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Abstract. In this paper we discuss the automatic construction of
quality nonobtuse boundary Delaunay triangulations of polygons such as
needed for control volume or finite element method applications. These
are Delaunay triangulations whose smallest angles are bounded and, in
addition, whose boundary triangles do not have obtuse angles opposite
to any boundary or interface edge. The method we propose in this paper
conststs on: (1) The construction of a constrained (good gquality) De-
launay triangulation of the polygon by using a Lepp-Delaunay algorithm
(based on the longest-edge propagation path of target triangles); (2) A
postprocess step which eliminates obtuse angles by Delaunay insertion of
a finite number of adequate points on boundary or interface edges.

keywords. Nonobtuse triangulation, Delaunay meshes, Voronoi diagram, con-
trol volume discretization method, box method.

1 Introduction

The numerical solution of partial differential equations (PDEs) is invaluable in
design and optimization in many fields of engineering. The spatial discretiza-
tion (mesh) of the structure to be simulated, i.e. its subdivision in cells, is
key to the accuracy of the computed solution. An appropriate mesh should
fulfill several requirements. First, it must provide a reasonable approximation
of the geometry to be modeled, in particular of its boundary and internal ma-
terial interfaces. Second, it is extremely important to accurately approximate
all internal quantities relevant to the solution of the PDEs. Third, each cell
must fulfill certain geometric constraints imposed by the numerical integration
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method: if the PDEs are solved with the finite element method, no angle must
be smaller than some bound supplied a priori. However, if the equations are
solved using a control volume discretization method(CvM)[1], the center of the
smallest circumcircle that surrounds each boundary element must be inside
the region of the element [2]. For two dimensional geometries (2-D) this means
that the angle opposite to a boundary edge must be a nonobtuse angle.

The CVM is very popular in the numerical simulation of semiconductor
devices [1, 3, 4, 5]. In 2-D, both triangulations and mixed element meshes have
been used. A review of previous work on this area can be found in [6, 7]. A
more recently approach is the one presented in [8] based on the sphere packing
technique [9]. All these approaches generate meshes without obtuse angles.

This paper presents a new algorithm to generate good quality 2-D meshes
for both control volume discretization and finite element method which extends
the Lepp-Delaunay algorithm introduced by Rivara in [10]. This kind of meshes
are also very useful when problems are solved combining both methods. For
example, Biirgler [3] uses the CVM method (voronoi diagram) to obtain the
numerical solution of the Poisson equation and the finite element mesh for
grid adaption and error estimation. This requires the combination of good
quality meshes and well shaped Voronoi boxes. In particular, the minimum
angle should be bounded and boundary triangles should not have obtuse angles
opposite to any boundary edge or interface edge.

The method we propose in this paper, based on the use of longest-edge
bisection techniques [11], consists on two steps: (1) The construction of a good
quality (constrained) Delaunay triangulation (CDT) of the polygon having
interior angles comprised between 30° and 120° [10]; (2) A postprocess step
which eliminates boundary obtuse triangles by combining longest-edge inser-
tion points, the Delaunay algorithm and a new treatment for a certain type of
boundary obtuse triangles.

The construction of the good quality (constrained) Delaunay triangula-
tion consists of: (a) The generation of an initial constrained Delaunay trian-
gulation (which essentially uses the polygon vertices), and b) the use of an
Lepp-Delaunay algorithm which improves the quality of the mesh so that the
minimum angle is greater than or equal to 30°. The basic Lepp-Delaunay
improvement strategy uses the Longest-Edge Propagation Path of the target
triangles (to be either refined and/or improved in the mesh) in order to decide
which is the best point to be inserted, to produce a good-quality distribution of
points. This strategy is repeatedly used until the target triangle is destroyed.

The step designed to eliminate boundary obtuse triangles of polygonal re-
gions considers three cases: (a) triangles with only one boundary edge which
is opposite to the obtuse angle, (b) triangles with two boundary edges and one
of them opposite to the obtuse angle, and (c) triangles with three boundary



edges. The case (a) is solved by inserting the midpoint at the boundary edge.
Since the obtuse angle is smaller than or equal to 120°, the insertion of only
one point is required. Some diagonal swapping might be necessary. For the
case (b), a boundary isosceles triangle of the largest edges equal to half the
smallest boundary edge of the target triangle is constructed. This construc-
tion can produce an obtuse triangle with one boundary edge, which is in turn
eliminated by the Delaunay insertion of the midpoint of its longest edge. This
point insertion can again produce a new boundary obtuse triangle, with largest
angle smaller than the previous one and so on. The boundary obtuse trian-
gles are eliminated after the insertion of a finite number of points. A triangle
with three boundary edges (case (c)) is a particular case. Depending on the
angles of the triangle, one or two isosceles triangles with two boundary edges
are generated and a finite number of points inserted.

For obtuse triangles with one interface edge the same strategy as for case
(a) is applied. For triangles with two or more interface edges adjacent to
other obtuse triangles with two boundary edges, isosceles triangles for the new
triangles which keep two interface edges are constructed. Since the boundary
obtuse triangles are adjacent, the number of points inserted on shared edges is
bounded by the edge that requires the highest number of point insertions.

The final mesh (having no boundary obtuse angles and without interface
obtuse angles) is a Delaunay triangulation even for the triangles lying at the
boundary and interface.

2 Basic concepts and definitions

Definition 1 A boundary triangle is any triangle that has at least one edge on
the geometric boundary or on a material interface (boundary edge).

Definition 2 A boundary obtuse triangle is any triangle that has a boundary
edge opposite to its obtuse angle.

Definition 3 An interface obtuse triangle is any triangle that has an interface
edge opposite to its obtuse angle.

Definition 4 An 1-edge boundary triangle is any triangle that has ezactly one
boundary or interface edge

Definition 5 An 2-edge boundary triangle is any triangle that has exzactly two
boundary or interface edges.

Definition 6 A boundary constrained angle is an angle that is defined by two
boundary edges. This angle can not be modified.



Definition 7 Let P be a polygon with material interfaces. A tessellation T of
P is appropriate for the CVM [1, 2] (well-shaped) if

(i) T is a Delaunay tessellation,

(11) The center of the circumcircle (Voronoi Point) that surrounds each bound-
ary triangle lies in the same polygon as the boundary triangle.

Figure 1: 2-D Delaunay triangulations and their Voronoi diagrams. Figure
(a) shows an acceptable triangulation for the cvM, and Figure (b) shows an
unacceptable triangulation (the Voronoi point v is outside the boundary obtuse
triangle defined by p;, pr,p;, where p;pr is a boundary edge)

Theorem 1 (Thales) Let t be a triangle defined by the vertices A,B, and C.
If the triangle t lies on a circumcircle so that one of its edges is equal to the
diameter of the circumcircle, then the triangle is a right triangle (Figure 2(a)).

The Thales theorem can be also interpreted in the following way: If the
circle with center in the midpoint M of AB and diameter AB includes the
point C on its boundary, the angle a is a right angle and the center of the
circumcircle of the triangle (C;) coincides with M (Figure 2(a)); if the point C
is outside this circle, « is a nonobtuse angle and the center of the circumcircle
of the triangle (C;) is inside the triangle (Figure 2(b)) and if the point C is
inside the circle, a is an obtuse angle and the center of the circumcircle of the
triangle (C1) is outside the triangle (Figure 2(c)). This analysis will be used
later to show if a particular Voronoi point C; is inside or outside a triangle

ABC.

3 Preliminary concepts: the Lepp(t) and geo-
metrical properties

This section reviews the Lepp concept [10] and summarizes some geometrical
properties introduced in [12]:



Figure 2: (a) Thales theorem: a = 90°, (b) Center (C;) of the circumcircle
that surrounds t is inside the triangle (c) Center (C) of the circumcircle that
surrounds t is outside the triangle (a > 90°)

Definition 8 For any triangle to of any conforming triangulation T, the Longest-
Edge Propagation Path of to will be the ordered list of all the triangles ty , tq,
ty, ..tn_1, t,, such that t; is the neighbor triangle of t;_; by the longest edge of
ti—1, for i = 1,2,.., n. In addition we shall denote it as the Lepp(to).

Proposition 1 For any triangle ty of any conforming triangulation of any
bounded 2-dimensional geometry, the following properties hold: (a) for any t,
the Lepp(t) is always finite; (b) The triangles to , ti,..., to—1, have strictly
increasing longest edge (if n > 1); (c) For the triangle t,, of the Longest-Edge
Propagation Path of any triangle to, it holds that either: (i) t, has its longest
edge along the boundary, and this is greater than the longest edge of t,,_1, or
(1) t, and t,_; share the same common longest edge.

Definition 9 Two adjacent triangles (t, t*) will be called a pair of terminal
triangles if they share their respective (common) longest edge. In addition t
will be a terminal boundary triangle if its longest edge lies along a boundary
side.

Note that the Longest-Edge Propagation Path of any triangle t corresponds
to an associated polygon, which in certain sense measures the local quality
of the current point distribution induced by t. To illustrate these ideas, see
Figure 7(a), where the Longest-Edge Propagation Path of ¢y corresponds to
the ordered list of triangles (to, t1, ta, t3). Moreover the pair (¢2, t3) is a pair
of terminal triangles.

The definition 8 should be slightly modified to consider the case where the
longest edge is not unique. In such a case, the longest edge that produces the
shortest path should be selected.



Definition 10 For any input PLSG (planar straightline graph) that defines a
general polygon to be triangulated, the geodesic distance between two points of
the polygon is defined as the shortest path that stays within the interior of the
polygon. In addition points P and @ will be called geodesic interior points if the
geodesic distance between both points is equal to the shortest Fuclidean distance

between points P and Q (see Figure 8). Otherwise they will be geodesic exterior
points.

Figure 3: Points P and @ (P and R) are geodesic interior (exterior) points.

Definition 11 For any input PLSG which defines a general polygon to be tri-
angulated, three points A,B,C contribute to a valid (Delaunay constrained)
triangle t in a CDT if (a) The vertices A, B, C, are geodesic interior points
between them; and (b) The circumcircle through the points A,B,C contains no

other geodesic interior point (with respect to the points A,B,C,) in its interior
(see Figure 4).

=
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B

Figure 4: Triangle ABC is a valid Delaunay triangle



Proposition 2 Lett be any triangle t = t(A, B,C) of longest-edge AB. Then
for any neighbor triangle t* that shares side AB with t, the pair (t,t*) forms a
pair of Delaunay terminal triangles if and only if the third vertex of t* belongs
to the region R = CyNCg — Co — Cy, where Cy,Cpg, y Ce are circles of radius
equal to the length of AB and respective centers A, B and C; and C; is the
circumcircle of triangle t.

Proof. It follows from the fact that the pair (t,t*) is a pair of terminal
triangles over a Delaunay triangulation and the conditions that such a pair of
triangles hold.O

Figure 5 illustrates three different cases of regions R. A detailed proof can

be found in [12].

m
S

Figure 5: Geometrical place for the 4th vertex (denoted by region R) in a pair
of terminal triangles

The following Theorem [12] states the geometrical conditions which assure
that (¢,t*) is a pair of Delaunay terminal triangles. In this case the third vertex

of t* must belong to R # ¢.

Theorem 2 Let 7 be any CDT. Then for any pair of Delaunay terminal
triangles (t,t*) in 7, the following property holds: t is an obtuse triangle if and
only if the distance d between the circumcenter P; of t and the longest-edge of

t satisfies that 0 < d < 3, where r is the circumradius of t.

Proof. The result follows by finding the limit case where R reduces to
one point (C, intersects Cy only in one point), which holds for d=r/2 (See
Figure 5(c)).0

Corollary 3 For any pair of Delaunay terminal triangles (t,t*), t is an obtuse
triangle if and only if its largest angle v holds that v < 120°; and t* is an acute-
angled triangle.



4 Lepp-Delaunay improvement triangulation al-
gorithm and properties

In this section we use an improved version of the Lepp-Delaunay algorithm
(introduced in [10]) which allows the quality improvement of any triangulation
in the sense that a minimum angle of 30° is obtained for any angle that is a
non-boundary constrained triangle.

The basic Backward-LE-Delaunay improvement procedure uses the Longest-
Edge Propagation Path of the target triangles (to be either refined and/or im-
proved in the mesh) in order to decide which is the best point to be inserted,
in order to produce a good-quality distribution of points. This procedure is
repeatedly used until the triangle t is destroyed. Note that this basic algorithm
does not consider the fact that t could be a boundary triangle.

Basic Backward-LE-Delaunay-Improvement (t, T){
while t remains without being modified do
Find the Longest-Edge Propagation Path of ¢
Perform a Delaunay insertion of the point p
(midpoint of the longest edge of the last triangle
in the Lepp(t))
end while

}

Figure 6: Backward-LE-Delaunay improvement procedure

We have used the word improvement instead of bisection or refinement.
This is to explicit the fact that one step of the procedure does not necessar-
ily produce a smaller triangle. More important however, is the fact that the
procedure improves the triangle in the sense of Theorem 4. The proof of this
theorem can be found in [10].

Theorem 4 For any Delaunay triangulation T, the repetitive use of the Backward-
LE-Delaunay-Improvement technique over the worst triangles of the mesh with
smallest angle < 30° produces a quality triangulation of smallest angles greater
than or equal to 30°.

Corollary 5 The use of Lepp-polygon triangulation algorithm with ¢ = 30°
produces a Delaunay triangulation such that obtuse triangles have angles smaller
than or equal to 120°.

For an illustration of this idea see Figure 7 where the triangulation (a) is
this initial Delaunay triangulation with Lepp(to) = to,%1,%2,ts, and the trian-
gulation (b), (¢) and (d) illustrate the complete sequence of point insertions



needed to improve ¢o. In this example, the improvement (modification) of #o
implies the automatic Delaunay insertion of three additional Steiner points.
Each one of these points is the midpoint of the last triangle of the current
Lepp(to). It should be pointed out here that each Delaunay point insertion
essentially improves the local point distribution in the current Lepp(¢o).

/7

8

Figure 7: Backward Longest-Edge Delaunay improvement of triangle ¢,
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Figure 8: Boundary treatment technique

By combining the basic Lepp-procedure and adequate boundary consid-
erations, a simple 2-dimensional quality-triangulation algorithm is obtained.
The special boundary treatment technique is to avoid the insertion of unde-
sirable interior points. To illustrate this idea consider the simple example of
Figure 8(a). In this case the naive use of the Lepp point insertion algorithm
would produce undesirable interior points (as shown in Figure 8(b)).

The Lepp-improvement algorithm including the special boundary treatment
can be formulated as shown in Figure 9.



Quality-Polygon-Triangulation ( P, ¢ ) {
Input: A general polygon P (defined by a set of vertices
and edges); and a tolerance parameter (§ < 3070)
Construct T, a constrained (boundary) Delaunay
triangulation of P.
Find S, the set of the worst triangles t of T (of smallest
angle < §)
for each t in S do
Backward-LE-Delaunay-Improvement (T, t)
Update the set S (by adding the new small-angled
triangles and eliminating those destroyed throughout
the process)
end for

}

Backward-LE-Delaunay-Improvement (T, t) {
while t remains without being modified do
if (t* has a boundary edge 1, and 1 is not the
smallest edge of t,)
select p, the midpoint of 1
else
Find the Lepp(t), and t* the last triangle in
the Lepp(t)
select p midpoint of the longest edge of t*
end if
Perform the Delaunay insertion of p
end while

}

Figure 9: Lepp-procedure with boundary considerations

Note that: (1) d is a threshold parameter less than or equal to 30° that
can be easily adjusted; (2) in practice we have worked with a constrained
Delaunay triangulation of the 2-dimensional geometry (Chew, 1989); (3) the
quality-triangulation algorithm maintains and processes the triangles of the set
S in any order.

10



5 Nonobtuse boundary Delaunay triangulations

In this section we shall show that by using a postprocess step over the quality
mesh generated with the Lepp-polygon triangulation algorithm described in the
previous section (with an ¢ = 30°), the unacceptable triangles having obtuse
angles opposite to a boundary or interface edge are eliminated.

Furthermore, we shall show that the resulting triangulation is a Delaunay
triangulation and not a constrained Delaunay triangulation.

5.1 Non-obtuse boundary triangles for polygons with-
out interfaces

Boundary obtuse triangles with one, two or three boundary edges require dif-
ferent strategies to eliminate the obtuse angle.

5.1.1 Triangles with one boundary edge

Theorem 6 Let T be any improved Delaunay triangulation of any PSLG geom-
etry (with smallest angle greater than or equal to 30°). Let t be a boundary
obtuse triangle of 7 and e the unique boundary edge of t. Then (a) the obtuse
triangle is eliminated by inserting the midpoint of e and (b) the new generated
boundary triangles are nonobtuse triangles.

Proof. Let t be any boundary obtuse triangle of 7 of vertices A,B,P where
AB is the unique boundary edge of t. In order to prove part (a) of the theorem
consider the extreme case of the isosceles obtuse triangle ABC of longest edge
equal to AB, largest angle equal to 120° and smallest angles equal to 30° that
restrict the geometry of t (See Figure 10(a)). In effect the vertex P of t must
belong to the region limited by the prolongation of the edges BC and AC and
the circle of diameter AB. We shall show that for the extreme triangle ABC,
(1) the insertion of the midpoint M of AB generates two nonobtuse boundary
triangles CBM and CMA and (2) the Delaunay point insertion step (diagonal
swapping) does not introduce obtuse angles of vertex C (triangles CBM and
CMA are boundary nonobtuse triangles). Let suppose that triangle CBM has
an obtuse angle of vertex C. In such a case the point C of this triangle should
be inside of the circle with center M; and diameter BM. However, this is not
possible because according to theorem 2, for the specific triangle ABC, the
distance between C and M is 7/2 (where 7 is the radius of the circumcircle
that surrounds t) and the radius of the circles with centers M; and M, is less
than r. Thus, region CDE does not intersect these circles, which implies that
the circles do not contain the vertex P of t, for any valid vertex P.
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To proceed with the second part of the proof consider the region Q in Fig-
ure 10(b) which identifies the location of a vertex D so that a diagonal swapping
is required after the insertion of the point M. The diagonal swapping gener-
ates two new triangles where one of those, the triangle MDA, is a boundary
triangle. Since the smallest angle of triangle ACD is 30°, the new boundary
triangle is nonobtuse because the circle with diameter AM does not include
D. The shortest distance between D and the edge MA is r and the circle with
center M5 has a radius less than r.O

(a) (b)

Figure 10: (a)The shadow region shows the possible location of the P vertex
so that ABP is an obtuse triangle on P, (b) Diagonal interchange (AC to MD)

does not produce a new boundary obtuse triangle

Corollary 7 For any improved Delaunay triangulation of any PLSG geometry
(without interfaces) the number of point insertions (Nip) required to eliminate
N I-edge boundary obtuse triangles is equal to N.

5.1.2 Triangles with two boundary edges

The elimination of 2-edge boundary obtuse triangles can be divided into two
cases:

1. The smallest edge and the longest edge of the triangle are boundary edges
(edges BC and BA in Figure 11). Note that in this case, the boundary
constrained angle is 8 with 8 > a > 30° (The angle of vertex A is smaller
than or equal to the angle of vertex B). The strategy of the previous
section also applies to this case because the insertion of the AB midpoint

12



does not create a new boundary obtuse triangle. In addition, notice that
8 must be greater than or equal to 30° because if 3 is less than 30°, a
would be less than 30° too and then, the Lepp improvement procedure
would not have finished yet.

Figure 11: Region of valid points for C

2. The smallest edge is an interior edge. In this case, the boundary con-
strained angle 3 must be less than a. We can not apply the same strategy
as for the l-edge boundary obtuse triangles because after two applica-
tions of the strategy, a new triangle similar to the original one will be
obtained, as shown in Figure 12 (¢, is similar to ¢4). One additional prob-
lem is that because of the boundary restrictions the minimum angle of
this triangle can be less than 30° and consequently, the obtuse angle can
be greater than 120°.

Figure 12: ¢, is similar to ¢4

The essential ideas of the algorithm to handle case 2 are the followings:
An 2-edge boundary isosceles triangle of the largest edges equal to half the
smallest boundary edge of the target triangle is constructed (Figure 13(b)).
This construction can produce an l-edge boundary obtuse triangle ¢;, which

13



is in turn eliminated by the Delaunay insertion of the midpoint of the longest
edge of ¢; (Figure 13(c)). This can again produce a new boundary obtuse
triangle ¢;, with largest angle smaller than the previous one and so on. The
boundary obtuse triangles are eliminated after the insertion of a finite number
of points. Note however that, since the boundary constrained angle can be less

(a (b)
(© (d)

Figure 13: Elimination of 2-edge boundary obtuse triangles

than 30°, some l-edge boundary obtuse triangles with obtuse angle greater
than 120° can be produced. To illustrate see Figure 13.

The algorithm to handle 2-edge boundary obtuse triangles where the small-
est edge is an interior edge can be schematically described as shown in Fig-
ure 14.

Theorem 8 Let t be a 2-edge boundary obtuse triangle with interior smallest

edge. (1) If the angle of vertez B is greater than By (where By is a constant

to be determined later), the obtuse angle is eliminated by insertion of exactly

two points by creating a 2-edge boundary isosceles triangle (2) If the angle of

vertex B is less than By as shown in Figure 16, an isosceles triangle is created

as in point (1) and if 1-edge boundary obtuse triangles are generated, they are
C—M,

eliminated by inserting a number of points bounded by + < 22==.
—

Proof. In order to eliminate 2-edge boundary obtuse triangles with interior
smallest edge (8 is the smallest angle of the triangle), we build a 2-edge bound-
ary isosceles triangle as shown in Figure 15. The construction of an isosceles
triangle avoids the propagation of obtuse angles opposite to a boundary edge.
The insertion of only two points is required to eliminate the obtuse angle if
the angle 3 is greater than or equal to 3y because in this case v; < 90° (see
Figure 15). The value of (B, that produces v; = 90° can be found by using the
isosceles properties of triangle BNM and the cosines theorem. Thus, the follow-
ing three equations that relate 6 and 3 are obtained. They allow to compute
4 giving values to [3.
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Input: t is a 2-edge boundary obtuse triangle with smallest
interior angle and T is the current triangulation

Compute the midpoint M of the smallest boundary

edge of t ( See Figure 15)

Compute the point N so that the length of segment BM

is equal to the length of segment BN

Perform the Delaunay insertion of N and M

(This reduces to join points N and M _j; and points N and C)

s=¢

if triangle {1 of vertices NAC is a 1-edge boundary obtuse angle
s ={t1}

end if

while S is not empty
Get one of the triangles t of S
Perform the Delaunay insertion of the longest edge midpoint
of ¢
if a new triangle {1 is an 1-edge boundary obtuse triangle
S =5U {tl1}
end if

end while

Figure 14: Algorithm to eliminate 2-edge boundary obtuse triangles

m? = 2d* — 2d® cos(B3)

22 =m?+ d22mdcos(90 + g)

m?=d? + 2% — 2dz cos(4)

In addition, since a must be greater than 3, the condition a = 3y is imposed
to compute the maximum value of ; for any triangle that satisfies the condi-
tions of this theorem and has a boundary constrained angle 3y. The following
relation is thus obtained:

15



v =180 — 28, — & < 90°

Numerically, we obtain that if 3, is greater than 32.54°, § is greater or equal
to 24.93°, and then 7, is less than 90°.

a>pf

3 >32.54
0 >24.93
y <90

Figure 15: Minimum value of (8 so that it is not necessary to insert additional
points

In case 8 < B as shown in Figure 16(a), the new l-edge boundary trian-
gle NCA might be obtuse. If this triangle is a boundary obtuse triangle, a
boundary edge midpoint is inserted and the Delaunay criteria is applied. After
this insertion, new l-edge boundary obtuse triangles might appear. An upper
bound of the number of point insertions can be obtained if we consider that the
point insertions finish when the boundary edge is the smallest edge of the 1-
edge boundary triangles. Since the smallest edge of the quadritateral N AC M,
is N My, the number of point insertions on each boundary edge is bounded by

b=t

Corollary 9 The number of points inserted (Vo) to eliminate N 2-edge bound-
ary obtuse triangles with smallest interior edge is:

N C; — My,
V2b(tj) < 2N + 22[‘]‘;0.7_;;1
J J

7=1

where t; is the 2-edge boundary obtuse triangle j.

5.2 Nonobtuse boundary for PLSG geometries

Boundary obtuse angles opposite to a polygon interface as shown in Figure 17
can be handled in the same way as l-edge boundary obtuse triangles. Anal-
ogously to this previous case, the insertion of the midpoint of the interface

16



(a) (b) ()
Figure 16: Boundary obtuse triangle with a constrained angle less than 3,

(common) edge AB destroys both obtuse angles and does not generate obtuse
angles opposite to the interface edges.

Corollary 10 The number of vertices (Vi;) inserted to eliminate N 1-edge
interface obtuse triangles is bounded as follows: % <V <N

Figure 17: Obtuse angles opposite to a material interface

Figure 18 illustrates the more complex case arising when interfaces whith
several interface edges converge to a common vertex A. In this case we elim-
inate the obtuse angles by inserting the midpoint M of the smallest interface
edge and a point N; on each edge 7 so that the distance between V; and A is

17



equal to the distance between M and A. Thus, isosceles triangles are generated
around A. We then eliminate the 1-edge boundary obtuse triangles using the
same elimination strategy applied to 1-edge boundary obtuse triangles shown
in Figure 14. Since the boundary obtuse triangles are adjacent, the number
of points inserted on shared edges is defined by the triangle that requires the
highest number of point insertions.

The previous strategy is also applied if some of the triangles of the group
of adjacent 2-edge boundary triangles are nonobtuse triangles. Otherwise,
the insertion of points to destroy only the 2-edge boundary obtuse angles of
the group can produce new 2-edge boundary obtuse triangles in the adjacent
triangles that were 2-edge boundary nonobtuse triangles.

Corollary 11 The number of vertices (Va,) inserted to eliminate N convergent
boundary obtuse triangles 1s:

min(B;N;, Bj1Nj41)

J J

L1<j<N

Vaa(4) <= N + 14 (N +1) max (NV(5),NV(j + 1))

1<G<N

Figure 18: Adjacent boundary obtuse triangles
Proposition 3 The number of point insertions to eliminate N boundary ob-
tuse angles is O(N).

Proof. Let be N;, the number of 1-edge boundary obtuse triangles, N;; the
number of -edge interface obtuse triangles, Ny, the number of isolated 2-edge
boundary obtuse triangles and N,, the number of nodes that concentrates

18



adjacent 2-edge boundary obtuse triangles. The total number of inserted points
V is:

Nay Nz,
V <= Nip+ N+ > Vau(t5) + D Vaa(4;)
Jj=1

7=1

Let be N* the number of triangles associated to the node A and t, be
the 2-edge boundary obtuse triangle that requires the highest number of point
insertions to eliminate its obtuse angle. In order to identify ¢,, we consider each
2-edge boundary obtuse triangle independently. Then, the previous expression
can be bound as follows:

N2a
V <= Nip+ Niz + (Nop + > N*)Va(t,) = O(N)

i=1

Corollary 12 Nonobtuse boundary and interfaces triangles => Delaunay tri-
angulations.

6 Examples

This section discusses the results obtained by applying the algorithm presented
in this paper to several test examples with different geometrical complexity. To
illustrate the practical behavior of the algorithm, four test problems of differ-
ent geometrical complexity have been considered: the right angled spiral of
Figure 19(a); the strip geometry with "interior” interface edge of Figure 20(a),
the two circle polygon with additional interior interface edges of Figure 21(a)
and the polygon with several constrained angles of Figure 22(a).

Tables 1, 2, 3 and 4 summarize the geometrical information of the meshes
generated throughout the automatic improvement process. Each table contains
information about the number of vertices (vertices), the number of triangles
(triangles), the minimum angle (min. angle), the average value of the minimum
angles, the maximum angle (max. angle), the average value of the maximum
angles and the number of boundary obtuse triangles (b-obtuse triangles) that
still remains after applying a Delaunay algorithm (Delaunay), after applying
the Lepp-Delaunay strategy (Lepp-Delaunay) and after applying the strategy
to eliminate boundary obtuse angles (Final mesh). In particular, when the
mesh has 2-edge boundary obtuse triangles with smallest interior edge (trian-
gles whose quality can be only partially improved by the Lepp-improvement
procedure because of their boundary constrained angles), the rows that give
angle information contain two values: the left one corresponds to the set of
Lepp-improvable triangles and the right one considers the set of triangles with
boundary constrained angles.
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Figure 19: Example 1

Some triangles with angles less than 30° can be introduced while eliminating
2-edge boundary obtuse triangles with smallest interior edge. They are located
in the neighborhood of the original boundary obtuse triangles. The number
of triangles with minimum angle less than 30° is shown table 3 and 4 close
to the number of triangles of the final mesh. For example, in example 3, the
number of triangles with boundary constrained angle less than 30° are 4 and
the number of triangles with angle less than 30° generated while eliminating
the 2-edge boundary obtuse triangles are 16. The number of involved triangles
depends on the number of point insertions and on the number of diagonal
swapping made to eliminate the boundary obtuse angle.
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Example 1

Delaunay | Lepp-Del | Final mesh
vertices 16 130 158
triangles 18 128 156
min. angle 2.59 30.53 30.53
aver. min. angle 6.62 40.76 43.31
max. angle 145.53 111.03 112.52
aver. max. angle 126.00 83.96 80.00
b-obtuse triangles 8 28 0

Table 1: Statistical information for the example 1 (Figure 19)

(b)
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Figure 20: Example 2
Example 2
Delaunay | Lepp-Del. | Final mesh
vertices 6 99 116
triangles 6 128 149
min. angle 1.00 30.77 30.77
aver. min. angle 4.10 43.53 44.72
max. angle 175.52 108.16 106.60
aver. max. angle 144.80 83.65 81.68
b-obtuse triangles 2 21 0
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Table 2: Statistical information for the example 2 (Figure 20)




Figure 21: Example 3

Example 3

Delaunay Lepp-Del | Final mesh
vertices 100 272 291
triangles 104 434 463 (16,4)
min. angle 0.84 30.06-14.99 | 12.40-14.99
aver. min. angle 15.73 43.15-16.87 | 42.39-16.87
max. angle 172.49 | 115.17-129.32 | 126.82-82.50
aver. max. angle 111.87 | 79.80-124.87 | 80.49-82.56
b-obtuse triangles 9 8 0

Table 3: Statistical information for the example 3 (Figure 21)
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Figure 22: Example 4

Example 4

Delaunay Lepp-Del. | Final mesh
vertices 19 65 (s
triangles 18 80 94 (5,4)
min. angle 5.19 30.34-10.30 | 17.91-10.30
aver. min. angle 25.91 43.34-20.52 | 41.88-20.52
max. angle 168.69 | 112.61-116.56 | 113.62-90.00
aver. max. angle 105.85 | 80.29-100.77 | 80.78-86.32
b-obtuse triangles 10 6 0

Table 4: Statistical information for the example 4 (Figure 22)



Tabla 5 compares the theoretically expected number of point insertions
of the postprocess algorithm to eliminate boundary obtuse angles with the
number of point insertions obtained in practice. The table shows that the
implemented algorithm confirm the expected theoretical results.

Number of point insertions during
the elimination of boundary obtuse triangles
Nip | Ni; | No expected | inserted
Example 1 | 28 0 0 28 (Cor. 7) 28
Example 2 | 13 8 0| 10.5< N < 21 (Cor. 10) 17
Example 3 4 0 4 20 (Prop. 3) 19
Example 4 3 0 3 16 (Prop. 3) 12

Table 5: Number of point insertions while eliminating boundary obtuse angles

7 Conclusions

In this paper we present a new automatic algorithm to generate good quality
meshes for the control volume discretization and the finite element methods.
The resulting triangulations are quality Delaunay triangulations, whose bound-
ary triangles do not have obtuse angles opposite to boundary or interface edges.
The algorithm consists of two steps: (1) The generation of good quality con-
strained Delaunay triangulation. The quality of any mesh is improved using
the Lepp-Delaunay strategy: the angles are bounded by 30° and 120°. In prac-
tice, the 2-dimensional triangulations obtained is size-optimal [13]. The use of
this improvement technique simplifies very much the next step. In addition,
the quality mesh has very few boundary obtuse angles. (2) The elimination
of boundary obtuse triangles. The postprocess to eliminate boundary obtuse
triangles introduces a linear number of points with respect to the number of
boundary obtuse triangles. For meshes whose domain geometry does not have
boundary constrained angles less than 32.54°, the number of inserted points
is bounded by the number of boundary obtuse triangles. Otherwise, the post-
process inserts a finite number of points that is proportional to the number of
boundary obtuse triangles.

The postprocess that eliminates boundary obtuse angles guarantees that:
(1) if after the Lepp improvement algorithm, the mesh has only 1-edge bound-
ary or interface obtuse triangles, the angles of the triangulation are bounded
by 30° and 120°. (2) If the mesh has 2-edge boundary obtuse triangle with
boundary constrained angles greater than By = 32.54°, the angles of the tri-
angulation are also bounded by 30° and 120° except in a number of triangles
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equal to the number of 2-edge boundary obtuse triangles. (3) For meshes with
any type of boundary obtuse triangles, most of the angles are bounded by 30°
and 120°. The few triangles that are not bounded are in the neighborhood of
the 2-edge boundary obtuse triangles.
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