# Fair Exchange of Short Signatures without Trusted Third Party 

Philippe Camacho
University of Chile

## Digital Goods Economy


iTunes


# Enforcing Secure Transactions through a Trusted Third Party (TTP) 


amazon.com

## Problems with TTP

## Anonymous Claims To Have Hacked 28,000 PayPal Passwords For Guy Fawkes Day

```
The Huffington Post | By Cavan Sieczkowski \(\mathbb{K}^{3}\)
Posted: 11/05/2012 11:15 am EST Updated: 11/05/2012 1:01 pm EST
```



## Problems with TTP

## PayPal

Privacy Policy
Last Update: Jul 13, 2010

Jump to section:

How we collect information about you
How we use cookies
How we protect and store personal information
How we use the personal information we collect
Marketing
How we share personal information with other PayPal users
How we share personal information with other parties
How you can control our communications with you
How you can access or change your personal information
Binding Corporate Rules
How you can contact us about privacy questions

This policy describes the ways we collect, store, use and protect your personal information. You accept this policy and consent to such collection, storage and use when you sign up for or use our products, services or any other feature, technologies or functionalities offered by us on our website or through any other means (collectively "the PayPal Services"). We may amend this policy at any time by posting a revised version on our website. The revised version will be effective at the time we post it. In addition, if the revised version includes a substantial change, we will provide you with 30 days' prior notice by posting notice of the change on the "Policy Updates" page of our website. After this 30 days notice, you will be considered as having expressly consented to all amendments to this policy.

## Fair Exchange in the

 Physical World is "easy"

## Modeling Transactions with Digital Signatures

The problem: Who starts first? Impossibility Result [Cleve86]


Software License


Seller
Buyer

## Gradual Release of a Secret



0

How do I know that the bit I received is not garbage?

## Our Construction

- Fair Exchange of Digital Signatures
- Boneh-Boyen [BB04] Short Signatures
- No TTP
- Practical


## Contributions

- Formal definition of Partial Fairness
- Efficiency

|  | $\boldsymbol{\kappa}$ : Security Parameter | $\boldsymbol{\kappa}=\mathbf{1 6 0}$ |
| :--- | :---: | :---: |
| \# Rounds | $\kappa+1$ | 161 |
| Communication | $16 \kappa^{2}+12 \kappa$ bits | $\approx 52 \mathrm{kB}$ |
| \# Crypto operations <br> per participant | $\approx 30 \kappa$ | $\approx 4800$ |

- First protocol for Boneh-Boyen signatures


## Contributions

- NIZK argument to prove that a commitment encodes a bit vector.
- NIZK argument to prove a commitment to a bit vector is the binary expansion of the discrete logarithm $\theta$ of $D=g^{\theta}$.



## Non-Interactive Zero-Knowledge Proofs

Prove something about the secret in the box without opening the box.


## Abstract Protocol



## Partial Fairness



## $O_{\text {Sign }}\left(s k_{B},\right)$


$\left(s k_{B}, p k_{B}\right)$
$\frac{\operatorname{Pr}\left[\operatorname{SVf}\left(p k_{B}, m_{B}, \sigma_{A}\right)=\text { valid }\right]}{\operatorname{Pr}\left[\operatorname{SVf}\left(p k_{A}, m_{A}, \sigma_{B}\right)=\text { valid }\right]} \leq Q(\kappa)$


Bet according to partially released secret

## Protocol



## Bilinear maps

- $\left(p, e, G, G_{T}, g\right) \leftarrow \operatorname{BMGen}\left(1^{k}\right)$
- $|G|=\left|G_{T}\right|=p$
- $e: G \times G \rightarrow G_{T}$
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- $e(g, g)$ generates $G_{T}$


## Assumptions

- Given $\left(g, g^{s}, g^{s^{2}}, g^{s^{3}}, \cdots, g^{s^{q}}\right)$ it's hard to compute
- $g^{\frac{1}{s}}$ ( $q$ - Diffie-Hellman Inversion)
- $e(g, g,)^{\frac{1}{s}}$ ( $q$-Bilinear Diffie-Hellman Inversion)
- $\left(c, g^{\frac{1}{s+c}}\right)$ ( $q$-Strong Diffie-Hellman)
- $g^{s^{q+i}}$ for $1 \leq i \leq q$
( $q+i$ Diffie-Hellman Exponent)


## Assumptions

- Proposition: $q-B D H I \Rightarrow q+i-D H E$
- Our protocol is secure under
- q-SDH
- $q$ - BDHI


## Short Signatures w/o Random Oracle [BBO4]

- KeyGen $\left(\mathbf{1}^{k}\right)$

1. $x, y \in Z_{p}$
2. $u=g^{x}, v=g^{y}$
3. $p k=(u, v), s k=(x, y)$
4. return $(s k, p k)$

- SSign(sk,m)

1. $r \in Z_{p}$
2. return $\sigma=\left(g^{\frac{1}{x+m+y r}}, r\right)=\left(\sigma_{r}, r\right)$

- $\quad \operatorname{SVf}(p k, m, \sigma)$

1. Check that $e\left(\sigma_{r}, u g^{m} v^{r}\right)=e\left(g^{\frac{1}{x+i+y r}}, g^{x+m+y r}\right)=e(g, g)$

## Protocol



## The Encrypted Signature

- Computing
- $\theta \leftarrow \mathrm{Z}_{p} \quad$ - $\left.\left.D=g^{\theta}\right\} \begin{array}{l}\text { Secret key / "blinding" factor } \text {. }\end{array}\right\} \begin{aligned} & \text {. }\end{aligned}$
- $\boldsymbol{\sigma}=\left(\boldsymbol{g}^{\frac{\theta}{x+m+y r}}, \boldsymbol{r}\right) \xrightarrow{\begin{array}{c}\text { Boneh-Boyen signature } \\ \text { "blinded" by } \theta\end{array}}$
- Checking
- Given ( $D, \sigma, p k, m$ ) parse $\sigma$ and $p k$ as
- $\sigma=\left(\sigma_{\theta}, r\right)$
- $\quad p k=\left(g, u=g^{x}, v=g^{y}\right)$
- $\boldsymbol{e}\left(\boldsymbol{\sigma}_{\theta}, \boldsymbol{u} \boldsymbol{g}^{m} v^{r}\right)=e\left(g^{\frac{\theta}{x+2+y r} r}, g^{x+m+y r}\right)=\boldsymbol{e}(\boldsymbol{D}, \boldsymbol{g})$


## Protocol



## NIZK argument 1

- $C R S=\left(g, g^{s}, g^{s^{2}}, g^{s^{3}}, \cdots, g^{s^{q}}\right)=\left(g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{q}\right)$
- Statement

Let $C=\left(C_{1}, C_{2}, \ldots, C_{q}\right)$
The prover knows $\left(r_{i}, b_{i}\right) \in\left(Z_{p} \times\{0,1\}\right)$ such that $\boldsymbol{C}_{\boldsymbol{i}}=\boldsymbol{g}^{\boldsymbol{r}_{\boldsymbol{i}}} \boldsymbol{g}_{\boldsymbol{i}}^{\boldsymbol{b}_{\boldsymbol{i}}}$

- Argument
- $A_{i}=g_{q-i}^{r_{i}} g_{q}^{b_{i}}$

Shift $C_{i}$ by $q-i$ positions to the right.

- $B_{i}$ such that $e\left(A_{i}, C_{i} g_{i}^{-1}\right)=e\left(B_{i}, g\right)$
- Return $\left(A_{i}, B_{i}\right)$ for each $i \in[1 . . q]$
- Verification
- $e\left(A_{i}, g\right)=e\left(C_{i}, g_{q-i}\right)$
- $e\left(A_{i}, C_{i} g_{i}^{-1}\right)=e\left(B_{i}, g\right)$


## NIZK argument 1

## - Theorem:

The argument is perfectly complete, computationally sound under the $q+i$ - DHE assumption and perfectly zero-knowledge.

## Proof (sketch).

$$
\begin{aligned}
& e\left(A_{i}, C_{i} g_{i}^{-1}\right)=e\left(g_{q-i}^{r_{i}} g_{q}^{b_{i}}, g^{r_{i}} g_{i}^{b_{i}-1}\right) \\
= & e(\underbrace{g_{q-i}^{r_{i}^{2}} g_{q}^{r_{i}\left(2 b_{i}-1\right)}}_{B_{i}} g_{\substack{\text { If } b_{i} \notin\{0,1\}, \text { the adversary breaks } \\
\text { the } q+i-\text { DHE assumption. }}}^{b_{i}\left(b_{i}-1\right)}, g)=e\left(B_{i}, g\right)
\end{aligned}
$$

## Protocol



## NIZK argument 2

- CRS $=\left(g, g^{s}, g^{s^{2}}, g^{s^{3}}, \cdots, g^{s^{q}}\right)=\left(g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{q}\right)$
- We set $q=\kappa$ (security parameter)
- Statement
- The prover knows $\left(r_{i}, b_{i}\right) \in\left(Z_{p} \times\{0,1\}\right)$ and $\theta$ such that $C_{i}=g^{r_{i}} g_{i}^{b_{i}}, D=g^{\theta}$ and

$$
\theta=\sum_{i=1}^{\kappa} b_{i} 2^{i-1}
$$

## NIZK argument 2

- Verification: Input (

$$
\prod_{i=1}^{k} C_{i}=\prod_{i=1}^{k} g^{r_{i}} g_{i}^{b_{i}} \Leftrightarrow\left[r^{\prime}, b_{1}, b_{2}, \ldots, b_{\kappa}\right]
$$

- Parse $\pi=\left(r^{\prime}, U, V\right)$

$$
U=\left(\prod_{i=1}^{k} g_{i}^{b_{i}}\right)^{1 / s}=\prod_{i=1}^{k} g_{i-1}^{b_{i}} \Leftrightarrow\left[b_{1}, b_{2}, \ldots, b_{k}\right]
$$

- Check that $e\left(\frac{\Pi_{i=1}^{k} c_{i}}{g^{r}{ }^{r}}, g\right)=e\left(U, g_{1}\right)$
- Check that $e\left(\frac{U}{D}, g\right)=e\left(V, g_{1} g^{-2}\right)$

$$
\begin{aligned}
& \left.U \Leftrightarrow P(s) \text { (i.e. } U=g^{P(s)}\right) \\
& V \Leftrightarrow W(s) \quad \text { s.t. } \quad P(s)-P(2)=W(s)(s-2)
\end{aligned}
$$

## NIZK argument 2

- Theorem:

The argument is perfectly complete, computationally sound under the $q-S D H$ assumption and perfectly zero-knowledge.

## Protocol



## Recovering the Signature

- All the bits $b_{i}$ are revealed
- Compute $\theta=\sum_{i=1}^{K} b_{i} 2^{i-1}$
- We have $\sigma=\left(g^{\frac{-0}{x+m+y r}}, r\right)=\left(\sigma_{\theta}, r\right)$
- Compute $\sigma=\left(\sigma_{\theta}{ }^{1 / \theta}, r\right)$


## Proofs of Knowledge

- Discrete logarithm $\theta$ of
- $D=g^{\theta}$
- $r_{i}, b_{i}$ such that
- $C_{i}=g^{r_{i}} g_{i}^{b_{i}}$



# Simultaneous Hardness of Bits for Discrete Logarithm 

Holds in the generic group model [Schnorr98]

An adversary cannot distinguish between a random sequence of $\boldsymbol{\kappa}-\boldsymbol{l}$ bits and the first $\boldsymbol{\kappa}-\boldsymbol{l}$ bits of $\boldsymbol{\theta}$ given $\boldsymbol{g}^{\boldsymbol{\theta}}$.

$$
\begin{gathered}
A d v^{S H D L}(\mathcal{A}, \kappa)=\left|\operatorname{Pr}\left[\begin{array}{c}
\theta \stackrel{R}{R} \mathbb{Z}_{p}: \\
1 \leftarrow \mathcal{A}\left(g^{\theta}, \theta[1 \ldots \kappa-l]\right)
\end{array}\right]-\operatorname{Pr}\left[\begin{array}{c}
\theta, \alpha \stackrel{R}{\gtrless} \mathbb{Z}_{p}: \\
1 \leftarrow \mathcal{A}\left(g^{\theta}, \alpha[1 . . \kappa-l]\right)
\end{array}\right]\right| \\
l=\omega(\log \kappa)
\end{gathered}
$$

## Conclusion

- Fair exchange protocol for short signatures [BB04] without TTP
- Practical
- Two new NIZK arguments



## Partial Fairness

Only contract signing

- A randomized protocol for signing contracts [EGL85]
- Gradual release of a secret [BCDB87]
- Practically and Provably secure release of a secret and exchange of signatures
[Damgard95]
- Resource Fairness and Composability of Cryptographic protocols [GMPY06]

- Theorem:

The protocol is partially fair under the $\kappa-S D H$ and the $\kappa-B D H I$ assumption.

## Proof (Sketch)

- Type I
- Does not forge values but aborts «early»
- => He has to break the signature scheme
- Careful:

What happens if A detects he is simulated?

- The simulator will try to break the SHDL assumption
- If few bits remain, it does not win, everything is OK!


## Proof (Sketch)

- Type II
- Forge values
- The simulator can extract all values computed by adversary and break the soundness of the NIZK arguments or binding property of commitment scheme.

