
Strong Accumulators from
Collision-Resistant Hashing

Philippe Camacho (University of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

INRIA – Sophia Antipolis
March 2009

Outline

 Basic Cryptographic Concepts
 Notion of Cryptographic Accumulator
 Our construction [CHKO08]
 Conclusion

Basic Cryptographic Concepts

 How to define security?
This is one of the cryptographer’s hardest

task.
A good definition should capture intuition…

… and more!
Community had to wait until 1984 with [GM84]

for a satisfactory definition of (computational)
“secure encryption”.

Basic Cryptographic Concepts

 Adversary
With unlimited computational power

 One Time Pad, Secret Sharing
Computationally Bounded

(Probabilistic Polynomial Time = PPT)
 Key Agreement, Public Key Encryption, Digital

Signatures, Hash Functions, Commitments,…

Basic Cryptographic Concepts

 Cryptographic Assumptions
 Most of cryptographic constructions rely on

complexity assumptions.
 Factoring is hard.
 Computing Discrete Logarithm is hard.
 Existence of functions with “good” properties

 One-way functions
 Collision-Resistant Hash functions

 …
 All these assumptions require that P ≠ NP.
 Some assumptions are implied by others.

Basic Cryptographic Concepts

 How to prove security?
What we want:

 Assumption X holds (for any adversary) => protocol P is secure.
 No adversary can break X => No adversary can break P.

What we do:
 Suppose protocol P is insecure => X does not hold.
 Let A the adversary that breaks P => We can build an adversary

B that breaks X.

This method is sometimes called
“Provable Security” or “Reductionist Security”.

Basic Cryptographic Concepts
 Let’s get into the details…

 We need to quantify the probability that an adversary can
compute some values.

 Asymptotic notion
 The running time of the adversary depends

on the security parameter.
 E.g: size of the secret key in the case of encryption, size of the

primes for the factoring assumption.

 Definition: (negligible function)
A function ε : N → [0,1] is negligible if for
every polynomial q: N → N, for k sufficiently large:

 ε(k) < |1/q(k)|

Basic Cryptographic Concepts

 RSA
 Initialization

 n=pq , p,q safe primes , Φ(n) = (p-1)(q-1) = |Zn*|
 e є ZΦ(n)* (encryption)
 d є ZΦ(n)* (decryption)
 ed = 1 mod Φ(n) (Euclidian Algorithm)

Encryption / Decryption
 x є Zn* plaintext
 Encrypt: c = xe mod n
 Decrypt: y = cd mod n = xed mod n = x mod n

Basic Cryptographic Concepts
 Assumptions

 RSA Instance generator
(n,p,q,e,d) ← I(k)

 Factoring Assumption
 Pr [(p,q)←A(n) : n=pq] < ε(k)

 RSA Assumption
 Pr [yєRZn* ; x←A(n,y,e) : y=xe mod n] < ε(k)

 Strong RSA Assumption [BarPfi97]
 Pr [uєRZn* ; (x,e)←A(n,u) : u=xe mod n, e ≠ 1] < ε(k)

 Strong RSA => RSA => Factoring
(note the direction <= is open)

Basic Cryptographic Concepts

Assumptions and efficiency
We know how to build encryption schemes

based on
 RSA Assumption
 Factoring Assumption

However encryption algorithms based on the
RSA Assumption are much faster than those
based only on the Factoring Assumption.

Basic Cryptographic Concepts

 Collision-Resistant Hash Functions
H:{0,1}* →{0,1}k

 Given x, it is easy to compute H(x).
 Given y, hard to compute x such that H(x)=y.
 Given x, hard to compute x’≠x such that

H(x)=H(x’).
 Hard to compute x≠x’ such that H(x)=H(x’).

This definition is not formal. Just an intuition.

Basic Cryptographic Concepts

 Formal definition for
Collision-Resistant Hash Functions

 Definition: (1st attempt)
A function H is collision-resistant iff:
For all A: Pr[x,x’←A ():x ≠x’ and H(x)=H(x’)] < ε(k)

 Why does the previous definition not work?
 A():

 return (x,x’) // Where (x,x’) is a collision-pair

Basic Cryptographic Concepts

 Definition:
(family of collision-resistant hash functions)

{Fk}kєN where Fk={Hj,j єJk} is a family of collision
resistant hash functions iff:
 For all j, Hj can be selected efficiently,
 Prj є Jk

 [x,x’←A(j,k): x≠x’ , Hj(x)=Hj(x’)] < ε(k)

Basic Cryptographic Concepts

 Assumption:
Collision-Resistant Hash Functions
(CRHF) exist.

Outline

 Basic Cryptographic Concepts
 Notion of Cryptographic Accumulator
 Our Construction [CHKO08]
 Conclusion

Notion of Cryptographic
Accumulator
 Problem

 A set X.
 Given an element x we wish to prove that this element

belongs or not to X.
 Let X={x1,x2,…,xn}:

 X will be represented by a short value Acc.
 Acc is the Accumulated Value

 Given x and w (witness) we want to check
whether x belongs to X.

Notion of Cryptographic
Accumulator
 Participants

Manager
 Computes the accumulated value …
 … and the witnesses.

User
 Tests for (non)membership of a given element

using the accumulated value and a witness
provided by the manager.

Properties

 Dynamic
 Allows insertion/deletion of elements.

 Universal
 Allows proofs of membership and nonmembership.

 Strong
 No need to trust in the Accumulator Manager.

Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic
accumulator

[LLX07] Strong RSA O(1) First universal
accumultor

[AWSM07] Pairings O(1)
E-cash

Prior work

Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic
accumulator

[LLX07] Strong RSA O(1) First universal
accumultor

[AWSM07] Pairings O(1)
E-cash

[CHKO08] Collision-Resistant
Hashing O(ln(n)) Our work

Prior work

Some Applications

 Time-Stamping [BeMa94]
 Anonymous Credentials [CamLys02]
 Broadcast Encryption [GeRa04]
 Certificate Revocation List [LLX07]
 E-Cash [AWSM07]
 Electronic Invoice Factoring [CHKO08]

Outline

 Basic Cryptographic Concepts
 Notion of Cryptographic Accumulator
 Our Construction [CHKO08]
 Conclusion

Dynamic Accumulators
[CamLys02]
 Security Model

Scheme secure iff:

 Pr[(w,x,X)←AO(): Belongs(w,x,Acc)=1 and x є X] < ε(k)

Insert/Delete x1

Acc1

Insert/ Delete x2

Acc2

Oracle

(Manager)

….

Witness for x

wx

Dynamic Accumulators [CamLys02]

 Initialization
 n = pq , u є Zn

*

 Set
 X={x1,x2,…,xl} (primes)

 Accumulated value
 Acc = ux

1
.x

2
…x

l mod n
 Witness for xi

 w = ux
1
…x

i-1
.x

i+1
…x

l mod n
 Membership test

 wxi mod n = Acc

Dynamic Accumulators
[CamLys02]
 To add elements

 Acc’:= Accx mod n
 w’:= wx mod n

 To delete elements
 Recompute the accumulated value with all the elements of the new set.
 Doing the same for the witnesses (without the element we want to test).
 O(|X|) => NOT EFFICIENT

 To delete elements efficiently
 Manager knows Φ(n), x to be deleted

 Acc = ux
1

 . x
2

 . … x … x
l mod n

 Compute y=x-1 mod Φ(n)
 Accnew = Acc1/x mod n = Accy mod n

 The manager must be trusted because he can compute
 fake witnesses for any x

 w=Acc1/x mod n

Dynamic Accumulators [CamLys02]

 Theorem: if the Strong RSA Assumption
holds, the dynamic accumulator is secure.

Dynamic Accumulators
[CamLys02]
 Lemma: Let n be an integer, given u,v є Zn

* and
a,b є Z such that ua = vb mod n and gcd(a,b) = 1,
we can compute efficiently x є Zn

*
such that xa=v mod n.

 Proof:
 gcd(a,b)=1 => bd = 1 + ac
 x := udv-c => xa = udav-ca = (ua)dv-ca

= vbdv-ca = v

Dynamic Accumulators [CamLys02]

 Proof of the theorem:

B

A

If there exists an adversary A
that can break our scheme

We can build an adversary B
that can break the

Strong RSA Assumption

n, u

(x,e) : u = xe mod n

X={x1,…,xl}

e element not in
X

w witness

X,w,e

n=pq, u єR Zn*

Dynamic Accumulators [CamLys02]

 Proof of the theorem:
X = {x1,…,xl}
Acc = ux

1
…x

l mod n = uv mod n
e does not belong to X
we mod n = Acc = uv mod n
gcd(v,e) = 1 and we=uv mod n

=> by the lemma we can conclude

Outline

 Basic Cryptographic Concepts
 Notion of Cryptographic Accumulator
 Constructions

Dynamic Accumulators [CamLys02]
Our Construction [CHKO08]

 Conclusion

Factoring Industry in Chile
[CHKO08]

Factoring
Entity

Provider
Client

Not related to
Number Theory!

Factoring Industry in Chile
[CHKO08]

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

Factoring
Entity

Provider
Client

Factoring Industry in Chile
[CHKO08]

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

2) Here is your milk.

Factoring
Entity

Provider
Client

Factoring Industry in Chile
[CHKO08]

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

2) Here is your milk.

3) P
lease pay th

e invoice
.

Factoring
Entity

Provider
Client

Factoring Industry in Chile
[CHKO08]

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

4) H
ere is

your m
oney (

**)
.

Factoring
Entity

Provider
Client

Factoring Industry in Chile
[CHKO08]

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

5) It’s time to pay.
4) H

ere is
your m

oney (
**)

.

Factoring
Entity

Provider
Client

Factoring Industry in Chile
[CHKO08]

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

5) It’s time to pay.
4) H

ere is
your m

oney (
**)

. 6) Here is the money.

Factoring
Entity

Provider
Client

The Problem
 A malicious provider could send the

same invoice to various Factoring
Entities.

 Then he leaves to a far away country
with all the money.

 Later, several Factoring Entities will try
to charge the invoice to the same client.
Losts must be shared…

Solution with Factoring Authority

Factoring
Authority

FE 2 FE n…

Provider Client

FE1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack

(4) Is there
the invoice?

(5) YES / NO

Caveat

 This solution is quite simple.

 However
Trusted Factoring Authority is needed.

 Can we remove this requirement?

Notation
 H: {0,1}*→{0,1}k

 Collision-resistant hash function

 x1,x2,x3,…є {0,1}k

 x1 < x2 < x3 < … where < is the lexicographic order on binary
strings.

 -∞,∞
 Special values such that

 For all x є {0,1}k : -∞ < x < ∞

 || denotes the concatenation operator.

Public Data Structure

 Manager owns a public data structure called
“Memory”.

 Compute efficiently the accumulated value and
the witnesses.

 In our construction the Memory M will be a
binary tree.

Accumulator Operations

UserOK, ┴ ← CheckUpdate(Accbefore,Accafter,wup)

ManagerAccafter,Mafter,wup ← Updateadd/del(Mbefore,x)

UserTrue,False,┴ ← Belongs(x,w,Acc)

Managerw ← Witness(M,x)

ManagerAcc0, M0 ← Setup(1k)

Who runs it?Operation

Checking for (non)membership
Accumulator ManagerUser

Does x belong

to X?

w

Belongs(x,w,Acc) = True x є X

w = Witness(M,x)

Update of the accumulated value

Accumulator ManagerUser

Insert or
Delete x

Accafter, wup

CheckUpdate(Accbefore,Accafter,wup)

Accafter,Mafter, wup =
UpdateAdd/Del(Mbefore,x)

Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value:

Represents
the set
{x1,…,x8}

Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

O(ln(n))
Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value:

Represents
the set
{x1,…,x8}

Ideas

 How to prove nonmembership?
Kocher’s trick [Koch98]: store pair of

consecutive values
 X={1,3,5,6,11}
 X’={(-∞,1),(1,3),(3,5),(5,6),(6,11),(11, ∞)}
 y=3 belongs to X (1,3) or (3,5) belongs to X’.
 y=2 does not belong to X (1,3) belongs to X’.

How to insert elements?
(-∞,∞)

X=Ø, next: x1

How to insert elements?
(-∞,x1)

(x1, ∞)

X={x1}, next: x2

How to insert elements?
(-∞,x1)

(x1, x2) (x2, ∞)

X={x1,x2}, next: x5

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x5)

(x5, ∞)

X={x1,x2,x5}, next: x3

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x5)

X={x1,x2,x3,x5}, next: x4

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x4) (x4, x5)

X={x1,x2,x3,x4,x5}, next: x6

How to insert elements?

X={x1,x2,x3,x4,x5,x6}

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

X={x1,x2,x3,x4,x5,x6}
element to be deleted: x2

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

(x1,x3)

How to delete elements?
(-∞,x1)

(x1, x3) (x6, ∞)

(x5, x6) (x3, x4) (x4, x5)

How to compute the accumulated
value?

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

ProofN=H(Proofleft||Proofright||value)

ProofNil= “”

Acc = ProofRoot

A pair (xi,xj)

How to update
the accumulated value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

x8 to be inserted.

How to update
the accumulated value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

We will need to recompute proof node values.
x8

How to update
the accumulated value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

New element: x8.

ProofN stored in each node.

Dark nodes do not require recomputing ProofN.

Only a logarithmic number of values need recomputation.

(x8, x9)

Security

 Definition: an accumulated value Acc
represents the set X={x1,x2,…,xn}, if it has
been computed from a tree T containing
node values {(- ∞,x1),(x1,x2),…,(xn,∞)},
where each pair appears only once.

Security

 Definition: (Consistency)
Given Acc that represents X, it is hard to find

witnesses that allow to prove inconsistent
statements.
 X={1,2}.
 Hard to compute a membership witness for 3.
 Hard to compute a nonmembership witness for 2.

Security

 Definition: (Update)
Guarantees that the accumulated value Acc

represents the set X after insertion/deletion of
x.

Every update must be checked by users but it
is not needed to store the sequence of
insertion/deletion.

Security

 Theorem: if CRHF exist the accumulator
is secure (i.e. satisfies consistency and
update).

Security

 Lemma: Given a tree T with accumulated value ProofT,
finding a tree T’, T≠T’ such that ProofT = ProofT’ is
difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Security

 Lemma: Given a tree T with accumulated value ProofT,
finding a tree T’, T≠T’ such that ProofT = ProofT’ is
difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

 Lemma: Given a tree T with accumulated value ProofT,
finding a tree T’, T≠T’ such that ProofT = ProofT’ is
difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

 Lemma: Given a tree T with accumulated value ProofT,
finding a tree T’, T≠T’ such that ProofT = ProofT’ is
difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security (Consistency)
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)
Witness: blue nodes and the (x3,x4) pair, size in O(ln(|X|))

Checking that x belongs (or not) to X:

 1) compute recursively the proof P and verify that P=Acc

 2) check that: x=x3 or x=x4 (membership)

 x3 < x < x4 (nonmembership)

Security (Update)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Before After

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

Insertion of x8

(x8, x9)

Accbefore Accafter

Conclusion & Open Problem
 First dynamic, universal, strong accumulator
 Simple
 Security

 Existence of CRHF
 Solves the e-Invoice Factoring Problem
 Less efficient than other constructions

 Size of witness in O(ln(|X|))
 Open Problems

 Is it possible to build an efficient strong,dynamic and universal accumulator with
witness size lower than O(ln(|X|))?

 How to handle more complex queries than membership? For example range
queries, pattern queries on binary strings.

Thank you!

Distributed solutions?

 Complex to implement
 Hard to make them robust
 High bandwith communication
 Need to be online – synchronization

problems
 That’s why we focus on a centralized

solution.

Invoice Factoring using
accumulator
 We need a secure broadcast channel

 If a message m is published, every participant
sees the same m.

 Depending on the security level required
Trusted http of ftp server
Bulletin Board [CGS97]

Invoice Factoring using
accumulator

Factoring
Authority

FE 2 FE n…

Provider Client

FE1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack

(4) Is there
the invoice?

(5) YES / NO

We need to
see in detail
this step

Invoice Factoring using
accumulator
 Step 5 (Details)

FE Factoring Authority
Have you got
 invoice x?

YES/NO, w

If NO, insert x

Accafter,wup,IDFE

Belongs(x,w,Accbefore)

CheckUpdate(Accbefore,Accafter,wup)

All tests pass => I can buy
x.

Accafter,Mafter,wup =

UpdateAdd(Mbefore,x)

w = Witness(Mbefore,x)

Basic Cryptographic Notions

 Secure encryption [GM84]

Adversary Oracle

M0,M1

bєR{0,1}

E(Mb,r)

Try to guess b

b’

Adversary wins if Pr[b=b’] > ½ + 1/q(n)

Bibliography
 [GM84] Probabilistic Encryption Shafi Goldwasser and Silvio Micali 1984

 [BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992

 [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare ,
1994

 [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Barić and Birgit Pfitzmann
1997

 [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers
1997

 [Koch98] On certificate revocation and validation P.C. Kocher 1998

 [CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998

 [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999

 [GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001

 [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch
Anna Lysyanskaya 2002

 [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan
2004

Bibliography
 [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007

 [AWSM07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007

 [CKHO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo 2008

