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Abstract. Several aspects of the LEPP algorithms (based on the
use of the Longest-Edge Propagation Path of the triangles), for dealing
both with the triangulation improvement problem and with the auto-
matic quality triangulation problem, are reviewed and discussed. Ap-
plications producing quality nonobtuse triangulations and quality sim-
plification for terrain modeling are also discussed.
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1 Introduction

In the adaptive finite element context, several mathematical algorithms for
the refinement and/or derefinement of unstructured triangulations, based on
the bisection of triangles by its longest-edge, have been discussed and used
in the last 15 years.'™ These algorithms guarantee the construction of re-
fined, nested and irregular triangulations of analogous quality as the input
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triangulation. However, the use of a new and related mathematical con-
cept (the longest-edge propagation path of a triangle®¢), has allowed the
development of new longest-edge algorithms for dealing with more general
aspects of the mesh generation problem: (1) triangulation refinement prob-
lem, (2) triangulation improvement problem, (3) automatic quality triangu-
lation problem, (4) quality nonobtuse triangulation problem, and (5) terrain
modeling triangulation problem. In this paper, different aspects of these
mesh generation problems and some of the algorithms proposed to deal with
them, are reviewed, discussed and illustrated. In particular, the following
specific applications are discussed: quality triangulations as needed for finite
element methods; quality nonobtuse boundary triangulations as needed for
mixed finite element and finite volume methods, and quality (surface) terrain
simplification.

2 Mesh generation related problems

The polygon triangulation problem, an important issue for finite element
applications, can be formulated as follows:

Definition 1 Polygon Triangulation Problem: given N representative points
of a polygonal region, join them by non intersecting straight line segments so
that every region internal to the polygon is a triangle. The resulting triagu-
lations is a conforming triangulation (the intersection of adjacent triangles
is either a common vertez or a common side).

Many criteria have been proposed as to what constitutes a “good” tri-
angulation for numerical purposes, some of which involve maximizing the
smallest angle or minimizing the total edge length. The Delaunay algorithm
which constructs triangulations satisfying the first criteria has been of com-
mon use in engineering applications, followed by a postprocess step which
assures the boundary respect of the polygon.

In the adaptive finite element context, the triangulation refinement prob-
lem is also critical. To state this problem, some requirements and criteria
about how to define the set of triangles to be refined and how to obtain
the desired resolution need to be specified. To simplify we shall introduce a
subregion R to define the refinement area, and a condition over the diameter
(longest-edge) of the triangles (given by a resolution parameter ¢) to fix the
desired resolution.



Definition 2 Triangulation Refinement Problem: given an acceptable trian-
gulation of a polygonal region 2, construct a locally refined triangulation such
that the diameters of the triangles that intersect the refinement area R are
less than €, and such that the smallest (or the largest) angle is bounded.

In the case we dispose of a bad-quality triangulation of the polygonal
geometry (having a non-adequate distribution of vertices) the triangulation
improvement problem has to be considered. To state this problem, a triangle
quality indicator function q(t), a tolerance parameter ¢, and a local triangle
improvement criterion need to be specified.

Definition 3 Triangulation Improvement Problem: given a non-quality tri-
angulation 1o of a polygonal region Q (having triangles such that its quality
indicator q(t) < €), construct an improved triangulation T such that each
triangle t satisfies q(t) > €.

Note that if an initial coarse triangulation of the boundary polygonal
vertices is considered, the more general (automatic) quality polygon triangu-
lation problem can be stated.

Definition 4 Quality Triangulation Problem: Given an initial (boundary)
triangulation 1o of the boundary vertices which define the polygonal geometry,
construct a geometry-adapted triangulation T such that for each triangle t of
Tyq(t) > €.

For finite element/finite volume applications, the following Nonobtuse
Boundary Triangulation Problem can be stated:

Definition 5 Nonobtuse Boundary Triangulation Problem: given a quality
Delaunay triangulation 1o of a polygonal region €2, construct a triangulation
T such that the boundary triangles (having at least one boundary or interface
edge) do not have an obtuse angle opposite to any boundary or interface edge.

At this point the following remarks are in order:

(1) The triangulation problems stated in Definitions 2 to 5 are essentially
different than the classical triangulation problem in the following sense: in-
stead of having a fixed set of points to be triangulated, one has the freedom
to choose the points to be added in order to construct a mesh either with a



desired resolution or with a given mesh-quality. The construction of the mesh
is dynamically performed. Furthermore it is possible to exploit the existence
of the reference triangulation (constructed for instance by means of the De-
launay algorithm) in order to reduce the computational cost to construct the
output mesh.

(2) To cope with the triangulation Refinement Problem, the longest-edge
refinement algorithms guarantee the construction of good quality irregular
triangulations (section 4). This is due in part to their natural refinement
propagation strategy farther than the (refinement) area of interest R. Fur-
thermore, asymptotically, the number N of points inserted in R to obtain
triangles of prescribed size, is optimal, and in spite of the unavoidable prop-
agation outside the refinement region R, the time cost of the algorithm is
linear in N, independent of the size of the triangulation.”

In the remaining of this paper, longest-edge based solutions both for the
improvement and quality triangulation problems of Definition 3 and 4 will
be discussed in the context of automatic quality triangulations (section 6),
quality nonobtuse boundary triangulations (section 7), and triangulations
for terrain modeling (section 8). Note that in all these applications, the
algorithms take advantage of an LEPP point insertion technique (based on
following the longest-edge propagation path of the target triangles) over De-
launay triangulations.

3 The longest-edge propagation path of a tri-
angle

The longest-edge propagation path of a triangle concept is defined as follows:

Definition 6 For any triangle to of any conforming triangulation T, the
Longest-Edge Propagation Path of to will be the ordered list of all the triangles
to,t1,t2,...t,, such that t; is the neighbor triangle of t;_1 by the longest edge
of ti_1, for i=1,2,..., n. In addition we shall denote it as the LEPP(t,).

Proposition 1 For any triangle ty of any conforming triangulation of any
bounded 2-dimensional geometry Q, the following properties hold: (a) for any
t, the LEPP(t) is always finite; (b) The triangles to,t1,...t,_1 have strictly
increasing longest edge (if n > 1): (c) For the triangle t,, of the Longest-Edge
Propagation Path of any triangle to, it holds that either: i) t,, has its longest



edge along the boundary, and this is greater than the longest edge of t,_1, or
i) t, and t,_, share the same common longest-edge.

Definition 7 Two adjacent triangles (t,t*) will be called a pair of terminal
triangles if they share their respective (common) longest edge. In addition, t
will be a terminal boundary triangle if its longest-edge lies along a boundary
edge.

It should be pointed out here that the Longest-Edge Propagation Path of
any triangle t corresponds to an associated polygon, which in certain sense
measures the local quality of the current point distribution induced by t. To
illustrate these ideas, see Figure 1(a), where the Longest-Edge Propagation
Path of to corresponds to the ordered list of triangles (to,%1,%t2,t3). Moreover
the pair (¢s,t3) is a pair of terminal triangles.

4 LEPP-Bisection Algorithm for the refine-
ment of quality triangulations

By using the LEPP(t) concept, an improved Longest-Edge refinement algo-
rithm® ¢ for non-Delaunay triangulations can be formulated, where the pure
longest-edge refinement of a target triangle ¢y (see Figure 1) essentially means
the repetitive longest-edge partition of pairs of terminal triangles associated
with the current LEPP(¢¢), until the triangle ¢, itself is partitioned.

The Figure 1 illustrates the refinement of the triangle ¢ over the initial
triangulation of Figure 1(a) with associated LEPP(¢o)={to,¢1,t2,t3}. The
triangulations (b) and (c) illustrate the first 2 steps of the LEPP-Bisection
procedure and their respective current LEPP(¢g), while that triangulation (d)
is the final mesh obtained. Note that the new vertices have been enumerated
in the order they were created.

The LEPP-Bisection procedure, schematically described in Figure 2 is a
non-recursive algorithm essentially based on refining pairs of terminal trian-
gles, where the concept of the Longest-Edge Propagation Path of the triangle
t is repeatedly used (over the current triangulation) in order to find the last
2 (terminal) triangles of the path, until the initial triangle i is bisected.

Since the LEPP-Bisection algorithm is an improved version of the orig-
inal longest-edge bisection algorithm, the following Theorem, based on the
properties of the longest-edge bisection also holds:
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Figure 1: LEPP-Bisection of triangle ¢o (a) Initial Triangulation. (b) First
step of the process. (c) Second step in the process. (d) Final triangulation

Theorem 1 (a) The repetitive use of the pure longest-edge bisection algo-
rithms, in order to refine to and its descendants (triangles nested in to),
tends to produce local quasi-equilateral triangulations. (b) The smallest angle
oy of any triangle t obtained throughout this process, satisfies that oy > ag/2,
where aq is the smallest angle of to. (c) For any conforming triangulation
T, the global iterative application of the algorithm covers, in a monotonically
increasing form, the area of t with quasi-equilateral triangles.

Theorem 1 guarantees the construction of good-quality irregular and
nested triangulations. Theorem 2 assures in exchange that the LEPP-Bisection
algorithm solves the triangulation refinement problem with linear time com-
plexity, provided that an initial good quality triangulation is used. To this
end, a suitable data structure that explicitly manage the neighbor-triangle
relation should be used. In addition, since at each iteration within the while
loop, the LEPP(t) may or not be shortened, and may include new triangles
not previously included in the LEPP(t) (see Figure 1), the current LEPP(t)
should be updated, rather than computed from scratch in order to get the
linear running time. Furthermore, the new LEPP Refinement Algorithm



LEPP-Bisection (t,T)
while t remains without being bisected do
Find the LEPP(t)
if t*, the last triangle of the LEPP(t), is a terminal boundary triangle
then
bisect t*
else

bisect the (last) pair of terminal triangles of the LEPP(t)
end if

end while

Figure 2: LEPP-Bisection procedure

produces the same triangulation as the previous recursive algorithm, in a
simpler, cleaner, easy-to-implement and more direct way.

Theorem 2 Let 7 be any conforming triangulation of any bounded polygonal
region §). Then, for any circular refinement subregion C of radious r, the
use of the LEPP-Bisection algorithm to produce triangles of size € inside C,
asymptotically introduces N; points inside C and N, points outside C, where

2
N; = O(n®), N, = O(nlogn), and n = -
€



5 LEPP-Delaunay algorithm for the improve-
ment of triangulations

The LEPP Delaunay improvement algorithm uses the Longest Edge Prop-
agation Path of the target triangles (to be improved in the mesh) over the
Delaunay triangulation of the vertices, in order to decide which is the best
point to be inserted to produce a good quality distribution of points.>® This
basic algorithm generalizes the ideas introduced in Rivara et al.®®°

LEPP-Delaunay-Improvement (t, T){

Input: T Delaunay triangulation

while t remains without being modified do
Find the Longest-Edge Propagation Path of t
Perform a Delaunay insertion of the point p (midpoint of the longest
edge of the last triangle in the Lepp(t))

end while}

Figure 3: LEPP-Delaunay improvement procedure

For an illustration of the algorithm see Figure 4, where the triangula-
tion (a) is the initial Delaunay triangulation with LEPP(¢o) = {to,t1,%2,3},
and the triangulations (b), (c¢) and (d) illustrate the complete sequence of
point insertions needed to improve ty,. Note that in this example, the im-
provement (modification) of ¢y implies the automatic Delaunay insertion of
three additional Steiner points. Each one of these points is the midpoint
of the longest-edge of the last triangle of the current LEPP(¢5). It should
be pointed out here that each Delaunay point insertion locally improves the
triangulation in the current LEPP(¢¢), and in this sense this algorithm im-
proves the triangulations obtained with the pure LEPP-Bisection procedure
of section 4.

Note that we have used the word improvement instead of bisection or
refinement. This is to make explicit the fact that one step of the procedure
does not necessarily produce a smaller triangle. More important however, is
the fact that the procedure improves the triangle t in the sense of Theorem 3
of section 6.
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Figure 4: LEPP-Delaunay improvement of triangle ¢,

6 Automatic algorithm for producing quality
triangulations

By combining the basic LEPP-procedure over constrained Delaunay trian-
gulations with adequate boundary considerations, a simple 2-dimensional
automatic quality-triangulation algorithm can be formulated (see Figure 5),
where § is a threshold parameter less than or equal to 30° that can be easily
adjusted. Furthermore, the following theorem holds:

Theorem 3 For any Delaunay triangulation T, the repetitive use of the
LEPP-Delaunay-Improvement algorithm over the worst triangles of the mesh
(with smallest angle o < 30°) produces a quality triangulation of smallest an-
gles greater than or equal to 30°.

At this point the following remarks are in order:

(1) Even when Theorem 3 guarantees the construction of quality trian-
gulations, it says nothing about the size of these triangulations. More math-
ematical results in this sense are certainly needed. However, in practice, the
2-dimensional triangulations obtained are size-optimal. In fact, they are of
analogous quality as those obtained with the circumcenter point insertion
strategy.!?



Quality-Polygon-Triangulation ( P, ¢ ) {
Input: A general polygon P (defined by a set of vertices and edges); and
a tolerance parameter (§ < 30°)
Construct T, a constrained (boundary) Delaunay triangulation of P.
Find S, the set of the worst triangles t of T (of smallest angle j d)
for eachtin S do
Backward-LE-Delaunay-Improvement (T, t)
Update the set S (by adding the new small-angled triangles and elimi-
nating those destroyed throughout the process)
end for}
LEPP-Delaunay-Improvement (T, t) {
while t remains without being modified do
if t* has a boundary edge 1, and 1 is not the smallest edge of t then
select p, the midpoint of 1
else
Find the Lepp(t), and t* the last triangle in the Lepp(t)
select p midpoint of the longest edge of t*
end if
Perform the Delaunay insertion of p

end while}

Figure 5: LEPP-Delaunay procedure with boundary considerations

(2) The triangulation of Figure 6 illustrates the practical behavior of the
algorithm. Note that the input data was the polygon with the minimum
number of vertices to describe the geometry.
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Figure 6: Automatic triangulation obtained (

30°)
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7 Nonobtuse boundary triangulations

This section discusses an algorithm to solve the nonobtuse boundary prob-
lem of Definition 5, such as needed for mixed control volume discretization
and finite element method.!'! This extends the LEPP-Delaunay algorithm
of section 5. Nonobtuse boundary triangulations are also very useful when
problems are solved combining both methods. This requires the combination
of good quality meshes and well shaped Voronoi boxes, which implies both
that the minimum angle should be bounded and that boundary triangles
should not have obtuse angles opposite to any boundary edge or interface
edge.

The generation of quality nonobtuse boundary Delaunay triangulations
consists of two steps: (1) The construction of a good quality (constrained) De-
launay triangulation (CDT) of the polygon having interior angles comprised
between 30° and 120°, (2) A postprocess step which eliminates boundary
obtuse triangles by combining a longest-edge procedure for selecting points,
the Delaunay algorithm for inserting the points and a finite number of some
specific Delaunay point insertions for boundary obtuse triangles with 2-edge
boundary constrained acute angles (angles defined by two boundary edges).

The construction of the good quality (constrained) Delaunay triangu-
lation consists of: (a) The generation of an initial constrained Delaunay
triangulation (essentially using the polygon vertices), and b) the use of the
LEPP-Delaunay algorithm described in Figure 5 (section 6), with ¢ = 30°,
which produces a mesh with angles between 30° and 120°.

The step designed to eliminate boundary obtuse triangles of polygonal
regions considers two cases: (a) triangles with only one boundary edge oppo-
site to the obtuse angle (1-edge boundary obtuse triangles), and (b) triangles
with two boundary edges and one of them opposite to the obtuse angle (2-
edge boundary obtuse triangles)

A detailed description of the algorithm and the proof of the theorems of
this section can be found in Hitschfeld et al.'?

7.1 Elimination of 1-edge boundary obtuse triangles

Each 1-edge boundary obtuse triangle is simply eliminated by Delaunay in-
sertion of the midpoint of the boundary edge. Since the obtuse angle is
smaller than or equal to 120°, the insertion of only one point is required (see
Theorem 4) even when some some diagonal swappings might be necessary.
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Theorem 4 Let T be any improved Delaunay triangulation of any polygonal
geometry (with smallest angle greater than or equal to 30°). Let consider
either an 1-edge boundary obtuse triangle, or two 1-edge interface triangles
being at least one of them an obtuse triangle as shown in Figures 7(b) and 7(c)
(one or two I1-edge interface obtuse triangles); In any of both cases, let con-
stder e the unique boundary or interface edge involved. Then (a) the obtuse
triangle is eliminated by Delaunay insertion of the midpoint of e; and (b) the
new generated boundary triangles are nonobtuse triangles.

The three possible cases considered by Theorem 4 are illustrated by Fig-
ure 7. Figure 7(a) shows a 1-edge boundary obtuse triangle, Figure 7(b) two
1-edge interface triangles where one of the angles opposite to the interface
edge is obtuse and Figure 7(c) shows two l-edge interface triangles where
both angles opposite to the interface edge are obtuse. The Delaunay inser-
tion of the interface edge midpoint in case (c) destroys the two obtuse angles
not generating new obtuse angles opposite to interface edges.

(@ (b) (©)

Figure 7: Cases of 1-edge boundary and interface obtuse triangles

Corollary 1 For any improved Delaunay triangulation of any polygonal geom-
etry the number of point insertions (V1) to eliminate Ny, 1-edge boundary ob-

tuse triangle and Ni; interface obtuse triangles 1s N+ N2“ < Vi < Nip+ Ny,

The insertion of Ny, + N2“ is possible when the improved triangulation

has an odd number of interface obtuse triangles and all of them correspond
to the case (c) of Figure 7.
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7.2 Elimination of 2-edge boundary obtuse triangles

The elimination of 2-edge boundary obtuse triangles requires a special treat-
ment when the smallest edge is an interior edge. Note that in such a case, the
boundary constrained angle (3 is the smallest angle of the triangle (3 is the
angle defined by the two boundary edges). The strategy used for the 1-edge
boundary obtuse triangles can not be applied in this particular case since
after two applications of the strategy, a new triangle similar to the original
one will be obtained, (¢, is similar to ¢4 in Figure 8). One additional problem
is that due to the boundary restrictions the minimum angle of this triangle
can be less than 30° and consequently, the obtuse angle can be greater than

120°.

Figure 8: t, is similar to ¢4

The essential ideas of the algorithm to handle case 2 illustrated in Figure 9
are the followings: An 2-edge boundary isosceles triangle of largest edges
equal to half the smallest boundary edge of the target triangle is constructed
(triangle BMN in Figure 9(b)). Since the points M and N are inserted using
the Delaunay criterion, this construction maintains the Delaunay property
of the mesh but can produce an 1-edge boundary obtuse triangle ¢;, which is
in turn eliminated by the Delaunay insertion of the midpoint of the largest
edge of t; (Figure 9(c)). This procedure can again produce a new boundary
obtuse triangle ¢, with largest angle smaller than the previous one and so on.
The boundary obtuse triangles are eliminated after the Delaunay insertion
of a finite number of points.

Theorem 5 Let t be a 2-edge boundary obtuse triangle with interior smallest
edge. Then: (1) If the constrained angle is greater than 3y (with By > 32.53°),
the obtuse angle is eliminated by Delaunay insertion of exactly two points ob-
tained by creating a 2-edge boundary isosceles triangle; (2) If the constrained
angle 1s less than or equal to By, a new I-edge boundary obtuse triangle can
be generated, which is eliminated by Delaunay insertion of a finite number of

i points bounded by 1 < 2;;%& (see Figure 9).

14
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Figure 9: Elimination of 2-edge boundary obtuse triangles

Note that, the elimination of 2-edge boundary obtuse triangles with small-
est interior edge might introduce triangles with angles less than 30°. The
number of involved triangles depends on the number of point insertions and
on the number of diagonal swapping made to eliminate the 2-edge boundary
obtuse triangles.

Figure 10 illustrates the more complex case arising when interfaces with
several interface edges converge to a common vertex A. In this case we
eliminate the obtuse angles by Delaunay insertion of the midpoint M of the
smallest interface edge and a point N; on each edge j so that the distance
between N; and A is equal to the distance between M and A. Thus, isosceles
triangles are generated around A.

Figure 10: Adjacent boundary obtuse triangles
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Proposition 2 The number of point insertions to eliminate N boundary
obtuse angles is O(N).

Corollary 2 The final triangulation obtained having nonobtuse boundary
and interfaces triangles is a Delaunay triangulation.

7.2.1 Examples

Figure 11(a) shows a strip geometry with an ”interior” interface edge. As
expected, the number of inserted points to destroy the boundary and interface
obtuse angles is less than or equal to the number of boundary obtuse triangles
as shown in Table 1.
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Figure 11: Example 1

Example 1

Delaunay | LEPP-Del. | Final mesh
vertices 6 99 116
triangles 6 128 149
min. angle 1.00 30.77 30.77
aver. min. angle 4.10 43.53 44.72
max. angle 175.52 108.16 106.60
aver. max. angle 144.80 83.65 81.68
b-obtuse triangles 2 21 0

Table 1: Statistical information for the example 1 (Figure 11)

Figure 12(a) shows a two circles polygon with interior interface edges.
The number of inserted points to eliminate boundary and interface obtuse
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triangles (shown in Table 2) is in complete agreement with the theory. After
the elimination of 2-edge boundary obtuse triangles, a small number of in-
terior triangles with minimum angle less than 30° might appear. This is the
case of this example where 16 triangles with minimum angle less than 30°
still remain in the final mesh (obtained after the elimination of the boundary
or interface obtuse triangles). These bad quality triangles could be easily
eliminated by using the LEPP-Delaunay algorithm once more. It should be
pointed out here however that some small geometry constrained angles, that
can not be improved due to the geometry constraints of the problem, also

appear in the final mesh.
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Figure 12: Example 2
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Example 2

Delaunay | LEPP-Del | Final mesh
vertices 100 272 291
triangles 104 434 463
min. angle 0.84 30.06 12.40
aver. min. angle 15.73 43.15 42.39
max. angle 172.49 115.17 126.820
aver. max. angle 111.87 79.80 80.49
b-obtuse triangles 9 8 0

Table 2: Statistical information for the example 2 (Figure 12)
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8 Terrain modeling application

In this section, we consider the application of a (3D) surface LEPP-Delaunay
algorithm (for improving a 3D-surface triangulation) combined with a sim-
plification algorithm for terrain models in order to obtain good quality tri-
angular meshes from digital elevation models.

A terrain is the graph of an scalar function of two variables. The function
gives the elevation of each point in the domain. Terrain models are widely
used in visualization and computer graphics applications such as geographic
information systems, flight simulators and video games.

The most common source of terrain elevation data is the digital eleva-
tion model (DEM) which is basically a two-dimensional floating point height
array. Several alternative representations have been proposed, including con-
tour lines, quad-trees, and triangular irregular networks (TIN).

Triangulations stand out as being one of the most convenient formats
for rendering and other geometric manipulation operations. The automatic
generation of TINs from DEM models is an important research area and is
the main topic of this section.

8.1 The 3D surface LEPP-Delaunay algorithm

In this context the sphere criterion is used in the Delaunay algorithm: the
sphere criterion for data dependent Delaunay triangulations states that a
triangulation 7' of a set of points P is Delaunay if and only if no point of P
is interior to the circumsphere of any triangle of 7. It means that most of
the three-dimensional triangles are nearly equiangular.'®

If the diagonal of any quadrilateral formed by two adjacent triangles of a
Delaunay triangulation 7' is replaced by the opposite diagonal, then points
of T will be interior to the circumsphere of these adjacent triangles. If the
application of this criterion to each edge of an arbitrary triangulation 7' does
not cause any edge swapping (ie. every edge is locally optimal), then T is a
data dependent Delaunay triangulation.

The LEPP concept of the Definition 6 is easily extended to 3D surface
triangulations by using the Euclidean distance in R®.

However, since the 3D surface LEPP-Delaunay algorithm does not work
properly for triangles located in areas with high local curvatures, a new
geometric strategy has been developed to handle this problem.
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Figure 13: Local curvature angle used for three dimensional triangulations.

The local curvature angle 6 of a pair of adjacent triangles ¢; and ¢, (Fig-
ure 13) is defined as § = arccos(n; -ny) where n; is the normal to the triangle
t;. We define constrained edges e, as all those edges located at the boundary
of the mesh or whose local curvature angle 8. is greater than or equal to
a 0,4, threshold. These edges will not be swapped by the data dependent
Delaunay algorithm.

Triangles with minimum angle o formed by two constrained edges will
not be improved (the data dependent Delaunay triangulation algorithm will
never swap constrained edges), and consequently, these minimum angles will
not be removed from the triangulation.

Finally, by combining all the previous techniques of this section, we can
formulate a simple and effective algorithm to improve the geometric quality
of terrain triangulations, which guarantees the construction of good quality
triangulations. The algorithm depends both on a threshold angle 6,,,., used
to decide which edges are constrained (having value smaller than or equal to
180°), and on a threshold angle i, used to specify the minimum angle of
all the triangles in the final triangulation.

8.2 Terrain simplification

Simplification of terrain surfaces is an important research area in computer
graphics and geometric modeling. The terrain simplification algorithm is
based on the combination of a greedy point insertion'? and the extended
LEPP-Delaunay algorithm for terrain meshes. The algorithm starts with a
simple triangulation of the domain and, on each step, applies the refinement
algorithm over the worst triangles in the triangulation to reduce the inter-
polation error in the current approximation of the digital elevation model.
Whenever a new point is inserted in the triangulation by the LEPP-Delaunay
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algorithm, its elevation is adjusted to fit the underlying digital elevation
model.

8.3 Empirical results

The simplification LEPP-Delaunay algorithm for terrain surfaces produces
good quality approximations (including good quality triangles) from DEM
models.

Figure 14 illustrates different triangulations generated by the LEPP sim-
plification algorithm from a digital elevation model of 346x452 points. The
triangulations obtained include 4, 43, 275 and 937 vertices respectively, with
maximal vertical error of 16.75, 6.1, 2.65 and 1.4 meters respectively, with
the error defined as follows:

Error = max(H(z,y) — H*(z,v)),

(:):,y)

where H(z,y) is the height value corresponding to DEM model and H*(z,y)
is the height value corresponding to the triangular approximation.
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Figure 14: Triangulations generated by the simplification algorithm from a
digital elevation model.
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Figure 15: Triangular irregular networks generated by the LEPP simplifica-
tion algorithm from digital elevation models of terrain surfaces.
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