known algorithms to search in metric spaces are built on this equivalence relation. This
is based on considering the distances between an element and a number of preselected “pivots” (i.e.
elements of the universe, called also vantage points, keys, queries, etc. in the literature).

The equivalence relation is defined in terms of the distances of the elements to the pivots, so
that two elements are equivalent if they are at the same distance to all pivots. If we consider one
pivot p, then this equivalence relation is

tr~py = d(z,p)=4d(y,p)

The equivalence classes or partition elements correspond to the intuitive notion of the family
of sphere shells with center p. Points falling in the same sphere shell are said to be equivalent or
indistinguishable from the view point of p.

The above equivalence relation is easily generalized to k pivots or reference points p; to give

T~y Y = Vi, d(z,p) = d(y, pi)

and a graphical representation of the partition in the general case corresponds to the intersection
of several balls centered at the points p; (recall Figure 12).

The distance d(z, y) cannot be smaller than |d(z, p) — d(y, p)| for any element p, because of the
triangular inequality. Hence D([z], [y]) = |d(z,p) — d(y, p)| is a safe lower bound to the Dg function
corresponding to the class of sphere shells centered in p. This is easy to generalize to k pivots,
namely D([z], [y]) = max;{|d(z,p;) — d(y,p;)|}. This D distance lower bounds d and hence can be
used as our distance in the quotient space.

Alternatively, we can consider the equivalence relation as a projection to the vector space RF,
being k the number of pivots used. The i-th coordinate of an element is the distance of the
element to the i-th pivot. Once this is done, we can identify points in R* with elements in the
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original space with the L., distance. As we have described in Section 5, the indexing algorithm
will consist in finding the set of equivalence classes such that they fall inside the radius of the
search when using the extension of d in the quotient of the metric space. In this particular case
for a query of the form (g, )4 we have to find the candidate list as the set ([g],7)p, i.e. the set of
equivalence classes [y] such that D([q], [y]) < r. In other words, we want the set of objects y such
that max;{|d(g, p;) — d(y,p:)|} < 7. This is equivalent to search with the L, distance in the vector
space R* where the equivalence classes are projected. Figure 14 illustrates this concept (Figure 9
is also useful).

Figure 14: Mapping from a metric space onto a vector space under the L., space, using two pivots.

Yet a third way to see the technique, less formal but perhaps more intuitive, is as follows: to
check if an element u € U belongs to the query outcome, we try a number of random pivots p;. If,
for any such p;, we have |d(g, p;) — d(u,p;)| > 7, then by the triangular inequality we know that
d(q,z) > r without need to actually evaluate d(q, ). At indexing time we precompute the d(u, p;)
values and at search time we compute the d(g,p;) values. Only those elements u that cannot be
discarded by looking at the pivots are actually checked against q.

6.2 Selecting the Pivots

We have to find the proper balance for the number of pivots, k. If k is too small, then finding the
classes will be cheap, but the partition will be very coarse and probably non-local (as explained in
previous sections), and we will pay a high cost at the exhaustive search. If k is too large then the
final partitions will be small and cheap to traverse, but the cost to compute them will be high. As
explained before, the number of pivots needed to obtain a good partition is related to the intrinsic
dimensionality of the data set.

In [33], they prove formally that if the dimension is constant, then after properly selecting a
constant number k of pivots the exhaustive search costs O(1) (but their theorem does not show
how to select the pivots). In AESA [55], they show empirically that O(1) pivots are necessary to
achieve this goal, so that they can have O(1) overall search time (recall that their algorithm is
impractical). On the other hand, in [6], they show that O(logn) pivots are necessary to have a
final exhaustive cost of O(logn). This difference is due to different models of the structure of the
space (e.g. finiteness in volume) and the statistic behavior of the distance function. The correct
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answer probably depends on the particular metric space considered.

A related issue is how to select the pivots. All the current schemes select the pivots at random
from the set of objects U. This is done for simplicity, although tackling this problem could yield
dramatical improvements. For instance, in [51] it is recommended to select pivots outside the
clusters while in [5] they suggest to use one pivot from each cluster. All authors agree in that
the pivots should be far apart from each other, which is evident since close pivots will give almost
the same information. On the other hand, pivots selected at random are indeed far apart in a
high-dimensional space.

The distances histogram gives a formal characterization of good pivots. A good pivot has a
flatter histogram, which means that it will discard more elements at query time (note that we could
select pivots outside U, although this needs specific knowledge of the application). Unfortunately,
this depends on the query ¢ and the search radius r. However, a Monte Carlo algorithm could be
used to heuristically evaluate the goodness of the pivots for random queries and a predefined radius
r, as done in [21].

The histogram characterization explains a well-known phenomenon: to discriminate among a
compact set of candidates, it is a good idea to select a pivot from those same candidates. This
makes it more probable to select an element close to them (the ideal would be a centroid). In this
case, the distances tend to be smaller and the histogram is not so concentrated in large values. For
instance, for LAESA [42] they do not use the pivots in a fixed order, but the next one is that with
minimal L; distance to the current candidates. We do not try to plot an example, because the
effect in two dimensions seems to be the opposite.

6.3 Search Algorithms

Once we have determined the equivalence relation to use (i.e. the k pivots), we preprocess the
set by storing, for each element of U, its k coordinates (i.e. distance to the k pivots). This takes
O(kn) preprocessing time and space overhead. The “index” can be seen as a table of n rows and
k columns as shown in the left part of Figure 15.

pl p2 pk

ul ¢

u2 e

d(xi.pi)

Vertical traversal Horizontal traversal

un

Figure 15: Schematic view of a pivot index, as well as vertical and horizontal traversal.
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At query time, we first compare the query g against the k pivots, hence obtaining its k coordinate
(y1,---, Yk) in the target space. This corresponds to determining which equivalence class the query
belongs to, i.e. computing [¢] = (y1, ---, Yx). The cost of this is k evaluations of the distance function
d, which corresponds to the internal complexity of the search. We have now to determine, in the
target space, which classes may be relevant to the query (i.e. which ones are at distance r or less
in the L metric, which corresponds to the D distance). This does not use further evaluations
of d, but it may take extra CPU cost. Finally, the elements belonging to the qualifying classes
(i.e. those that cannot be discarded after considering the k pivots) are directly compared against
¢ (external complexity).

The simplest search algorithm proceeds row-wise: consider each element of the set (i.e. each row
(21, ..., zx) of the table) and see if the triangular inequality allows to discard that row, i.e. whether
max;—1 g{|z; — y;|} > r. For each row not discarded using this rule, compare the element directly
against ¢. This is equivalent to traversing the quotient space, using D to discard uninteresting
classes.

Although this traversal does not perform more evaluations of d than necessary, it is not the
best choice. The reasons will be made clear later, as we discover the advantages of alternative
approaches. First, notice that the amount of CPU work is O(kn) in the worst case. However, as
we abandon a row as soon as we find a difference larger than r along a coordinate, the average case
is much closer to O(n) for queries of reasonable selectivity.

The first improvement is to process the set column-wise. That is, we compare the query against
the first pivot p;. Now, we consider the first column of the table and discard all the elements which
satisfy |#; — y1| > 7. Then, we consider the second pivot p, and repeat the process only on the
elements not discarded up to now. An algorithm implementing this idea is LAESA.

It is not hard to see that the amount of evaluations of d and the total CPU work remains the
same as for the row-wise case. However, we can do better now, since each column can be sorted
so that the range of qualifying rows can be binary instead of sequentially searched [45, 23]. This is
possible because we are interested, at column ¢, in the values [y; — 7, y; + 7].

This is not the only trick allowed by a column-wise evaluation which cannot be done row-wise.
A very important one is that it is not necessary to consider all the k coordinates (recall that we have
to perform one evaluation of d to obtain each new query coordinate y;). As soon as the remaining
set of candidates is small enough, we can stop considering the remaining coordinates and directly
verify the candidates using the d distance. This point is difficult to estimate beforehand: despite
the (few) theoretical results existing [33, 6], one cannot normally understand the application well
enough to predict the actual optimal number of pivots (i.e. the point where it is better to switch
to exhaustive evaluation).

Another trick that can be used with column-wise evaluation is that the selection of the pivots
can be done on the fly instead of fixed as we have presented it. That is, once we have selected the
first pivot p; and discarded all the uninteresting elements, the second pivot ps may depend on which
was the result of p;. However, for each potential pivot we have to store the coordinates of all the
elements of the set for this pivot (or at least some, as we see later). That is, we select k potential
pivots and precompute the table as before, but we can choose in which order are the pivots used
(according to the current state of the search) and where we stop using pivots and compare directly.

An extreme case of this idea is AESA, where k = n, i.e. all the elements are potential pivots,
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and the new pivot at each iteration is randomly selected among the remaining elements. Despite
its practical inapplicability because of its O(n?) preprocessing time and space overhead (i.e. all the
distances among the known elements are precomputed), the algorithm performs a surprisingly low
number of distance evaluations, much better than when the pivots are fixed. This shows that it is a
good idea to select pivots from the current set of candidates (as discussed in the previous section).

Finally, we notice that instead of a sequential search in the mapped space, we could use an
algorithm to search in vector spaces of k dimensions (e.g. kd-trees or R-trees). Depending on
their ability to handle larger k values, we could be able to use more pivots without significantly
increasing our extra CPU cost. Recall also that, as more pivots are used, the search structures for
vector spaces perform worse. This is a very interesting subject which has not been pursued yet,
that accounts for balancing between distance evaluations and CPU time.

6.4 Coarsening the Equivalence Relation

The alternative of not considering all the k pivots if the remaining set of candidates is small is an
example of coarsening an equivalence relation. That is, if we do not consider a given pivot p, we
are merging all the classes that differ only in that coordinate. In this case we prefer to coarsify the
pivot equivalence relation because computing it with more precision is worse than checking it as is.
There are many other ways to coarsify the equivalence relation, and we cover them here. How-
ever, in these cases the coarsification is not done for the sake of reducing the number of distance
evaluations, but to improve space usage and precomputation time, as O(kn) can be prohibitively
expensive for some applications. Another reason is that, via coarsening, we obtain search algo-
rithms that are sublinear in their extra CPU time. We consider in this section range coarsening,
bucket coarsening and adaptive coarsening. Their ideas are roughly illustrated in Figure 16.

Origina Range Coarsening Bucket Coarsening Adaptive Coarsening
\ \
|
| \
Restricted domain Last coordinates Pivots have
of cell values not always computed only local scope

Figure 16: Different coarsification methods. Shorter cells mean smaller domain in cell values.

It must be clear that all these types of coarsenings reduce the discriminative power of the
resulting equivalence classes, making it necessary to exhaustively consider more elements that in
the uncoarsened versions of the relations. In the example of the previous section this is amortized
by the lower cost to obtain the coarsened equivalence relation. Here we reduce the effectiveness of
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the algorithms via coarsening, for the sake of reduced preprocessing time and space overhead.

However, space reduction may have a counterpart in time efficiency. If we use less space, then
using the same memory as before we can have more pivots (i.e. larger k). This can result in an
overall improvement. The fair way to compare two algorithms is to give them the same space to
use.

6.4.1 Range Coarsening

The auxiliary data structures proposed by most authors for continuous distance functions are aimed
to reduce the amount of space needed to store the coordinates of the elements in the mapped space,
as well as the time to find the relevant classes. The most popular form is to reduce the precision
of d. This is written as

T ~p{r;} Y — Ella r; < d(map) < rit1 and r; < d(yap) <7t

with {r;} a partition of the interval [0,00). That is, we assign the same equivalence class to
elements falling in the same range of distances with respect to the same pivot p. This is obviously
a coarsening of the previous relation ~,.

As in the previous example we can naturally extend our definition to more than one pivot:

T~y Y = Vpy, Ji, r <d(z,p;) <ripr and v <d(y,pj) < ripa

Figure 2 exemplifies a pivoting equivalence relation where range coarsening is applied, for one
pivot. Points in the same ring are in the same equivalence class, despite that their exact distance
to the pivot may be different.

A number of actual algorithms use one or another form of this coarsening technique. VPTs and
MVPTs divide the distances in slices so that the same number of elements lie in each slice (note
that the slices are different for each pivot). VPTs use two slices and MVPTs use many. Their goal
is to obtain balanced trees. BKTs, FQTs and FHQTSs, on the other hand, propose range coarsening
for continuous distance functions but do not specify how to coarsify.

In this work we consider that the “natural” extension of BKTs, FQTs and FHQTSs assigns slices
of the same width to each branch: the tree has a uniform arity across all its nodes. At each node,
the slice width is recomputed so that using slices of that fixed width the node has the desired arity.
This motivates us to define a new data structure

FHQA Is similar to an FQA except because the slices are of fixed width. At each level the slice
width is recomputed so that a maximum arity is guaranteed.

The difference between FHQTs and FHQAs is not just a matter of storage. In the FHQT each
node has a different slice width, while in the FHQA we have a fixed slice width for all the nodes of
the same level. This width ensures that the maximum arity in the level does not exceed the desired
value, although some nodes may have smaller arity.

The FHQA is not the same FQA of [24], since there they use variable width slices to ensure
that the subtrees are balanced in size. This is another form of range coarsening, closer to MVPTs.
The original FQA will be called FMVPA to distinguish it from the FHQA.

For completeness of the scheme, we define now a new structure which is a combination of FHQTs

and MVPTs.
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FMVPT The range of values is divided using the m — 1 uniform percentiles to balance the tree,
as in MVPTs. The tree has a fixed height h, as FHQTs. At each node the ranges are recomputed
according to the elements lying in that subtree. This differentiates the structure from FQAs, which
recompute the slices once per level of the tree according to all the elements of the set. The particular
case where m = 2 will be called FHVPT. We could add bucket coarsening to obtain a percentile
version of the FQT, but the results are not good.

The combinations we have just created allow us to explain some important concepts. First
consider FHQAs and FMVPAs. They are no more than LAESA with different forms of range
coarsening (and different algorithms to reduce extra CPU time). They use k fixed pivots and use
b bits to represent the coordinates (i.e. the distances from each point to each of the h pivots). So
only 2° different values can be expressed. The two structures differ only in how they coarsify the
distances to put them into 2° ranges. Their total space requirement is kbn bits.

For example, imagine that we select b = 1, i.e. one bit per coordinate. This needs 1/32 to 1/64
of the space required to store the actual coordinates. The price is that the equivalence relation is
coarsened, and therefore less elements will be eliminated using the k pivots. For each pivot we have
just two equivalence classes, represented by the bit. The criterion to discard an element is that,
along some coordinate, the query plus its tolerance area is totally inside the other class.

However, range coarsening is not just a technique to reduce space. The same space can be used
in a different way. In the example above, if we have reduced the space per pivot, say, 32 times,
then we may have 32 times more pivots at the same space usage. It is not immediate how much is
it convenient to coarsify in order to use more pivots, but it is clear that this technique can improve
the overall effectiveness of the algorithm.

Consider the example of a FMVPA with two pivots with one bit per pivot versus one pivot using
two bits. In the first case, after two comparisons against the pivots, we have divided the set in four
more or less equal classes. In the second case we do the same with just one comparison. Despite that
the partitions differ, it is clear that in general using less pivots with more precision should improve
the performance. On the other hand, when we have enough bits to discriminate well between all
the outcomes of the distance function, adding more bits will not improve the discriminative power,
and in return we will have less pivots at the same space usage. This shows that the optimum range
coarsening for a fixed space usage is an intermediate value, which unfortunately depends strongly
on the specific metric space under consideration.

Another unclear issue is whether fixed slice is better or worse than percentile splitting. On
one hand, a balanced data structure has obvious advantages because the internal complexity may
be reduced (think on a balanced or unbalanced BKT). Fixed slices produce unbalanced structures
since the outer rings have much more elements (since their volume is larger, especially on high
dimensions). On the other hand, in high dimensions the outer rings tend to be too narrow if
percentile splitting is used (because a small increment in radius gets many new elements inside the
ball). If the rings are too narrow, many rings will be frequently included in the radius of interest
of the queries (see Figure 17).

An alternative idea (still very preliminary) is shown in [21], where the slices are optimized to
minimize the number of branches that must be considered. In this case, each class can be an
arbitrary set of slices.

We consider the tree structures now. FHQTs and FMVPTs are almost tree versions of FHQAs
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Uniform dlices Uniform percentiles

Figure 17: The same query intersects more rings when using uniform percentiles.

and FMVPAs, respectively. They are m-ary trees where all the elements belonging to the same
coarsened class are stored in the same subtree. Instead of explicitly storing the m coordinates, the
trees store them tmplicitly: the elements are at the leaves, and their path from the root spell out
the coarsened coordinate values. This makes the space requirements closer to O(n) in practice,
instead of O(bkn) (although the constant is very low for the array versions, which actually take
less space). Moreover, the search for the relevant elements can be organized using the tree: if all
the interesting elements have their first coordinate in ¢, then we just traverse the i-th subtree. This
reduces the extra CPU time. Indeed, the search algorithm described for FQA in Section 4.1 is
borrowed from the tree.

Since under our complexity model there would be no difference between trees and array versions,
we have given the trees the ability to define the slices at each node instead of at each level as the
array versions. This allows them to adapt better to the data, but the values of the slices used need
more space. It is not clear whether it pays off or not to store all these slice values.

A particular case where a tree can be built without coarsening the equivalence relation is that
of discrete distance functions, i.e. when the set of values returned by d is finite and reasonably
small. In FHQTSs the pivots are fixed at each level, and at depth ¢ each element z is stored at
subtree d(z,p;). If compared to simply storing the k discrete values for each element, we can see
that an FHQT is a trie [40] data structure storing n strings, where each string is the sequence of
k “symbols” (coordinates) that identify each class. The leaves are the classes. This allows us to
structure the search using the tree, since we have to traverse only the subtrees numbered d(g, p;) —r
to d(q,p;) + r. FQAs can be used on discrete distance functions as well, without any coarsening.
They implement a similar search strategy without using a tree.

If the distance is too fine-grained, the root will have near n children and the subtrees will have
just 1 children. Hence, the structure will be very similar to a table of k coordinates per element.
The FHQT reduces extra CPU time assuming that the distance is not fine grained, otherwise it
degenerates to a row-wise linear search. If this is the case, the equivalence relation can be coarsened
as in the previous examples to improve extra CPU time at the expense of more distance evaluations.
BKTs and FQTs are similar to FHQTSs, but they involve other techniques that are explained shortly.

Summarizing, range coarsening can be applied using fixed-width or fixed-percentile slices, and
other optimized schemes are possible. They can reduce the space necessary to store the coordinates,

36



which can allow to use more pivots with the same amount of memory. Therefore, it is not just a
technique to reduce space but it can improve the search complexity. Range coarsening can also be
used to organize tree-like search schemes which are sublinear in extra CPU time.

6.4.2 Bucket Coarsening

To reduce space requirements in the above trees, we can avoid building subtrees which have few
elements. Instead, all their elements are stored in a bucket. When the search arrives to a bucket,
it has to exhaustively consider all the elements.

This is a form of coarsening, since for the elements in the bucket we do not consider the last
pivots, and resembles the previous idea (Section 6.3) of not computing the k pivots. However, in
this case the decision is taken off-line, at index construction time, and this allows reducing space
by not storing those coordinates. In the previous case the decision was taken at search time. The
crucial difference is that if the decision is taken at search time, we can know exactly the total
amount of exhaustive work to do by not taking further coordinates. On the other hand, in an
off-line decision we can only consider the search along this branch of the tree, while we cannot
predict how many branches will be considered at search time.

This idea is used for discrete distance functions in FQTs, which are similar to FHQTs except
for the use of buckets. It has been also applied to continuous setups to reduce space requirements
further.

6.4.3 Adaptive Coarsening

The last and least obvious form of coarsening is the one we call “adaptive coarsening”. In fact, the
use of this form of coarsening makes it difficult to notice that many algorithms based on trees are
in fact pivoting algorithms.

This coarsening is based on, instead of storing all the coordinates of all the elements, just
storing some of them. Hence, comparing the query against some pivots helps to discriminate on
some subset of the database only. To use this fact to reduce space, we must determine off-line
which elements will store their distance to which pivots. There is a large number of ways to use
this idea, but it has been used only in the following way.

In FHVPTs there is a single pivot per level of the tree, as in FHQTs. The left and right subtrees
of VPTs, on the other hand, use different pivots. That is, if we have to consider both the left and
right subtrees (because the radius r does not allow to completely discard one), then comparing the
query ¢ against the left pivot will be useful for the left subtree only. There is no information stored
about the distances from the left pivot to the elements of the right subtree, and vice-versa. Hence,
we have to compare ¢ against both pivots. This continues recursively. The same idea is used for
BKTs and MVPTs.

Although at first sight it is clear that we reduce space, this is not the direct way in which the
idea is used in those schemes. Instead, they combine it with a huge increase in the number of
potential pivots. For each subtree, an element belonging to the subtree is selected as the pivot and
deleted from the set. If no bucketing is used, the result is a tree where each element is a node
somewhere in the tree and hence a potential pivot. The tree takes O(n) space, which shows that
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we can successfully combine a large number of pivots with adaptive coarsening to have low space
requirements (n instead of n? as in AESA).

The possible advantage (apart from guaranteed linear space and slightly reduced space in prac-
tice) of this structure over those that store all the coordinates (as FQTs and FHQTs) is that the
pivots are better suited to the searched elements in each subtree, since they are selected from
the same subset. This same property is which makes AESA such a good (though impractical)
algorithm.

In [51, 15] they propose hybrids (for BKT and VPT, respectively) where a number of fixed
pivots are used at each node, and for each resulting class a new set of pivots is selected. Note that,
historically, FQTs and FHQTs are an evolution over BKTs.

6.5 Voronoi Equivalence Partitions

A very good algorithm for proximity searching in 2-dimensional Euclidean spaces is obtained with
the Voronoi partition [3, 58]. The entire space is divided into n equivalence classes, each one
assigned to one dictionary element. The equivalence relation is defined as influence zones: a point
z € X is assigned to the j-th equivalence class if u; € U is the nearest neighbor of z. It is clear
that this partition is as local as possible, and that it has maximum discriminative power since it
assigns one dictionary element per equivalence class.

A “Voronoi graph” is defined, where the nodes are the elements of U and the edges connect points
whose influence zones have borders in common. Using this graph, an O(logn) algorithm exists to
find the nearest neighbor of an arbitrary point. Unfortunately, this algorithm does not generalize
to more than two dimensions. The Voronoi graph, which has O(n) edges in two dimensions, can
have even O(n?) edges in three and more dimensions.

A simple search algorithm that can be used in more than two dimensions is to start at any
point and move to any neighbor® closer to the query. When this is not possible anymore we are
already in the element closest to the query.

This idea can be generalized to an arbitrary metric space. Unfortunately neither the Voronoi
graph nor a non-trivial superset of it can be built using only the distance matrix as input, as proved
n [44]. Specific knowledge of the particular metric space is necessary.

The algorithm SAT is a simplification of this idea, where the search can only start at a fixed
element of U. The Voronoi partitions are built considering only the elements of U, not X. The
result would be a structure able to search only queries of type (b) for ¢ € U (quite useless). To
search general queries ¢ € X of type (a), the algorithm assumes that an unknown element u € U is
searched (type (b) query), from which one only knows that it is at distance at most » to ¢. This
allows to bound the possible distances from u to other elements via comparing them against ¢
instead of u. Since the exact distance is not known, the algorithm has to explore many neighbors
which could be the closest to u (some can be discarded thanks to the known bounds).

The other algorithms which rely on a Voronoi-like partition of the space are GHT and GNAT.
This time, however, the search for the relevant classes is exhaustive (not as in SAT), and the
algorithms resort to a hierarchical partitioning to improve the search time.

®In the graph sense, i.e. directly connected to the point by a direct link.
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In the GHT, two pivots p; and p, are selected and the elements closer to p; are in one class
and those closer to ps are in the other. GNAT is a generalization of GHT to m pivots. The actual
algorithms are simply a hierarchical partition idea used on this equivalence relation. That is, they
divide the space using m pivots and recursively continue inside each partition.

Notice, however, that we have to perform m distance evaluations to discriminate among m
classes, which may be expensive. Moreover, what we need is basically to find the pivots close to
our query ¢, i.e. basically our same original problem with less elements. If m is large, this could be
done by using another search algorithm (e.g. AESA) to find the relevant classes instead of testing
all them. This has not been attempted up to now, and the O(m?) distances needed by AESA are
already stored in the GNAT.

GHTs and GNATSs use many of the coarsening techniques presented before. For instance, when
we compute the distance to the m pivots, we have mapped the space onto an m-dimensional vector
space. However, from that coordinate information we only store, for each element in the set, which
is the smallest coordinate (i.e. which is the closest pivot). This is, again, to reduce space”. They
also use bucket and adaptive coarsening. A GHT or GNAT with fixed pivots per level has not been
proposed up to now. Since it fits well in our taxonomy, we define such a structure now.

FGNAT Is a GNAT where there is a selected set of m pivots per level (not per node). Hence,
the subsets obtained after the first partition are partitioned in the second level according to a new
set of pivots which is the same for all the sets. The case m = 2 is called FGHT.

The Voronoi partition is an attempt to obtain local classes, more local than those based on
pivots. A general technique to do this is to identify clusters of close objects in the set. There exist
many clustering algorithms to build equivalence relations. However, most are defined on vector
spaces instead of general metric spaces. An exception is [17], which reports very good results.
However, it is not clear that good clustering algorithms directly translate into good algorithms for
proximity searching. Another clustering algorithm, based on cliques, is presented in [19], but the
results are similar to the simpler BKT. This area is largely unexplored, and the developments here
could be converted into improved search algorithms.

Given any equivalence relation, the hierarchical partitioning scheme can be applied to obtain
a new search algorithm. That is, we first partition the set in very coarse classes, and find the
relevant ones. Then, instead of exhaustively searching in the resulting classes, we partition them
again into subclasses and search again. When the classes have few enough elements, we search
them exhaustively. Of course the partitioning into classes is done beforehand, not at query time.

The algorithm resulting from this hierarchical scheme is qualitatively different from the base
partitioning and searching algorithm used. We can also use different search algorithms at each level
of the partition, resulting in hybrid algorithms which have not been considered up to now.

As an example, the tree data structures covered previously can be considered as different hier-
archical extensions to the simple algorithm that takes only one pivot and groups the elements in
classes according to their distance to the pivot. The same can be said of GHTs and GNATs.

Tt is interesting that for both VPTs and GNATS they suggest to store some of the actual distances between the
elements and the pivots to reduce the coarsening.
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Range coarsening With Adaptive Coarsening | Without Adaptive Coarsening
Fixed slices BKT FQT, FHQT, FHQA
Fixed quantiles VPT, MVPT, VPF FMVPT, FMVPA
No range coarsening AESA, LAESA-like
Voronoi-like GHT, GNAT, SAT FGNAT

Table 2: Taxonomy of the existing algorithms. The methods in italics are combinations that appear
naturally as soon as the taxonomy is built. The Voronoi-like coarsening is separated because it is
not a type of range coarsening. All adaptive coarsening structures, as well as FQTs, can do bucket
coarsening as well.

6.6 Summary

Table 2 summarizes our classification of methods attending to the most important features (e.g.
we left aside the algorithm to traverse the set in order to reduce extra CPU time).

7 Experiments

In this section we experimentally test and validate many of the facts and open questions discussed
in the paper. We also compare the existing approaches and find their best combinations, obtaining
recommendations on what to use depending on the case.

We concentrate only on the number of distance evaluations as our complexity measure. All the
data structures have been carefully implemented by us as prototypes, and despite that their CPU
time could be reduced by better coding, their number of distance evaluations reported depends
only on the algorithm.

In our attempt to be fair with the memory usage of the algorithms and at the same time simplify
the implementation, we have not optimized their main memory implementation but have been very
careful to count their space usage. For instance, the trees can be stored with no pointers. In an
extreme case one could work with those representations (perhaps at extra CPU cost). Careful
implementations may obtain better CPU performance and approach the space requirements of our
representations. We consider that real numbers take 4 bytes, element identifiers of U take 4 bytes,
and arities and others small numbers take as many bytes as necessary.

We have implemented the data structures and search algorithms in ANSI C, and ran the code
on a Dual Pentium II of 333 Mhz, 256 Mb of RAM, under Linux kernel 2.2.1.

In which follows we describe the structures we have implemented, including how we compute
their most significant space usage in addition to the n identifiers of the elements of U that need to
be stored.

BKT We use slices of fixed width, which is defined to keep a desired arity m in the tree (m is
a free parameter). The bucket size is always 1, which gives the optimal time performance
for this data structure. The pivot at the root of each subtree is randomly selected from the
elements that lie into that subtree. The space usage is n distances, to store the slice widths
used.

40



FQT The same as BKT, except that the pivots are randomly selected from U. The pivot ids are
too few to be significant. The space usage is a distance per node of the tree (for the slice
widths). This data structure does not appear in the experiments because it took too much
time and space to build. This shows that the extension of fixed slices that we designed does
not work well in this case.

FHQT The same as FQT, but this time the height is fixed at h. We have used different h values
depending on the case, but the optimal A is unreachable with our machine. The space usage
is n distances (to store the slice widths at each node) plus that of FHQAs, which give a more
compact implementation.

FHQA Given b bits to represent the coordinates, the ranges are split in 2° slices. The slice widths
are computed once per level to obtain at most 2° slices in that level. The performance depends
also on the parameter h, i.e. number of pivots used. The pivots are randomly chosen from
U. The space usage is hbn bits, the rest is not significant.

MVPT We use buckets of size 1 to maximize the performance and leave the arity m as a parameter.
The root of each subtree is randomly chosen from the elements that lie into that subtree. VPTs
are the particular case m = 2. We have not included extensions such as storing some actual
distances at the leaves because this is a hybrid with LAESA that would complicate isolating
the effectiveness of the ideas. For the same reason we have not extended the structure to more
than one pivot per node (a hybrid with FMVPT). The space usage is n distances. Despite
that the BKT needs just a distance (slice width) per node and here we need m distances per
node, we can charge the cost of the distances to the corresponding edges and then realize that
there are n — 1 edges.

FMVPT Same as FHQT, except that instead of fixed slices we use fixed percentiles. The space
usage is similar to FHQTs.

FMVPA Same as FHQAs, except that fixed percentiles are used instead of fixed slices. The space
usage is the same as FHQAs.

GNAT We leave the arity m as a parameter and use buckets of minimal size (also m) to optimize
the number of distance evaluations. The arity m is kept constant across the tree. Although
the authors suggest to reduce the arity at deeper nodes, they give no clear criterion to modify
the arity. The m pivots at each node are randomly selected from the subtree. The authors
suggest to take elements far away from each other, but we obtained worse results doing this,
and in any case random elements are quite far away in high dimensions. GHT is the particular
case m = 2. The space requirements are n distances (the maximum radii of the subtrees).

FGHT Same as GHT but the pivots are the same for all nodes at each level. The height A is a
parameter. The space usage is hn bits.

LAESA We leave the number k of pivots as a parameter. We use indeed the implementation of
[23] (spaghettis), which is much faster in terms of CPU time, but count the space of LAESA
which is minimal (kn distances). The reason is that LAESA would perform the same number

41



of distance evaluations (but our experiments would take many days). In particular, AESA
has not been implemented because either a real implementation or a simulation would take
weeks in our machine. In the cases where LAESA has been compared against other structures
and it was restricted to use the same amount of memory, it should have used just 1 pivot (32
bits). Since it performed poorly and it can be argued that real values could need less bits, we
have allowed it to use 4 pivots in this case. In other cases, where it has been allowed to use
more memory, we assume that each pivot needs 32 bits to compute the amount of memory
used.

SAT There are no tuning parameters in this algorithm. The space is n arities plus n distances
(radii of subtrees).

As our metric space, we have used synthetic points in vector spaces with Euclidean (L) distance.
Our coordinates are randomly chosen in the real interval [0,1]. Despite that the set is actually
a vector space, we take it as an abstract metric space and do not make any use of coordinate
information. The reason to use this set instead of real-world metric spaces is that with this setup
we can control exactly the dimensionality of the space and show how the performance is affected
as the dimension varies. If we used abstract metric spaces or real-world data on vector spaces,
the intrinsic dimensionality would not be obvious (either because there is no explicit dimension or
because real vector data normally has lower dimension than the space it is in). Hence, we would
have to guess the intrinsic dimension by considering the histograms or the behavior of the structure
and the observations would be complicated. Despite that considering real world data is interesting,
using synthetic data where the dimension is clear fits better our purposes of understanding the basic
features of the problem with a clean experiment. We use n = 100,000 to n = 500, 000, and up to
20 dimensions (as seen later, no method works well for more than 20 dimensions). Nevertheless,
we present at the end an example using a real-world set and a discrete distance function.

We use a search radii that on average retrieves 0.01% of the dictionary. This is a reasonable
output size in many applications. However, we include at the end a test with radii retrieving up to
0.1% of the set.

We have repeated 1000 times the experiments. Since, however, most indexing algorithms involve
selecting pivots at random and the final performance strongly depends on that selection, we have
built 10 different indices on the same data and run 100 random queries on these indices. Points
and queries are generated at random.

In which follows, we present our experimental results. The sequence of experiments corresponds
to the order in which the main concepts are introduced and the open questions appear.

7.1 Optimal Number of Pivots

The first important concept in the model of k fixed pivots is that by incrementing their number
the internal complexity increases and the external complexity decreases, and therefore an optimal
number of pivots exists. We would like to (1) show that there exists an optimal k*, (2) show how
the optimal k* grows quickly with the dimension of the space and that it is O(1) or O(logn) with
respect to the set size (recall that there exist different analysis concluding either choice), and (3)
show that the cost using the optimal k* is O(k*).
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Unfortunately, we need too much space to obtain serious figures of (2) and (3). Storing 4-byte
coordinates for n = 100, 000 needs 100 Mb for k = 256 pivots, which is smaller than the optimum
for more than 12 dimensions. So we content ourselves by showing that for 8 dimensions there
exists an optimum near k* = 110. Figure 18 shows internal, external and total distance evaluations
in 8 dimensions, using a LAESA-like algorithm with up to 256 pivots. Recall that the algorithm
simply compares the query against the k pivots (internal complexity) and then compares the query
against the elements that cannot be discarded using the triangular inequality with the k distances
computed (external complexity).

Despite that with 256 pivots we reach an optimum only until 8 dimensions, it seems clear that
the optimal k* grows much faster than the number of dimensions. The optimal & is 15, 30 and 110
for 4, 6, and 8 dimensions, respectively. This matches with many theoretical predictions that say
that k* is exponentially depending on the dimension, and therefore even if we were able to have k*
pivots the cost would grow exponentially with the dimension (just to compare the query against
the pivots). This can be improved with a more careful selection of pivots, a problem quite poorly
understood today. Figure 18 shows also the case of higher dimensions, where the optimum is not
achieved with 256 pivots.
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Figure 18: On the left, internal, external and overall distance evaluations in 8 dimensions, using
different number of pivots. On the right, overall distance evaluations for different number of
dimensions.

7.2 Amount of Range Coarsening

We have presented many choices related to range coarsening. A first question is how much range
coarsening is desirable. It is clear that, if the number of pivots is fixed, range coarsening reduces
memory usage but degrades the complexity. As explained, however, range coarsening can be used
to improve the overall effectiveness of the algorithm if the memory is fixed, because if one needs
less space to store the distances then more pivots can be added. The appropriate tradeoff between
number and precision of the pivots is not obvious.

Figure 19 shows the effect of trading number for precision in the pivots, so that the total number
of bits used is the same. The top four figures correspond to the four forms of range coarsening
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(FHQT, FHQA, FMVPT, FMVPA). FHQTs and FMVPTs need more space because they have
to store n extra distances. We use 16 bits per element in the trees and 32 bits per element in
the arrays. This still favors the trees (which are using 48 bits per element when one counts the n
distances), but even in this case they are inferior, as seen later. The results show that the optimal
arity is always an intermediate value. The reason can be found in Section 6.4.1.

The two bottom plots of Figure 19 show the effect of range coarsening combined with adaptive
coarsening: BKTs and MVPTs are studied. The optimal type and amount of range coarsening is
different if we have adaptive coarsening, since the height is not fixed. Larger arity implies better
discrimination, but also less pivots in the path to a leaf. Another way to see it is that the result
of a comparison is useful for more elements if the arity is reduced. Interestingly, all achieve their
best performance when their arity is minimal (2).

7.3 Type of Coarsening

Now that the optimum amount of range coarsening for each structure has been identified, we
proceed to compare the different types of range and adaptive coarsening. From now on, each
structure uses its optimal amount of range coarsening.

The two first plots of Figure 20 compare the type of range coarsening used in the structures
that have or do not have adaptive coarsening, separately. The goal is to determine which type of
adaptive coarsening is better: with fixed slices or with fixed percentiles.

The plots make clear that the arrays work better than the trees (even when they are using
less memory), which shows that it is not a good idea to pay so much memory to ensure a better
partitioning at each node. Finally, FMVPAs work better than FHQAs on low dimensions, and
the situation is reversed for high dimensions, where the phenomenon discussed in Section 6.4.1
(especially in Figure 17) becomes more noticeable. Balancing the tree as is done in VPTs and
MVPTs has impact only in low and medium dimensions, but in high dimensions the price of
having to traverse more children at search time shows up. Adaptive coarsening techniques show
the same effect, but in that case BKTs (fixed slices) are superior to MVPTSs (percentile slices) for
all dimensions.

The four last plots of Figure 20 aim at determining which is better between having or not having
adaptive coarsening. BKTs and FHQAs are compared among them; and MVPTs and FMVPAs
are compared among them. In both groups we have added LAESA (no range coarsening). The tree
versions (FHQTs and FMVPTs) were excluded because we know already that they make worse use
of the memory than their array versions.

Since BKTs and MVPTs use fixed amount of memory and FHQAs, FMVPAs and LAESA can
use more and more memory by incrementing h (or k), two questions are of interest: (1) which is
better if they are allowed to use the same amount of memory? (2) how much memory needs the
second kind of algorithms to beat the algorithms of the first kind?

The two middle plots answer question (1), and the last two, question (2). The ranges used are
the best for each structure. Recall that LAESA uses 4 pivots for the case (1), despite it should
use just one. As it can be seen, the structures that use adaptive coarsening improve over those
that do not, if all use the same amount of memory. On the other hand, these last structures beat
the first ones if more memory is used: LAESA and FMVPA need 16 and 2 times more memory,
respectively, than MVPTs to beat them; LAESA and FHQA need 128 and 32 times, respectively,
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coarsening. The legends for the top four structures use the format STR h-b, where STR is the
structure, the arity is 2° and the number of pivots is h. The last two use the format STR b, with

the same meaning.
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more memory to beat BKTs. In particular, beating BKTs becomes harder as the dimension grows.

Finally, we note that the results for BKTs are too good to leave them without further analysis.
Studying them in more detail, we find that the height of the trees is extremely large, so the trees
are very ill balanced. The reason is quite clear: as the dimension grows, dividing the distances in
two equal slices leaves very few elements in one branch of the tree and almost all the rest in the
other. What we finally obtain is a clustering (or Voronoi-like) scheme, where all the internal nodes
are the cluster representatives (indeed, they are good candidates for centroids), and the smallest
of the two subtrees has all the elements of the cluster (see Figure 21). There is a clear criterion
to select the clusters and their radii and to put the other elements in the clusters. This shows an
interesting (although loose) connection between clustering and pivoting algorithms. The turning
point where this pivoting schemes behaves more like a clustering scheme seems to be 14 dimensions.

We therefore consider the binary BKT as a new clustering (or Voronoi-like) algorithm, byprod-
uct of this survey. This structure takes linear space and close to quadratic construction time. This
cost could be lowered using another structure to build the tree, so as to perform the required queries
to fill the subtrees more efficiently.

7.4 Voronoi Equivalence Algorithms

Figure 22 shows a comparison between GHTs and FGHTs, letting FGHTSs use different amounts of
memory (GHTs are equivalent in memory usage to FGHTs of height 32). It is clear that FGHTs
only behave well for very low dimensions. The reason is that the partitions have high locality, and
selecting a new partition from the global set of elements (instead of the local set of elements) makes
it quite possible that all the objects lie in a single partition at the second level, and so on.

With respect to GNATS, we need also to determine the best arity. Figure 22 shows the results
with GNATSs using different arities. In general m = 128 seems a good choice. Another interesting
fact is that GNATSs seem more resistant do the dimension than other structures. SATs, on the
other hand, do not have parameters to tune, and we defer this structure for the final comparison.

7.5 Final Comparison

We compare now the different resulting approaches, using their optimal setup. These are: BKTs
with arity 2, FHQAs, FMVPAs, LAESA, GNATs with arity 128, and SAT. These are compared
in two ways. First, we make a comparison using the same amount of memory for all. This turns
out to be 32 bits per element. Second, we show how much more space do FHQAs, FMVPAs and
LAESA need to beat the other approaches.

Figure 23 shows the comparative results. Using the same amount of memory, the binary BKT
is definitively the most efficient data structure, followed in high dimensions by other Voronoi-like
schemes. It becomes clear that the Voronoi-like techniques are more efficient than pivot-based
algorithms on high dimensions. This shows that the locality of the partition becomes important at
some point.

On the other hand, FHQAs, FMVPAs and LAESA have the ability to improve their performance
by using more pivots. LAESA needs 128 times more memory and FHQAs and FMVPAs need 32
times more memory to beat the binary BKT in 20 dimensions.
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Figure 20: The first two plots compare the different range coarsening techniques. The middle plots
compare the use or not of adaptive coarsening, at the same space usage. The lower plots show how
much space need the structures that do not use adaptive coarsening to beat those that use. The
left plots show range coarsening of fixed slices and the right plots show fixed percentile slices.
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Figure 21: The biased binary BKT is similar to a clustering scheme.
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Figure 22: The left plot compares GHTs and FGHTs using different amounts of memory. The right
plot compares GNATSs using different arities.

It is interesting to notice that, as the dimension grows, pivoting algorithms need more and more
pivots to beat Voronoi-like partition algorithms. On the other hand, there are no good methods
to allow Voronoi-like algorithms using more memory to increase their efficiency, but if they existed
probably they would need less space to obtain the same results of the other algorithms on high
dimensions. Note also that only array implementations of FHQTs and FMVPTs make the necessary
heights possible in practice.

We believe that a data structure where the idea of a Voronoi-like partition is combined with a
k-pivoting algorithm may provide the best tradeoff.

Figure 24 shows a comparison among the structures for increasing n and 8 dimensions, using
the same amount of memory. The goal is to study how the costs grow with n.

It can be seen that the costs grow linearly if we retrieve 0.01% of the data set. It is not hard
to see that the cost cannot be sublinear if we retrieve a linear proportion of the set. Since our
set has limited volume in the space (recall that all points lie in [0, 1]* for k& dimensions) the radius
to retrieve 0.01% of the set remains the same as n grows, since all the volume gets uniformly
denser and therefore a fixed volume remains holding a fixed proportion of the points. If the space
were unbounded (e.g. uniform density as n grows) a fixed radius would retrieve lower and lower

48



100000 100000 -
BKT —+—
GNAT ---x---
90000 90000 |- SAT %o |
FHQA 1024 bits &
FMVPA 1024 bits - A
80000 80000 L LAESA 4096 bits ---o-- P
,f§’
70000 70000 - o 7l
2 2 '
2 60000 2
] £ 60000 [ ; R
2 H 4
£ 50000 £ 50000 | s 1
8 8 oy
£ 40000 S 40000 e 4
8 3 X i
30000 30000 |- / 4
20000 20000 v R
10000 10000 e P ]
e X
P L L L L I I Py ———— o ) ) )
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
[dimension] 100,000 elements. Radius captures 0.01% of N [dimension] 100,000 elements. Radius captures 0.01% of N

Figure 23: Comparing the best data structures. The left plot uses the same amount of memory for
all, while in the right one the pivoting algorithms use more space.

percentages of the set as n grew. We see shortly an example of such a set.

Figure 24 also shows how time grows as the proportion of retrieved elements increases. As it
can be seen, the efficiency degrades slowly as the radius grows. Some structures, like SATs, adapt
better to larger search radii.
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Figure 24: Comparing the data structures using the same amount of memory and in terms of n,
for 8 dimensions. The left plot retrieves 0.01% of the set, while the right plot retrieves from 0.01%
to 0.1% of the set.

7.6 Construction Time

We have left aside the cost to build the data structures. Since this is done off-line, it has less

importance than querying complexity, but nevertheless it is worhwhile to present some results.
Figure 25 shows the construction complexity (number of distance evaluations) for the structures

compared in the previous subsection, using the same amount of memory. We show the growth in
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terms of the set size and the dimension. As it can be seen, Voronoi-like schemes (SATs, GNATs
and binary BKTs) are much more expensive to build than the other data structures.

With respect to the dimension, the schemes with fixed pivots of course do not depend on the
dimension, while Voronoi-like schemes become more expensive to build as the dimension grows. An
exception seems to be GNATSs, which are fixed with the dimension because the arity is so large (128)
that the height is always two. With less arity they would be cheaper to build but less competitive.
In particular, the cost of the best structure, BKTs, increases sharply as the dimension grows. This
shows that there is a high price at construction time for Voronoi-like schemes, which are the most
competitive in high dimensions.

With respect to the set size, most schemes are linear (except SATs, which are slightly superlinear
as predicted). The only one which deviates from the prediction is the binary BKT, for which we
predicted a quadratic construction time. More specifically, if the left subtree holds M elements
(where M is much smaller than n) then the tree will be of height n/M and the construction time
will be n?/M. However, our set is compact in [0,1]*, and therefore the distance that divides the
left and right subtree keeps basically unchanged as n grows, and so does the volume of the ball
that corresponds to the left subtree. Hence, as n grows, M grows proportionally. If we double n
and M, the construction cost doubles too: (2n)?/(2M) = 2(n?/M).
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Figure 25: Construction times, as a function of the dimension (left) and as a function of the set
size (right). LAESA, FHQAs and FMVPAs are very close and superimposed in some cases.

7.7 A Real-World Discrete Case

We finish our experiments with a real-world example related to text processing. Our set is composed
of 500,000 different lower-case words, namely the vocabulary of a subset of the TREC collection
[38]. The distance is the edit distance (recall Section 2.3), which is the minimal number of character
insertions, deletions and replacement needed to make two strings equal. This returns a small integer
number in most cases, and the histogram is quite concentrated.

We compare the different data structures on this set, searching with radius 1, 2 and 3. The
queries were selected at random from the same dictionary. The structures included are BKT, FQT,
FHQT (h = 16, so that an FQA implementation uses roughly the same space as the rest), GNAT
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(m = 50, which had the best performance) and SAT. No range coarsening was performed, since
the outcome of the distance function has just a few different values.

It can be seen that GNATs and SATs are not competitive in this case (probably because of
the discretization). FQTs, BKTs and FHQTSs are quite similar, but FQTs and FHQTs are slightly
better.

Their time sublinearity is also clear from the figures, which may be unexpected because we
are using fixed radii (1, 2 and 3) and therefore a fixed proportion of the set should be retrieved.
However, the space is discrete and the number of elements in X at small distance from a string is
severely limited, so it does not grow with n. As n grows, fixed radii retrieve lower percentages of
the set.

This shows that the structure of the metric space has a strong influence in all aspects of the
the behavior of the algorithms.
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Figure 26: Comparison on the TREC dictionary, for radius from 1 to 3. FHQT uses A = 16 and
GNAT uses m = 50. No range coarsening is done.
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8 Conclusions

Metric spaces are becoming a popular model for similarity retrieval in many unrelated areas. We
have surveyed the algorithms that index metric spaces to answer proximity queries. We have not
just enumerated the existing approaches to discuss their good and bad points. We have, in addition,
presented a unified framework that allows to understand the existing approaches under a common
view. It turns out that most of the existing algorithms are indeed variations on a few common
ideas, and by identifying them, previously unnoticed combinations have naturally appeared, some
of them extremely efficient. We have also analyzed the main factors that affect the efficiency when
searching metric spaces. Finally, we have presented experimental results validating our assertions
and comparing the existing approaches. As a result, we have been able to recommend the best
choices among the existing solutions.
The main conclusions of our work are summarized as follows

1. The factors that affect the efficiency of the search algorithms are the intrinsic dimensionality
of the space and the proportion of the set that is retrieved.

2. We have identified the use of equivalence relations as the common ground underlying all the
indexing algorithms, and classified the search cost in terms of internal and external complexity.

3. A large class of search algorithms rely on taking k pivots and mapping the metric space onto
RF* using the Lo distance. Another important class uses Voronoi-like partitions.

4. The equivalence relations can be coarsened to save space or to improve the overall efficiency
by making better use of the pivots.

5. Although there is an optimal number of pivots to use, this number is too high in terms of
space requirements. Hence, in practical terms, this type of index will outperform those that
use fixed space if it has enough memory. However, among them, range coarsening allows to
make better or worse use of the same amount of memory. We found that intermediate values
for the number of bits per pivot are the best options.

6. The algorithms based on a Voronoi-like partition of the space are the most resistant to the
dimensionality.

7. Among the structures considerered, our experimental results show that the best one is our
adaptation of BKTs to continuous spaces with arity 2. We have shown that this structure
“degenerates” into a very efficient clustering scheme. If more memory is available, other

structures finally improve over binary BKTs. Among these, those that use best the available
memory are FHQAs and FMVPAs.

This work, however, has left a number of open issues requiring further attention. The main
ones follow.

e Work more on clustering schemes in order to devise new algorithms, to find ways to reduce
construction times (which is extremely high to be practical in many cases) and to allow them
using more memory in order to reduce search times.
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e Search for good hybrids between clustering and pivoting algorithms. The first ones cope better
with high dimensions and the second ones improve as more memory is given to them. After
the space is clustered the intrinsic dimension of the clusters is lower, so a top-level clustering
structure joined with a pivoting scheme for the clusters is an interesting alternative. Those
pivots should be selected from the cluster because the cluster is already compact in the space.

e Understand better how the structure of the space affects the efficiency of the search algorithms.
Parameters like the histogram of distances may allow us to find worst or average case bounds
to the complexity of the problem. Another issue is related to whether the space is limited in
volume or not as n grows. We found along the survey that in many cases the behavior of the
algorithms strongly depends on the fact that if there are more points they must be closer to
each other, which is true in the [0, 1]* space but false in the space of strings.

e Understand better the effect of pivot selection, devising methods to choose effective pivots.
The subject of the appropriate number of pivots and its relation to the intrinsic dimensionality
of the space plays a role here. The histogram of distances may be a good tool for pivot
selection. Another related issue is the optimum arity, which is always fixed and could depend
on the level in the tree or other parameters, as suggested in [16]. Finally, space overlapping
techniques have not been attempted in metric spaces and they yielded good results in vector
spaces (R-trees).

e Take extra CPU complexity into account, which we have barely considered in this work. In
some applications the distance is not so expensive that one can disregard any other type
of CPU cost. The use of specialized search structures in the mapped space (especially R¥)
and the resulting complexity tradeoff deserves more attention. Another area left aside is I/O
costs.

e Focus on nearest neighbor search. Most current algorithms for this problem are based on range
searching, and despite that the existing heuristics seem difficult to improve, truly independent
ways to address the problem could exist.

e Consider approximate and probabilistic algorithms, which may give much better results at a
cost that, especially for this problem, seems acceptable.
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