Encuentro de tesistas - 13 of november 2012 – Valparaiso

Predicate Preserving Collision-Resistant Hashing

Philippe Camacho

Hash Functions (not cryptographic)

Collision-Resistant Hash Functions

Documents	development version can be tound under rep.//rep.openssi.org/snapsnot/.				
Source	Bytes	Timestamp	Filename		
Contribution	1422099 3	Jul 10 20:20:06 20	012 openssl-fips-ecp-2.0.1.tar.g (MD5) (SHA1) (PGP sign)		
Support	1442377 J 1407102 J	Jul 10 20:19:33 20 Jul 1 14:45:28 20	012 openssl-fips-2.0.1.tar.gz (MD5) (SHA1) (PGP sign) 012 openssl-fips-2.0.tar.gz (MD5) (SHA1) (PGP sign)		
Related	4457113 N	May 10 17:20:24 2	012 openssl-1.0.1c.tar.gz (MD5) (SHA1) (PGP sign) [LATEST]		

Predicate Preserving Collision-Resistant Hashing

How to prove efficiently that *S* ...

...

contains a 1 in position 5? starts with 0111? contains more 1's than 0's ?

Predicate: $\mathcal{P}(X, x) = True \Leftrightarrow x \in X$

Predicate: $\mathcal{P}(S, P) = True$ $\Leftrightarrow P$ is a prefix of *S*

Map

Map

How do we sign a graph?

Trivial solutions

Let n = |G|, security parameter κ

When adding a new node...

- Sign each edge
 - Time to sign: 0(1)
 - Size of signature: $O(n\kappa)$ bits
- Sign each path
 - Time to sign (new paths): O(n)
 - Size of signature: $O(\kappa)$ bits

Transitive signature schemes [MR02,BN05,SMJ05]

Security [MR02]

В

С

Sounds good, but...

- [MR02,BN05,SMJ05] for UNDIRECTED graphs
- Transitive Signatures for Directed Graphs (DTS) still OPEN
- [Hoh03]
 DTS ⇒ Trapdoor Groups with Infeasible Inversion

Transitive Signatures for Directed Trees

Previous Work

- [Yi07]
 - Signature size: $n \log(n \log n)$ bits
 - Better than $O(n\kappa)$ bits for the trivial solution
 - RSA related assumption

• [Neven08]

- Signature size: $n \log n$ bits
- Standard Digital Signatures

$O(n \log n)$ bits still impractical

Our Results

• For $\epsilon \geq 1$

- Time to sign edge / verify path signature: $oldsymbol{0}(\epsilon)$
- Time to compute a path signature: $O(\epsilon(n/\kappa)^{1/\epsilon})$
- Size of path signature:

 $O(\epsilon)$ $O(\epsilon(n/\kappa)^{1/\epsilon})$ $O(\epsilon\kappa)$ bits

Examples	$\epsilon = 1$	$\epsilon = 2$	$\epsilon = \log(n)$
Time to sign edge / verify path signature	0 (1)	0 (1)	0 (log n)
Time to compute a path signature	$O(n/\kappa)$	$O(\sqrt{n/\kappa})$	0 (log n)
Size of path signature	0 (k)	0 (κ)	$\boldsymbol{O}(\boldsymbol{\kappa} \log \boldsymbol{n})$

Pre/Post Order Tree Traversal

Pre order: a b c d e f g h i j k

Post order: c e f g d b i j k h a

Property of Pre/Post order Traversal

Proposition [Dietz82]

There is a path from **x** to **y**

$$\Leftrightarrow$$

pos(x) < pos(y) in Pre pos(y) < pos(x) in Post

Pre order: a **b** c d e f **g** h i j k

Post order: c e f g d b i j k h a

a

j

Remaining task: compare efficiently large labels.

We want: *H* collision resistant hash function + proofs

Security $HGen(1^{\kappa},n) \rightarrow PK \longrightarrow (A,B,i,\pi)$

$$Adv(A) = \Pr\begin{bmatrix}HCheck(H(A), H(B), \pi, i, PK) = True \\ \land \\ A[1..i] \neq B[1..i] \end{bmatrix}$$

Bilinear maps (pairings)

• $(p, e, G, G_T, g) \leftarrow BMGen(1^k)$

•
$$|G| = |G_T| = p$$

• $e: G \times G \to G_T$

•
$$e(g^a, g^b) = e(g, g)^{ab}$$

• e(g,g) generates G_T

AMAZING TOOL:

- Started in 2001
- Thousands of publications
 - Dedicated Conference (Pairings)

n-BDHI assumption [BB04]

$$e: G \times G \rightarrow G_T$$

$$s \leftarrow Z_p$$

$$g \text{ generator of } G$$

$$(g^s, g^{s^2}, \dots, g^{s^n})$$

The hash function

• $HGen(1^{\kappa}, n)$

 $(p, G, G_T, e, g) \leftarrow BMGen(1^{\kappa})$ $s \leftarrow Z_p$ $T = (\overline{z}^{s}, \overline{z}^{s^2}) = \overline{z}^{s^n}$

$$T:=(g^{3},g^{3},...,g^{3})$$

return PK:= (p, G, G_T, e, g, T)

• *HEval*(*M*, *PK*)

$$H(M) := \prod_{i=1}^{n} g^{M[i]s^{i}}$$

Toy example: $M = 1001 \Rightarrow H(M) = g^s \cdot g^{s^4}$

Generating & Verifying Proofs

- A = A[1..n] = 1000111001
- B = B[1..n] = 1000101100

•
$$\Delta := \frac{H(A)}{H(B)} = \frac{g^s g^{s^5} g^{s^6} g^{s^7} g^{s^{10}}}{g^s g^{s^5} g^{s^7} g^{s^8}} = g^{s^6} g^{-s^8} g^{s^{10}}$$

• $\Delta = \prod_{j=1}^{n} g^{C[j]s^j}$ with C = [0, 0, 0, 0, 0, 1, 0, -1, 0, 1]

Generating & Verifying Proofs

- $\Delta = \prod_{j=1}^{n} g^{C[j]s^{j}}$ with C = [0, 0, 0, 0, 0, 1, 0, -1, 0, 1]
- "Remove" factor s^{i+1} in the exponent without knowing s

$$\pi \coloneqq \Delta^{\frac{1}{s^{i+1}}} = \prod_{j=i+1}^{n} g^{C[j]s^{j-i-1}} = g g^{-s^2} g^{s^4}$$

• Check the proof : $e(\pi, g^{s^{i+1}}) = e(\Delta, g)$

Security [CH12]

• Proposition:

If the n-BDHI assumption holds then the previous construction is a CRHF that preserves the prefix predicate.

Proof (idea)

 A = 100010
 B = 101001
 i = 3

$$H(A) = g^{s} g^{s^{5}}$$

$$H(B) = g^{s} g^{s^{3}} g^{s^{6}}$$

$$\Delta = \frac{H(A)}{H(B)} = g^{-s^{3}} g^{s^{5}} g^{-s^{6}}$$

$$\pi = \Delta^{\frac{1}{s^{4}}} = g^{-1/s} g^{s} g^{-s^{2}}$$

Trade off

 $n = 54, \quad \kappa = 2, \quad \Sigma = \{a, b, c, d\}$ $n/\kappa = 54/2 = 27$ $\lambda = 3 \Rightarrow (n/\kappa)^{1/\lambda} = 3$

Conclusion

- We introduced the concept of Predicate Preserving Collision-Resistant Hashing
- Many open questions
 - Optimal Data Authentication
 - Relationship between predicate complexity and size for proofs
 - Apply these techniques to authenticated pattern matching
 - Find new applications...

