
Solving Equations in Strings:
On Makanin's Algori thm

Claudio Gutidrrez

Wesleyan University, Middletown, CT 06459, U.S.A.

Abstract . We present a further simplification of Makanin's algorithm,
still the only known general procedure for solving string equations. We
also give pseudo-code, a thorough analysis of its complexity, and com-
plete proofs of correctness and termination.

1 Introduction

Checking if two strings are identical is a rather trivial problem. Theoretically it
corresponds to solving an equation with both sides constant. For example, are
these strings equal?

ababababbbbabaaabbbba ~ ababababbbababaaabbbba

Finding patterns in strings is slightly more complicated. This corresponds to
solving equations in strings, one of whose sides is a constant , the text, and the
other contains patterns (variables). For example, are there strings sl and s2 in
the alphabet ~a, b} such that when replacing x by sl and y by s2 in

?

xxabxby - abaabababaaabbababababa

you get the same string on both sides? Equations of this kind are not difficult
to solve. Indeed, many cases of this problem have very efficient algorithms and
are the subject of the field of pattern matching (see [2]).

Finding solutions to equations in strings in general (i.e. where both sides
contain variables) is a surprisingly difficult problem. I Try to find a solution to
this simple equation (or show it has none):

xa by bybyx
Partial solutions to this problem were known long ago: in the seventies Lentin [7],
Plotkin [11] and Siekmann [12] gave semi-decision procedures (which give a so-
lution if the equation has one, but if not, could run forever). In 1971, Hmelevskii
[6] solved the problem for equations in three variables.

1 The current bound on its time computational complexity is 0(2221~1) where]E I is the
length of the equation s Other anecdotal numbers: The paper in which Makanin pre-
sented the algorithm for the first time has 70 pages; later simplified versions (Jaifar,
Schulz) have more than 30 pages each. Also there have been at least two Ph.D. theses
[1], [10], studying this algorithm, possible simplifications and implementations.

Solving Equations in Strings: On Malea.nba's Algorithm 359

In 1977 Makanin [8] solved the problem in its complete generality giving us
the first (and still the only known) algorithm to find solutions for arbitrary string
equations. It was later extended by Jalfar [5] to give all possible solutions to an
equation as well. In the meantime, there has been some work simplifying various
aspects of the algorithm and even some implementations [10], [1], [14], [13].

The problem of solving equations in (equationally defined free) algebras is a
well-established area in computer science called Unification, with a wide range
of applications (see [3]). Solving equations in strings has potential applications
in many areas e.g. string unification in PROLOG-3, extensions of string rewrite
systems, unification in some theories with associative non-commutative oper-
ators, which, due to the current state of the art of the problem, are still of
no practical use. This highlights the importance of studying the only currently
known general algorithm for solving string equations, its complexity and possible
improvements.

Makanin's original paper focused on proving that the question "Does the
word equation C has a solution?" is decidable. He was not interested in ei-
ther complexity or implementation. Afterwards P~cuchet, Abdulrab, JalIar and
Schulz, among others, simplified some of the technicalities of the algorithm and
its proof of correctness and termination, and started to approach the problem
from a computational point of view. On the other hand, Jaffar, Ko~cielski and Pa-
cholski started a systematic study of its complexity. In this paper, we present one
more step towards its simplification which also gives better complexity bounds.

First, we introduce a substantially simpler data type for the concept of gen-
eralized equation which considerably simplifies the algorithm, making it more
understandable and allowing shorter and simpler proofs of the correctness and
termination of the algorithm (compare [5], [13]).

Secondly, we introduce the associated Diophantine equations for an equation,
which prune the search tree significantly, and by itself could possibly give another
approach to solve string equations.

Third, we give a thorough analysis of the complexity of the algorithm, ob-
taining smaller bounds (although still in the same complexity class) than Jaffar's
[5] (on which [13] and [9] are based).

Last, but not least, we include complete proofs of correctness and termi-
nation, and present for the first time pseudo-code ready to be implemented in
any language. Finally let us say that our presentation owes much to Schulz [13],
particularly in Sect. 4. We use the terms word and string interchangeably.

2 W o r d E q u a t i o n s : b a s i c c o n c e p t s a n d e x a m p l e s

Definition 1. Let C = {a l , . . . , a r} be a finite set of constants, and V =
{Vl,V2,...} be an infinite set of variables. A word w over d U 1; is a (possi-
bly empty) finite sequence of elements of C U 1;. The length of w, denoted Iwl,
is the length of the sequence. The exponent o/ periodicity of a word w is the
maximal number p such that w can be written as uvPz for some words u, v, z
with v non-empty.

360 Claudio Gutidrrez

A word equation C is a pair (wl, w2) of words over C t9 P, usually written as
Wl = w2. The number 161 = Iwl] + Iw2[is the length of the equation 6. Note that
in ~ only a finite number of variables occur, let us say X = (x t , . . . , x n } C_ l~.
A unifier of s is a sequence U = (?-71,... ,On) of words over C U l) such that
both sides of the equation become graphically identical when we replace all
occurrences of xi by Ui, for each i = 1 , . . . , n. The exponent of periodicity of the
unifier U is the maximal exponent of periodicity of the words Ui.

It is very convenient to have a graphical idea of word equations. Consider the
equation xaby = ybax. The variables x, y represent unknown words. Graphically,

xaby will be represented as ~ J where the length of the horizontal line
in each case is unknown, except those of the constants which are always of unit
length. The vertical lines will be called boundaries. In this representation, the
equation has a solution if there is a way of consistently overlapping both sides
of it such that the words (represented by segments of horizontal lines) between
boundaries are the same. In general, there may be many such overlappings.
Below we show two possibilities among many others (we draw the variables in
different levels in order to highlight the limits of each variable):

y a
b

(a) (b)

b
a

I I

The next step is to replace equals by equals (elimination of variables) from left
to right, e.g. in case (a) we can replace y = xa in the other occurrence of y. After
this, we have to guess the order of some boundaries again, and so on.

This example contains the basic idea at the heart of the algorithm: (i) guess
an ordering of the boundaries, that is, which comes first, which second, and so
on, for all the initial boundaries on both sides of the equation, and (ii) proceed
from left to right replacing equals by equals.

But this naive recipe has some problems: (1) the number of occurrences of
some variables starts growing after replacement, (2) what to do in cases where
there is no evident replacement (cf. example (b) above), and (3) you can go on
forever (cf. the equation xa --" ax). That is why a more elaborate idea is needed.

The starting point is to build, for each word equation, an arrangement like
the above. It is convenient (to avoid problem 1) to work with an equivalent
system of equations in which each variable occurs no more than twice. Note
that this is always possible. Consider for example the equation bxyx = yaxz.

It is equivalent to bxlyxl = yax2z and xl = x2. One possible arrangement of
boundaries will look like

Solving Equations in Strings: On Mal~anin's Algorithm 361

Y 3:2
a

Xl
X2

Z

Z

(1)

Note that Xl = x2 can be easily expressed in the same arrangement (see the
last two columns). It also will be convenient to have exactly two copies of each
variable in the arrangement (that is why we put one more copy of z on top of it
in the last column). This presentation of a word equation is the starting point
of Makanin's algorithm.

3 G e n e r a l i z e d E q u a t i o n s

The main concept in Makanin's algorithm is that of Generalized Equation, essen-
tially a data-type that codifies arrangements as those shown above. The version
presented here differs somewhat from the classical ones [8], [5], [13], allowing a
considerably simpler algorithm.

Def in i t i on 2. A generalized equation GE consists of

(1) Two finite sets C and X, the labels.
(2) A finite linear ordered set (BD, ~_), the boundaries.
(3) A finite set B S of bases. A base bs has the form (t, (e l , . . . , en)), where n >_ 2,

t E C U X, and EbB = (e l , . . . ,en) is a sequence of boundaries ordered by _~.

subject to the following conditions: 2

(C1) For each z E X, there are exactly two bases with label x, called duals, and
(abusing notation) denoted by x and ~ respectively. Also, their respective
boundary sequences Ez, E~ must have the same length.

(C2) For each base bs with t E C, the boundary sequence Ebs has exactly two
elements and they are consecutive in the order ~.

Some definitions and conventions to ease the notation: A base bs = (t, Ebs) is
called constant if t E C, and variable if t E X. The first element in EbB is called
the left boundary of the base, denoted LEFT(bs), and the last, the right boundary,
RIGHT(b8).

2 The data above is intended to represent arrangements like 1. So we must impose
some additional conditions. (C1) says that we have exactly two occurrences of each
variable. The boundary sequences are to record known information about identical
columns in these pairs of variables. Intuitively they are coding 'the word between
column el and ej is equal to that between ~i and ~j'. (C2) says that constants have
length 1.

362 Claudio Guti~rrez

Letters z, y, z will be used as meta variables for variable bases. Also let-
ters i , j , . . , will denote boundaries. A pair (i , j) of boundaries with i < j
is called a column of GE. Columns (i, i) are called empty; columns (i, i + 1)
are called indecomposable. The column of a base bs is defined as col(bs) ----
(LEFT(b8), RIGHT(b8)). A base is empty if its column is empty. A generalized
equation is solved if all its variable bases are empty.

Definit ion 3. A unifier of GE is a function U that assigns to each indecom-
posable column of GE a word over C tJ V (extend it by concatenation to all
non-empty columns of GE) with the following properties:

(1) For each constant base bs of label c, U(col(bs)) = c.
(2) For every pair of dual variables x ,$, and for every ej 6 Ex, U(el,ej) =

U(~I, ~j) (recall el, t j E E~). In particular U(col(x)) = U(col(~)).

U is strict if U(i, i + 1) is non-empty for every i 6 BD. The index of U is the
number [U(bl, bM)[, where bt is the first and bM the last element of BD. The
exponent of periodicity of U is the maximal exponent of periodicity of the words
U(col(x)), where x is a variable base.

Definit ion 4. For a generalized equation GE, and c E C, the associated system
o-f linear Diophantine equations, L(GE, c), is defined by:

(1) A variable Zi for each indecomposable column (i, i + 1) of GE.
(2) For each pair of dual variables bases (x, (e l , . . . , en)) and (x, (~1, . . . , e-n))

define (n - 1) equations, for j = 1 , . . . ,n - 1:

(3) For each constant base (t, (i,i + 1)), define the equation Zi = 1 if t = c and
Zi = O i f t # c .

L e m m a 5. I.f GE has a unifier, then L(GE, c) is solvable for each c 6 E.

Proof. Let U be a unifier of GE and c E C. Define Zi = [U(i,i + 1)[- Dc
where Dc is the number of occurrences of constants different from c in the word
U(i, i + 1). Using the fact that U is a unifier, it is easy to check that this is a
solution to L(GE, c). [3

Checking solvability of systems of linear Diophantine systems is decidable,
although expensive (NP-complete). A generalized equation GE whose system
L(GE, c) is solvable for all c E C is called admissible.

3.1 The Translation from Word Equations to General ized Equations

Given a word equation E, we can obtain (possibly) many generalized equations
by a procedure like that of Sect. 2: for each possible overlapping of both sides
of ~, proceed as in examples in Sect. 2, and then check admissibility. The de-
tailed description of the algorithm and the checking of the properties below is
straightforward, so we will omit it.

Solving Equations in Strings: On Makanin's Algorithm 363

L e m m a 6. There exists an algorithm GEN which for every word equation C
outputs a finite set GEN(~) of generalized equations with the following properties:

(1) E has a unifier with exponent of periodicity p if and only if some G E E
GEN(E) has a strict unifier with exponent of periodicity p.

(2) For each GE E GEN(E), every boundary is the right or left boundary of a
base. Also, every boundary sequence contains exactly these two boundaries.

(3) For G E E GEN(/~), the number of bases o] GE does not exceed 21~ I.
(4) Every G E E GEN(E) is admissible. []

As an illustration let us show an element in GEN(bxyx = yaxz), the one corre-
sponding to the arrangement (2) in Sect. 2. The corresponding generalized equa-
tion is: C = {a,b}, 2r = {x l , x2 ,y , z } , B D = (1 , . . . ,7} and B S = {(b,(1,2)),
Ca, (3, 4)), (~gl, (2, 3)), (xl, (5, 7)), (y, (3, 5)), (y, (1, 3)), (x2, (4, 6)), (x2, (5, 7)),

(6, 7)), (z, (6, 7))}.

4 T h e T r a n s f o r m a t i o n A l g o r i t h m

Now we know that every word equation C has a set of generalized equations
GEN(s equivalent to it in the sense of Lemma 6. Hence the problem is reduced
to work on generalized equations.

Given a generalized equation, the basic idea of the algorithm--as was shown
in Sect. 2--is the successive replacement of equal variables from left to right. The
naive idea is to pick the leftmost and biggest variable (called the carrier) and
transport all its columns to the position of its dual. Unfortunately sometimes not
all its columns can be moved without losing essential information (see example
(b) in Sect. 2). What is to be done? Answering this question is the motivation
of the following two definitions. Let us fix throughout this section a non-solved
generalized equation GE = (C, X, BD, BS) .

Def in i t ion 7. The carrier of GE, denoted xc, is the non-empty variable base
with smallest left boundary. If there is more than one, Xc is the one with largest
right boundary. If there is still more than one, choose one among them randomly.
We will denote lc = LEFT(Xc) and r c - ~ RIGHT(:rc).

The critical boundary of GE is defined as cr = min{LEFT(y) : rc E col(y)} if
the set is non-empty, and cr = rc if not.

Defini t ion 8. Let bs be base of GE, bs is not the carrier. Then

(1) bs is superfluous if col(bs) = (i, i) -~ lc.
(2) bs is transport if lc _~ LEFT(bs) -~ cr or col(bs) = (cr, cr).
(3) bs is fixed if it is not superfluous and not transport.

Note that all variable bases with LEFT(X) ~ Ic are empty by definition of the
carrier. Also, each base except the carrier--is exactly one of these: superflu-
ous, transport or fixed, depending on what region of the diagram below its left
boundary is:

b~superfluous [l~ranspor t Fflxed rc fixed [bM

364 Claudio Gutidrrez

Let us illustrate these definitions with the examples in Sect. 2. In (a) the carrier
is y, lc = 1, re = cr = 3. In (b) the carrier is x, le = 1, cr = 4 and re = 5.

Now we know what bases should be moved: the transport bases. It is time to
define where to move them. The next definition points to this problem.

Nota t ion . For each boundary le ~ i ~ re in BD, let us introduce a new symbol
i tr (which will indicate the place where the boundary i should go) and denote
tr(E,) = t r (e l , . . . , en) _~ (err,. . . , e n) . t r

Defini t ion 9. A p r i n t o f G E is a linear order _ on the set BDU{i tr : i �9 I/c, re]}
satisfying the following conditions:

(1) ~ extends the order of B D and j tr _~ ktr for lc ___ j -~ k _ re.
(2) tr(Ec) = Ec. (The structure of the carrier overlaps its dual.)
(3) I fx is transport, ~ fixed, then fffor some ei �9 Ex, e~ r = ~i, then tr(E,) = E~.

(The order ~ is consistent with the boundary sequence information.)
(4) If (c, (i , j)) is a constant base, then i , j (and also i t r , j tr if i , j �9 [It, re]) are

consecutive in the order _. (Constants are preserved.)

Finally we are ready to present the heart of the Makanin's algorithm, the
procedure TRANSPORT, which corresponds to the replacement of equals by equals
from left to right. Once we have the classification of bases and a print (a guess
about where each boundary to be transported will go), things are relatively
straightforward: leave the fixed bases untouched and move all transport bases.
All the intricacies of the algorithm will then rely on the carrier and its dual
(lines 1-5 and 7-8). We need some notation to describe it: for a set of boundaries
A, E , N A will denote the subsequence of Ez of the elements in A. Similarly,
Ez U A is the super-sequence of Ex obtained by adding the elements of A in the
corresponding order. Ec is a shorthand for Exo. Let ~ be a print of GE.

TRANSPORT(GE, ~)
1. if cr -~ re then
2. Ec ~- Ec N {i E B D : cr "~ i}
3. Ee +-" Ee N {i E B D : er tr ~ i}
4. else / , cr = rc
5. Ec ~ tr(Ec) / , recall tr(Ec) =/~c
6. for each transport base bs E B S do
7. Ec +-- Ec U {i : i E Ebs and cr -~ i}
8. Ec ~- Ee U {i tr : i E Ebs and cr -~ i}
9. Ebs +-- tr(Ebs)
10. for each variable base x E B S with col(z) = col(S) do
11. Ez ~- (RIGHT(Z), RIGHT(Z))
12 E~ t - E ,
13. B S +- {bs E B S : cr _ LEFT(b8)}
14. B D ~- {i E B D : i E Eb, and bs E B S }
15. X ~ - - { x E X : (x , E) EBS}
16. c , - {c �9 c : (c, E) �9 BS}
17. r e t u r n (C, X, BD, BS) .

Solving Equations in Strings: On Mal~nin's Algorithm 365

Remarks . First note that fixed bases are left untouched. Lines 1-5 process the
carrier and its dual: I f cr -~ rc, then Xc,~c are shrunk. If cr = rc, Xc is trans-
ported completely onto ~c. Lines 6-9 process transport bases: add new boundary
equations to the carrier (lines 7-8) and give the new position (line 9). Lines 10-12
optimize: once two duals overlap, they are not necessary anymore. Lines 13-16
eliminate superfluous bases, boundaries, and labels respectively.

An example will help. In the diagrams below, on the left there is a generalized
equation G E (suppose E~ : (2, 4, 5), Ey : (3, 5, 7) and Ez : (LEFT(z), RIGHT(Z))
for all the other bases) and on the right TRANSPORT(GE, _) for a print ~ with
I tr : 5, 2 tr : 6, 3 tr : 7 and 5 tr : 8. Note that 4 tr introduces a new boundary.

Zc Cc __
Xc
Y

3 4 15 [8 7 S i 2 3 4 4" s

The critical boundary of G E is 3. Because 3 -~ 5 = rc, Xc and ~c are shrunk.
Next, the transport bases u, ~ are moved to their new positions. Note that when
moving ~ we lose information, e.g. that ~ and y have a common segment, column
(3, 4). The algorithm keeps track of it by adding the boundary 4 to Ec and 4 tr
to/~c, i,e. the new Ec = (3,4,5) and/~c = (6,4tr,8) (lines 7-8 in the code), and
hence the segments continue to be equal through the 'boundary equation' which
says that columns (3, 4) and (7, 4 tr) are the same. Observe that u produces no
new boundary equation and the fixed bases ~, y remained untouched. Finally,
we can delete the boundaries to the left of cr = 3 (line 14).

The next lemma follows easily from the definitions and the code.

L e m m a 10. TRANSPORT(GE, ~) is a generalized equation. [3

Note that a generalized equation has only finitely many different prints. So
the following procedure returns a finite set of generalized equations.

TRANSF(GE)
1. S ~ - 0
2. P r i n t ~- the set of all prints of G E
3. for each print _ E P r i n t do
4. G E ' ~- TRANSPORT(GE, __.)
5. if G E ' is admissible t h e n
6. S +-- S t9 {GE'}
7. r e t u r n S

366 Claudio Gut i~rrez

L e m m a 11. The following assertions hold:

(1) I f G E has a strict unifier S with index I and exponent of periodicity p, then
TRANSF(GE) has an element G E ~ which has a strict unifier S ~ with index
1 ~ < I and exponent of periodicity pl < p.

(2) I f an element of TRANSF(GE) has a unifier, then G E has a unifier.

Proof. (Sketch).

Proof of (1). Because S is a unifier, thus in particular S(col(xe)) = u l . . - u, =
S(col(~e)), with ui E 12 U C. Hence, we have a function f from the boundaries
in [le, rc] U [[e, ee] to { 1 , 2 , . . . , s } with S (i , j) = u](0 " " u f (j) - l . Extend it by
defining f (i tr) = f (i) for i G [lc,rc]. Then the following order -< in B D ~ =
B D U {i tr : i �9 [le, re]} is a print of GE:

- For i , j E B D , define i 5 j i f f i ~_BD j.
- For le 5BD j ~_BD re, define [e ~_ jtr .~ ee.
- For i , j E B D ' and [e 5 i , j -~ re, define i _ j i f f / (i) < f (j) .

Define GE' = TRANSPORT(GE, -~). In order to construct the unifier S' of GE' ,
for i E BD~: define S ' (i , i + l) = uf(0 �9 .. uI(i+l)_ 1 iflc "< i -< fc, and S ' (i , i + l) =
S(i , i + 1) otherwise. Then S ~ is a unifier of G E ~ and strict if S is strict. Also,
from lc "<BD cr it follows that the index of S ~ < index of S. Also, the exponent of
periodicity of S ~ does not exceed that of S since Sl(col(x)) is a suffix of S(col(x))
for any base x of G E ~.

Proof of (2). Suppose S' is a unifier of some GE' E TrtANSF(GE). Let i , j
be consecutive in BD. Define S (i , j) as S ' (i , j) if i , j E BD'; as S l (i t r , j tr) if
i t r , j tr E BD'; as c if there is a constant base (c, (i , j)) in GE, and finally as the
empty word if there is no base (c, (i , j)) in G E and i or j is not in B D ~. It can
be checked that S is a unifier of GE. [~

5 T h e F i n a l A l g o r i t h m

Given a word equation E, define its associated Makanin's tree, T(E), recursively
as follows:

- The root of T(E) is C.
- The children of E are GEN(s (see Lemma 6)
- For each node G E (not the root), the set of its children is TRANSF(GE).

T h e o r e m 12. Let s be a word equation. Then C has a unifier if and only if
T (g) has a node labelled with a solved generalized equation.

Proof. Suppose E has a unifier. By Lemma 6 there is an element of GEN(E)
which has a strict unifier with some index IE. By induction on the depth of the
node, using Lemma 11, it can be proven that T (E) has a branch, with each node

Solving Equations in Strings: On Makanin's Algorithm 367

labelled by a strictly-unifiable generalized equation and the index decreases for
every child. Since the index is non-negative, the branch is finite; hence there
must be a node GE for which TRANSF does not apply. The only possibility is
that GE is solved.

On the other direction, apply induction again, using lemmas 6 and 11. []

Theorem 12 immediately gives a semi-decision procedure: examine all nodes
of T(s to find out if E has a solution. But in general, the tree could be infinite.
Here comes the kernel of Makanin's algorithm: there exists a finite number KE
that bounds the number of nodes we have to visit.

MAKANIN(•)
1. K +-- Kz /* bound of the search
2. S ~- GEN(E)
3. SEARCH(S, K)

SEARCH(S, K)
1. if all elements of S are marked t h e n
2. r e t u r n FAILURE
3. else
4. pick a non-marked GE = (C, ~', BD, BS) 6 S
5. if GE is solved t hen
6. r e t u r n SUCCESS
7. else if [BD I > K t h e n
8. mark GE ; SEARCH(S,K)
9. else
10. S ~- S U TRANSF(GE)
11. mark GE ; SEARCH(S, K)

6 C o r r e c t n e s s a n d T e r m i n a t i o n

From now on, let us fix a word equation s and let T(s be its associated Makanin
tree. All generalized equations will be nodes of T(s For GE = (C, X, BD, BS)
with parameters M = IBDI, N = IBSI, V = 21Xl (the number of variable bases)
write GE(M, N, V).

The cornerstones of Makanin's algorithm are the next two theorems. The
first is based on a deep result in word combinatorics, stated by Bulitko in 1970,
whose bound was improved recently by Kow and Pacholski [9].

T h e o r e m 13. If a word equation E is unifiable, then it has a unifier with expo-
nent of periodicity p~ < 31t:12 L~ 13

A simple proof (for a weaker bound) which gives a good intuition of why, if
E is unifiable, there must be unifiers of this kind can be found in [8]. The next
theorem is due to Makanin.

368 Claudio Guti~rrez

The or e m 14. I] GE(M, N, V) is a node o.f T(E), then the exponent of period-
2 log v (M/N--2) ieity of all its strict unifiers exceeds w

The proof of this result is tricky, and the rest of the paper is devoted to it.
Before proving it, let us show why Makanin's algorithm works.

The or e m 15. MAKANIN is correct and terminates.

Proof. Let E be a word equation. Termination of MAKANIN(~) reduces to show
that SEARCH(GEN(~), Ks terminates.

Define p = 31~12 l'~163 and Kz = 24plzls lg2lEl+lg2[s q- 41~ I. Now observe that
there are only finitely many generalized equations GE(M, N) with fixed param-
eters M, N, and that at every stage in SEARCH, every element GE(M, N) E S
has M < Kz (line 7 of SEARCH) and N < 21~1 (Lemma 6(3) and line 13 in
TRANSPORT). Hence, because in each loop one more element of S is marked,
SEARCH will eventually stop.

MAKANIN is correct. If ~ has no unifier, then by Thm. 12 there is no solved
node in T(s Hence SEARCH will never reach line 6. Therefore eventually all
nodes will be marked and SEARCH will output FAILURE.

Now suppose that C has a unifier. Then by Thm. 13, it has a unifier with ex-
ponent of periodicity less than p. LFrom the proof of Thin. 12 it follows that there
is a branch in 7"(E) ending in a node labelled with a solved generalized equation
SGE. By Lemmas 6(1) and 11(1), it follows that each node GE(M, N, V) in
the branch has a strict unifier with exponent of periodicity p~ < p. Also from

2 logv (M/N-2) -- pt. Thm. 14 we have v 3 < So we can conclude, using V < N < 21~1,
that M < 2 ~ Ig V+lg N + 2N < KE. Hence all the nodes in the branch even-
tually will be in S, so SEARCH will visit SGE and check that it is solved (line
5) and return SUCCESS. []

Now let us prove Thm. 14. The general lines are as follows: (i) From each
G E E T(C) we can obtain (using the relations generated by the boundary se-
quences of the bases) certain chains of words. This is Prop. 25, whose proof is
long and very technical; (ii) By a counting argument it follows that a large num-
ber of boundaries in GE produces long chains of words. This is Prop. 27; (iii)
Combine (ii), using Lemma 20, with a combinatorics result (Prop. 17) establish-
ing a relation between long chains of words and high exponent of periodicity.

Let us begin with the formal definitions of those chains of words.

Definit ion 16. A domino tower is a sequence of words B1C1, . . . , BkCk (Bi and
Ci non-empty) such that for all 1 < i < k

1. There are (possible empty) words Si such that Bi+l = SiBi
2. There are (possibly empty) words Ri, Ti such that CiRi = Ci+lTi.

s,I I ~ I s,I I ~ I

Solving Equations in Strings: On Makanin's Algorithm 369

The length of the sequence is called the height of the domino tower.

The following result (whose proof can be found in [14]) establishes a relation
between the length of a domino tower and the exponent of periodicity of some
of its words.

Proposition 17. Let X = { X 1 , . . . , XN} be a set of non-empty words. Suppose
the sequence of words BIC1, . . .BkCk is a domino tower of height k and each
BiCi e ~'. I f for all i, IB~+ml > IBd, then some word BtCt has the form

k BtCt = PSQ, where P is non-empty and s + 1 >_ m---~N " [3

So we need to generate long domino towers whose building blocks are ele-
ments of A'. In this way, one variable will have a large exponent of periodicity.

D e f i n i t i o n 18. Let GE be a generalized equation, x a variable base of GE.

(1) A sub-base of x, S~, is a column of the form (LEFT(Z),/) with i E Ex. If
LEFT(Z) = i the sub-base is called empty.

(2) Each sub-base Sz has its dual (the corresponding column in the dual vari-
able), denoted S~ or Sz. This pair is called boundary equation and denoted
Sx -~ Sz. Note that if U is a unifier of GE, then U(S) = U(S).

GE' will denote TRANSPORT(GE, "<). Also LEFT I is the corresponding func-
tion in GE', etc. So, if S = (LEFT(x), i)x is a sub-base of GE, then S ' will denote
its 'image' in GE', i.e. (LEFT'(X),itr)z if X is t ransport and (LEFT'(x),i)z oth-
erwise. In case S' is empty or it is not a sub-base of GE' (i.e. x becomes empty
in GE' or x = xc and i -~ cr in GE) then S is called a terminal sub-base.

D e f i n i t i o n 19. Let $1, $ 2 , . . . , Sn be sub-bases of GE.

(1) Let $1 = (bl, i) and Sz = (b2, i) be sub-bases with the same second boundary.
S1 is a suffix of $2 if b2 _ bl. We write S1 C_ $2.

(2) A (monotone) sui~x chain in GE is a sequence S1, $ 2 , . . . Sn of sub-bases
with

$1 _(= $2 ,',., $2 (=_ $3 ~' ~..~3 c_ . . . (~_ Sn-1 '~' ,,.~r,,-1 C_.Sn

We will denote this chain by S1 C* S n.

(3) A convex sutftx chain is a sequence $ 1 , . . . , S t , . . . , S , such that S1 C_* St and
St .'~ St and St D_* Sn. We write $1 C_*D_ Sn. Note that when t = 1 or t = n
we have chains as in 1. (i.e. convex chains generalize monotone chains.)

The next lemma (whose proof is an easy check) shows the relation between
suffix chains and domino towers.

Lemma 20. Let S 1 , . . . , Sk be a monotone suffix chain of GE and U a unifier
o] GE. Suppose Sj is a sub-base of zi~. Then

(1) u(s) is a surf= of U(Sj+l) for aU i = 1 , . . . ,n.

370 Claudio Guti~rrez

(2) Define Bj = U (S j) and Cj such
of words B1C1,. . . ,BkCk forms

The next lemmas have long (but
possible cases of the bases involved
do one case to give the flavor of the

that U (col(xij)) = BjCj . Then the sequence
a domino tower of height k. []

straightforward) proofs by exhaustion of all
(transport, fixed, carrier, its dual). We will
technique.

L e m m a 21. Let S~ C_ Sy in G E and S x , S v be non-terminal. Then
1. I f y is the carrier or its dual, then S~ C* S~ or S~ D* S~ in GE' .
2. I f y is neither the carrier nor its dual, then S~ C_* S~ in GE' .

Proof of 1. Let S , = (bl, i) , C (b2, i)y = Sy.
(a) y is the carrier. So lc = b2 "~ bl. Suppose first that x is transport, i.e.

bl -~ cr. It holds that S~ = (b tr, i tr) D_ (cr tr, i t~) ..~ (c'r, i) _D (c'r, i) = S~ in GE'.
Now, suppose x is fixed, i.e. cr ~ bl. We have S~ = (bs, i) C (cr, i) = S~ in GE'.
Note that this also works if x is the dual of the carrier.

(b) Now, assume y is the dual of the carrier, that is [c = b2 _~ bl. Note
that x cannot be the carrier now. So let us suppose x is neither the carrier nor
its dual. Because the dual of the carrier is fixed (always), x must be fixed too
(cr -~ /c = b2 __. bl). Hence we have S' = (bl,i) C_ (crtr,i) ---- S~ or S~ D S~,
depending on whether bl ~ c tr or c t~ -~ bl. []

L e m m a 22. Let Sz C_ Sy ... S~ C_ Sz in G E and Sx be non-terminal.

(1) I f z is the carrier or its dual and y is the carrier or its dual, then Sz is
non-terminal and S~ C* SIz in GEI.

(2) If z is the carrier or its dual, Sz is non-terminal, and y is neither the carrier
nor its dual, then S~ C_*D S~.

(3) I f z is neither the carrier nor its dual, Sz is non-terminal, then S~ C_* S~.
[]

L e m m a 23. Suppose Sx C* Sz in GE, and Sx, Sz are non-terminal. Then

(1) I f z is the carrier or its dual, S~ C_*D SIz in GE I.
(2) I f z is neither the carrier nor its dual, S~ C_* SIz in G E I.

Proof. A simultaneous induction for (1) and (2) on the length of the chain. The
base cases are lemmas 21 and 22. []

L e m m a 24. (convex chains) Let Sz and Sz be sub-bases of G E which are non-
terminal. Suppose there is a convex chain from Sz to Sz in GE. Then there is
a convex chain from S~ to SIz in G E I.

Proof. Induction on the length of $1 C_* St "~ St D* Sn. Consider the turning
point t and the possibles cases for the chains $1 c_* St and Sn C* ~'t- n

All the preceding work was done in order to prove the next lemma. Extend
the notation S C_ B to allow B to be a constant base, i.e. S - (b, i) C_ (l, r) = 13
iff i = r and b ~ I. Similarly for S _D/3.

Solving Equations in Strings: On Malcanin's Algorithm 371

P r o p o s i t i o n 25. For each non-empty sub-base S of G E E T(~) , there is a
convex chain S = $1 , . . . , S n , B with B = col(bs) for some base bs of GE.

Proof. Induction on the depth of structure of T(C). For elements G E E GEN(E),
the only sub-bases are of the form (LEFT(x), RIGHT(x)) (Lemma 6(2)), so the
statement is trivially true. Now suppose the statement is valid for GE. We will
prove it for GE' = TRANSPORT(GE, ~).

Let S ~ be a non-empty sub-base of G E ~. It is an image of a sub-base S in
GE, so by hypothesis there is a convex chain S = $ 1 , . . . , Sn, B = col(bs) in GE
and S is non-terminal because S ~ is its image. If Sn is non-terminal, applying
Lemma 24 it follows that S~ , . . . , Sin, B ~ is convex and B ~ = col~(bs).

So suppose Sn is terminal. Let t (1 < t < n) be the smallest index such that
S t , . . . , Sn are all terminal sub-bases. So St-1 is non-terminal, and by Lemma
24 there is a convex chain from S~ to S~_ 1 in G E ~. Let us show that it can
be completed to end with col(bs) for some base bs. Denote St-1 = (ly,j)~ and
St = (l~, j)~.

If z is neither the carrier nor its dual, then S~-I = ~'y(Itr,j~tr~Jy _D (j t r , j t r)z =
colt(z) in GE ~ if y is transport. If y is fixed then cr _~ l~, hence St-1 C St and
so $1 C* St-1 because the chain is convex. Then S~-1 = (ly , j)y C_ (at, j) ...
(c r t r , j tr) ~_ (j tr , j t r)z in GE ~.

If z is the carrier then j ~_ cr (St is terminal), so y is transport. Now, if
St-bl ---~ B constant, it must be fixed, so S~ {ltr :tr~ _ B ~. t - l = xoy,J Jv D I f S t + l = S ~
with u a variable, u can neither be the carrier nor its dual (because St+l is also
terminal), hence S' {lt~ -tr~ t--1 ~ k~ ,J)Y ~-- (j t r , j t r) u in G E ' . I f z is the dual of the
carrier the analysis is similar. [3

A strict convex chain is one in which each sub-base appears just once. (Note
that a sub-base is characterized by its column and its base.)

L e m m a 26. Let So = (bo,i) be a fixed sub-base of G E (M , N , V) . The number
of different sub-bases S of G E such that there is a strict convex chain S =
S1, . . . , Sj = So of length j <_ k is less than V ~.

Proof. Consider the set of chains SI,..., Sj with Si C Si+ 1 or Si D Si-bl for
each i. Clearly it contains the set of strict convex chains. For j = 1 note that if
(b, i) C (bo, i) or (b, i) D (bo, i), b must be a left boundary of a variable base, and
there are less than V such boundaries different from b0. The general case follows
by simple combinatorics, i.e. there are no more than V k chains of that type. [3

P r o p o s i t i o n 27. Let GE(M, N, V) E T(C). Then there is a strict convex chain
of length bigger than log v (M / N - 2) in GE.

Proof. A sub-base is of the form (b, i)z with i E Ez. There are at least (M - 2N)
different non-empty sub-bases (the number of boundaries -line 14 of TRANSPORT-
minus the left and right boundaries of each base). By Prop. 25, for each such
sub-base S there is a convex chain S = S1 , . . . ,Sn, B = col(bs) for some base
bs. But there are N bases in GE, hence there is a base bs0, such that at least

372 Claudio Gutidrrez

(M - 2 N) / N sub-bases have a convex chain to bso (which is strict because
all sub-bases were different). Now, by Lemma 26, V k > (M - 2 N) / N , hence
k > l o g v (M / N - 2). []

Proof of Theorem 14. By Prop. 27, for n = l o g v (M / N - 2) there is a strict
convex chain $ 1 , . . . , S t , . . . , Sn. Hence S1 , . . . , St or S n , . . . , St is a (monotone)
chain of length k > n/2.

Let U be a strict unifier of G E and consider the domino tower BIC1, �9 Bk CA
of height k associated to the chain as in Lemma 20, all of whose words BjCj =
U(col(xij)) are in {U(col(x)) : x �9 X}. There are V variable bases, so, for every
i two sub-bases of the same variable must appear in S i , . . . , Si+v. Now because
all sub-bases are different (strict chain), [Bi+vI = IV(Si+v)l > IU(Si)I = IBil.
We conclude from Prop. 17 that there is a word BjCj of the form PSQ with P

2 logv(M/N--2)
non-empty and s + 1 > v - ~ > v3 []

7 Final Remarks

There are three key points in estimating the time complexity of MAKANIN:
first, bounds on PE, the exponent of periodicity of word equations. Thm. 13
is almost optimal: it is known that PE ~ 2 ~162 (see [9]); The second point
is bounds on Kz, the depth of the search. Jaf[ar's estimate [5] was of the or-
der 16N15p(6[C[2) 2 (2N) 32p(eI~I2)N5 . We improved it to 2 ~163 lg V+lg N where
p(x) = 3x21'~ and V _< N _< 21E]; The third point, bounds on SEARCH. A rough
bound is the number of all different GE(M, N) with N <_ 2[El and M ~_ Kz .
There seems to be much room for improvement on these last two points. Also
a finer analysis of TRANSPORT would imply a clearer picture of the interplay
among prints, associated Diophantine equations, and the kind of search needed.
Rounding, the current time complexity bound on MAKANIN is triple exponential
in Is

Finally, let us say that it is easy to add two lines to TRANSPORT in order to
get explicit solutions: we need an extra variable U (a list of pair of boundaries)
for each pair of duals to keep track of the value of the original variable. The
proof of Lemma 11 tells how they have to be updated.

References

1. H. Abdulrab, 1987. Rgsolution d'gquations sur les roots: ~tude et impldmentation
LISP de l'algoritme de Makanin, Ph.D. dissertation, Univ. Rouen, Rouen.

2. A.V. Aho, 1990 Algorithms for finding patterns in strings, in Handbook of Theo-
reticaJ Computer Science (J. van Leeuwen, ed.), Elsevier Sc. Pub., pp. 256-300.

3. F. Baader, J.H. Siekmann, 1994. Unification Theory, in Handbook of Logic in Artif.
Int. and Logic Prog., Vol. 2, (D. Gabbay et al, ed.), Clarendon Press, Oxford.

4. V.K. Bulitko, 19?0. Equations and Inequalities in a Free Group and a Free Semi-
group, Tul. Gos. Ped. Inst. U~en. Zap. Mat. Kafedr. Vyp. 2 Geometr. i Algebra
(1970), 242-252.

Solving Equations in Strings: On Mu.kanin's Algorithm 373

5. J. Jaffax, 1990. Minimal and Complete Word Unification, Journal ACM, Vol. 37,
No.l, January 1990, pp.47-85.

6. J.I. Hmelevskil, 1971. Equations in free semigroups, Trudy Mat. Inst. Steklov. 107
(1971). English translation: Proc. Steklov Inst. Math. 107 (1971).

7. A. Lentin, 1972. Equations in Free Monoids, in Automata Laguages and Program-
ming (M. Nivat ed.), North Holland, 67-85.

8. G.S. Mukanin, 1977. The problem of solvability of equations in a free semigroup,
Math. USSR Sbornik 32(1977) (2), 129-198.

9. A. Ko~cielski, L. Pachoiski, 1996. Complexity of Makanin's Algorithm, Journal of
the ACM, Vol. 43, July 1996, pp. 670-684.

10. J.P. P~cuchet, 1981. Equations avec constantes et algoritrae de Makanin, Th~se de
doctorat, Laboratoixe d'informatique, Rouen.

11. G.D. Plotkin, 1972. Building-in equational theories, Mach. Int. 7, 1972, pp. 73-90.
12. J. Siekmann, 1972. A modification of Robinson's Unification Procedure, M.Sc. The-

sis.
13. K.U. Schulz, 1993. Word Unification and Transformation of Generalized Equations,

Journal of Automated Reasoning 11: 149-184, 1993.
14. K.U. Schulz, 1990. Makanin's Algorithm for Word Equations: two improvements

and a generalization, in LNCS 572, pp. 85-150.

