Strong Accumulators from Collision-Resistant Hashing

Philippe Camacho (University of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

Outline

- Basic Cryptographic Concepts
- Notion of Cryptographic Accumulator
- Our construction [CHKO08]
- Conclusion

Basic Cryptographic Concepts

- How to define security?
\square This is one of the cryptographer's hardest task.
\square A good definition should capture intuition... ... and more!
\square Community had to wait until 1984 with [GM84] for a satisfactory definition of (computational) "secure encryption".

Basic Cryptographic Concepts

- Adversary

\square With unlimited computational power
- One Time Pad, Secret Sharing
\square Computationally Bounded
(Probabilistic Polynomial Time $=$ PPT)
- Key Agreement, Public Key Encryption, Digital Signatures, Hash Functions, Commitments,...

Basic Cryptographic Concepts

- Cryptographic Assumptions
\square Most of cryptographic constructions rely on complexity assumptions.
- Factoring is hard.
- Computing Discrete Logarithm is hard.
- Existence of functions with "good" properties
\square One-way functions
\square Collision-Resistant Hash functions
\square All these assumptions require that $P \neq N P$.
\square Some assumptions are implied by others.

Basic Cryptographic Concepts

- How to prove security?
\square What we want:
- Assumption X holds (for any adversary) => protocol P is secure.
- No adversary can break $X=>$ No adversary can break P.
\square What we do:
- Suppose protocol P is insecure => X does not hold.
- Let A the adversary that breaks $\mathrm{P}=>$ We can build an adversary B that breaks X .
\square This method is sometimes called "Provable Security" or "Reductionist Security".

Basic Cryptographic Concepts

- Let's get into the details...
\square We need to quantify the probability that an adversary can compute some values.
\square Asymptotic notion
- The running time of the adversary depends on the security parameter.
- E.g: size of the secret key in the case of encryption, size of the primes for the factoring assumption.
\square Definition: (negligible function)
A function $\varepsilon: \mathbf{N} \rightarrow[0,1]$ is negligible if for every polynomial $\mathrm{q}: \mathbf{N} \rightarrow \mathbf{N}$, for k sufficiently large:
$\varepsilon(k)<|1 / q(k)|$

Basic Cryptographic Concepts

- RSA
\square Initialization
- $\mathrm{n}=\mathrm{pq}, \mathrm{p}, \mathrm{q}$ safe primes,$\Phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)=\left|Z_{\mathrm{n}}{ }^{*}\right|$
- e $\in Z_{\Phi(n)}{ }^{*}$ (encryption)
- $d \in Z_{\Phi(n)}{ }^{*}$ (decryption)
- ed $=1 \bmod \Phi(\mathrm{n})($ Euclidian Algorithm)
\square Encryption / Decryption
- x $\in Z_{n}{ }^{*}$ plaintext
- Encrypt: c = xe mod n
- Decrypt: $y=c^{d} \bmod n=x^{e d} \bmod n=x \bmod n$

Basic Cryptographic Concepts

- Assumptions
\square RSA Instance generator

$$
(\mathrm{n}, \mathrm{p}, \mathrm{q}, \mathrm{e}, \mathrm{~d}) \leftarrow \mathrm{I}(\mathrm{k})
$$

\square Factoring Assumption

$$
\operatorname{Pr}[(p, q) \leftarrow A(n): n=p q]<\varepsilon(k)
$$

\square RSA Assumption

$$
\operatorname{Pr}\left[y \epsilon_{R} Z_{n}{ }^{*} ; x \leftarrow A(n, y, e): y=x^{e} \bmod n\right]<\varepsilon(k)
$$

\square Strong RSA Assumption [BarPfi97]

$$
\operatorname{Pr}\left[u \epsilon_{R} Z_{n}^{*} ;(x, e) \leftarrow A(n, u): u=x^{e} \bmod n, e \neq 1\right]<\varepsilon(k)
$$

\square Strong RSA => RSA => Factoring (note the direction $<=$ is open)

Basic Cryptographic Concepts

- Assumptions and efficiency

\square We know how to build encryption schemes based on

- RSA Assumption
- Factoring Assumption
\square However encryption algorithms based on the RSA Assumption are much faster than those based only on the Factoring Assumption.

Basic Cryptographic Concepts

- Collision-Resistant Hash Functions
$\square \mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{k}}$
- Given x , it is easy to compute $\mathrm{H}(\mathrm{x})$.
- Given y, hard to compute x such that $H(x)=y$.
- Given x, hard to compute $x^{\prime} \neq x$ such that $\mathrm{H}(\mathrm{x})=\mathrm{H}\left(\mathrm{x}^{\prime}\right)$.
- Hard to compute $\mathrm{x} \neq \mathrm{x}^{\prime}$ such that $\mathrm{H}(\mathrm{x})=\mathrm{H}\left(\mathrm{x}^{\prime}\right)$.

This definition is not formal. Just an intuition.

Basic Cryptographic Concepts

- Formal definition for

Collision-Resistant Hash Functions
\square Definition: (1st attempt)
A function H is collision-resistant iff:
For all A : $\operatorname{Pr}\left[x, x^{\prime} \leftarrow A(): x \neq x^{\prime}\right.$ and $\left.H(x)=H\left(x^{\prime}\right)\right]<\varepsilon(k)$
\square Why does the previous definition not work?

- A() :
return ($\mathrm{x}, \mathrm{x}^{\prime}$) // Where ($\mathrm{x}, \mathrm{x}^{\prime}$) is a collision-pair

Basic Cryptographic Concepts

- Definition:
(family of collision-resistant hash functions)
$\square\left\{F_{k}\right\}_{\text {keN }}$ where $F_{k}=\left\{H \mathrm{j}, \mathrm{j} \in \mathrm{e}_{k}\right\}$ is a family of collision resistant hash functions iff:
- For all $\mathrm{j}, \mathrm{H}_{\mathrm{j}}$ can be selected efficiently,
- $\operatorname{Pr}_{\mathrm{j} \in \mathrm{J}_{\mathrm{k}}}\left[\mathrm{x}, \mathrm{x}^{\prime} \leftarrow \mathrm{A}(\mathrm{j}, \mathrm{k}): \mathrm{x} \neq \mathrm{x}^{\prime}, \mathrm{H}_{\mathrm{j}}(\mathrm{x})=\mathrm{H}_{\mathrm{j}}\left(\mathrm{x}^{\prime}\right)\right]<\varepsilon(\mathrm{k})$

Basic Cryptographic Concepts

- Assumption: Collision-Resistant Hash Functions (CRHF) exist.

Outline

- Basic Cryptographic Concepts
- Notion of Cryptographic Accumulator
- Our Construction [CHKO08]
- Conclusion

Notion of Cryptographic Accumulator

- Problem
\square A set X .
\square Given an element x we wish to prove that this element belongs or not to X.
- Let $X=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$:
$\square X$ will be represented by a short value Acc.
- Acc is the Accumulated Value
\square Given x and w (witness) we want to check whether x belongs to X.

Notion of Cryptographic Accumulator

- Participants
\square Manager
- Computes the accumulated value ...
- ... and the witnesses.
\square User
- Tests for (non)membership of a given element using the accumulated value and a witness provided by the manager.

Properties

- Dynamic
\square Allows insertion/deletion of elements.
- Universal
\square Allows proofs of membership and nonmembership.
- Strong
\square No need to trust in the Accumulator Manager.

Prior work

	Dynamic	Strong	Universal	Security	Efficiency (witness size)	Note
[BeMa94]	x	$\sqrt{ }$	x	RSA + RO	O (1)	First definition
[BarPfi97]	x		x	Strong RSA	O(1)	-
[CamLys02]		X	X	Strong RSA	O(1)	First dynamic accumulator
[LLX07]		X		Strong RSA	O(1)	First universal accumultor
[AWSM07]		x	x	Pairings	O(1)	E-cash

Prior work

	Dynamic	Strong	Universal	Security	Efficiency (witness size)	Note
[BeMa94]	π		π	RSA + RO	$\mathrm{O}(1)$	First definition
[BarPfi97]	π		x	Strong RSA	O(1)	-
[CamLys02]		π	π	Strong RSA	O(1)	First dynamic accumulator
[LLX07]		x		Strong RSA	O(1)	First universal accumultor
[AWSM07]	1	X	π	Pairings	O(1)	E-cash
[CHKO08]				Collision-Resistant Hashing	$\mathrm{O}(\ln (\mathrm{n})$)	Our work

Some Applications

- Time-Stamping [BeMa94]
- Anonymous Credentials [CamLys02]
- Broadcast Encryption [GeRa04]
- Certificate Revocation List [LLX07]
- E-Cash [AWSM07]
- Electronic Invoice Factoring [CHKO08]

Outline

■ Basic Cryptographic Concepts

- Notion of Cryptographic Accumulator
- Our Construction [CHKO08]
- Conclusion

Dynamic Accumulators [CamLys02]

- Security Model

Scheme secure iff:

$$
\operatorname{Pr}\left[(\mathrm{w}, \mathrm{x}, \mathrm{X}) \leftarrow \mathrm{A}^{\circ}(): \text { Belongs }(\mathrm{w}, \mathrm{x}, \mathrm{Acc})=1 \text { and } \mathrm{x} \notin \mathrm{X}\right]<\varepsilon(\mathrm{k})
$$

Dynamic Accumulators [CamLys02]

- Initialization
$\square \mathrm{n}=\mathrm{pq}, \mathrm{u} \in \mathrm{Z}_{\mathrm{n}}{ }^{*}$
- Set
$\square \mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}\right\}$ (primes)
- Accumulated value
\square Acc $=u_{1}^{x_{1}} x_{2} \ldots x_{1} \bmod n$
- Witness for x_{i}
$\square \mathrm{w}=\mathrm{u}_{1} \mathrm{x}_{1} \mathrm{x}_{1-1} \cdot \mathrm{x}_{\mathrm{t}+1} \cdots \mathrm{x}_{1} \bmod \mathrm{n}$
- Membership test
$\square \mathbf{w}^{x_{1}} \bmod n=A c c$

Dynamic Accumulators [CamLys02]

- To add elements
\square Acc':=Acc $\bmod n$
$\square w^{\prime}:=w^{\times} \bmod n$
- To delete elements
\square Recompute the accumulated value with all the elements of the new set.
\square Doing the same for the witnesses (without the element we want to test).
$\square \mathrm{O}(\mid \mathrm{X\mid})=>$ NOT EFFICIENT
- To delete elements efficiently
\square Manager knows $\Phi(\mathrm{n}), \mathrm{x}$ to be deleted
- Acc $=u_{1} \cdot x_{2} \cdots \times \ldots x_{1}, \bmod n$
- Compute $y=x^{-1} \bmod \Phi(n)$
- $\mathrm{Acc}_{\text {new }}=\mathrm{Acc}^{1 / x} \bmod \mathrm{n}=\mathrm{Acc}{ }^{y} \bmod \mathrm{n}$
\square The manager must be trusted because he can compute fake witnesses for any x
$\square \mathrm{w}=\mathrm{Acc}^{1 / \mathrm{x}} \bmod \mathrm{n}$

Dynamic Accumulators [CamLys02]

- Theorem: if the Strong RSA Assumption holds, the dynamic accumulator is secure.

Dynamic Accumulators [CamLys02]

- Lemma: Let n be an integer, given $u, v \in Z_{n}{ }^{*}$ and $a, b \in Z$ such that $u^{a}=v^{b} \bmod n$ and $\operatorname{gcd}(a, b)=1$, we can compute efficiently $x \in Z_{n}^{*}$ such that $x^{a}=v$ mod n.
- Proof:
$\square \operatorname{gcd}(a, b)=1=>b d=1+a c$
$\square \mathrm{x}:=\mathrm{u}^{\mathrm{d}} \mathrm{v}^{-\mathrm{c}}=>\mathrm{x}^{\mathrm{a}}=\mathrm{u}^{\mathrm{da}} \mathrm{v}^{-\mathrm{ca}}=\left(\mathrm{u}^{\mathrm{a}}\right)^{\mathrm{d}} \mathrm{v}^{-\mathrm{ca}}$
$=\mathrm{v}^{\mathrm{bd}} \mathrm{v}^{-\mathrm{ca}}=\mathrm{v}$

Dynamic Accumulators [CamLys02]

- Proof of the theorem:

If there exists an adversary A that can break our scheme

We can build an adversary B that can break the Strong RSA Assumption

Dynamic Accumulators [CamLys02]

- Proof of the theorem:
$\square X=\left\{X_{1}, \ldots, X_{1}\right\}$
$\square A c c=u^{x}{ }_{1} \cdots{ }^{x}, \bmod n=u^{\vee} \bmod n$
\square e does not belong to X
$\square w^{e} \bmod n=A c c=u^{v} \bmod n$
$\square \operatorname{gcd}(\mathrm{v}, \mathrm{e})=1$ and $\mathrm{w}^{\mathrm{e}}=\mathrm{u}^{\mathrm{v}} \bmod \mathrm{n}$
=> by the lemma we can conclude

Outline

■ Basic Cryptographic Concepts

- Notion of Cryptographic Accumulator
- Constructions
\square Dynamic Accumulators [CamLys02]
\square Our Construction [CHKO08]
- Conclusion

Factoring Entity

Factoring Industry in Chile [CHKO08]

Factoring
Entity

${ }^{*}$) but I do not want to pay yet.

Factoring Industry in Chile [CHKO08]

Factoring
Entity

(*) but I do not want to pay yet.

Factoring Industry in Chile [CHKO08]

(*) but I do not want to pay yet.

Factoring Industry in Chile [CHKO08]

(*) but I do not want to pay yet.
${ }^{* *}$) minus a fee.

Factoring Industry in Chile [CHKO08]

(*) but I do not want to pay yet.
${ }^{(* *)}$ minus a fee.

Factoring Industry in Chile [CHKO08]

(*) but I do not want to pay yet.
${ }^{(* *)}$ minus a fee.

The Problem

- A malicious provider could send the same invoice to various Factoring Entities.
- Then he leaves to a far away country
 with all the money.
- Later, several Factoring Entities will try to charge the invoice to the same client.
Losts must be shared...

Solution with Factoring Authority

Factoring Authority

Caveat

- This solution is quite simple.
- However
\square Trusted Factoring Authority is needed.
- Can we remove this requirement?

Notation

- $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{k}}$
\square Collision-resistant hash function
- $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \in\{0,1\}^{\mathrm{k}}$
$\square x_{1}<x_{2}<x_{3}<\ldots$ where $<$ is the lexicographic order on binary strings.
- $-\infty, \infty$
\square Special values such that
- For all $x \in\{0,1\}^{k}:-\infty<x<\infty$
- || denotes the concatenation operator.

Public Data Structure

- Manager owns a public data structure called "Memory".
- Compute efficiently the accumulated value and the witnesses.
- In our construction the Memory M will be a binary tree.

Accumulator Operations

Operation	Who runs it?
Acc ${ }_{0}, \mathrm{M}_{0} \leftarrow \operatorname{Setup}\left(1^{\kappa}\right)$	Manager
$\mathrm{w} \leftarrow$ Witness(M, x)	Manager
True,False, $\perp \leftarrow$ Belongs(x,w,Acc)	User
$\mathrm{Acc}_{\text {atter }}, \mathrm{M}_{\text {after, }}, \mathrm{W}_{\text {up }} \leftarrow$ Update $_{\text {add/del }}\left(\mathrm{M}_{\text {before }}, \mathrm{x}\right)$	Manager
OK, $\perp \leftarrow$ CheckUpdate($\left.\mathrm{Acc}_{\text {before }}, \mathrm{Acc}_{\text {after }}, \mathrm{W}_{\text {up }}\right)$	User

Checking for (non)membership

User $\text { Belongs }(\mathrm{x}, \mathrm{w}, \mathrm{Acc})=\text { True } \Leftrightarrow \mathrm{x} \in \mathrm{X}$	Does x belong to X ? w	Accumulator Manager w = Witness(M,x)

Update of the accumulated value

User
CheckUpdate(Acc before , Acc after, $\mathrm{w}_{\text {up }}$)

Ideas

- Merkle-trees

Ideas

- Merkle-trees

Ideas

- How to prove nonmembership?
\square Kocher's trick [Koch98]: store pair of consecutive values
- $X=\{1,3,5,6,11\}$
- $X^{\prime}=\{(-\infty, 1),(1,3),(3,5),(5,6),(6,11),(11, \infty)\}$
- $y=3$ belongs to $X \Leftrightarrow(1,3)$ or $(3,5)$ belongs to X^{\prime}.
- $y=2$ does not belong to $X \Leftrightarrow(1,3)$ belongs to X^{\prime}.

How to insert elements?

$(-\infty, \infty)$
$X=\varnothing$, next: x_{1}

How to insert elements?

$$
x=\left\{x_{1}\right\}, \text { next: } x_{2}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}\right\} \text {, next: } x_{5}
$$

How to insert elements?

$X=\left\{x_{1}, x_{2}, x_{5}\right\}$, next: x_{3}

How to insert elements?

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}, \text { next: } x_{4}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, \text { next: } x_{6}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}
$$

How to delete elements?

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, X_{6}\right\} \\
& \text { element to be deleted: } x_{2}
\end{aligned}
$$

How to delete elements?

How to delete elements?

How to compute the accumulated value?

How to update the accumulated value? (Insertion)

x_{8} to be inserted.

How to update the accumulated value? (Insertion)

We will need to recompute proof node values.

How to update the accumulated value? (Insertion)

Proof $_{N}$ stored in each node.
Dark nodes do not require recomputing Proof ${ }_{N}$.
Only a logarithmic number of values need recomputation.

Security

- Definition: an accumulated value Acc represents the set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, if it has been computed from a tree T containing node values $\left\{\left(-\infty, x_{1}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \infty\right)\right\}$, where each pair appears only once.

Security

- Definition: (Consistency)
\square Given Acc that represents X, it is hard to find witnesses that allow to prove inconsistent statements.
- $\mathrm{X}=\{1,2\}$.
- Hard to compute a membership witness for 3.
- Hard to compute a nonmembership witness for 2.

Security

- Definition: (Update)
\square Guarantees that the accumulated value Acc represents the set X after insertion/deletion of x.
\square Every update must be checked by users but it is not needed to store the sequence of insertion/deletion.

Security

- Theorem: if CRHF exist the accumulator is secure (i.e. satisfies consistency and update).

Security

- Lemma: Given a tree T with accumulated value Proof $_{T}$, finding a tree $\mathrm{T}^{\prime}, \mathrm{T} \neq \mathrm{T}^{\prime}$ such that Proof $_{\mathrm{T}}=$ Proof $_{\mathrm{T}}$, is difficult.
- Proof (Sketch): Proof $_{\mathrm{N}}=\mathrm{H}\left(\right.$ Proof $_{\text {left }} \|$ Proof $\left._{\text {right }}| | v a l u e\right)$

Security

- Lemma: Given a tree T with accumulated value Proof $_{T}$, finding a tree $\mathrm{T}^{\prime}, \mathrm{T} \neq \mathrm{T}^{\prime}$ such that Proof $_{\mathrm{T}}=$ Proof $_{\mathrm{T}}$, is difficult.
- Proof (Sketch): Proof $_{\mathrm{N}}=\mathrm{H}\left(\right.$ Proof $_{\text {left }} \|$ Proof right \mid value $)$

Security

- Lemma: Given a tree T with accumulated value Proof $_{T}$, finding a tree $\mathrm{T}^{\prime}, \mathrm{T} \neq \mathrm{T}^{\prime}$ such that Proof $_{\mathrm{T}}=$ Proof $_{\mathrm{T}}$, is difficult.
- Proof (Sketch): Proof $_{\mathrm{N}}=\mathrm{H}\left(\right.$ Proof $_{\text {left }} \|$ Proof ${ }_{\text {right }} \|$ value $)$

Security

- Lemma: Given a tree T with accumulated value Proof $_{T}$, finding a tree $\mathrm{T}^{\prime}, \mathrm{T} \neq \mathrm{T}^{\prime}$ such that Proof $_{\mathrm{T}}=$ Proof $_{\mathrm{T}}$, is difficult.
- Proof (Sketch): Proof $_{\mathrm{N}}=\mathrm{H}\left(\right.$ Proof $_{\text {left }} \|$ Proof right \mid value $)$

Security (Consistency)

Witness: blue nodes and the $\left(x_{3}, x_{4}\right)$ pair, size in $O(\ln (|X|))$
Checking that x belongs (or not) to X :

1) compute recursively the proof P and verify that $P=A c c$
2) check that: $\quad x=x_{3}$ or $x=x_{4}$ (membership)

$$
x_{3}<x<x_{4} \text { (nonmembership) }
$$

Security (Update)

Insertion of X_{8}

Conclusion \& Open Problem

- First dynamic, universal, strong accumulator
- Simple
- Security
\square Existence of CRHF
- Solves the e-Invoice Factoring Problem
- Less efficient than other constructions
\square Size of witness in $\mathrm{O}(\ln (|\mathrm{X}|))$
- Open Problems
\square Is it possible to build an efficient strong,dynamic and universal accumulator with witness size lower than $O(\ln (|X|))$?
\square How to handle more complex queries than membership? For example range queries, pattern queries on binary strings.

Thank you!

Distributed solutions?

- Complex to implement
- Hard to make them robust
- High bandwith communication
- Need to be online - synchronization problems
- That's why we focus on a centralized solution.

Invoice Factoring using accumulator

- We need a secure broadcast channel
\square If a message m is published, every participant sees the same m.
- Depending on the security level required
\square Trusted http of ftp server
\square Bulletin Board [CGS97]

Invoice Factoring using accumulator

Invoice Factoring using accumulator

- Step 5 (Details)

Basic Cryptographic Notions

- Secure encryption [GM84]

Adversary wins if $\operatorname{Pr}\left[b=b^{\prime}\right]>1 / 2+1 / q(n)$

Bibliography

- [GM84] Probabilistic Encryption Shafi Goldwasser and Silvio Micali 1984
- [BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992
- [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare , 1994
- [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Barić and Birgit Pfitzmann 1997
- [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers 1997
- [Koch98] On certificate revocation and validation P.C. Kocher 1998
- [CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998
- [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999
- [GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001
- [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch Anna Lysyanskaya 2002
- [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan 2004

Bibliography

- [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007
- [AWSM07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007
- [CKHO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo 2008

