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Basic Cryptographic Concepts

 How to define security?
This is one of the cryptographer’s hardest 

task.
A good definition should capture intuition…

… and more!
Community had to wait until 1984 with [GM84] 

for a satisfactory definition of (computational) 
“secure encryption”.



Basic Cryptographic Concepts

 Adversary
With unlimited computational power

 One Time Pad, Secret Sharing
Computationally Bounded 

(Probabilistic Polynomial Time = PPT)
 Key Agreement, Public Key Encryption, Digital 

Signatures, Hash Functions, Commitments,…



Basic Cryptographic Concepts

 Cryptographic Assumptions
 Most of cryptographic constructions rely on 

complexity assumptions.
 Factoring is hard.
 Computing Discrete Logarithm is hard.
 Existence of functions with “good” properties

 One-way functions
 Collision-Resistant Hash functions

 …
 All these assumptions require that P ≠ NP.
 Some assumptions are implied by others.



Basic Cryptographic Concepts

 How to prove security?
What we want:

 Assumption X holds (for any adversary) => protocol P is secure.
 No adversary can break X => No adversary can break P.

What we do:
 Suppose protocol P is insecure => X does not hold.
 Let A the adversary that breaks P => We can build an adversary 

B that breaks X.

This method is sometimes called 
“Provable Security” or “Reductionist Security”.



Basic Cryptographic Concepts
 Let’s get into the details…

 We need to quantify the probability that an adversary can 
compute some values.

 Asymptotic notion 
 The running time of the adversary depends 

on the security parameter.
 E.g: size of the secret key in the case of encryption, size of the 

primes for the factoring assumption.

 Definition: (negligible function)
A function ε : N → [0,1] is negligible if for 
every polynomial q: N → N, for k sufficiently large:

 ε(k) < |1/q(k)|



Basic Cryptographic Concepts

 RSA
 Initialization

 n=pq , p,q safe primes , Φ(n) = (p-1)(q-1) = |Zn*| 
 e є ZΦ(n)* (encryption) 
 d є ZΦ(n)* (decryption)
 ed = 1 mod Φ(n)  (Euclidian Algorithm)

Encryption / Decryption
 x є Zn* plaintext
 Encrypt: c = xe mod n
 Decrypt: y = cd mod n  = xed mod n = x mod n



Basic Cryptographic Concepts
 Assumptions 

 RSA Instance generator
(n,p,q,e,d) ← I(k)

 Factoring Assumption
       Pr [(p,q)←A(n) : n=pq]  < ε(k)

 RSA Assumption
   Pr [yєRZn* ; x←A(n,y,e) : y=xe mod n] < ε(k)

 Strong RSA Assumption [BarPfi97]
       Pr [uєRZn* ; (x,e)←A(n,u) :  u=xe mod n, e  ≠ 1] < ε(k)

 Strong RSA => RSA => Factoring
(note the direction <= is open)



Basic Cryptographic Concepts

Assumptions and efficiency
We know how to build encryption schemes 

based on
 RSA Assumption
 Factoring Assumption

However encryption algorithms based on the 
RSA Assumption are much faster than those 
based only on the Factoring Assumption.



Basic Cryptographic Concepts 

 Collision-Resistant Hash Functions
H:{0,1}* →{0,1}k

 Given x, it is easy to compute H(x).
 Given y, hard to compute x such that H(x)=y.
 Given x, hard to compute x’≠x such that 

H(x)=H(x’).
 Hard to compute x≠x’ such that H(x)=H(x’).

This definition is not formal. Just an intuition.



Basic Cryptographic Concepts 

 Formal definition for 
Collision-Resistant Hash Functions 

 Definition: (1st attempt)
A function H is collision-resistant iff: 
For all A:  Pr[x,x’←A ():x ≠x’ and H(x)=H(x’)] < ε(k)

 Why does the previous definition not work?
 A():

  return (x,x’) // Where (x,x’) is a collision-pair



Basic Cryptographic Concepts 

 Definition: 
(family of collision-resistant hash functions)

{Fk}kєN  where  Fk={Hj,j єJk} is a family of collision 
resistant hash functions iff:
 For all j, Hj can be selected efficiently, 
 Prj є Jk

 [x,x’←A(j,k): x≠x’ , Hj(x)=Hj(x’)] < ε(k)



Basic Cryptographic Concepts

 Assumption: 
Collision-Resistant Hash Functions 
(CRHF) exist.
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Notion of Cryptographic 
Accumulator
 Problem

 A set X.
 Given an element x we wish to prove that this element 

belongs or not to X.
 Let X={x1,x2,…,xn}:

 X will be represented by a short value Acc.
 Acc is the Accumulated Value

 Given x and w (witness) we want to check 
whether x belongs to X.



Notion of Cryptographic 
Accumulator
 Participants

Manager
 Computes the accumulated value …
 … and the witnesses.

User
 Tests for (non)membership of a given element 

using the accumulated value and a witness 
provided by the manager.



Properties

 Dynamic 
 Allows insertion/deletion of elements. 

 Universal 
 Allows proofs of membership and nonmembership.

 Strong 
 No need to trust in the Accumulator Manager.



Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic 
accumulator

[LLX07] Strong RSA O(1) First universal 
accumultor

[AWSM07] Pairings O(1)
E-cash

Prior work
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Some Applications

 Time-Stamping [BeMa94]
 Anonymous Credentials [CamLys02]
 Broadcast Encryption [GeRa04]
 Certificate Revocation List  [LLX07]
 E-Cash [AWSM07]
 Electronic Invoice Factoring [CHKO08]
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Dynamic Accumulators 
[CamLys02]
 Security Model

Scheme secure iff:
      

      Pr[(w,x,X)←AO(): Belongs(w,x,Acc)=1 and x є X] < ε(k)

Insert/Delete x1

Acc1

Insert/ Delete  x2

Acc2

Oracle

(Manager)

….

Witness for x

wx



Dynamic Accumulators [CamLys02]

 Initialization
 n = pq , u є Zn

*

 Set
 X={x1,x2,…,xl} (primes)

 Accumulated value
 Acc = ux

1
.x

2
…x

l mod n
 Witness for xi 

 w = ux
1
…x

i-1
.x

i+1
…x

l mod n
 Membership test

 wxi mod n = Acc



Dynamic Accumulators 
[CamLys02]
 To add elements

 Acc’:= Accx mod n
 w’:= wx mod n

 To delete elements
 Recompute the accumulated value with all the elements of the new set.
 Doing the same for the witnesses (without the element we want to test).
 O(|X|) => NOT EFFICIENT

 To delete elements efficiently
 Manager knows Φ(n), x to be deleted

 Acc = ux
1

 . x
2

 . … x … x
l mod n 

 Compute y=x-1 mod Φ(n)
 Accnew = Acc1/x mod n = Accy mod n

 The manager must be trusted because he can compute
 fake witnesses for any x

 w=Acc1/x mod n



Dynamic Accumulators [CamLys02]

 Theorem:  if the Strong RSA Assumption 
holds, the dynamic accumulator is secure.



Dynamic Accumulators 
[CamLys02]
 Lemma: Let n be an integer, given u,v є Zn

* and 
a,b є Z such that ua = vb mod n and gcd(a,b) = 1, 
we can compute efficiently x є Zn

* 
such that xa=v mod n.

 Proof:
 gcd(a,b)=1 => bd = 1 + ac 
 x := udv-c => xa = udav-ca = (ua)dv-ca 

= vbdv-ca = v



Dynamic Accumulators [CamLys02]

 Proof of the theorem:

B

A

If there exists an adversary A 
that can break our scheme

We can build an adversary B 
that can break the 

Strong RSA Assumption

n, u 

(x,e) :  u = xe mod n

X={x1,…,xl}

e element not in 
X

w witness

X,w,e

n=pq,   u єR Zn*



Dynamic Accumulators [CamLys02]

 Proof of the theorem:
X = {x1,…,xl} 
Acc = ux

1
…x

l mod n = uv mod n
e does not belong to X
we mod n = Acc = uv mod n 
gcd(v,e) = 1 and we=uv mod n 

=> by the lemma we can conclude
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[CHKO08]

Factoring
Entity

Provider
Client

Not related to 
Number Theory!
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Factoring Industry in Chile 
[CHKO08]

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

5) It’s time to pay.
4) H

ere is 
your m

oney (
**)

. 6) Here is the money.

Factoring
Entity

Provider
Client



The Problem
 A malicious provider could send the 

same invoice to various Factoring 
Entities.

 Then he leaves to a far away country 
with all the money.

 Later, several Factoring Entities will try 
to charge the invoice to the same client. 
Losts must be shared…



Solution with Factoring Authority

Factoring 
Authority

FE 2 FE n…

Provider Client

FE1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack 

(4) Is there 
the invoice?

(5) YES / NO



Caveat

 This solution is quite simple.

 However
Trusted Factoring Authority is needed.

 Can we remove this requirement?



Notation
 H: {0,1}*→{0,1}k

 Collision-resistant hash function

 x1,x2,x3,…є {0,1}k

  x1  <  x2  <  x3  < … where < is the lexicographic order on binary 
strings.

 -∞,∞
 Special values such that 

 For all x є {0,1}k :    -∞ < x <  ∞

 || denotes the concatenation operator.



Public Data Structure

 Manager owns a public data structure called 
“Memory”.

 Compute efficiently the accumulated value and 
the witnesses.

 In our construction the Memory M will be a 
binary tree.



Accumulator Operations

UserOK, ┴ ← CheckUpdate(Accbefore,Accafter,wup)

ManagerAccafter,Mafter,wup ← Updateadd/del(Mbefore,x)

UserTrue,False,┴  ← Belongs(x,w,Acc)

Managerw ← Witness(M,x)

ManagerAcc0, M0 ← Setup(1k)

Who runs it?Operation



Checking for (non)membership
Accumulator ManagerUser

Does x belong

to X?

w

Belongs(x,w,Acc) = True  x є X

w = Witness(M,x)



Update of the accumulated value

Accumulator ManagerUser

Insert or 
Delete x

Accafter, wup

CheckUpdate(Accbefore,Accafter,wup)

Accafter,Mafter, wup     =          
UpdateAdd/Del(Mbefore,x)



Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value: 

Represents 
the set 
{x1,…,x8}



Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

O(ln(n))
Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value: 

Represents 
the set 
{x1,…,x8}



Ideas

 How to prove nonmembership?
Kocher’s trick [Koch98]: store pair of 

consecutive values
 X={1,3,5,6,11}
 X’={(-∞,1),(1,3),(3,5),(5,6),(6,11),(11, ∞)}
 y=3 belongs to X  (1,3) or (3,5) belongs to X’.
 y=2 does not  belong to X  (1,3) belongs to X’.



How to insert elements? 
(-∞,∞)

X=Ø, next: x1



How to insert elements? 
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How to insert elements? 
(-∞,x1)

(x1, x2) (x2, x5)

(x5, ∞)

X={x1,x2,x5}, next: x3



How to insert elements? 
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x5)

X={x1,x2,x3,x5}, next: x4



How to insert elements? 
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x4) (x4, x5)

X={x1,x2,x3,x4,x5}, next: x6



How to insert elements? 

X={x1,x2,x3,x4,x5,x6}

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)



How to delete elements? 
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

X={x1,x2,x3,x4,x5,x6} 
element to be deleted: x2



How to delete elements? 
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

(x1,x3)



How to delete elements?
(-∞,x1)

(x1, x3) (x6, ∞)

(x5, x6) (x3, x4) (x4, x5)



How to compute the accumulated 
value? 

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

ProofN=H(Proofleft||Proofright||value)

ProofNil= “”

Acc = ProofRoot

A pair (xi,xj)



How to update 
the accumulated value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

x8 to be inserted.



How to update 
the accumulated value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

We will need to recompute proof node values.
x8



How to update 
the accumulated value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

New element:  x8.

ProofN stored in each node. 

Dark nodes do not require recomputing ProofN.

Only a logarithmic number of values need recomputation.

(x8, x9)



Security

 Definition: an accumulated value Acc 
represents the set X={x1,x2,…,xn}, if it has 
been computed from a tree T containing 
node values {(- ∞,x1),(x1,x2),…,(xn,∞)}, 
where each pair appears only once.



Security

 Definition: (Consistency)
Given Acc that represents X, it is hard to find 

witnesses that allow to prove inconsistent 
statements.
 X={1,2}.
 Hard to compute a membership witness for 3.
 Hard to compute a nonmembership witness for 2.



Security

 Definition: (Update)
Guarantees that the accumulated value Acc 

represents the set X after insertion/deletion of 
x.

Every update must be checked by users but it 
is not needed to store the sequence of 
insertion/deletion.



Security

 Theorem: if CRHF exist the accumulator 
is secure (i.e. satisfies consistency and 
update).



Security

 Lemma: Given a tree T with accumulated value ProofT, 
finding a tree T’, T≠T’ such that ProofT = ProofT’ is 
difficult.

 Proof (Sketch):  ProofN = H(Proofleft||Proofright||value)
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Security

 Lemma: Given a tree T with accumulated value ProofT, 
finding a tree T’, T≠T’ such that ProofT = ProofT’ is 
difficult.

 Proof (Sketch):  ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)
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Collision for H



Security (Consistency)
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)
Witness: blue nodes and the (x3,x4) pair, size in O(ln(|X|))

Checking that x belongs (or not) to X: 

    1) compute recursively the proof P and verify that P=Acc

    2) check that:  x=x3 or x=x4 (membership)

  x3 < x < x4 (nonmembership)

                   



Security (Update)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Before After

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

Insertion of x8

(x8, x9)

Accbefore Accafter



Conclusion & Open Problem
 First dynamic, universal, strong accumulator
 Simple
 Security

 Existence of CRHF
 Solves the e-Invoice Factoring Problem
 Less efficient than other constructions 

 Size of witness in O(ln(|X|))
 Open Problems

 Is it possible to build an efficient strong,dynamic and universal accumulator with 
witness size lower than O(ln(|X|))?

 How to handle more complex queries than membership? For example range 
queries, pattern queries on binary strings.



Thank you!



Distributed solutions?

 Complex to implement
 Hard to make them robust
 High bandwith communication
 Need to be online – synchronization 

problems
 That’s why we focus on a centralized 

solution.



Invoice Factoring using 
accumulator
 We need a secure broadcast channel

 If a message m is published, every participant 
sees the same m.

 Depending on the security level required
Trusted http of ftp server
Bulletin Board [CGS97]



Invoice Factoring using 
accumulator

Factoring 
Authority

FE 2 FE n…

Provider Client

FE1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack 

(4) Is there 
the invoice?

(5) YES / NO

We need to 
see in detail 
this step



Invoice Factoring using 
accumulator
 Step 5 (Details)

FE Factoring Authority
Have you got
 invoice x?

YES/NO, w

If NO, insert x

Accafter,wup,IDFE

Belongs(x,w,Accbefore)

CheckUpdate(Accbefore,Accafter,wup)

All tests pass  => I can buy 
x.

Accafter,Mafter,wup = 

UpdateAdd(Mbefore,x)

w = Witness(Mbefore,x)



Basic Cryptographic Notions

 Secure encryption [GM84]

Adversary Oracle

M0,M1

bєR{0,1}

E(Mb,r)

Try to guess b

b’

Adversary wins if Pr[b=b’] > ½ + 1/q(n)
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