INRIA – Sophia Antipolis

March 2009

Strong Accumulators from Collision-Resistant Hashing

Philippe Camacho (University of Chile) Alejandro Hevia (University of Chile) Marcos Kiwi (University of Chile) Roberto Opazo (CEO Acepta.com)

Outline

- Basic Cryptographic Concepts
- Notion of Cryptographic Accumulator
- Our construction [CHKO08]
- Conclusion

How to define security?

- This is one of the cryptographer's hardest task.
- A good definition should capture intuition...
 ... and more!
- Community had to wait until 1984 with [GM84] for a satisfactory definition of (computational) "secure encryption".

Adversary

- With unlimited computational power
 - One Time Pad, Secret Sharing
- Computationally Bounded (Probabilistic Polynomial Time = PPT)
 - Key Agreement, Public Key Encryption, Digital Signatures, Hash Functions, Commitments,...

Cryptographic Assumptions

- Most of cryptographic constructions rely on complexity assumptions.
 - Factoring is hard.
 - Computing Discrete Logarithm is hard.
 - Existence of functions with "good" properties
 - One-way functions
 - Collision-Resistant Hash functions
 - ...
- \square All these assumptions require that $P \neq NP$.
- Some assumptions are implied by others.

How to prove security?

What we want:

- Assumption X holds (for any adversary) => protocol P is secure.
- No adversary can break X => No adversary can break P.

□What we do:

- Suppose protocol P is insecure => X does not hold.
- Let A the adversary that breaks P => We can build an adversary B that breaks X.

This method is sometimes called "Provable Security" or "Reductionist Security".

Let's get into the details...

We need to quantify the probability that an *adversary* can compute some values.

Asymptotic notion

- The running time of the adversary depends on the security parameter.
- E.g: size of the secret key in the case of encryption, size of the primes for the factoring assumption.

□ **Definition:** (negligible function) A function $\epsilon : \mathbf{N} \to [0,1]$ is negligible if for <u>every</u> polynomial q: $\mathbf{N} \to \mathbf{N}$, for k sufficiently large: $\epsilon(\mathbf{k}) < |1/q(\mathbf{k})|$

RSA

Initialization

■ n=pq , p,q safe primes , $\Phi(n) = (p-1)(q-1) = |Z_n^*|$

• e $\epsilon Z_{\Phi(n)}^*$ (encryption)

• d
$$\varepsilon Z_{\Phi(n)}^*$$
 (decryption)

• ed = 1 mod $\Phi(n)$ (*Euclidian Algorithm*)

- Encryption / Decryption
 - x c Z^{*}_n plaintext
 - Encrypt: c = x^e mod n
 - Decrypt: $y = c^d \mod n = x^{ed} \mod n = x \mod n$

 Assumptions
 □ RSA Instance generator (n,p,q,e,d) ← I(k)

> □ Factoring Assumption $Pr[(p,q) \leftarrow A(n) : n=pq] < \epsilon(k)$

□ RSA Assumption $Pr[ye_RZ_n^*; x \leftarrow A(n,y,e): y=x^e \mod n] < ε(k)$

□ Strong RSA Assumption [BarPfi97] Pr[ue_RZ^{*}, (x,e)←A(n,u): u=x^e mod n, e ≠ 1] < ε(k)

Strong RSA => RSA => Factoring (note the direction <= is open)</p>

Assumptions and efficiency

- We know how to build encryption schemes based on
 - RSA Assumption
 - Factoring Assumption

However encryption algorithms based on the RSA Assumption are much *faster* than those based only on the Factoring Assumption.

- Collision-Resistant Hash Functions □ H:{0,1}* →{0,1}^k
 - Given x, it is easy to compute H(x).
 - Given y, *hard* to compute x such that H(x)=y.
 - Given x, hard to compute x'≠x such that H(x)=H(x').
 - Hard to compute $x \neq x'$ such that H(x)=H(x').

This definition is not formal. Just an intuition.

- Formal definition for Collision-Resistant Hash Functions
 - Definition: (1st attempt)
 A function H is collision-resistant iff:
 For all A: Pr[x,x'←A():x ≠x' and H(x)=H(x')] < ε(k)

□ Why does the previous definition not work?

A(): return (x,x') // Where (x,x') is a collision-pair

Definition:

(family of collision-resistant hash functions)

- \Box {F_k}_{keN} where F_k={Hj,j eJ_k} is a family of collision resistant hash functions iff:
 - For all j, H_i can be selected efficiently,
 - $Pr_{j \in J_k} [x,x' \leftarrow A(j,k): x \neq x', H_j(x) = H_j(x')] < \epsilon(k)$

Assumption:

Collision-Resistant Hash Functions (CRHF) exist.

Outline

- Basic Cryptographic Concepts
- Notion of Cryptographic Accumulator
- Our Construction [CHKO08]
- Conclusion

Notion of Cryptographic Accumulator

Problem

□ A set X.

Given an element x we wish to prove that this element belongs or not to X.

- Let $X = \{x_1, x_2, ..., x_n\}$:
 - \Box X will be represented by a short value Acc.
 - Acc is the Accumulated Value
 - □ Given x and w (*witness*) we want to check whether x belongs to X.

Notion of Cryptographic Accumulator

Participants

- □Manager
 - Computes the accumulated value ...
 - ... and the witnesses.
- User
 - Tests for (non)membership of a given element using the accumulated value and a witness provided by the manager.

Properties

Dynamic

□ Allows insertion/deletion of elements.

Universal

□ Allows proofs of membership and nonmembership.

Strong

□ No need to trust in the Accumulator Manager.

Prior work

	Dynamic	Strong	Universal	Security	Efficiency (witness size)	Note
[BeMa94]	X	\checkmark	X	RSA + RO	O(1)	First definition
[BarPfi97]	X		X	Strong RSA	O(1)	-
[CamLys02]		X	X	Strong RSA	O(1)	First dynamic accumulator
[LLX07]		X	\checkmark	Strong RSA	O(1)	First universal accumultor
[AWSM07]		X	X	Pairings	O(1)	E-cash

Prior work

	Dynamic	Strong	Universal	Security	Efficiency (witness size)	Note
[BeMa94]	X	\checkmark	X	RSA + RO	O(1)	First definition
[BarPfi97]	X		X	Strong RSA	O(1)	-
[CamLys02]	\checkmark	X	X	Strong RSA	O(1)	First dynamic accumulator
[LLX07]	\checkmark	X	\checkmark	Strong RSA	O(1)	First universal accumultor
[AWSM07]	\checkmark	X	X	Pairings	O(1)	E-cash
[СНКО08]	\checkmark			Collision-Resistant Hashing	O(ln(n))	Our work

Some Applications

- Time-Stamping [BeMa94]
- Anonymous Credentials [CamLys02]
- Broadcast Encryption [GeRa04]
- Certificate Revocation List [LLX07]
- E-Cash [AWSM07]
- Electronic Invoice Factoring [CHKO08]

Outline

Basic Cryptographic Concepts Notion of Cryptographic Accumulator

Our Construction [CHKO08]

Conclusion

Dynamic Accumulators [CamLys02]

Security Model

Scheme secure iff:

 $Pr[(w,x,X) \leftarrow A^{\circ}(): Belongs(w,x,Acc)=1 and x \notin X] < \epsilon(k)$

Dynamic Accumulators [CamLys02]

Initialization

 \Box n = pq , u $\in Z_n^*$

- Set
 X={x₁,x₂,...,x₁} (primes)
- Accumulated value \Box Acc = $u_{1}^{x} \dots x_{1}^{x} \mod n$
- Witness for x_i
 - $\square w = u^{x_1 \dots x_{i-1} \dots x_i} \mod n$
- Membership test
 w^x mod n = Acc

Dynamic Accumulators [CamLys02]

To add elements

Acc':= Acc^x mod n

 \square w':= w^x mod n

To delete elements

- Recompute the accumulated value with all the elements of the new set.
- Doing the same for the witnesses (without the element we want to test).
- O(|X|) => NOT EFFICIENT

To delete elements efficiently

- □ Manager knows $\Phi(n)$, x to be deleted
 - Acc = $u^{x_1 \cdot x_2 \cdot \dots \cdot x_l} \mod n$
 - Compute $y=x^{-1} \mod \Phi(n)$
 - Acc_{new} = Acc^{1/x} mod n = Acc^y mod n
- The manager must be trusted because he can compute fake witnesses for any x

□ w=Acc^{1/x} mod n

Dynamic Accumulators [CamLys02]

Theorem: if the Strong RSA Assumption holds, the dynamic accumulator is secure.

Dynamic Accumulators [CamLys02]

Lemma: Let n be an integer, given u,v e Z^{*} and a,b e Z such that u^a = v^b mod n and gcd(a,b) = 1, we can compute efficiently x e Z^{*}_n such that x^a=v mod n.

Proof:

$$\Box \gcd(a,b)=1 => bd = 1 + ac$$

$$\Box x := u^{d}v^{-c} => x^{a} = u^{da}v^{-ca} = (u^{a})^{d}v^{-ca}$$

$$= v^{bd}v^{-ca} = v$$

Dynamic Accumulators [CamLys02]

Proof of the theorem:

If there exists an adversary A that can break our scheme

We can build an adversary **B** that can break the Strong RSA Assumption

Dynamic Accumulators [CamLys02]

Proof of the theorem: $\Box X = \{X_1, \dots, X_l\}$ \Box Acc = $u^{x_1 \dots x_l}$ mod n = u^{v} mod n e does not belong to X \Box w^e mod n = Acc = u^v mod n \Box gcd(v,e) = 1 and w^e=u^v mod n => by the lemma we can conclude

Outline

Basic Cryptographic Concepts
Notion of Cryptographic Accumulator

Constructions

- Dynamic Accumulators [CamLys02]
- Our Construction [CHKO08]

Conclusion

Factoring Industry in Chile [CHK008]

Factoring Industry in Chile [CHKO08]

(*) but I do not want to pay yet.

Factoring Industry in Chile [CHKO08]

(*) but I do not want to pay yet.

(*) but I do not want to pay yet.

Factoring Industry in Chile [CHKO08]

Factoring Industry in Chile [CHKO08]

Factoring Industry in Chile [CHKO08]

The Problem

- A malicious provider could send the same invoice to various Factoring Entities.
- Then he leaves to a far away country with all the money.

Later, several Factoring Entities will try to charge the invoice to the same client. Losts must be shared...

Solution with Factoring Authority

Caveat

This solution is quite simple.

However

□ Trusted Factoring Authority is needed.

Can we remove this requirement?

Notation

■ H: {0,1}*→{0,1}^k

Collision-resistant hash function

• $x_1, x_2, x_3, \dots \in \{0, 1\}^k$

 $\square x_1 < x_2 < x_3 < \dots$ where < is the lexicographic order on binary strings.

_∞,∞

- Special values such that
 - For all x ∈ {0,1}^k: -∞ < x < ∞</p>
- I denotes the concatenation operator.

Public Data Structure

- Manager owns a public data structure called "Memory".
- Compute efficiently the accumulated value and the witnesses.
- In our construction the Memory M will be a binary tree.

Accumulator Operations

Operation	Who runs it?
$Acc_0, M_0 \leftarrow Setup(1^k)$	Manager
$w \leftarrow Witness(M,x)$	Manager
$True, False, \perp \leftarrow Belongs(x, w, Acc)$	User
Acc _{after} , M_{after} , $w_{up} \leftarrow Update_{add/del}(M_{before}, x)$	Manager
$OK, \bot \leftarrow CheckUpdate(Acc_{before}, Acc_{after}, w_{up})$	User

Checking for (non)membership

Update of the accumulated value

Ideas

- How to prove nonmembership?
 - Kocher's trick [Koch98]: store pair of consecutive values
 - X={1,3,5,6,11}
 - X'={ $(-\infty,1),(1,3),(3,5),(5,6),(6,11),(11, \infty)$ }
 - y=3 belongs to $X \Leftrightarrow (1,3)$ or (3,5) belongs to X'.
 - y=2 does not belong to $X \Leftrightarrow (1,3)$ belongs to X'.

(-∞,∞)

X=Ø, next: x₁

 $X = \{x_1\}, next: x_2$

$$X = \{x_1, x_2, x_5\}, \text{ next: } x_3$$

$$X = \{x_1, x_2, x_3, x_5\}, \text{ next: } x_4$$

$$X = \{x_1, x_2, x_3, x_4, x_5\}, \text{ next: } x_6$$

 $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$

How to delete elements?

 $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ element to be deleted: x_2

How to delete elements?

How to delete elements?

How to compute the accumulated value?

How to update the accumulated value? (Insertion)

 x_8 to be inserted.

How to update the accumulated value? (Insertion)

How to update the accumulated value? (Insertion)

Dark nodes do not require recomputing Proof_N.

Only a logarithmic number of values need recomputation.

■ Definition: an accumulated value Acc represents the set X={x₁,x₂,...,x_n}, if it has been computed from a tree T containing node values {(-∞,x₁),(x₁,x₂),...,(x_n,∞)}, where each pair appears only once.

Definition: (Consistency)

Given Acc that represents X, it is hard to find witnesses that allow to prove inconsistent statements.

- X={1,2}.
- Hard to compute a *membership* witness for 3.
- Hard to compute a nonmembership witness for 2.

Definition: (Update)

- Guarantees that the accumulated value Acc represents the set X after insertion/deletion of X.
- Every update must be checked by users but it is not needed to store the sequence of insertion/deletion.

Theorem: if CRHF exist the accumulator is secure (i.e. satisfies consistency and update).

- Lemma: Given a tree T with accumulated value Proof_T, finding a tree T', T≠T' such that Proof_T = Proof_T is difficult.
- Proof (Sketch): Proof_N = H(Proof_{left}||Proof_{right}||value)

- Lemma: Given a tree T with accumulated value Proof_T, finding a tree T', T≠T' such that Proof_T = Proof_T, is difficult.
- Proof (Sketch): Proof_N = H(Proof_{left}||Proof_{right}||value)

- Lemma: Given a tree T with accumulated value Proof_T, finding a tree T', T≠T' such that Proof_T = Proof_T is difficult.
- Proof (Sketch): Proof_N = H(Proof_{left}||Proof_{right}||value)

- Lemma: Given a tree T with accumulated value Proof_T, finding a tree T', T≠T' such that Proof_T = Proof_T is difficult.
- Proof (Sketch): Proof_N = H(Proof_{left}||Proof_{right}||value)

Security (Consistency)

Witness: blue nodes and the (x_3, x_4) pair, size in O(ln(|X|))

Checking that x belongs (or not) to X:

- 1) compute recursively the proof P and verify that P=Acc
- 2) check that: $x=x_3$ or $x=x_4$ (membership)

 $x_3 < x < x_4$ (nonmembership)

Security (Update)

Insertion of x₈

Conclusion & Open Problem

- First dynamic, universal, strong accumulator
- Simple
- Security

Existence of CRHF

- Solves the e-Invoice Factoring Problem
- Less efficient than other constructions

□ Size of witness in O(In(|X|))

Open Problems

- Is it possible to build an efficient *strong*,*dynamic* and *universal* accumulator with witness size lower than O(ln(|X|))?
- How to handle more complex queries than membership? For example range queries, pattern queries on binary strings.

Thank you!

Distributed solutions?

- Complex to implement
- Hard to make them robust
- High bandwith communication
- Need to be online synchronization problems
- That's why we focus on a centralized solution.

Invoice Factoring using accumulator

- We need a secure broadcast channel
 If a message m is published, every participant sees the same m.
- Depending on the security level required Trusted http of ftp server
 - Bulletin Board [CGS97]

Invoice Factoring using accumulator

Invoice Factoring using accumulator

Step 5 (Details)

Basic Cryptographic Notions

Secure encryption [GM84]

Adversary wins if $Pr[b=b'] > \frac{1}{2} + \frac{1}{q(n)}$

Bibliography

- **[GM84]** Probabilistic Encryption Shafi Goldwasser and Silvio Micali 1984
- **[BeMa92]** Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992
- [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare, 1994
- [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Barić and Birgit Pfitzmann 1997
- [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers 1997
- **[Koch98]** On certificate revocation and validation *P.C. Kocher* 1998
- **[CGH98]** The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998
- [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999
- **GoTa01]** An efficient and Distributed Cryptographic Accumulator *Michael T. Goodrich and Roberto Tamassia* 2001
- [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch Anna Lysyanskaya 2002
- [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan 2004

Bibliography

- [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007
- **[AWSM07]** Compact E-Cash from Bounded Accumulator *Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu* 2007
- [CKHO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo 2008