
Foundations of Semantic Web Databases

Claudio Gutierrezuc Carlos Hurtadouc Alberto O. Mendelzonut
ucDepartment of Computer Science, Universidad de Chile

{cgutierr,churtado}@dcc.uchile.cl
utDepartment of Computer Science, University of Toronto

mendel@cs.toronto.edu

ABSTRACT
The Semantic Web is based on the idea of adding more
machine-readable semantics to web information via an-
notations written in a language called the Resource De-
scription Framework (RDF). RDF resembles a subset of
binary first-order logic including the ability to refer to
anonymous objects. Its extended version, RDFS, sup-
ports reification, typing and inheritance. These features
introduce new challenges into the formal study of sets
of RDF/RDFS statements and languages for querying
them. Although several such query languages have been
proposed, there has been little work on foundational as-
pects. We investigate these, including computational
aspects of testing entailment and redundancy. We pro-
pose a query language with well-defined semantics and
study the complexity of query processing, query con-
tainment, and simplification of answers.

1. INTRODUCTION
The Web is a huge collection of interconnected data.
Managing and processing such information is difficult
due to the fact that the Web lacks semantic informa-
tion. The Semantic Web is a proposal to build an in-
frastructure of machine-readable semantics for the data
on the Web. In 1998 the W3C issued a recommenda-
tion of a metadata model and language to serve as the
basis for such infrastructure, the Resource Description
Framework (RDF) [23]. As RDF evolves, it is increas-
ingly gaining attraction from both researchers and prac-
titioners, and is being implemented in world-wide initia-
tives such as the Open Directory Project, Dublin Core,
FOAF, and RSS.

RDF follows the W3C design principles of interoperabil-
ity, extensibility, evolution and decentralization. Partic-
ularly, the RDF model was designed with the following
goals: simple data model; formal semantics and prov-

able inference; extensible URI-based vocabulary; allow-
ing anyone to make statements about any resource. In
the RDF model, the universe to be modeled is a set
of resources, essentially anything that can have a uni-
versal resource identifier, URI. The language to describe
them is a set of properties, technically binary predicates.
Descriptions are statements very much in the subject-
predicate-object structure, where predicate and object
are resources or strings. Both subject and object can be
anonymous objects, known as blank nodes. The subject
or object of an RDF statement can be another state-
ment, a feature known as reification. In addition, the
RDF specification includes a built-in vocabulary with
a normative semantics (RDFS). This vocabulary deals
with inheritance of classes and properties, as well as
typing, among other features [25]. Good introductory
references for the RDF model are [26] and [27]. Figure 1
shows an example of RDF data.

1.1 Problem Statement
Languages for querying RDF have been developed in
parallel with RDF itself, e.g. rdfDB [10], SquishQL [15],
RQL [13], Triple [20] QEL [16], DQL [22], SeRQL [4].
However, there is very little research so far on founda-
tional aspects of the RDF data model and RDF query
languages. Research on formal aspects of RDF data and
query languages is made necessary by the new features
that arise in querying RDF graphs as opposed to stan-
dard databases: the presence of blank nodes, reification,
premises in queries, and the RDFS vocabulary with pre-
defined semantics. Formal aspects that need study are
normal forms and redundancy elimination, entailment,
semantics of query languages, query containment and
complexity of query processing.

The RDF data model allows several representations for
the same information. This raises the question about
the existence of normal forms and testing of equivalence
among them. Currently different RDF query languages
implement different querying mechanisms and function-
alities that have not been the subject of a systematic and
integrated study. Traditional database notions of query
containment do not translate directly to the RDF set-
ting. They need to be reformulated to take into account
the fact that RDF queries process logical specifications
rather than plain data. Additionally, premises and con-
straints on queries add further complexity to the prob-



lem. Regarding query processing, the presence of prede-
fined semantics and blank nodes in RDF introduce new
problems. These include testing entailment of databases
and query conditions for keeping RDF databases and
query outputs as concise as possible.

1.2 Contributions
In this paper, we study formal aspects of querying data-
bases containing RDF data.1 We study main features
of RDF query languages derived from the presence of
blank nodes, reification, premises in queries and the role
of predefined RDF vocabulary in query processing.

We introduce a notion of normal form for RDF graphs,
give an algorithm to compute it, and study its complex-
ity. The normal form proposed in this paper combines
the notions of closure and of core for RDF graphs, which
by themselves do no lead to unique representations for
RDF data. The normal form gives a unique representa-
tive for each class of equivalent RDF graphs.

We give a formal definition of a query language for RDF.
We present the language in a streamlined form that is
not intended for practical use, but to make it easy to
formalize and prove results about its properties. The
language comprises all the main features encountered
in current RDF query languages and gives them a well
defined semantics. We study the differences with stan-
dard languages studied in the database community.

We investigate theoretical and complexity issues related
to query containment, query processing, and redundancy
elimination for queries. The normal form allows us to
approach RDF queries with similar techniques to clas-
sical databases. This is achieved by reducing the pro-
cessing of RDF queries, from computing knowledge base
entailments, as defined for RDF query languages, to the
search for mappings between RDF graphs. This ap-
proach permits to view RDF specifications as data while
keeping their knowledge-base semantics.

1.3 Related Work
The RDF model was introduced five years ago as a W3C
recommendation [23]. Its formal semantics, however, is
still an ongoing work [24]. From a logical point of view,
Yang and Kifer in [21], present an F-logic version of
RDF. They define two notions of entailment for RDF
graphs and concentrate mainly in the semantics of blank
nodes and reification. Extensions of the model, adding
expressiveness leading to the realm of descriptive logics,
can be found in the Web Ontology Language, OWL [17].

Several ideas from the processing of semistructured data
are of use in the RDF context, e.g. incomplete answers
[6], and query rewriting [18]. Despite the apparent sim-
ilarities of the models, aspects like blank nodes, graph-

1Preliminary results for the case with no rdfs vocabu-
lary were presented at the First International Workshop
on Semantic Web and Databases co-located with VLDB
2003, Humboldt-Universität, Berlin, Germany, Septem-
ber 7-8, 2003.

like structure, and semantics, make the problems stud-
ied in this paper somehow orthogonal to problems ad-
dressed in previous research on semistructured data.

The notion of core has appeared in various contexts, e.g.
graphs [12], data exchange [7].

Languages for querying RDF have been developed in
parallel with RDF itself. We can mention rdfDB [10], an
influential simple graph-matching query language from
which several other query languages evolved. Among
them, SquishQL [15] is a graph-navigation query lan-
guage that was designed to test some of the function-
alities of an RDF query language. It adds constraints
on the variables and returns a table as result. SquishQL
has several implementations like RDQL and Inkling [15].
RQL [13] has a very different syntax based on OQL,
but can perform similar sorts of queries. It is a typed
language following a functional approach and supports
generalized path expressions. Its new version is [4].
Other languages are Triple [20], a query and transfor-
mation language, QEL [16], a query-exchange language
designed to work across heterogeneous repositories, and
DQL [22], a language for querying DAML+OIL knowl-
edge bases, that consider RDF data as a knowledge base,
applying reasoning techniques to RDF querying. Good
surveys are [19, 14].

Queries with premises (see Section 4.3) have been stud-
ied in the logic programming community, e.g. [8]. Their
complexity aspects from a database point of view are
studied in [5]. Premises also appear in the context of
query languages for knowledge bases, e.g. DQL [22]. In
SQL-like RDF query languages, this feature appears as
a specification of a schema to be used when processing
the query [4, 15].

2. PRELIMINARIES
In this section we present the RDF model following the
W3C documents [23, 24, 25]. We use the abstract repre-
sentation of the model as graphs, and do not discuss any
serialization of the model (e.g. its XML-based syntax).

2.1 RDF graphs
Assume there is an infinite set U (RDF URI references);
an infinite set B = {Nj : j ∈ N} (Blank nodes); and
an infinite set L (RDF literals). A triple (v1, v2, v3) ∈
(U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple. In
such a triple, v1 is called the subject, v2 the predicate
and v3 the object. We often denote by UBL the union
of the sets U , B and L.

Definition 1. An RDF graph (just graph from now
on) is a set of RDF triples. A subgraph is a subset of
a graph. The universe of a graph G, universe(G), is the
set of elements of UBL that occur in the triples of G.
The vocabulary of G is the set universe(G) ∩ (U ∪ L).

We will use letters N,X, Y, . . . to denote blank nodes,
and a, b, c, . . . for URIs and literals.
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Figure 1: An RDF graph specifying a schema to describe art resources. The relations subclass (sc),
subproperty (sp), type, domain and range belong to the RDFS vocabulary. The triple (Picasso, paints,
Guernica) shows that in RDF specifications, schemas and data can be described at the same level.
Note that the set of arc labels and node labels may intersect, e.g. paints is both a node label and an
arc label. There are arcs not depicted to avoid crowding the figure. Example taken from [4].

A graph is ground if it has no blank nodes.

Graphically we represent RDF graphs as follows: each

triple (a, b, c) is represented by a
b //c . Note that the

set of arc labels can have non-empty intersection with
the set of node labels.

We will need some technical definitions. A map is a
function µ : UBL → UBL preserving URIs and liter-
als, i.e., µ(u) = u and µ(l) = l for all u ∈ U and
l ∈ L. Given a graph G, we define µ(G) as the set
of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. A map
µ is consistent with G if µ(G) is an RDF graph, i.e. ,
if s is the subject of a triple, then µ(s) ∈ UB, and if p
is the predicate of a triple, then µ(p) ∈ U . In this case,
we say that the graph µ(G) is an instance of the graph
G. An instance of G is proper if µ(G) has fewer blank
nodes than G. This means that either µ sends a blank
node to a URI or a literal, or identifies two blank nodes
of G. We will overload the meaning of map and speak
of a map µ : G1 → G2 if there is a map µ such that
µ(G1) is a subgraph of G2.

Two graphs G1, G2 are isomorphic, denoted G1
∼= G2,

if there are maps µ1, µ2 such that µ1(G1) = G2 and
µ2(G2) = G1.

We define two operations on graphs. The union of
G1, G2, denoted G1 ∪ G2, is the set theoretical union
of their sets of triples. The merge of G1, G2, denoted
G1 + G2, is the union G1 ∪ G′2, where G′2 is an iso-
morphic copy of G2 whose set of blank nodes is disjoint
with that of G1. Note that G1 + G2 is unique up to
isomorphism.

2.2 RDFS Vocabulary

There is a set of reserved words defined in the RDF
vocabulary description language, RDF Schema [25], –
just rdfs-vocabulary for us– that may be used to de-
scribe properties like attributes of resources (traditional
attribute-value pairs), and also to represent relation-
ships between resources. It defines classes and prop-
erties that may be used for describing groups of related
resources and relationships between resources.

Classes are sets of resources. Elements of a class are
known as instances of that class. To state that a re-
source is an instance of a class, the property rdf:type
may be used. The following are the most important
classes (in brackets the name we will use in this pa-
per) rdfs:Resource [res], rdfs:Class [class], rdfs:Literal
[literal], rdfs:Datatype [datatype], rdf:XMLLiteral
[xmlLit], rdf:Property [prop].

Properties are binary relations between subject resources
and object resources. The built-in properties are: rdfs:
range [range], rdfs:domain [dom], rdf:type [type], rdfs:
subClassOf [sc], rdfs:subPropertyOf [sp].

The reification vocabulary was designed to allow making
statements about statements. It consists of rdf:Statement
[stat], rdf:subject [subj], rdf:predicate [pred], and rdf:
object [obj]. The following graph states that the triple
(a, b, c), occurs in page http:....

stat N
typeoo occurs //

subj

��
pred

��

obj

��

http : ...

a b c

Logically this graph states: “There exists an anony-
mous resource of type statement which occurs in http:...,
whose subject, predicate and object are, respectively, a,



b and c.”

The formal semantics of rdfs vocabulary will be pre-
sented in Section 3.2 below.2

2.3 Lean graphs
We study in this section the notion of core for RDF
graphs which is related to the notion of lean in [24].
Similar notions have been investigated in other contexts
[12, 11, 7]. For RDF graphs, this notion is closely bound
to minimal representations and normal forms of RDF
graphs as will be shown in Section 3.

Definition 2. A graph G is lean if there is no map
µ such that µ(G) is a proper subgraph of G.

Example 1. Let p, q, r be different predicates and con-
sider:

G1 a
p //

p

��

X

Y

G2 a
p //

p

��

X

q

��
Y

r
// b

Then G1 is not lean, but G2 is lean because there is no
proper map of G2 into itself.

The following theorem will be the basis of the applica-
tions of the notion of core in the context of RDF graphs.

Theorem 1 (Core). Each RDF graph G contains
a unique (up to isomorphism) lean subgraph which is an
instance of G. We will denote this unique subgraph by
core(G).

Computing cores is hard:

Theorem 2. Let G,G′ be RDF graphs.

1. Deciding if G is lean is coNP-complete.

2. Deciding if G′ ∼= core(G) is DP-complete.

3. SEMANTICS OF RDF GRAPHS
The normative semantics for RDF graphs given in [24]
follows standard classical treatment in logic with the
notions of model, interpretation, entailment, and so on.

Roughly speaking an interpretation I of an RDF graph
G consists of: (1) a non-empty set of resources Res; (2)

2We omit in this paper vocabulary intended to describe
lists, collections, some variations on these, as well as
vocabulary to help document and describe other func-
tionalities for which there is no normative semantics.
The complete vocabulary can be consulted in [25].

a distinguished subset Lit ⊆ Res, the literals; (2) a set
of binary properties Prop ⊆ Res × Res; and (3) map-
pings from the vocabulary of G, U → Res ∪ Prop and
L → Lit, plus some integrity restrictions. Given I, I
satisfies G iff G is true under this interpretation. Then,
an RDF graph G1 entails G2, denoted G1 |= G2, iff ev-
ery interpretation over the vocabulary of G ∪G2 which
satisfies G1 also satisfies G2. For further discussion on
this model theoretical semantics we refer the reader to
[24].

We say that two graphs are equivalent, denoted G1 ≡
G2, if G1 |= G2 and G2 |= G1. Note that isomorphism
is a purely syntactic relation among graphs, but equiv-
alence relies on the semantic notion of entailment.

3.1 Semantics of simple RDF graphs
For our purposes, it is sufficient to have a working char-
acterization of the notion of entailment between RDF
graphs. We will proceed in two steps: In this section,
we present a characterization of the notion of entailment
between simple RDF graphs, i.e., those graphs that do
not use vocabulary with a predefined semantics. Then,
in Section 3.2, we will give a general characterization of
entailment for graphs using rdfs vocabulary.

For the class of simple graphs entailment is character-
ized by the following theorem.

Theorem 3 (cf. RDF Semantics [24]). Let G1, G2

be simple RDF graphs. Then G1 entails G2, denoted
G1 |= G2, if and only if there is a map G2 → G1.

Example 2. A graph G entails any of its subgraphs.

Example 3. Refer to the graph in Figure 1 and call
it G. Then G entails the graph

Cubist X
typeoo paints // Guernica

This can be interpreted as: “From the graph in Figure 1
it follows that there is a cubist who painted Guernica”,

But G does not entail the graph

Rivera
paints // Zapata

This can be interpreted as: “From the graph in Figure 1
it does not follow that Rivera painted Zapata.”

Theorem 4 (Folklore). 1. Deciding entailment
of simple RDF graphs is NP-complete. 2. Deciding
equivalence of simple RDF graphs is isomorphism-complete.

Note 1. It is interesting to observe that the complex-
ity of testing entailment and equivalence depends heavily
on the set of blank nodes of the RDF graph. This is im-
portant because in most RDF data currently found in



practice the set of blank nodes is small compared to the
set of URIs or literals (ground nodes) of the graph. It is
not difficult to see that this testing can be done in time
O(vn), where v is the set of nodes of the largest graph
and n is the number of blank nodes.

For simple graphs, the concept of lean graph corre-
sponds exactly to minimal representations as the next
theorem shows:

Theorem 5. If G is simple, then core(G) is the unique
(up to isomorphism) minimal (w.r.t number of triples)
graph equivalent to G.

3.2 Semantics of RDF graphs with RDFS
Vocabulary

In what follows, we present an operational semantics for
the notion of entailment for graphs with rdfs-vocabulary.
It is based on a sound and complete set of rules for |=
given in [24].

3.2.1 Rules
The set of rules is arranged in four groups. Group A
describes the semantics of blank nodes, which is essen-
tially the semantics of simple RDF graphs. Group B
describes the semantics of sp, stating that it is a tran-
sitive relation. Group C describes similar semantics for
sc. Group D states the semantics of dom and range, the
domain and range of a relation. We omit another group
of rules that has to with internal relationships of the
RDF model itself and that we do not consider in this
paper; see [24] for details.

GROUP A (Existential) For a map µ : G′ → G:

G

G′
(1)

GROUP B (Subproperty)

(a, type, prop)

(a, sp, a)
(2)

(a, sp, b) (b, sp, c)

(a, sp, c)
(3)

(a, sp, b) (x, a, y)

(x, b, y)
(4)

GROUP C (Subclass)

(a, type, class)

(a, sc, a)
(5)

(a, sc, b) (b, sc, c)

(a, sc, c)
(6)

(a, sc, b) (x, type, a)

(x, type, b)
(7)

GROUP D (Typing)

(a, dom, c) (x, a, y)

(x, type, c)
(8)

(a, range, d) (x, a, y)

(y, type, d)
(9)

The following deductive system based on the rules pre-
sented, is sound and complete for entailment of RDF
graphs with rdfs vocabulary.

Definition 3. Let G be a graph. For each rule r : A
B

above, define G `r G ∪ µ(B) iff there is a map µ : A→
G. Also define G `s G′ iff G′ is a subgraph of G.

Define G ` G′ if there is a finite sequence of graphs
G1, . . . , Gn such that (1) G = G1; (2) G′ = Gn; and
(3) for each i, either, Gi `r Gi+1 for some r, or Gi `s
Gi+1.

The following theorem relieves us from having to de-
scribe the model theoretic semantics and will suffice for
our purposes. The proof given in [24] with slight modi-
fications works here.

Theorem 6 (cf. [24]). The deductive system of Def-
inition 3 is sound and complete for |=. That is, G1 ` G2

if and only if G1 |= G2.

3.2.2 Characterization of entailment
When working with non-simple graphs, Theorem 3 does
not hold, because with rdfs vocabulary issues like tran-
sitivity come into play, as the next example shows. We
will show that there is a notion of normal forms for RDF
graphs for which such a characterization can be given.

Example 4. Theorem 3 is not true in general for
graphs with rdfs-vocabulary. Although one can prove
that the following three graphs are equivalent, there are
no maps, for example, from G1 → G2 nor G3 → G1

(recall that sc denotes subClassOf).

G1 : X
sc

��
a

sc //

sc

33

b
sc // c sc // d

G2 : a
sc // b sc // c sc // d



G3 : X
sc

��
a

sc //

sc

33

sc

88

sc

<<b
sc //

sc

77

sc

&&
c

sc // d

To avoid the problems of Example 4, the simplest idea
is to “close” the graph with all possible triples entailed
from the existing ones.

Definition 4. A closure of a graph G is a maximal
set of triples G′ over universe(G) plus the rdfs vocabu-
lary such that G′ contains G and is equivalent to it.

Example 5. There could be more than one closure
of a graph. For example the graph

c
r

��
a

p
66

p //

p
((

X d

b
q

GG

where p, q, r are different properties, has two different
non-isomorphic closures, namely, either adding the triple
(X, r, d) or the triple (X, q, d) (but not both).

A slightly different notion of closure is defined in [24].
In that document, the “RDFS-closure” of a graph G is
defined as the closure of G under all the rules of Sec-
tion 3.2.1 except (1). With this notion, the following
result is proved.

Lemma 1 (cf. [24]). G1 |= G2 if and only if there
is a map from G2 to the RDFS-closure of G1.

Using this lemma it can be proved:

Theorem 7. Deciding entailment of RDF graphs with
rdfs vocabulary is NP-complete.

It turns out that from a data representation point of
view, the notions of “RDFS-closure” introduced in [24]
and of “closure” from our Definition 4 are not the best
choices to work with because they may have redundan-
cies. Similarly, the operator core in the case of non-
simple graphs does not eliminate all redundant triples:
in Example 4, G1, G2 and G3 are lean graphs, but G1

and G3 have redundancies.

We next introduce a notion that avoids these problems.

Definition 5. For a graph G, define its normal form,
denoted nf(G), as core(G′) for a closure (as in Defini-
tion 4) G′ of G.

Theorem 8 (Normal forms for RDF graphs).
Let G be an RDF graph. Then:

1. The normal form nf(G) is unique (up to isomor-
phism).

2. G1 |= G2 if and only if nf(G2)→ nf(G1)

3. G1 ≡ G2 if and only if nf(G1) ∼= nf(G2).

Example 6. The normal form for any of the graphs
of Example 4 is:

a
sc //

sc

99

sc

<<b
sc //

sc

&&
c

sc // d

3.2.3 Redundancy elimination
Normal forms are not the most compact representation
in general, as Example 6 shows. In this example, in or-
der to eliminate redundant triples of the resulting graph
one needs a transitive reduction of sc.

Definition 6. A reduction of a graph G is a mini-
mal graph Gr equivalent to G and contained in G.

Proposition 1. The following algorithm gives the re-
duction of a graph. (reverse rule means deleting the
triple deduced by the rule).

1. G← nf(G).
2. Apply reverse rule (7) until no longer applicable.
3. Apply reverse rules (8) and (9) until no longer ap-
plicable.
4. Apply reverse rule (4) until no longer applicable.
5. Apply transitive reduction of sp and sc.
6. Apply any reverse rule in any order until no longer
applicable.

Example 7. Reduction of a graph. Consider:

q d X

type

��

qoo

p

sp

OO

dom

��

e

type

��

p

OO

type

��
a

sc

88
sc // b sc // c



Its reduction is the subgraph given by the solid lines.
One must be careful in the order in which the “reverse”
rules are applied. For example, to eliminate (e, type, c)
using rule (7) from Section 3.2.1 one needs (a, sc, c) and
(e, type, a).

Example 8. There could be more than one reduction
of a given graph. This follows from the transitive prop-
erty of sc and sp and classical results on transitive re-
duction on graphs [1]. The standard example is:

a

b

p
66

p

** c
p

jj

p
hh

where p is a transitive property. The reduction is ob-
tained by deleting either (b, p, a) or (c, p, a), but not both.

Theorem 9 (Acyclic reduction). Let G be sub-
property- and subclass- acyclic. Then

1. The reduction of G is unique (up to isomorphism),
denoted red(G).

2. G1 |= G if and only if there is a map red(G) →
nf(G1).

Graphs whose subgraphs defined by sp and sc are acyclic
form an important class. In modeling, this is considered
good practice [9].

3.2.4 Complexity of the closure and the reduc-
tion

The notion of normal form for RDF graphs permits to
have a clean operational semantics for entailment, and
will be essential in the next sections when discussing
the query language. On the other hand, the reduction
of a graph can save considerable space compared to the
original graph. Unfortunately, computing normal forms
and reductions is a hard problem.

Theorem 10. Let G,G′ be graphs.

1. The problem of deciding if G′ is the closure of G is
DP-complete.

2. The problem of deciding if G′ is the normal form of
G is DP-complete.

3. The problem of deciding if G′ is the reduction of G
is DP-complete.

4. QUERYING RDF DATABASES
An RDF graph can be considered a standard relational
database: a relation of triples with the attributes Sub-
ject, Predicate, and Object. In what follows, an RDF
database will be simply an RDF graph.

4.1 Query Language
Let V be a set of variables (disjoint from UBL). Indi-
vidual variables will be denoted ?X, ?Y, ?Person, etc.

As query language, we will use the notion of tableau
borrowed from the database literature (see for example
[2]) but slightly extended to allow also a set of tuples
in the head. A tableau is a pair (H,B) where H,B are
RDF graphs with some UBLs replaced by variables in
V , B has no blank nodes, and all variables of H occur
also in B. We often write a tableau in the form H ← B
to indicate the similarity with logic programming and
Datalog.

For example, a tableau such as

(?A, creates, ?Y )← (?A, type, F lemish),

(?A,paints, ?Y ), (?Y, exhibited,Uffizi)

where identifiers preceded by ? are variables, intuitively
defines the artifacts created by Flemish artists being
exhibited at Uffizi Gallery.

Definition 7. A query is a tableau (H,B) plus a set
of premises P and a set of constraints C, where P is a
graph over UBL (i.e. with no variables) and C is a
subset of the variables occurring in H. In other words,
a query is a tuple (H,B, P,C).

When P is omitted we assume the premise is empty, i.e.
write (H,B,C) instead of (H,B, ∅, C). Similarly for the
set of constraints C or both.

The set of constraints C gives the user the possibility
to discriminate between blank and ground nodes in an-
swers and plays the same role as IS NOT NULL in SQL.
For example, the tableau above is a query with no con-
straints. We can add to it the constraint {?A}; intu-
itively, as we will formalize in the next subsection, this
means that the ?A variable must be bound to a non-
blank element in each answer to the query.

The premise P represents information the user supplies
to the database to be queried in order to answer the
query. For example, the query:

(?X, relative, P eter)← (?X, relative, P eter)
with premise P = {(son, sp, relative)} ask for all rel-
atives of Peter knowing that “son” is a subproperty of
“relative”.

Note 2. The condition var(H) ⊆ var(B) avoids the
presence of free variables in the head of the query. The
presence of blank nodes in the body of the query is unnec-
essary, because –as we will see– a variable plays exactly
the same role in this position. However, we do allow
blank nodes in the head of the query to support reifica-
tion at the query level. (See Examples in Section 4.4.)
Their semantics is explained in the next section.



4.2 Answers to a query
Let q = (H,B, P,C) be a query, D a database, and V
a set of variables. This section defines the semantics of
the query q over the database D.

A valuation is a function v : V → UBL. For a set C ⊆ V
of variables, the valuation v satisfies the constraint C
(denoted v |= C) if for all x ∈ C, v(x) is not blank.3 We
define v(B) as the graph obtained after replacing every
occurrence of a variable x in B by v(x).

A matching of the graph B in database D is a valuation
v such that v(B) ⊆ nf(D). The matchings that interest
us are those that satisfy the constraints C.

The semantics includes, for each blank nodeN occurring
in H, a Skolem function fN : UBLk → C, where k is
the number of distinct variables occurring in B and C
a set of blank nodes disjoint with any appearing in the
query or the database. For each valuation v, v(H) is the
graph obtained by replacing each variable x occurring
in H by v(x) and each blank node N occurring in H by
fN (v(x1), . . . , v(xk)) where x1, . . . , xk are the variables
occurring in B.

Definition 8. Let q = (H,B, P,C) be a query and
D a database. A pre-answer to q over D is the set

preans(q,D) = {v(H) : v is a matching

of B in D + P and v |= C}.

A graph v(H) in preans(q,D) is called a single answer
of the query q over D.

Note 3. Some clarifications about the notion of match-
ing:

We need nf(D) instead of just D in order to deal with
rdfs vocabulary because entailment in this case is char-
acterized in terms of nf (cf. Theorem 8). On the other
hand, using a closure D′ of D instead of nf(D) would
not give unique answers. Consider the database D de-
fined by the graph in Example 5, and the query (H,B)
with H = B = {(a, p, ?Y ), (?Y, q, d)}. It is not difficult
to see that {(a, p, b), (b, q, d)} should be the unique an-
swer. But if we match against a closure of D, each one
of the two closures of D would give one more answer,
and different for each closure.

A more general definition of matching obtained by re-
placing “v(B) ⊆ nf(D)” by “D |= v(B)” does not work
properly because it could give infinite answers. For ex-
ample, given D = {(a, b, c)} and the query defined as
(?X, ?Y, ?Z) ← (?X, ?Y, ?Z), the answers would be D
union all triples of the form (N, b,M) with N,M blank
nodes.

A desirable property a query language for RDF should
3This constraint is called a must-bind variable in DQL
[22].

have is compositionality, i.e., the property that complex
queries can be composed from simpler ones [4]. For this,
we need to output results in the same format as input
data. In our case, we can combine single answers in
several different ways to obtain as final answer an RDF
graph. We concentrate on two approaches to do so.

1. ans∪(q,D) is the union of all single answers. With
this approach, queries properly capture the infor-
mation carried by blank nodes inside D (in par-
ticular when blank nodes play the role of bridges
between two single answers).

2. An alternative approach, ans+(q,D), is to merge
all single answers, which means to rename blank
nodes if necessary to avoid name clashes.

Note that if there are no blank nodes in D, both ap-
proaches are the same.

The merge-semantics could be useful when asking a query
to several sources (e.g. several different files of metadata
corresponding to different web pages). In this case we
do not want clashes of blank nodes of different specifica-
tions. One important drawback of the merge-semantics
is that there could be no data-independent query that
retrieves the whole database. An approach similar to
merge-semantics can be found in query languages for
semistructured data [18].

The union-semantics is more intuitive. First, there ex-
ists an identity query (see Note 4 below). As another
illustration, consider a database D which has a blank
node N with several properties, i.e., there are in D sev-
eral triples (N, p1, z1), (N, p2, z3), . . . . If we follow the
merge-semantics, we cannot retrieve the properties of N
with a data independent query. On the other hand, if we
follow the union-semantics, the query (?X, feature, ?Y )←
(?X, ?Y, ?Z) will do it.

Proposition 2. Let q be a query.

(1) For both semantics, if D′ |= D then ans(q,D′) |=
ans(q,D).

(2) For all D, ans∪(q,D) |= ans+(q,D).

Note 4 (The identity query). The identity query
is defined as (H,B) with H = B = {(?X, ?Y, ?Z)}.

Observe that this query works as identity only with the
union-semantics. Consider the database D = {(X, b, c),
(X, b, d)}. Then ans∪(q,D) = D, but ans+(q,D) =
{(X, b, c), (Y, b, d)}, which is not equivalent to D because
there is no map from D to ans+(q,D). This shows also
that the converse of Proposition 2, item 2, does not hold.

In the sequel, unless stated otherwise, we will assume
the union-semantics.



4.3 Premises
Having premises in queries extends classical querying
in several aspects: The possibility of simulating if-then
queries while still remaining within the expressiveness of
the language; hypothetical analysis of information; and
the ability to query incomplete information by supplying
information not in the database.

Our definition of premises differs from Bonner’s [5] in
that we have one fixed premise for the whole query. We
also allow blank nodes, but not variables, in the premise.

It is important to remark that premises cannot be simu-
lated with Datalog programs. For example consider the
following query:

(?X, relative,Mary)← (?X, relative,Mary)
with premise P = {(son, sp, descendant)}.

It is not possible to write a data-independent Datalog-
like query equivalent to it. The reason is that we do
not know in advance the existence, in a given database,
of triples like (descendant, sp, relative) that indirectly
links “son” with “relative” via the transitive relation sp.

4.4 Reification
One of the main motivations to have blank nodes in
heads of queries is the reification vocabulary as the fol-
lowing example shows.

Example 9. (Following an example in Yang and Kifer
[21]). All statements made by Encyclopedia Britannica
are true. If we assume that Encyclopedia Britannica
is a database containing all its statements (triples), the
following query would do the work:

(N, value, true), (N, type, stat),

(N, subj, ?X), (N, pred, ?Y ),

(N, obj, ?Z)← (?X, ?Y, ?Z).

In the semantics of RDF given in [24] a statement does
not have an identifier associated to it. To refer to a
statement, one has to give [associate?] a name (a blank
node) to it, a process known as reification. There can
be several different such names. Observe –using Theo-
rem 3– that a triple does not entail its reification and
its reification does not entail the triple. An alternative
approach is to assume that the triple itself is an object
of the universe and has a unique identifier (a URI). In
[21] the advantages of such an approach are argued.

This issue has some implications from a database point
of view. With the semantics of [24], an RDF specifica-
tion, i.e. an RDF graph (database), is a finite set of
objects, and answers to queries (as defined in this pa-
per) are finite sets of objects. However, if the triple
itself is an object i1, then having (a, b, c) in a database
D would imply that (i1, subject, a) is also a valid state-
ment (and hence an object i2), hence (i2, subject, i1) is
a valid statement, and so on.

5. QUERY CONTAINMENT
In this section we explore different notions of query con-
tainment and their characterizations. Any reason-
able notion of query containment q v q′ should em-
body the idea that ans(q′, D) comprises all the informa-
tion of ans(q,D). In relational databases, set-theoretical
inclusion of tuples captures this requirement. When
databases are viewed as knowledge bases having a no-
tion of entailment |=, the information comprised by a
database is all that can be entailed from it. Hence the
right notion of q v q′ is ans(q′, D) |= ans(q,D) for all
D. In the relational case both notions coincide. This is
not the case in our context.

In what follows we will discuss these two versions of
containment which corresponds to the following:

Definition 9. Let q, q′ be queries.

1. q vp q′ iff for all databases D, preans(q,D) ⊆
preans(q′, D) modulo isomorphism, that is, for each G ∈
preans(q,D), there is G′ ∈ preans(q′, D) with G′ ∼= G.

2. q vm q′ iff for all databases D, ans(q′, D) |= ans(q,D).

Proposition 3. vp implies vm.

The converse of this proposition is not true as the next
example shows.

Example 10. When working with rdfs vocabulary, con-
tainment characterizations are more complex. In the
following queries, the head is the same as the body.

B : Y

X
sc // Z

sc

OO B′ : Y

X

sc

>>

sc // Z

sc

OO

Clearly, q′ vm q and q vm q′. But q 6vp q′ nor q′ 6vp q.

The next theorem characterizes the vp notion for simple
RDF graphs.

Theorem 11. Consider the queries q = (H,B, P,C)
and q′ = (H ′, B′, P ′, C), and assume H,H ′, B,B′, P, P ′

are simple graphs.

Then q vp q′ if and only if for each map µ on the vari-
ables of B, there is a substitution (of variables and blank
nodes) θµ such that:

1. θµ(B′) ⊆ P ′ + (B − µ(B,P )), where µ(B,P ) is the
set of triples t of B such that µ(t) ∈ P ,

2. θµ(H ′) = H,

3. θµ(C′) ⊆ C.



The particular case of the previous theorem for queries
without premises resembles containment of conjunctive
relational queries: q vp q′ if and only if there is a sub-
stitution θ such that 1. θ(B′) ⊆ B; 2. θ(H ′) = H; and
3. θ(C′) ⊆ C.

In the remainder of this section we study the notion vm.
We introduce an auxiliary notion that avoids the prob-
lems that arise from blank nodes in databases (not in
the query). Define q vg q′ iff for all ground databases D
(i.e. with no blank nodes) ans(q′, D) |= ans(q,D). Also,
define G1 |= G2 for graphs G1, G2 containing variables,
as v(G1) |= v(G2), where v is a valuation sending the
variables to fresh constants.

Proposition 4. Let q = (H,B) and q′ = (H ′, B′) be
queries. Then q vg q′ if and only if there are substitu-
tions θ1, . . . , θn (of variables) such that

1. θj(B
′) ⊆ nf(B),

2.
⋃
j θj(H

′) |= H.

Notice that the set of constraints C does not play any
role when working with ground databases.

The next proposition shows that blank nodes in RDF
databases play a similar role to ground elements.

Proposition 5. Let q, q′ be queries without premises
and constraints. Then: q′ vg q if and only if q′ vm q.

The following theorem follows from the two previous
propositions.

Theorem 12. Let q = (H,B,C) and q′ = (H ′, B′, C′)
be queries. Then q vm q′ if and only if there are substi-
tutions θ1, . . . , θn (of variables) such that

1. θj(B
′) ⊆ nf(B),

2.
⋃
j θj(H

′) |= H,

3. θj(C
′) ⊆ C.

Next we give complexity bounds for containment.

Theorem 13. Assume all graphs are simple. The
following problems are NP-complete: 1. For queries
qi = (H,B,C, P ): Is q1 vp q2?; 2. For queries with-
out premises: Is q vm q′?

6. COMPLEXITY OF QUERY ANSWER-
ING

6.1 Computing matchings

In order to understand the complexity of computing the
set of matchings for a query over a database, we consider
the simpler problem of testing emptiness of the query
answer set.

1. Query complexity version: For a fixed database D,
given a query q, is q(D) non-empty?

2. Data complexity version: For a fixed query q, given
a database D, is q(D) non-empty?

Theorem 14. The evaluation problem is NP-complete
for the query complexity version, and polynomial for the
data complexity version.

From the proof of Theorem 14 follows that the size of the
set of answers of a query q issued against a database D
is bounded by |D||q|, where |D| is the size of the normal
form of the database (number of triples) and |q| is the
number of symbols in the query.

Also note that reification does not play any relevant role
in this, that is, even with reification the query language
preserves the tractability of answers.

6.2 Redundancy elimination
We give some observations on redundancies in queries,
databases and set of answers.

It is desirable and possible to have queries with lean
heads. Otherwise, the answer generated will have re-
dundancies which could have been avoided.

On the contrary, it is not always possible to have lean
graphs in body of queries. For example, consider the
query q = (H,B, ∅), whereH = (?Course, related,“DB”)
and B = (?Dept, offers,“DB”), (?Dept, offers, ?Course).
B is not lean and is equivalent to the lean graph B′ =
(?Dept, offers,“DB”). It turns out that there is no query
equivalent to q with body B′ (using any notion of equiv-
alence).

Even having lean databases and queries with lean heads
and bodies does not avoid redundancies in the answer
set. Consider the lean graph G2 in Example 1, and the
query (?Z, p, ?U) ← (?Z, p, ?U). The answer set is G1

which is not lean.

Answers to queries in RDF usually have redundancies.
Ideally, the answer set ans(q,D) should reduce these
redundancies to the minimum, i.e. to an equivalent lean
graph. The naive approach to eliminate redundancy in
answers is to compute: (1) ans(q,D), and (2) a lean
equivalent to ans(q,D). The next theorem shows that
in the worst case there is no better approach.

Theorem 15. Given a lean database D and a query
q, to decide whether ans∪(q,D) is lean is coNP-complete
(in the size of D).



The theorem follows from the fact that there is a query
that computes the identity and from Theorem 2.

For merge-semantics redundancy elimination can be done
much more efficiently:

Theorem 16. Given a lean database D and a query
q, deciding whether ans+(q,D) is lean can be done in
polynomial time in the size of D.

7. CONCLUSIONS AND FUTURE WORK
The RDF data model poses new challenges to query lan-
guages. We have studied some fundamental problems
introduced by this model. This formalization needs
to be extended to richer properties and mechanisms of
current working query languages for RDF, to establish a
solid base to compare functionalities, features and lim-
itations of these languages. For example, features like
connectedness, reachability, paths, recursion, extended
constraints, aggregation and views must be studied.
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9. APPENDIX A
GROUP E

Group E describes internal relationships of the
RDF model itself. In order to simplify the model,
in this study we will not consider the rules in this
Group. Informally this say that we are not dealing
with specification that modify the standard
semantics of the predefined rdfs-vocabulary.

Rules in Group E describe what can be considered
integrity constraints of the model. In fact, rdf2,
rdfs1 and rdfs13 describes the typing system for
literals; rules rdf1, rdf4a and rdf4b describe the role
of the first, second and third component in a triple;
rule rdfs8 says that res in the universal class;
finally rule rdfs12 describes the relationship
between two terms we are not considering in this
paper.

If c is a well-typed XML literal:

(a, b, c)

(c, type, xmlLit)
[rdf2]

If c is a plain literal (with or without language tag):

(a, b, c)

(c, type, literal)
[rdfs1]

(a, b, c)

(a, type, res)
[rdf4a]

(a, b, c)

(c, type, res)
[rdf4b]

(a, b, c)

(b, type, prop)
[rdf1]

(a, type, class)

(a, sc, res)
[rdfs8]

(a, type, ContainerMemebershipProperty)

(a, sp, member)
[rdfs12]

(a, type, datatype)

(a, sc, literal)
[rdfs13]

10. APPENDIX B: PROOF
SKETCHES
Theorem 1. Each RDF graph G contains a unique
(up to isomorphism) lean subgraph, denoted
core(G), such that G→ core(G).

Proof sketch of Theorem 1. Similar statements
occur in other contexts [12, 7]. Here we present a
proof following [11] that gives a rewriting algorithm
to calculate the core

Define in the set of RDF graphs, the relation
G⇒ µ(G), if µ is a map and µ(G) is a proper
subgraph of G. The relation ⇒ has the property: if
B ⇐ A⇒ C, then there is D such that B ⇒∗ D
and C ⇒∗ D (where ⇒∗ is the transitive closure of
⇒). The proof of this goes as follows: Let
B = µ1(A) and C = µ2(A), and consider the map
µ2µ1. Then, because (µ2µ1)(µ2µ1)j(A) is a
subgraph of (µ2µ1)j(A), for some finite k ≥ 1 it
holds that (µ2µ1)k(A) is isomorphic to
(µ2µ1)k+1(A).

From its definition, it follows that the relation ⇒
clearly cannot have infinite chains A1 ⇒ A2 ⇒ · · · .
From the above argument, it also follows that ⇒ is
confluent. (For rewriting concepts, see [3].) Hence
for each G there is a unique G∗ such that G⇒∗ G∗
and G∗ is irreducible with respect to ⇒ (i.e. is
lean). This is the desired unique lean subgraph. •

Theorem 2. Deciding if a graph is lean is
coNP-complete.

Proof sketch of Theorem 2. The proof is an
encoding of the problem CORE:

Instance: A graph G

Question: Is there a homomorphism of G to a
proper subgraph?

This problem was shown to be NP-complete by
Hell and Nesetril [12]. •

Theorem 4. (1) Deciding entailment of RDF
graphs is NP-complete. (2) Deciding if two simple
RDF graphs are equivalent is
isomorphism-complete.

Proof sketch of Theorem 4. (1) Membership in
NP follows taking the map as the witness.

NP-hardness follows from encoding subgraph
isomorphism problem. Let c(G) be the encoding of
a standard graph G as an RDF graph, defined as
follows: c(G) = {(Xv, e,Xw) : (v, w) ∈
E(G)} ∪ {(Xv, p,Xw) : v, w ∈ V (G) ∧ v 6= w},
where V (G) (resp. E(G)) are the set of vertices
(resp. edges) of G. Then, given G1, G2 standard
graphs, it is easy to prove that G1 is isomorphic to
a subgraph of G2 iff there is a map c(G1)→ c(G2).
The key idea is that the second set of edges of the
encoding forces the map to be 1-1.

For (2) the idea of the proof is similar. •

Theorem 5. If G is simple, then core(G) is the
unique (up to isomorphism) minimal (w.r.t number
of triples) graph equivalent to G.



Proof sketch of Theorem 5. Suppose that Gm is
another minimal graph equivalent to G. Then Gm
is also equivalent to core(G) (hence Gm has same
vocabulary, i.e. it is simple). Then using
Theorem 1, Gm → core(G) and core(G)→ Gm.
Using the fact that core(G) is lean, it is easy to
conclude that Gm ∼= core(G). •

Theorem 8. Let G be an RDF graph.

1. The normal form nf(G) is unique (up to
isomorphism).

2. G1 |= G2 if and only if nf(G2)→ nf(G1)

3. G1 ≡ G2 if and only if nf(G1) ∼= nf(G2).

Proof sketch of Theorem 8. (1) From Lemma 1 it
follows that if G′ and G′′ are closures of G, then
there are graph maps G′ → G′′ and G′′ → G′.
From Theorem 1 it follows that there are maps
G′ → core(G′) and G′′ → core(G′′). Hence there
are maps core(G′)→ core(G′′) and vice-versa.
Because these are lean graphs, these maps must be
isomorphisms.

(2) First observe that Lemma 1 can be stated as:
G1 |= G2 ⇔ G′2 → G′1, where G′i is a closure of Gi.
Then the statement (2) of the Theorem follows
from: G′2 → G′1 ⇔ nf(G2)→ nf(G1). To prove ⇒,
just recall that nf(G2)→ G′2 and G′1 → nf(G1). For
⇐, use Theorem 1 and the hypothesis to get
G′2 → core(G′2)→ core(G′1)→ G′1.

(3) follows from (2) and the fact that nf(Gi) are
lean graphs. •

Theorem 9. Let G be subproperty- and subclass-
acyclic. Then

(1) The reduction of G is unique (up to
isomorphism), denoted red(G).

(2) G1 |= G if and only if there is a map
red(G)→ nf(G1).

Proof sketch of Theorem 9. (1) Note that all
rules, except Rule 1, do not change the non
rdfs-vocabulary of the graph. Then the statement
follows from Proposition 1 by observing that,
discarding Rule 4, all rules only eliminate triples of
the form ( , sp, ), ( , sc, ) and ( , type, ). Is an
easy check that the subgraph formed by triples of
the form ( , type, ) has a unique reduction. For sp

and sc the uniqueness of the reduction follows from
the fact that the subgraphs they define are acyclic.

(2) follows from the definition of reduction and
Theorem 8.

•

Proposition 10

1. Computing a closure of a graph is polynomial
in the size of the graph (number of triples).

2. Computing the normal form of a graph is
hard.

3. Computing the reduction of a graph is hard.

Proof sketch of Proposition 10. (1) The size of a
closure of G is bounded by n3, where n is the
number of elements of UBL occurring in G plus
rdfs vocabulary. The closure can be obtained by
repeated application of the rules (in any order).
This takes time at most n3|R|, where |R| is the set
of rules.

(2) In the worst case, normal forms are cores.

(3) Same argument as (2). •

Proposition 1. The following algorithm gives the
reduction of a graph. (reverse rule means deleting
the triple deduced by the rule).

1. G← nf(G).

2. Apply reverse rule (7) until no more applicable.

3. Apply reverse rules (8) and (9) until no more
applicable.

4. Apply reverse rule (4) until no more applicable.

5. Apply transitive reduction of sp and sc.

6. Apply any reverse rule in any order until no
more applicable.

Proof sketch of Proposition 1. The proof follows
standard rewriting techniques and is a simple check
of critical pairs arising from the reverse rules: it
can proved that if there is any chain of deletions of
triples, then the same deletions can be obtained
applying the rules in the order of the algorithm. •

Proposition 2. Let q be a query.

1. For both semantics, if D′ |= D then
ans(q,D′) |= ans(q,D).

2. For all D, ans∪(q,D) |= ans+(q,D).

Proof sketch of Proposition 2. (1) For merge
semantics is enough to show that for every graph
G ∈ preans(q,D), there is a graph G′ in
preans(q,D′) such that G′ |= G. This follows
immediately from D′ |= D.

For union semantics, need to prove that⋃
{v′(H) : v′ is matching B → D′ + P} entails



⋃
{v(H) : v is matching B → D′ + P}. From

D′ |= D follows that there is map γ with
γ(D) ⊆ D′. Define map θ : ans(q,D)→ ans(q,D′)
by θ(x) = γ(x) if x is a blank node in D and the
identity elsewhere. Then is not difficult to prove
that θ(ans(q,D)) ⊆ ans(q,D′).

(2) follows from the general fact
G1 ∪G2 |= G1 +G2. •

Proposition 3. vp implies vm.

Proof sketch of Proposition 3. Given a simple
answer v(H) ∈ preans(q,D), there must exist
v′(H ′) ∈ preans(q,D) with v′(H ′) ∼= v(H) via a
map µ such that is preserves blank nodes of D.
Otherwise we replace blanks of D by fresh
constants obtaining a contradiction. Now the union
of such maps

⋃
µ is a map from ans(q,D) to

ans(q′, D). •

Theorem 11. Let q = (H,B, P,C) and
q′ = (H ′, B′, P ′, C) be queries. Then q vp q′ if and
only if there is a set of substitutions (of variables
and blank nodes)
{θµ : µ is a map on the variables of B} such that:

(1) θµ(B′) ⊆ P ′ + (B − µ(B,P )), where µ(B,P ) as
the set of triples t of B such that µ(t) ∈ P ,

(2) θµ(H ′) = H,

(3) θµ(C′) ⊆ C.

Proof sketch of Theorem 11. Let D be a
database, and v a substitution with
v(H) ∈ preans(q,D), that is, v(B) ⊆ D + P and
v |= C. Consider the substitution v. Then by
hypothesis,

θv(B′) ⊆ P ′ + (B − v(B,P )) and θv(H ′) = H.

Note that v(B − v(B,P )) ⊆ D. Hence,
vθv(B′) ⊆ P ′ +D. Additionally, vθv |= C′: if
x′ ∈ C′, then by hypothesis θv(x′) ∈ C, hence
v(θ(x)) is ground. Thus,
v(H) = vθv(H ′) ∈ preans(q′, D).

Conversely, assume q vp q′. Let µ a map on the
variables of B. Consider the set B − µ(B,P ), and
define the database D obtained from B − µ(B,P )
by replacing each variable x by a constant ax. Let
v the valuation assigning x to ax. Then
v(H) ∈ preans(q,D) ⊆ preans(q′, D). So, there is a
valuation v′ with v′(B′) ⊆ D + P ′ and
v′(H ′) = v(H). Clearly v′ = v on the variables of
H.

Consider the substitution θ = v′ ◦ v−1. Then
θ(B′) = v′v−1(B′) ⊆ P ′ + v−1(D), that is,
θ(B′) ⊆ P ′ + (B − µ(B,P )). The statement

θµ(C′) ⊆ C is proved by contradiction. Assume it is
false. Let x′ ∈ C′. Then there is a database D with
v(H) ∈ preans(q,D) and v(θµ(x′)) not ground.
From q vp q′, there is v′(H ′) ∈ preans(q′, D) and
v(H) = v′(H ′). Using θµ(H ′) = H, follows
v′(x′) = v(θµ(x′)), a contradiction, because v′(x′)
is ground. •

Proposition 4. Let q = (H,B) and q′ = (H ′, B′)
be queries. Then q vg q′ if and only if there are
substitutions θ1, . . . , θn (of variables) such that

(1) θj(B
′) ⊆ nf(B),

(2)
⋃
j θj(H

′) |= H, where variables in H act like

constants for |=.

Proof sketch of Proposition 4. (If) Let D be a
constant database and v(H) ∈ preans(q,D). From
the hypothesis, for each j, vθj(H

′) ∈ ans(q′, D),
thus

⋃
j vθj(H

′) ∈ ans(q′, D). Let α be the map of

Condition (2), now let define γ as follows:
γ(N) = α(N) for each blank node N in v(H), and
constant for ground elements. From Condition (2),
it follows that γ : v(H)→

⋃
j vθj(H

′) is a map.

Now, recall that ans(q,D) =
⋃
v v(H). And for each

of them we have γv, defines as above. Observe that
the γv’s do not share blank nodes, (because
preanswers of a constant database do not share
blank nodes). Thus we have that

⋃
v γv is a map

from ans(q,D) to ans(q′, D). Then
ans(q′, D) |= ans(q,D).

(Only If) Consider the database DB = v(B), where
v is the 1-1 valuation assigning x to a fresh
constant ax. By hypothesis, we have
ans(q′, DB) |= v(H). So, there are maps
v′1, . . . , v

′
n : B′ → nf(DB), such that⋃

j v
′
j(H

′) |= v(H). Now, applying v−1 to both

sides of the expression, and using that (a) v−1 is
1-1 and works only over ground elements, and (b)
considering variables resulting from the application
of v−1 as ground elements, we have that
v−1(

⋃
j v
′
j(H

′)) |= H. Then
⋃
j v
−1(v′j(H

′)) |= H .

Thus, let θj = v−1 ◦ v′j , and we have conditions (1)
and (2) of the theorem. •

Proposition 5. Let q, q′ be queries without
premises and constraints. Then: q′ vg q if and only
if q′ vm q.

Proof sketch of Proposition 5. The “If” direction
is trivial.

For “Only If”, assume it is not true. Then there is a
database D such that ans(q′, D) 6|= ans(q,D) (*).

Consider the database Dg = µ(D), where µ is the
map sending blank nodes N of D to constants cN .
Then Dg |= D, and ans(q′, Dg) |= ans(q,Dg), that



is, there is δ : ans(q,Dg)→ ans(q′, Dg). Then we
can build a map θ : ans(q,D)→ ans(q′, D) defined
as follows: θ(x) = x if x is a blank node in D, and
θ(x) = δ(x) elsewhere (ground elements). It is not
difficult to show that θ is a map, yielding a
contradiction with (*). •

Theorem 12. Let q = (H,B) and q′ = (H ′, B′) be
queries. Then q vm q′ if and only if there are
substitutions θ1, . . . , θn (of variables) such that

(1) θj(B
′) ⊆ nf(B),

(2)
⋃
j θj(H

′) |= H, where variables in H act like

constants for |=.

(3) θj(C
′) ⊆ C.

Proof sketch of Theorem 12. Let Q = (H,B,C)
be a query. Then we define Qc as the query
(H,Bc, ∅), where Bc is obtained from B by adding
a triple (?X, type, ground) for each ?X ∈ C.

Define Dc as the database obtained from D by
adding a triple (a, type, ground), for each ground
constant a in D.

(*) We have that ans(Q,D) = ans(Qc, Dc).

Now, from (*) Propositions 4 and 5 hold if we
replace Q by Qc and Q′ by Q′c.

Finally, from (*) we have Q′ |= Q iff Q′cmodelsQc
(Q and Q′ may have constraints), thus this happens
iff condition of Proposition 4 holds for Qc and Q′c.

If we replace back, the statement of the theorem
follows. •

Theorem 13. Assume all graphs are simple. The
following problems are NP-complete.

1. For queries qi = (H,B,C, P ): Is q1 vp q2?

2. For queries without premises: Is q vm q′

Proof sketch of Theorem 13. NP-hardness: in
both cases we can encode containment of classical
tableau. (Note that one relation with 3 attributes
suffices.)

Membership in NP follows from noting that a
witness for vp is the map θ. For vm, Proposition 5
reduces the problem to the same problem for vg.
For ⊆g, from the proof of Proposition 4 it follows
that the number of maps θj is at most the number
of triples of H. Then the witness is the set {θj}
and the map that witness the entailment in
condition (2) of the characterization of vg. •

Theorem 14. The evaluation problem is

NP-complete for the query complexity version, and
polynomial for the database complexity version.

Proof sketch of Theorem 14. Reduction of 3SAT
to the problem of evaluating a conjunctive query
over a database. Membership in NP follows
immediately.

Data complexity version: This follows from the fact
that the number of potential matchings of the body
of q in nf(D) is bounded by the number of
subgraphs of nf(D) of size q, and the fact that
nf(D) is polynomial in D. •

Theorem 16. Given a lean database D and a
query q, deciding whether ans+(q,D) is lean can be
done in polynomial time in the size of D.

Proof sketch of Theorem 16. Let A = ans+(q,D)
and let us refer to maps from single answers to A
as single maps.

The key observation is that, because single answers
do not share variables in merge-semantics, maps
µ : A→ A are exactly unions of single maps
µj : Gj → A for each Gj single answer. (Note that
in the case of union-semantics the union of the µj
would not be a function.)

Thus an algorithm for finding proper map
µ : A→ A only needs to compute single maps and
check whether (1) at least a single map is proper,
or (2) two of them share a blank node in their
range. This can be done in time polynomial on the
set of single maps, which size is polynomial on the
size of D. Thus the complete test can be done in
polytime. •


