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The major insight in Robert Rosen’s view of a living organism as an (M,R)-system was the realization

that an organism must be ‘‘closed to efficient causation’’, which means that the catalysts needed for its

operation must be generated internally. This aspect is not controversial, but there has been confusion

and misunderstanding about the logic Rosen used to achieve this closure. In addition, his corollary that

an organism is not a mechanism and cannot have simulable models has led to much argument, most of

it mathematical in nature and difficult to appreciate. Here we examine some of the mathematical

arguments and clarify the conditions for closure.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Studies of artificial life depend heavily on efforts to set up and
simulate models of living organisms in the computer. According
to Rosen (1991), however, a living organism is not a machine, and
so it cannot have a computer-simulable model. Not surprisingly,
his conclusion has stimulated an intense argument among
computer scientists, mathematicians and biologists (Landauer
and Bellman, 2002; McMullin, 2004; Wells, 2006; Chu and Ho,
2006; Chu and Ho, 2007a, b; Louie, 2007; Wolkenhauer, 2007;
Wolkenhauer and Hofmeyr, 2007; Mossio et al., 2009), because if
it is valid it imposes a formidable barrier to modern theories of
computation in a topic that is as central to our scientific
endeavour as it is to the nature of living systems. It is important
to emphasize at the outset that Rosen did not argue that artificial
life was impossible,1 but only that organisms are ‘‘closed to
ll rights reserved.
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sen, 1991), is subtitled A

Fabrication of Life.

, et al., Closure to efficient
efficient causation’’ and that this essential property excludes any
possibility of simulable models.

The numerous new papers cited above that deal with the issue
of computability make it necessary to examine the controversy.
We are convinced that full understanding of Rosen’s work
requires study of more than just the well known closure diagram
in Life Itself (Rosen, 1991, Fig. 10C.6 ; Fig. 1a). His argument
against computability requires a detailed analysis of metabolic
closure as set out in a series of papers spanning 15 years (Rosen
1958a, b; 1959, 1966, 1971, 1973). Progress in the matter of
computability requires a thorough knowledge of the conceptual
steps that Rosen took in this regard (for example the distinction
that he made between simulation and modelling), and not just the
summary encapsulated by the diagram.

A recent analysis in terms of l�calculus and the theory of
computer programming (Mossio et al., 2009) led to the opposite
conclusion, that a system closed to efficient causation can
certainly have computable models. The authors pointed out the
apparent contradiction that autopoiesis (Maturana and Varela,
1980), which has strong underlying similarities with Rosen’s
theory (Letelier et al., 2003), including closure to efficient
causation, is claimed to have computable models (McMullin,
2004). Moreover, it is not obvious that the examples of (M, R)-
systems that we have proposed (Letelier et al., 2004, 2006;
causation, computability and artificial life. J. Theor. Biol. (2009),
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Fig. 1. The diagram is based on Fig. 10C.6 of Rosen (1991), shown (a) in the unsymmetrical way used by Rosen, (b) in the more symmetrical way suggested by Cottam et al.

(007), and (c) in a way suggested by Goudsmit (2007) in which the representation of efficient causes resembles normal practice in chemistry, with catalysts shown as

acting on reactions rather than on substrates. (d) In all three variants full arrows represent material causation, or chemical transformation, whereas broken arrows show

efficient causation, or catalysis. Rosen’s terms ‘‘repair’’ and ‘‘replication’’ shown in parentheses for these last two processes are misleading, as they have nothing to do with

the ordinary uses of these words in modern biochemistry, for example for DNA repair and DNA replication. Here we follow the terminology introduced previously (Letelier

et al., 2006).
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Cornish-Bowden et al., 2007; Cornish-Bowden and Cárdenas,
2007, 2008) cannot be simulated. Other criticisms of Rosen’s
analysis also deserve to be answered, as they affect his insights in
relation to closure, which we regard as essential for under-
standing living systems.

How does the existence, or not, of computable models of living
organisms affect other aspects of the study of life? According to
Chemero and Turvey (2008), ‘‘little rides on whether genuine
artificial life is possible’’, and we agree: the existence of simulable
models of living organisms has less importance than Rosen’s
essential insight, that organisms must be closed to efficient cause
and hence metabolically closed. However, the argument about
simulability will certainly continue: the work of many groups,
including those attempting to develop life in silico, depends on the
assumption that computer simulation of living systems is in
principle possible, and any claims that it is not possible can expect
to meet vehement opposition.

We believe that the way forward, both for getting a better
understanding of life and for deciding whether it can have
simulable models, will require Rosen’s abstract and mathematical
ideas to be brought into much closer correspondence with
biological reality. Future models need not only to reflect the
mathematics accurately but they must also be biochemically
reasonable.
2 This unfortunate terminology has misled some authors. For example, Mossio

et al. (2009) wrote that ‘‘F, as ‘replication function’, may be associated with

nucleic acids.’’ There are actually two errors here, the first possibly typographical

but the other probably caused by Rosen’s terminology: F is responsible for the

‘‘repair’’ function, not ‘‘replication’’, and ‘‘replication’’ in Rosen’s sense is quite

different from DNA replication, etc. Throughout the present paper we follow the

terminology we introduced previously (Letelier et al., 2006), which we believe to

be less confusing.
2. Closure to efficient cause

Closure to efficient cause, illustrated in Fig. 1, is central to
Rosen’s view of life, and we shall briefly resume what it means.
Rosen drew the diagram, for example in Fig. 10C.6 of Rosen
(1991), as in Fig. 1a. Cottam et al. (2007) have argued that the
underlying logic is symmetrical and can be better illustrated with
a symmetrical figure-of-eight layout, as in Fig. 1b. Their arrange-
ment is visually appealing but it suggests a misleading parallelism
between efficient and material causation, and in any case, as we
note below, material causation must be asymmetrical if thermo-
dynamic requirements are to be satisfied. In the third layout
(Fig. 1c), suggested by Goudsmit (2007), the distinction between
efficient and material causation is represented in a way that is
much closer to normal practice in chemistry and biochemistry.
The three layouts do not imply three different schemes,
but one scheme shown in three different but completely
equivalent ways.

Each version of Fig. 1 consists of three parts, each with a
set of chemical transformations (material causation) and a set of
Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
doi:10.1016/j.jtbi.2009.11.010
catalysts (efficient causation). Metabolism is the complete set
of chemical transformations A-B, catalysed by a set of enzymes
f. Replacement (or ‘‘repair’’ in Rosen’s misleading terminology) is
the resynthesis of the set of catalysts f as necessitated by
degradation, wear and tear, and growth, catalysed by a replace-
ment system F. Organizational invariance (‘‘replication’’ in
Rosen’s terminology) is the process that enables an organism to
maintain this replacement system, as we discussed in more detail
elsewhere (Letelier et al., 2006). Notice that it does not
correspond to cell reproduction or DNA replication.2

It is obvious that enzymes must be synthesized from the
products of metabolism and that this synthesis requires addi-
tional catalysts, so the arrows F - --B-f require no explanation,
but it is less obvious why B should be the efficient cause of the
replacement enzymes. In fact the efficient cause is not B but a
function b that is related to B but is not the same as B. It might
seem a priori that a separate set of enzymes would be needed, but
this would imply infinite regress, whereas organisms are not
infinite. Rosen’s device for avoiding this infinite regress was to
interpret catalysis of the transformation f-F as a property b of
the metabolic products B. We have discussed the implications
of this elsewhere (Letelier et al., 2006), but it is important to
emphasize at the outset that although b can be regarded as a
property of B it is not the same as B; this is a subtle point that
continues to be widely misunderstood, and we return to the topic
in Section 8.

In Fig. 1 all catalysts are synthesized internally; none is
produced by any external agency. It is in this sense that the
system is catalytically closed, or closed to efficient cause in
Rosen’s terms. There is no implication of material closure,
however, and no conflict with the thermodynamic requirement
that a living organism be open to the flux of matter, to allow
metabolic energy to be extracted from food (Fig. 2a): A in Fig. 1 is
understood to include molecules available from the environment,
and likewise B to include molecules that are excreted, but the
distinction between external and internal molecules is not
explicit in the figure. In a third sense an organism is again
causation, computability and artificial life. J. Theor. Biol. (2009),

dx.doi.org/10.1016/j.jtbi.2009.11.010
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Fig. 2. Different criteria of closure. As there are various ways in which a system can be considered to be closed, it is important to distinguish between these. (a) Organisms

are open systems in the thermodynamic sense, and they obtain the energy they need for all metabolic and motor functions by irreversibly converting nutrients into

excreta; in the case of the blood-stream form of the parasite Trypanosoma brucei illustrated, this is a matter of converting glucose into pyruvate. (b) On the other hand they

are structurally closed, in the sense that different individuals, for example in the bacterial population illustrated, are separated from one another by physical barriers, and

there is no doubt about where one ends and another begins. (c) Closure to efficient causation does not refer to structural or material closure however, but to organizational

closure: all catalysts needed for metabolism are themselves products of metabolism.
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closed, as there is always a physical separation (membrane,
cell wall, skin, etc.) between one individual and another (Fig. 2 b).
This is important, and is emphasized in particular in the theory
of autopoiesis (Maturana and Varela, 1980), but Fig. 1 is
concerned with organizational closure (Fig. 2 c), not with
structural closure.
SA
S C

+

T
+

R

S

C

Fig. 3. Models of Chemero and Turvey. (a) A natural interpretation (but probably

not the one intended) of the equations used by Chemero and Turvey (2006) to

define their model. Note that the model contains no catalysis, and it violates the

law of conservation of matter, because the B#C cycle is a bottomless pit into

which all the reactants disappear, with nothing coming out. (b) What we take to

be the intended meaning of the equations of Chemero and Turvey (2006). Full and

broken arrows have the same meanings as in Fig. 1, and the plus signs simply

emphasize that each broken arrow represents a catalytic effect, not an inhibition.

(c) The more recent model of Chemero and Turvey (2008).
3. Analysis of closure in terms of hypersets

Hypersets are generalized sets in which the restriction that
sets cannot be members of themselves is relaxed. This restriction
was made at the beginning of the 20th century as a way of
resolving Russell’s paradox and the problems of ambiguity that
arise when impredicative definitions are permitted, i.e. definitions
that allow the entity being defined to participate in its own
definition. However, the impredicativity that is central to Rosen’s
view of an organism does not prevent it from being logically
coherent (Kercel, 2007).

Chemero and Turvey (2006, 2008) have discussed the principle
and usefulness of hypersets, and have shown how simple graphs
of hypersets allow one to recognize if a system embodies circular
definitions and is thus complex in Rosen’s sense. Mossio et al.
(2009) are critical of some of these authors’ arguments—both in
relation to their understanding of impredicativity and in the
implications that impredicativity has for computability—but they
do not address other serious problems with these papers,
especially the misunderstanding of what catalysis is.

On the basis of their approach Chemero and Turvey (2006,
2008) conclude that catalytic closure does not necessarily mean
closure to efficient cause. As this conclusion contradicts Rosen, it
is important to understand that they arrived at it by means of an
idiosyncratic definition of catalytic closure: ‘‘a system is cataly-
tically closed just in case every product of the system is also a
catalyst in the system’’ (Chemero and Turvey, 2006). They
attributed this definition to Kauffman (1993), but in fact it inverts
Kauffman’s own definition: ‘‘Catalytic ‘closure’ must be achieved
and maintained. That is, it must be the case that every member of
the autocatalytic set has at least one of the possible last steps3 in
its formation catalyzed by some member of the set, and that
connected sequences of catalyzed reactions lead from the
maintained food set to all members of the autocatalytic set.’’
3 This unfortunate choice of wording could be taken to refer to one of the steps

near the end of a series of steps, in which case one might wonder why only one of

these steps needs to be catalysed. In fact it refers to the possibility of parallel

pathways to the same metabolite, and it requires that the final step of at least one

of these must be catalysed.

Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
doi:10.1016/j.jtbi.2009.11.010
According to Kauffman, therefore, catalytic closure requires
every catalyst to be a product of metabolism, whereas according
to Chemero and Turvey it requires every product of metabolism to
be a catalyst. Kauffman’s definition agrees with related ideas in
(M,R)-systems (Rosen, 1991) and autopoiesis (Maturana and
Varela, 1980). As far as we are aware no one has previously
suggested that it is a requirement for life that every metabolic
product be a catalyst, and examination of real metabolism in real
organisms reveals innumerable examples of products with no
known functions as catalysts.

In their more recent paper Chemero and Turvey (2008) define
catalytic closure in a more acceptable way, as we discuss below,
so we need to examine whether the problems in the previous one
(Chemero and Turvey, 2006) arose from an unfortunate choice of
words, or whether they reflect a real failure of their analysis. This
can be determined by ignoring their words and examining the
series of reactions they used to illustrate them in their 2006
paper:

PþQ-A; RþA-B; SþB-C; TþC-B

Their designation of A, B and C as catalysts in this system makes
no sense if the pair of symbols on the left-hand side of each
process is interpreted as a pair of co-reactants (see Fig. 3a).
Instead, PþQ-A, for example, apparently means a reaction P-A
catalysed by Q. If so, a more conventional and intelligible way of
symbolizing the whole set of reactions is as follows:

P-
Q

A; R-
A

B; S-
B

C; T-
C

B

causation, computability and artificial life. J. Theor. Biol. (2009),

dx.doi.org/10.1016/j.jtbi.2009.11.010
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4 Orgel (2008) recently discussed the plausibility of this and other assump-

tions in Kauffman’s model. His analysis is interesting and important, but it does

not bear directly on the point we are making here.
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On this interpretation (Fig. 3 b) their system satisfies their
definition of catalytic closure (every product is a catalyst), but
not that of Kauffman (1993), because Q is a catalyst but not a
product of any reaction in the system. The fact that Q is not
a system product is essential to their argument, as it leads them
to an artificial distinction between catalytic closure and closure
to efficient cause, and to say that ‘‘in general, catalytically
closed systems are not closed to efficient causation.’’ Their
system, however, does not satisfy any recognized criterion of
catalytic closure (Rosen, 1991; Maturana and Varela, 1980;
Kauffman, 1993), so it provides no support for their contention
that their analysis ‘‘agrees with Chu and Ho (2006), who
dispute Rosen’s purported proof that artificial life is
impossible.’’ In any case, Rosen did not claim to have
provided a ‘‘proof that artificial life is impossible’’; on the
contrary, as we noted in the Introduction, he made an explicit
distinction between the existence of simulable models of life
and the possibility of artificial life (Rosen, 1973).

The later paper (Chemero and Turvey, 2008) does not resolve
the problems raised by the first. Much of the text and
illustrations are identical, but the part that is of most concern
to us here is different, albeit in a way that does not clarify their
argument. They no longer state that every product of metabo-
lism must be a catalyst, but instead that ‘‘when every product in
a network of chemical reactions has a catalyst that is also a
product in the network, the network of reactions is a collectively
autocatalytic system’’: this is closer to the definition given by
Kauffman (1993). One may object that catalysts are usually
associated with reactions rather than with products, but this is
trivial compared with the objections that can be made to the
previous statements. The new discussion refers to a scheme that
fails to make it clear which version of the generalization is being
illustrated, because now both catalysts are products, and both
products are catalysts:

R-
A

B; S-
B

A

As may be seen by drawing it as in Fig. 3 c, this model does
represent a collectively autocatalytic system, even though
neither of the individual steps is autocatalytic.

Unfortunately the recent paper (Chemero and Turvey, 2008)
makes no reference to the earlier one, and so it is not clear
whether the changes are corrections or just different ways
of expressing the same ideas. As it reaches essentially the
same conclusion, expressed in the same words, that the analysis
‘‘agrees with Chu and Ho (2006), who dispute Rosen’s purported
proof that artificial life is impossible,’’ it seems best regarded
as a re-expression of the original argument and not as a corrected
one.

Chemero and Turvey (2007) have a related paper that
appeared between the two we have discussed. In it they define
the following system of reactions:

P-X; BþX-YþD; 2XþY-3X; Y-F

and comment that ‘‘the second and third steps are autocatalytic. X
reacts with B to produce Y and Y is a catalyst for production of
more X’’. Again, however, the meanings of the symbols and words
are obscure and in addition it is difficult to make chemical sense
of the individual reactions (especially 2XþY-3X). As far as one
can tell they have simply written a series of four equations
without paying any attention to chemical plausibility. On the one
hand the þ sign does seem to be used in the conventional way to
concatenate co-reactants; on the other hand the statement that Y
is a catalyst is true only if the second and third steps are regarded
as a single process, but not if they are treated separately, as the
words seem to suggest. Unfortunately, therefore, this paper is
only of limited help for clarifying the other two. There is, however,
Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
doi:10.1016/j.jtbi.2009.11.010
an important point illustrated by the idea of two or more
reactions in a sequence as a single process. Once there is a
reactant for one step regenerated by another step there is
necessarily autocatalysis, as discussed by King (1997) and as
implied by Cornish-Bowden and Cárdenas (2007, 2008).
4. Autocatalytic sets and autopoiesis

There is a fundamental difference between autocatalytic sets
(Kauffman, 1993, 1986) and autopoiesis (Maturana and Varela,
1980), and it is necessary to understand this because of the
implications of these approaches to the origin of life. For
Kauffman an autocatalytic set is inevitably a large set, with, as a
minimum, thousands of elements based on amino acids or RNA
bases, because only large systems can have the statistical
properties needed for closure to become virtually inevitable. For
example, if any one molecule has a probability of 10�9 of
catalysing a particular ligation or cleavage step in the system,4

the probability of catalytic closure is very low unless there are at
least 3� 108 different kinds of molecules altogether. This number
is greatly decreased, to about 18 000, if there is the same
probability of catalysing exchange reactions as well as ligation
and cleavage, but it remains very large in comparison with the
numbers of elements usually imagined to be necessary for a
minimal autopoietic system: although Maturana and Varela may
not have explicitly described their systems as small, most of their
discussion implies that autopoietic systems can be small enough
to be represented by models that are very small in Kauffman’s
terms. They are thus much closer in spirit than Kauffman to most
theories of the origin of life, and, indeed to current ideas on the
number of distinct entities that would be needed for a minimal
cell.

Although Kauffman (1993) concluded that autocatalytic sets
had to be very large sets, it is important to realize that this
conclusion followed from his wish to assess the likelihood that
closure could arise out of purely chance properties of its
component elements. It does not follow necessarily from the
definition of an autocatalytic set, however, if one is not concerned
with the statistical arguments, and, as we show later (Section 9), a
very small set can satisfy the definition.

Where do (M,R)-systems (Rosen, 1991) fit into this spectrum?
Rosen’s discussion was always expressed in terms so abstract that
there is no particular implication about how many elements an
(M,R)-system needs to contain in order to be viable. In our earlier
studies we followed Morán et al. (1996) in implicitly assuming
that an (M,R)-system could be small enough to be represented by
a model intelligible in chemical terms, but that may not be what
Rosen intended. However, our model was designed to fix some of
the ideas, and not to be a realistic model of an organism: in other
words, just as each of Rosen’s arrows represents a large number of
parallel processes each of the arrows in our model should be
taken as an oversimplified image of a complicated reality. In
particular, proper energy management in an organism needs
much more than an overall process that is assumed to be
irreversible.

It is important to notice that although Kauffman’s systems may
be very large in terms of the number of different molecules they
contain, they are rather small in terms of the number of different
chemical types of molecule they contain. It is virtually certain that
an organism cannot consist of just a mixture of peptides, or a
mixture of nucleic acids.
causation, computability and artificial life. J. Theor. Biol. (2009),

dx.doi.org/10.1016/j.jtbi.2009.11.010
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5. Are autopoietic systems really computable?

As Letelier et al. (2003) pointed out, autopoietic systems share
many features of (M,R)-systems and can be regarded as a subset of
(M,R)-systems. They are thus by implication closed to efficient
causation, and should inherit the property of not having computable
models.5 However, it has been claimed that autopoietic systems
have been modelled (McMullin, 2004),6 based on a simple
simulation carried out by Varela et al. (1974) and later reconstructed
in a more modern computational context by McMullin and Varela
(1997). This model involves the following processes:

SþS-L

LþL-L�L

LþL�L . . .-L�L�L . . .

L-SþS

in which S is a molecule available from the environment and L�L . . .
represents a linear chain of any length that can turn back on itself to
form a closed cycle. The first reaction is assumed to occur only in a
specific part of the space (inside the boundary formed by a cyclic
chain of L molecules, a two-dimensional representation of what in a
three-dimensional system would be a membrane). This inevitably
means that it is a catalysed reaction, because if it were spontaneous
it would occur everywhere, not just inside the boundary. The
simplest expression of the model did not give the expected results,
because newly formed L�L . . . chains tended to clog the interior of
the system instead of integrating themselves into the boundary
molecule. This was solved in an ad hoc manner by introducing an
unexplained inhibition to prevent premature bonding between L
molecules.

There are two points that need to be distinguished here: first
whether the simulated systems were real autopoietic systems closed
to efficient causation; second whether they were models in Rosen’s
sense, or simply simulations. So far as the first point is concerned,
they are valuable as illustrations of how cell membranes can in
principle result from sequential application of simple rules, but they
were not simulations of autopoietic systems, because the catalyst
needed for the essential chemical reaction was not generated by the
system itself but was given from outside. McMullin (2004)
recognized this, saying that ‘‘this appears to violate the demand
for closure in the processes of production’’. However, it does not
merely ‘‘appear’’ to violate this fundamental requirement; it does
violate it. As the simulated system was not closed to efficient
causation it tells us nothing about whether systems that are closed
to efficient causation can have simulable models.

In his attempt to justify allowing exceptions to the require-
ment of closure, McMullin (2004) commented further that ‘‘there
must surely be some exceptions allowed (specifically, covering
the case of the S particles that are simply harvested from the
environment)’’, in which the S particles correspond to the external
molecules included in our simple model of an (M,R)-system (see
Fig. 6). There is a confusion here between closure to material
causation (which no one claims to be a property needed for life)
and closure to efficient causation, an explicit property of (M,R)-
systems, and at least an implicit one in autopoiesis.7 However, it is
5 The important distinction between simulation and modelling is discussed in

Section 7.
6 These claims appear to be accepted by Mossio et al. (2009) in their recent

paper.
7 In two recent papers Fernando and Rowe (2007, 2008) discuss both

organizational closure and thermodynamic considerations. Although they do not

confuse the two concepts, they also do not distinguish between them as explicitly

as necessary to maintain them distinct.

Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
doi:10.1016/j.jtbi.2009.11.010
a confusion that is easy to fall into, and deserves some
explanation. It has been generally accepted since Schrödinger
(1944) characterized living organisms as ‘‘feeding on negative
entropy’’ that they are inevitably open systems, that maintain
themselves indefinitely in states far from thermodynamic equili-
brium by ingesting low-entropy food and excreting high-entropy
products. This thermodynamic requirement does not in any way
conflict with the organizational requirement that they be closed

systems, because openness to material causation is not opposed
to closure to efficient causation (see Fig. 2).

Referring to the failure of the autopoietic model to include
regeneration of the catalyst, McMullin (2004) goes on to say
that ‘‘more recent elaborations of this original model have
specifically allowed for production of the [catalyst] particles
(Breyer et al., 1998), so there is no fundamental difficulty here’’
(emphasis in the original). However, later in the paper he admits
that ‘‘full achievement of self-reproduction is not reported’’ [in
the simulations cited], so it is not clear how the argument is
advanced. Although Breyer et al. (1998) did define a model with
regeneration of the catalyst, which may be represented as
follows:

S-
K

P; P-
K

K; S-
K

M; MþM-M�M

the simulation results that they present do not appear to have
been obtained with this model, but with a simpler one presented
earlier in which there is no catalyst regeneration. Nonetheless, we
do not doubt that with further elaboration of the computer code a
genuine simulation of an autopoietic system could be achieved,
and in this limited sense we do not contest McMullin’s
conclusion; however, it would still not constitute a model in
Rosen’s sense.

The model of Breyer et al. (1998) has a peculiarity that makes
it difficult to regard it as a plausible biochemical model. As one
may see, the catalyst K acts on a single substrate S to produce two
different products (S-

K
P, S-

K
M). This type of behaviour is

common in catabolic processes, in which, for example, a
proteolytic enzyme may act at various different sites in a protein
substrate, releasing a different product in each case. However, we
are concerned here with anabolic metabolism, for which we know
of no such examples. The model gives the impression that the
catalyst was included as an afterthought with no attempt to take
biochemical reality into account.

Finally, it is worth noting that Zeleny (1995) has also denied
that autopoiesis can be modelled in the sort of way that McMullin
and others have attempted, writing as follows:

Approaches which sacrifice [the] essential individuality of
components, like the statistical systems of differential equa-
tions used in the traditional systems sciences, cannot model
autopoiesis. They are definitionally incapable of treating
autopoietic systems as social systems.
6. (M,R)-systems considered in terms of Cartesian closed
categories

In developing their abstract cell model of a living organism,
Wolkenhauer and Hofmeyr (2007) state, but do not prove, that
the category needed for a mathematical model of a self-
organizing cell must be Cartesian closed. In essence this means
that the category behaves like the category of sets and mappings
regarding the relationship between functions of two variables and
functions of one variable. It is well known, indeed, that the graph
of a function of two variables, such as f ðx; yÞ, can be regarded in a
global way as a ‘‘sheet’’ hovering over the ðx; yÞ plane, or
alternatively, as a family of slices, for example slices parallel to
causation, computability and artificial life. J. Theor. Biol. (2009),

dx.doi.org/10.1016/j.jtbi.2009.11.010
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9 As a simple and familiar example, methods of numerical analysis such as

orthogonal polynomials are used in engineering applications to simulate with as

much precision as desired the behaviour of a mathematical function that has an

unknown analytical form but for which numerical values are known at many

points. These methods are very valuable for making predictions about the

numerical values of the function at additional points, but they tell us nothing

about the real functional relationship. In Rosen’s terminology, therefore,

orthogonal polynomials can simulate a phenomenon as precisely as desired, but

they do not model it.
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the y-axis. In algebraic terms, a two-variable function

ðx; yÞ/f ðx; yÞ

may be described as a one-variable function:

x/fx : y/f ðx; yÞ

where fxðyÞ ¼ f ðx; yÞ, whose values fx are again one-variable
functions, obtained by fixing the value x of the first variable as a
parameter. The graph of each partial function fx appears then as a
vertical ‘‘slice’’ of the graph of the two-variable function f, parallel
to the y-axis.

There are several similar statements in the paper about
the necessity of Cartesian closure, but no proof, and in fact, it is
not true: Cartesian closure may indeed be sufficient to allow
formulation of a mathematical model of self-organization, as
Wolkenhauer and Hofmeyr show by means of a rewording of
Rosen’s own argument, but it is not necessary, and the arithmetical
example that we described previously (Letelier et al., 2006)
contradicts the claim that it is, as we discuss at the end of this
section.

In the case relevant here, we are led to consider concrete

categories whose objects are sets endowed with a structure and
whose morphisms are simply ‘‘structure-preserving mappings’’.
For example, the objects could be vector spaces with linear maps
as morphisms; or they could be groups, with group homomorph-
isms as morphisms; or they could be ordered sets with monotone
mappings, and so on. For this sort of category to be Cartesian
closed, it is necessary to know that the set AB of morphisms from
any object B to any object A may be endowed (in a ‘‘natural’’ way)
with the same sort of structure as the other objects in the
category and that all maps involved in the slicing procedure above
are morphisms in the category. More precisely, if f : X � Y-Z is a
morphism, then the maps fx : Y-Z, for all xAX and the map x/fx,
from X to ZY , are morphisms in the category, and also vice versa.

The problem with insistence on Cartesian closure is that it
inevitably excludes functions that ought to be acceptable. For
example, let f be the familiar dot product ðx; yÞ/x � y in which
x; y may be real numbers, or vectors in the plane or in
three-dimensional space: the partial mappings fx are indeed
linear,8 and so is the mapping x/fx, because of the distributive
law for the product with respect to addition of numbers. So the
slicing maps

x/fx

with fxðyÞ ¼ f ðx; yÞ are linear, even though f : ðx; yÞ/x � y is not
linear but bilinear, i.e. f ðx; yÞ is linear in y if x is fixed, and is also
linear in x if y is fixed. Here we notice that the ‘‘natural’’—and
useful—property for the global function f of two variables is
bilinearity, not linearity. Similar considerations apply to abelian
groups, the category of our arithmetical example. Even though the
category is not Cartesian closed, the map ðm;nÞ/mn, where m

and n are integers modulo 12, or ‘‘hours’’, is bi-additive, and f, F
and b (in Rosen’s symbols) are all additive functions, i.e. they are
morphisms of the category of abelian groups. It is in this sense
that our simple mathematical example (Letelier et al., 2006) is a
counter-example to the assertion by Wolkenhauer and Hofmeyr
(2007) that the associated category of a mathematical model of a
self-organizing cell must be Cartesian closed.
8 We use ‘‘linear’’ here in the mathematical sense: a function g is linear if

gðuþvÞ ¼ gðuÞþgðvÞ and g(ru)=rg(u) for all vector arguments u, v and scalars r. In

physics g : u/5þu for uAV ¼R would be regarded as linear, though in

mathematics it is called an affine function.
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7. Simulation and modelling

Simulating an organism and creating a model of an organism
may appear to be the same thing, and so it is important for
discussing Rosen’s work to emphasize that he attached clearly
different meanings to these two ideas. There are two key issues in
the notion of simulation, the first of which is the possibility of
developing by means of a computer program a sequence of steps
that behave identically to the phenomenon to be simulated. In
general this simulation could not give any information about the
structure of the phenomenon.9 In computer science one would say
that the phenomenon of interest is simulable by a Turing machine
(the most general form of computing today). However, there is a
second issue that is just as important, which is to be able to obtain
information about the structure of the phenomenon from the
simulation. This amounts to deciding which variables and para-
meters of the phenomenon to keep and record, how much time the
simulation will run, etc. These variables and parameters can then
give us the structural information we seek. For Rosen the first of
these is ‘‘simulation’’, whereas the second is ‘‘modelling’’, and he
considers that for understanding the structure of phenomena the
interesting things are models. His attitude is, of course, that of a
scientist rather than of an engineer,10 as he regards understanding
things as more important than predicting how they will behave.
The notion of closure under efficient causation and his famous
diagram (see Fig. 1) are attempts to present a model of life in this
sense, not just a simulation of life.

The distinction between modelling and simulation can be
clearly explained by a diagram (Fig. 4). The boxes F1 and F2

represent (formal) systems, and the arrows f and m indicate the
notion of ‘‘entailment’’ in each of these systems. Then, the system
F2 simulates the system F1 if there are encodings a (intuitively the
notion of measurement or encoding) and b (intuitively prediction
or decoding) and an ‘‘inferential machinery’’ m such that the
diagram commutes, that is,

f¼ b3m3a

Note that if the arrows a and b are computable and the entailment
relation m in F2 is computable, the predictions are computable, by
combining their respective results. This is exactly what happens
with the idea of simulation in the sciences today.

However, the equation does not tell us much about the
structure of m. What is this structure, and how does it relate to f?
This is not at all the concern of simulation, because without any
knowledge of this we can ‘‘predict’’ certain phenomena of F1 using
it. A deeper level of understanding of the phenomena F1 occurs
when we can ‘‘deduce’’ in some sense the structure of the arrow m
from the arrow f and the encodings. This is what Rosen (1991)
calls a model, and Louie (2009) represents it as in Fig. 5. In the
notations of that diagram, a model has the more stringent
condition that the entailment notion in the formalism F2 is
represented as a function (the key point being that the structure
10 The distinction may be further illustrated by recalling the controversy two

decades ago over whether the kinetics of a multienzyme system were best

represented in terms of equations that offered insight into the real nature of the

system (Kacser and Burns, 1973) or by ones that were effective for predicting its

behaviour under a range of conditions (Savageau, 1976). See Cornish-Bowden

(1989).

causation, computability and artificial life. J. Theor. Biol. (2009),
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X

Y

(X)

(Y)

f g

F1
F2

Fig. 5. Modelling. The diagram in Fig. 4 is shown for a deeper level of

understanding. The system of F2 is a model (and not just a simulation) of that of

F1 if the entailment structure g in F2 is related to the entailment structure f in F1 by

a known function a, so g¼ aðf Þ. The figure is based on diagram (3) in Section 4.10

of Louie (2009).

F1
F2

Decoding

Encoding

Fig. 4. Simulation. The diagram illustrates the relationship between two

formalisms F1 and F2, and is based on Fig. 3F.2 of Rosen (1991) and diagram (1)

in Section 4.9 of Louie (2009).
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of that function is known). Louie represents that relation by the
equation g ¼ aðf Þ.

The question is now whether Rosen’s model can be simulated
by a computer. Note that the computability of the function f does
not imply that the relation m is computable, that is that a applied
to processes (aðf Þ) is computable. Even if we assume that there is
a mathematical expression of his ideas that is simulable by a
computer, this says nothing about whether we can get informa-
tion about the structure of the phenomenon simulated, for
example if it stabilizes, if it terminates, etc. This is what Rosen
claims when stating that no model of closure to efficient
causation could be Turing-simulable.

There are several formalisms for specifying mathematical
models, such as logic, category theory and so on, and different
authors and research groups have chosen different models for
formalizing Rosen’s ideas. He himself sometimes used frame-
works similar to algebraic notations and sometimes category
theory, but when discussing computability he did not choose any
particular framework. There are various equivalent formalisms for
this, including Turing machines, recursive functions, universal
grammars, l�calculus, rewrite systems and so on. All of them
model the same class of functions, namely recursive functions.

The question therefore arises naturally of which one is best
suited for modelling Rosen’s ideas on computability. Although he
expressed his ideas in this area by directly addressing
the language of recursion theory, or of ‘‘sequential machines’’,
the use of functions and the notion of efficient causation brings to
mind the ideas behind l�calculus, namely the formalization of
the notion of function and evaluation.11 This approach was
11 Some authors use the word ‘‘application’’ for what we are calling

evaluation, a term we find more appropriate.

Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
doi:10.1016/j.jtbi.2009.11.010
suggested by Fontana and Buss (1996) a decade ago, and is
actively pursued in a recent paper of Mossio et al. (2009). The use
of rewrite rules is another attractive approach, which has been
formalized in the area of artificial chemistry by, for example,
Dittrich et al. (2001).

It is important to keep in mind that all these formalisms are
equivalent, in the sense that there are translations among them,
and all represent the same mathematical object. That is why we
think it is better to keep the discussion in the biological area at the
abstract level of computability, using the formalisms that better
fit the particular problems to be addressed.

The important question here is to define what is meant by the
terms computable and not computable in the context of Rosen’s
ideas. He himself never used these terms in his book Life Itself
(Rosen, 1991), referring instead to machines, mechanisms and the
notion of simulation (by a machine). In p. 192 of his book he
explains this important idea as follows:

Thus, the word ‘‘simulable’’ becomes synonymous with
‘‘evaluable by a Turing machine’’. In the picturesque language
of Turing machines, this means the following: if f is simulable,
then there is a Turing machine T such that, for any word w in
the domain of f, suitably inscribed on an input tape to T, and
for a suitably chosen initial state of T, the machine will halt
after a finite number of steps, with f ðwÞ on its output tape.

Notice in particular Rosen’s words ‘‘the machine will halt after
a finite number of steps’’, as this is the key to some of the
argument about whether his conclusions are correct. Obviously, if
one drops the condition of halting after a finite number of steps
from the definition of computability then one may arrive at a
different conclusion from his.
8. Circularity and computer programming

8.1. Rosen’s analysis

The conclusion of Mossio et al. (2009) that (M,R)-systems can
have computable models is based on an analysis of the
fundamental equations of (M,R)-systems in terms of the theory
of computer programming, specifically in terms of l�calculus.
Their analysis omits an essential part of the argument, however,
and arrives in consequence at a result that we contest. As we
discussed previously (Letelier et al., 2006) the summary of Rosen’s
system shown in Fig. 1 can be expressed in mathematically much
more rigorous terms by a series of mappings,

A-
f

B-
F

MapðA;BÞ-
b

MapðB;MapðA;BÞÞ

and three equations, the first of which expresses the idea that all
of metabolism has an operator f as its efficient cause:

a/
f

b; i:e: f ðaÞ ¼ b

In biological terms f can be regarded as the set of enzymes
needed to catalyse the reactions. The second equation shows
that the efficient cause of the replacement of enzymes necessi-
tated by degradation, wear and tear, and growth is another
operator F:

b/
F

f i:e: FðbÞ ¼ f

with the products of metabolism as material cause. To avoid
infinite regress, maintenance of F needs to be achieved without

introducing another layer of causation, and Rosen’s suggestion was
that the operator b needed for maintaining F could be obtained
by solving the equation FðbÞ ¼ f for F. Indeed, if we assume that
for each possible f there is only one F that satisfies this equation,
causation, computability and artificial life. J. Theor. Biol. (2009),
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the operator b is then defined simply by the condition

f/
b
F i:e: bðf Þ ¼F

In more abstract mathematical terms we may look upon the value
FðbÞ of F at b as the result of applying the operator evb, or
‘‘evaluation at b’’, to the function F:

FðbÞ ¼ evbðFÞ

In these terms we have evbðFÞ ¼ f , and since the operator evb is by
hypothesis invertible, we get

F¼ ðevbÞ
�1
ðf Þ

So, finally our operator b is none other than the inverse ðevbÞ
�1 of

the ‘‘evaluation at b’’ operator evb.
The notion that b can be identified with b needs to be treated

with care. As we have just explained, invertibility of the
evaluation operator (a very demanding condition in normal
situations) implies that knowledge of b should allow b to be
obtained by the following series of steps: first, b is used to define a
function evb, and if this evaluation at b is invertible we have that
evb can be used to calculate ðevbÞ

�1, a far from trivial task in
general. However, if the conditions are fulfilled there is a bijection
(one-to-one correspondence) between b and ðevbÞ

�1
¼ b and we

can write b¼ PðbÞ, in which P is a complex operator with the
property that

PðbÞ ¼ Pðb̂Þ implies that b¼ b̂

It is therefore important to realize that ‘‘identification’’ does not
signify ‘‘equality’’ in this context. That is why we (Letelier et al.,
2006) twice referred to identification but not to equality. None-
theless, it is unfortunate that we used the words ‘‘with b
equivalent to b’’ to mean ‘‘with a one-to-one relationship between
b and b’’ after Eq. (14) in that paper, as this was to invite exactly
the sort of misunderstanding that we were seeking to avoid.
Perhaps the clearest statement would be that b can be identified,
via a one-to-one mapping, with b.

8.2. Expression in terms of l�calculus

After correctly noting that F¼ bðf Þ, Mossio et al. (2009)
continue by stating that ‘‘Rosen makes the crucial observation
that the infinite regress can be avoided by introducing a
circularity: b can be identified with B, which is already produced
by the system’’,12 and then write F¼ Bðf Þ. However, although
Rosen’s own diagram (cf. Fig. 1) could be taken to mean that b� B

it is clear from our analysis and from Rosen’s own papers that this
is not what he meant.

Writing their three equations in l�calculus notation, they
become as follows:

ðfAÞ ¼ B

ðFBÞ ¼ f

ðBf Þ ¼F

They then substituted the first and third equation into the second
to get

ððfAÞf ÞðfAÞ ¼ f

This is a fixed-point equation meaning that f is a fixed point of

G¼ lx:ððxAÞxðxAÞ
12 Note that Mossio et al. (2009) use B for our b, which we (and Rosen) regard

as an element of B.

Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
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As the classical Curry fixed-point operator Y of l�calculus
provides a fixed point YM for any term M, in particular for our
G, they conclude that they can take

f ¼ YG

to obtain a solution for Rosen’s equations.
Notice that this result implies that the entire system, not just B

but also f and F, is fully determined by A alone. This seems
biologically bizarre, and is not in any way implicit in Fig. 1. More
important, the misidentification b� B undermines the whole
approach, because without this it is not possible to arrive at a
simple expression of closure in terms of l�calculus, which
provides no convenient way to represent the inverse of a term
like B.

8.3. Self-referential equations

In the simple arithmetical example discussed below (Section
8.7), metabolic states are just numbers modulo 12 and all
admissible mappings are just scaling maps, and b is the scaling
map given by multiplication by b�1, not by b, and so the fixed
point equation for f above turns out to be no more than a
tautology, f ¼ f , in which f is indeed a fixed point, but of the
identity mapping!

This result is trivial, of course, so it is important to point out
that the underlying behaviour is not trivial. As we discussed
previously (Letelier et al., 2005), the fundamental property of
living organisms can be represented by a self-referential equation,
also discussed by Mossio et al. (2009), of the following form:

f ðf Þ ¼ f

Written as a mathematical equation it appears puzzling, but the
biological property that it represents is more understandable:

moleculesðmoleculesÞ ¼molecules

or

metabolismðmetabolismÞ ¼metabolism

Thus metabolism can be regarded as a function that acts on
metabolism to regenerate metabolism.

8.4. Alternative mode of closure

Mossio et al. (2009) also discuss an alternative derivation of
their result from the version of his argument that Rosen (1991)
gave in pages 238–241 of his book (i.e. before reaching the more
definitive analysis that he gave in pages 248–252). In effect, he
considered that the version of closure embodied in Fig. 1 a is not
the only possible version, and one could also achieve closure in
which a single term is the efficient cause of two different objects.
In the context of their discussion we agree with Mossio et al.
(2009) in their footnote 12 that ‘‘it would have been preferable for
Rosen to demonstrate his theorem on the diagram representing
canonical (M,R)-systems; but in the event, nothing hangs on this.’’
There are of course many ways of closing the diagram, but arguing
about which of these is best would be like the sterile theological
arguments over whether including the word filioque in the Nicene
Creed is heretical or not. Nonetheless, there is a serious point
here: as we showed (Cornish-Bowden et al., 2007), multifunction-
ality is an absolutely vital component of any system closed to
efficient cause, because closure cannot be achieved if each
molecule fulfils one role and one role only. Thus the playing of
multiple roles is not in itself an objection to the approach Rosen
used in pages 238–241 of his book, though Mossio et al. (2009)
described it as ‘‘rather peculiar’’. In fact, more and more
experimental examples of multifunctionality are being reported
causation, computability and artificial life. J. Theor. Biol. (2009),
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(Tipton et al., 2003; Sriram et al., 2005; Gancedo and Flores,
2008).

8.5. Recursive cycle of programs

Mossio et al. (2009) continued by relating these ideas to the
theory of computer programming, in which one can set up a chain
of programs such that a program F produces as output a program
f, which produces as output a third program B, which has output
F. It will be evident, however, that this discussion, although
interesting, incorporates the misidentification b� B, and thus
does not invalidate Rosen’s proof that an organism cannot have a
simulable model. The non-identity of b with b is, however,
essential for understanding Rosen’s idea, and so we shall return to
this point below.

Even without the problem of the misidentification of b with b,
the argument would still not necessarily invalidate the proof,
because Rosen insisted on the original definition of computability

used by Turing (1936), including the condition that the simulation
program must terminate after a finite number of steps. However,
although Mossio et al. (2009) evoke programs that can be written
with finite strings of signs, they do not show that the cycle of such
programs is guaranteed to halt after a finite number of operations.
Their definition of computability is therefore weaker than Rosen’s
and does not affect his proof. Mossio et al. (2009) recognize this,
of course, but they consider the halting condition to be something
‘‘imposed by Rosen’’ rather than inherent in the definition of
computability. In other words they do not necessarily disagree
with Rosen, or, more recently, with Louie (2007), about the facts,
but about whether halting after a finite number of steps is
essential to the definition.

8.6. Rosen’s analysis revisited

As the identification b� b (where bAB) is common in many
analyses of Rosen’s work, it is necessary to return once more to his
own argument in order to see that this is an oversimplification
that he avoided. He presented his idea in many publications, with
different notations and different degrees of rigour, and one cannot
escape the necessity to read these in depth to obtain a full
understanding of his thinking. His paper of 1966 (Rosen, 1966) is
especially important, and the summary in his book (Rosen, 1991)
is not a complete account. Nonetheless, as it is the account most
familiar to most readers we point out that although his text in
pp. 248–252 is very clear13 it needs to be read in the knowledge
that the three figures on the same pages (Figs. 10C.3, 10C.5 and
10C.6) are unclear, first because they encourage the misidentifi-
cation between b and B (in the figures) or with b (in the text),
though the text makes it clear that this was not intended, and
because the definition of the types of arrows used is inverted
(silently, and presumably in error) between Figs. 10C.5 and 10C.6.

To clarify the relationship between b and b even further we
need to refer to another paper in the series (Rosen, 1971). There
Rosen made a radical departure from his previous purely algebraic
approach, and formulated the problem in a way more familiar to
kinetically minded biochemists, with the following equations:

aþ f $
k1

k�1

fa

fa�!
k2

f ðaÞþ f ¼ bþ f

bþF$
k3

k�3

Fb
13 Here Rosen used the symbol b̂ for the evaluation at b, which is more often

symbolized (as above) as evb .
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Fb�!
k4 FðbÞþF¼ f þF

Later in the paper he supplemented these with a further set of
equations:

b$
k4

k�4

b

bþ f $
k5

k�5

bf

bf�!
k6 Fþb

As may be seen, especially in the equation b$b in the second set,
Rosen regarded b and b as different entities, albeit related and
interconvertible.
8.7. Arithmetical example of an (M,R)-system

A major difficulty in accepting Rosen’s analysis arises from a
difficulty in accepting that the evaluation map for functions on
sets can be invertible, as this is an unusual property of such a map,
and as Rosen’s device for achieving closure to efficient causation
depends on its possible existence it can only be correct if the
property is possible.

Our main point is that metabolisms are represented by quite
special mappings f from A to B. We follow here the notations
introduced by Rosen, who was never fully clear about the kind of
mappings represented by his f, sometimes even writing HðA;BÞ to
denote the set of all such mappings f from A to B; this implied that
this set could be a proper subset of the set MapðA;BÞ of all possible
mappings from A to B.

In our simple arithmetical example (Letelier et al., 2006)
we took A and B to be the integers modulo 12, which can
be interpreted as ‘‘hours’’: 0;1;2 . . .11, with 12� 0. Hours may be
added modulo 12; for example, 9þ6¼ 15¼ 3 modulo 12. We
then take HðA;BÞ to consist of all mappings that preserve addition,
which are simply ‘‘scaling mappings’’, i.e. multiplication by a
constant number modulo 12 (which can be recovered by
evaluating the scaling mapping at 1). It follows that evaluation
at b=1 is invertible, because from any number k modulo 12 we can
recover the scaling mapping given by multiplication by k, whose
value at b=1 is of course k.

This example is not biological, but the essential point is that it
disposes of any suggestion that Rosen’s conclusion is impossible
on the mathematical grounds that it requires an impossible
inversion. Study of this example led us to argue that the
evaluation maps needed for Rosen’s argument must be applied
to a class of restricted, structure-preserving, or ‘‘admissible’’,
maps, a tiny sub-set of the universe of possible mappings from A

to B (Letelier et al., 2006). The smallness of this subset is visible
even in an example as simple as the one we described, for which
there are 1212, i.e. about 8:9� 1012, possible functions from A to B

to which the evaluation map at b may be applied, but only 12, or
1:3� 10�10%, of these are ‘‘structure preserving’’, i.e. scaling maps
given by multiplication by a constant number k modulo 12. On
this set HðA;BÞ with 12 elements, the evaluation maps at 1, 5, 7
and 11 are invertible. Evaluation maps at 2, 3, 4, 6, 8, 9, 10 are not
one-to-one and therefore not invertible: scaling by 3 and scaling
by 9 take the same value 6¼ 18 modulo 12 at 2, for instance.

At this point we need to refer back to our earlier criticism
(Letelier et al., 2006) of the arguments by Landauer and Bellman
(2002) that Rosen’s analysis could not work. We incorrectly
implied that these authors considered Rosen’s argument to be
impossible, whereas in reality (see Section 2.5 of their paper) they
considered it too trivial to support his claim that an organism was
not a mechanism. However, their own argument depended on
causation, computability and artificial life. J. Theor. Biol. (2009),
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Fig. 6. A model of an (M, R)-system. This is the biological model suggested previously, (a) with reaction cycles compressed into catalysed reactions (Letelier et al., 2006),

with catalysts shown as acting on reactions rather than on substrates (cf. Goudsmit, 2007), (b) with reaction cycles shown explicitly (Cornish-Bowden et al., 2007; Cornish-

Bowden and Cárdenas, 2007), and (c) with an interpretation of the cycles in terms of metabolism, replacement and organizational invariance. The metabolites shown inside

squares (input) or diamonds (output) are considered to be ‘‘external’’ and to have fixed concentrations. Fig. 3 b of Cornish-Bowden et al. (2007) should have been very

similar to the form shown in (b), but it was printed incorrectly, with three intermediates misidentified, STUST as SUST, STUSU as SUSU, and SUSTU also as SUSU (with the

result that the names SUST and SUSU occurred twice each). The arrows shown in black highlight the part of the model that was considered to be ‘‘metabolism’’ during its

construction, i.e. SþT�!ST catalysed by STU. Note, however, that this cannot be deduced simply from the structure of the network.

{STU}STUf
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a simple example that was indeed too trivial, as it was based on a
two-member set that could be regarded as its own inverse.
 B

{S, T, U}

{STU}  {STU, ST, SU, X, Y}

{SU}

S + T     ST

SU

ST + U     STU

STU

S + U     SU

f

A B

Fig. 7. An attempt to interpret the model of Fig. 6 in terms of the closure diagram

(Fig. 1). (a) The three functions f, F and b are associated with two molecules (one

of them used twice). (b) The closure diagram shown in Fig. 1 a is labelled with the

molecules in Fig. 6. The correspondence is at best approximate, and should not be

taken too precisely. In particular, the fact that {STU} is identified both with f and

with b is not a general property but is just a consequence of the smallness of the

model. Nonetheless, some sort of multifunctionality is essential for closure, so

although at least some molecules must have multiple functions the choice of STU

in this example was arbitrary.
9. A simple metabolic model interpreted in terms of theories
of closure

9.1. (M,R)-systems

Although there has been a considerable resurgence of interest
in Rosen’s view of organisms in recent years, a large part of the
discussion has focussed on his diagram in Fig. 10C.6 of his book
(Rosen, 1991), corresponding to Fig. 1 a of the present paper.
However, as we have emphasized in the Introduction, full
understanding of Rosen’s work cannot be obtained from a single
diagram, and we, following an idea of Morán et al. (1996), have
been exploring the characteristics of a very small metabolic
network in the hope of revealing in a simple system how the
concepts embodied in the symbols f, F and b can be mapped, not
into l�calculus but into concepts more familiar to biologists.

The small network illustrated in Fig. 6 represents a minimal
(M,R)-system. It was first given in outline (Letelier et al., 2006),
and later in more detail (Cornish-Bowden et al., 2007; Cornish-
Bowden and Cárdenas, 2007).14

Fig. 6 looks quite different from Fig. 1, and it is natural therefore
to enquire what is the relationship between the two. In naive terms,
this is illustrated in Fig. 7. In this figure we have tried to establish a
clear correspondence between Figs. 1 and 6, in effect superimposing
a specific biochemical network on Rosen’s conceptual world. Despite
the dangers of trying to encapsulate a complex theory in a simple
example, it may allow the abstract ideas to be made more concrete,
and several points emerge from study of this example:
1.
inco

Cor

P
d

The input in Fig. 6 ({S, T, U}) corresponds to A in Fig. 1.

2.
 The products of the metabolic network ({ST, SU, STU, X, Y})

correspond to B in Fig. 1.
14 Unfortunately Fig. 3 b of Cornish-Bowden et al. (2007) was printed

rrectly, as detailed in the legend to Fig. 6. The corresponding illustration in

nish-Bowden and Cárdenas, 2007, Fig. 1 b therein, was printed correctly.

lease cite this article as: Cárdenas, M.L., et al., Closure to efficient
oi:10.1016/j.jtbi.2009.11.010
3.
cau
The metabolic part of the model ðSþT-STÞ is only a subset of
the complete set of reactions.
4.
 Some components fulfil multiple functions, for example STU
embodies both f and b. We believe that multifunctionality is
essential for achieving closure (Cornish-Bowden et al., 2007;
Cornish-Bowden and Cárdenas, 2007, 2008), and for avoiding
the combinatorial explosion that would otherwise occur, if
every new enzyme required a new set of enzymes to maintain
it. The particular example of it seen here, however, is a
consequence of the smallness of the model, and should not be
taken to suggest that f and b coincide in general.
5.
 Every function (f, F or b) is embodied by some molecule
produced by the system.
6.
 The molecules embodying B ({ST, SU, STU, X, Y}) and b (STU)
are not the same. This point is crucial.
7.
 The set B is different from A, and contains elements that
account for f, F and b.
8.
 The system is an (M,R)-system, but it is not an (M,R)-system
with organizational invariance. As discussed (Letelier et al.,
sation, computability and artificial life. J. Theor. Biol. (2009),

dx.doi.org/10.1016/j.jtbi.2009.11.010
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2006), the set of biochemical reactions accepts more than one
assignment for F; in other words the particular assignment
shown is not the only possible one, and so the required
property of invertibility is violated.
S

STUS

STU STUSU STUST

TU

ST

SUST

SU

SUSTU

X

ST

ST

ST

ST

ST

ST

ST

ST

STSTSTSTSTSTSTSTST

ST

ST

ST

ST

ST

ST

ST

ST

ST
STST

Fig. 8. A model of an (M, R)-system modified to incorporate enclosure of the

system within a membrane, as in autopoietic models. The metabolic product ST is

assumed to be capable of self-association to form a polymer that can form a

membrane.

15 The key word here is, of course, ‘‘inevitable’’, not ‘‘statistical’’: one cannot

reasonably doubt that life started with a chance event, but it was not necessarily

an event with high probability.
In relation to this last point, however, note that this is an
artificial example in which we, as its inventors, had a free choice
in ascribing catalytic properties to whatever molecules we
wished. In a real system, in contrast, there is little or no choice,
because the reactions that the constituent molecules can undergo
are circumscribed by their structures and the laws of chemistry.
No more choice is involved than there is for a pigeon when it uses
its eyes for seeing and its ears for hearing, rather than the other
way around. Expanding this type of micro-metabolic example,
and rooting it more firmly in chemical possibilities that are
known from the study of real metabolism, should eventually
allow us to arrive at the smallest real metabolic system (which
perhaps will turn out to be very large indeed) in which the
condition of invertibility (FðbÞ ¼ f ) has one and only one solution,
making b a well defined entity.

The research programme just outlined will certainly be very
difficult, and perhaps impossible, to achieve. Elsewhere (Cornish-
Bowden and Cárdenas, 2007, 2008) we have hinted at an
alternative way of looking at the model that may offer a way
out of the impasse. Fig. 7 assumes a fundamental distinction
between enzymes and metabolites, i.e. it is based on Fig. 6 a.
However, such a distinction may not correspond to reality, and
Fig. 6 b, in which all the catalytic processes are expanded into
cycles of chemical reactions, may be considered more realistic. All
enzymes are products of metabolism, and are therefore metabo-
lites, and many metabolites (in the usual sense) participate in
reaction cycles that regenerate them, and are thus catalysts. The
distinction between enzymes and metabolites is thus more
artificial than it is usually taken to be, and is simply a human
interpretation of some very complicated chemistry. On the
interpretation of Fig. 6 b, therefore, the regeneration of all
catalysts is automatically taken care of by the structure of the
network and the laws of chemistry.

A similar point has been made by Kun et al. (2008), who
analysed many well characterized metabolic networks and found
that intermediary metabolism is always autocatalytic for ATP:
although ATP is a product of metabolism it can never be produced
without pre-existing ATP. Other metabolic cycles may be
obligatorily autocatalytic in some networks, but not necessarily
in all. They also comment, following Gánti (2003b), that ‘‘in
addition to template and membrane growth, metabolism is also
autocatalytic and, hence, results in replication’’. We take this to
refer to replication in Rosen’s sense, which, as we have
mentioned, we prefer to call organizational invariance.

It is interesting to note that in biochemical systems theory
(Savageau, 1976; Voit, 2000), the same sort of symbols are used
for the concentrations of all components of a system, whether
reactants or catalysts, in other words no necessary distinction
between enzymes and metabolites is assumed. The distinction is
maintained, however, in metabolic control analysis (Kacser and
Burns, 1973; Heinrich and Rapoport, 1974; Fell, 1997), the other
main approach to analysis of multienzyme systems.

In attempting here to relate the biochemical model to Rosen’s
mathematical formalism we have oversimplified some points in
the hope of remaining intelligible in chemical terms. It is hardly
possible at the present state of understanding to resolve all the
problems and arrive at a mathematically rigorous analysis, but we
can note some points that will need to be clarified in the future. In
Fig. 7 we took A to be the three-element set {S,T,U}, but more
accurately this should be written as the three-element set
lease cite this article as: Cárdenas, M.L., et al., Closure to efficient
oi:10.1016/j.jtbi.2009.11.010
A¼ fðS;TÞ; ðST;UÞ; ðS;UÞg, or better still the one-element set
A¼ fððS;TÞ; ðST;UÞ; ðS;UÞÞg. A rigorous analysis will need to take
account of this.

The underlying biological idea of F is that it is a function that
assigns molecular identities to the enzymes involved in

ðS;TÞ/ST; ðST;UÞ/STU; ðS;UÞ/SU

Understanding b ultimately amounts to understanding the unicity
of F, which requires an understanding of the constraints that F
must fulfil, which are not explicit in a purely combinatorial
approach in which any molecule can (in principle) catalyse any
reaction.
9.2. Other definitions of life

Fig. 6 is not only an (M,R)-system; it also satisfies the
definition of an autocatalytic set (Kauffman, 1993) given in
Section 3. In the case of Fig. 6 the autocatalytic set is {STU, ST, SU}
and, as seen in Fig. 7 a, the formation of every member of the set is
catalysed by another member of the set (‘‘at least one of the
possible last steps in its formation [is] catalyzed by some member
of the set’’). The food set is {S, T, U}, and it is obvious from
inspection that the second half of the definition (‘‘connected
sequences of catalyzed reactions lead from the maintained food
set to all members of the autocatalytic set’’) is also satisfied. We
have been able to construct an autocatalytic set far smaller than
those assumed by Kauffman because we have not incorporated
his condition that closure is an inevitable consequence of the
statistical properties15 of the constituent molecules. It is worth
recalling, however, that in a very large system we cannot assume
that all of the individual molecules are nutrients: ‘‘instead of
being ‘nutrients’ they are likely to be ‘poisons’ y[and] a
completely recycling system would have evolved chemically from
a more complex system by losing those materials which would
otherwise disrupt the recycling’’ (King, 1982). The model of Fig. 6
is, in fact, an autocatalytic system in King’s sense, and it is not by
chance that Fig. 6 is somewhat similar in appearance to the
subsystem illustrated in Fig. 1 b of King (1982).
causation, computability and artificial life. J. Theor. Biol. (2009),
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The minimal metabolic network that we have analysed can
also be interpreted as an example of a minimal autopoietic
system, because the three coupled transformations can be inter-
preted as ‘‘a network of processes that produces itself’’, and if one
of the components (ST) is further endowed with the property of
self-assembling into a membrane the necessary encapsulation
property of autopoietic systems is achieved (Fig. 8). Interestingly,
this interpretation of a minimal (M,R)-system network as an
autopoietic system overcomes an important shortcoming of
previous models of autopoietic systems, which fail to explain (or
sometimes even to mention) the origin of the necessary catalyst
(see Section 5). In these previous models (Varela et al., 1974;
Zeleny, 1981; McMullin and Varela, 1997; Breyer et al., 1998) the
component responsible for catalysing the process SþS-L was not
produced by the system but rather imposed from the outside,
making it a property of space rather than a consequence of
biochemical interactions. In the language of efficient causation,
therefore, these previous examples of autopoietic systems were not
closed to efficient causation.

Finally, we should consider our model in the light of the
chemoton of Gánti (2003a). In a sense this is more general than the
(M,R)-system, and is therefore more than just a special case
of an (M,R)-system, because it explicitly includes what Schrödin-
ger (1944) called a codescript, i.e. a module for storing and
using information, what in modern terminology we would call
replication (though emphatically not what Rosen called replica-
tion).16

Gánti’s chemoton has two fundamental aspects, cycle
stoichiometry and the subdivision of metabolism into three
subsystems. Like Rosen, Maturana and Varela, he aimed to
define the special organization that a complex system of
biochemical reactions must have in order to exhibit lifelike
properties. He described the key property in the following
words: ‘‘Within a living system almost all events are connected
with each other. These interactions happen in a special order, and
the unique properties of living systems originate just from this
special order of the interactions’’ (Gánti, 1975). Thus he identified
the need for processes to occur in a defined order, but not the
need for closure, a vital difference from (M,R)-systems and
autopoiesis.

His three interlocking subsystems with a self-maintaining
metabolism are the cyclic (later called metabolic), the genetic and
the membrane subsystems. In adopting as necessary a genetic
subsystem (essentially an informational system based on tem-
plates similar to the nucleic-acid based system found in current
living organisms) he incorporated a restriction not found in (M,R)-
systems or autopoiesis, which are not concerned with reproduc-
tion or evolution. To produce a system that can produce its own
enzymes, and also to take into account that enzymes are catalysts
that need to be continuously regenerated by the system itself,
Gánti introduced the notion of cyclic stoichiometry, and orga-
nized the three subsystems as loops that produce their own
enzymes, as illustrated in Fig. 1 of Gánti (1997).

Thus the chemoton is equivalent to a particular implementa-
tion of an autopoietic system that explicitly deals with the origin
of enzymes via cycles and also makes explicit the steps to produce
the encapsulating membrane. But important conceptual differ-
ences remain: in particular, organizational closure is the central
concept in autopoiesis and (M,R)-systems, whereas it is absent
from Gánti’s writings.
16 Hofmeyr (2007) has argued that the chemoton is more limited than (M,R)-

systems, because he considers that simple molecules implicit in Gánti’s model

cannot have the specificity needed to prevent the system from dissipating into

unspecific side reactions. However, this is a problem with all current theories of

life, none of which explains the origin of the necessary specificity.

Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
doi:10.1016/j.jtbi.2009.11.010
9.3. Comparison between theories of life

As we have noted briefly before (Cornish-Bowden and
Cárdenas, 2009), a puzzling feature of the theories we have
discussed about describing cellular organization from new
principles (Rosen, 1958a; Gánti, 1966; Varela et al., 1974) has
been the complete lack of dialogue between them or with
autocatalytic sets (Kauffman, 1993), despite important overlap
between some of their ideas. A survey of the core literature
reveals that Rosen, in a long period between 1958 and 1971, only
cited himself. Similar observations apply to the authors of
autopoiesis; likewise the first English version of the chemoton
theory (Gánti, 1975) also ignores the previous work on autopoi-
esis (understandable as it was only published some months
before in 1974) and Rosen (less easy to explain, as the core papers
were published in 1959 in a well known journal). By 1975,
therefore, these three competing theories existed in complete
isolation from one another. Full analysis of this autarky would be
interesting, but it is beyond the scope of the current paper. A
partial explanation may perhaps be found in the fact that Gánti’s
original work (from 1966 to 1974) was published in Hungarian,
and Maturana and Varela initially published in Spanish and were
not in the mainstream of biochemistry (both were neurophysiol-
ogists more interested in artificial intelligence than in artificial
life). In any case the fact that Gánti, Maturana and Varela did not
cite Rosen’s work constituted a serious oversight due, perhaps, to
the opaque style systematically maintained by Rosen.

By 1995 these three theories had evolved almost indepen-
dently in the literature. Rosen had already published his seminal,
but difficult, book Life Itself (Rosen, 1991), but continued with his
entrenched tradition of ignoring competing viewpoints. A similar
statement can be made for autopoiesis, which by then had already
being found and expanded by many people in the ‘‘cybernetics’’
community, but the principal authors did not cite Rosen or Gánti.
A curious departure from this trend is provided by Gánti’s (1997)
only publication in this Journal, in which he acknowledged that
Varela was also examining the nature of life, but ignored Rosen’s
work completely, despite mentioning Varela in a section entitled
‘‘Life itself’’ in a paper whose title also evokes the title of Rosen’s
book.

Thus, for reasons that historians of science will need to explain
in detail, the authors of three of the main theories concerning the
inner organization of living metabolism chose, systematically, to
ignore each other. In fact one of our first contributions to this field
was an attempt to end this internal separation and to make
explicit the relation between (M,R)-systems and autopoiesis
(Letelier et al., 2003).

Part of the explanation for the isolation may be sought, no
doubt, in the very different backgrounds of the principal players,
Rosen as a theoretical biologist from the school of Nicolas
Rashevsky, Gánti as a chemical engineer, and Maturana and
Varela as neurophysiologists concerned primarily with the work-
ing of the nervous system, with no initial intention of developing
a theory of life. These last authors set out not to understand life
but to understand how to avoid the infinite regress implicit in
most models of brain function. That of course parallels the
problem that Rosen sought to solve, and the solution of closure
they proposed parallels Rosen’s solution in (M,R)-systems.
10. Conclusions

Efforts to mathematically disprove Rosen’s contention that an
organism cannot have simulable models have not resolved the
question. Louie (2007) has been highly critical of some of the
arguments (Chu and Ho, 2006), and, as we have discussed in
causation, computability and artificial life. J. Theor. Biol. (2009),
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Section 3, there are problems also with some of the others. Other
supposed contradictions can be attributed to the use of loose
definitions in place of Rosen’s very precise ones. As noted above,
for example, the definition of computability used by Mossio et al.
(2009) does not require termination of the program in a finite
number of steps. Their definition of computability is widely
accepted, but a more serious problem is their representation of
Rosen’s scheme with an incorrect set of equations. Similarly Wells
(2006) replaced Rosen’s precise definition of a mechanism by a
vague one based on everyday ideas of what a machine is, and used
it to claim that Rosen’s conclusions were mistaken.

Rosen did not reject the possibility of artificial life, and in one
of his less often cited papers (Rosen, 1973), he made an important
distinction between the abstract theory of (M,R)-systems, in
which ‘‘the replication map17 is always perfect’’ and the
dynamical formalism that he was discussing, in which it was
legitimate ‘‘to seek specific realizations of abstract (M,R)-systems
in dynamical terms, and for each such dynamical realization, to
seek actual physical processes whose equations of motion are
precisely those of the realization’’.

However, the argument about simulability will certainly
continue: the work of many groups, including those attempting
to develop life in silico depends on the assumption that computer
simulation of living systems is in principle possible, and any
claims that it is not possible can expect to meet vehement
opposition. It is important, therefore, to examine arguments on
both sides with care and attention. In this paper we have tried to
do that, and supply a more biological insight into Rosen’s ideas.
Acknowledgements

This work was supported by Fondecyt 1030371 (JCL), Fondecyt
1070246 (JSA) and the CNRS (AC-B, MLC).
References

Breyer, J., Ackerman, J., McCaskill, J., 1998. Evolving reaction–diffusion ecosystems
with self-assembling structures in thin films. Artif. Life 4, 25–40.

Chemero, A., Turvey, M.T., 2006. Complexity and ‘‘closure to efficient cause’’. In:
Ruiz-Moreno, K., Barandiaran, R. (Eds.), ALIFE X: Workshop on Artificial
Autonomy. MIT Press, Cambridge, MA, pp. 13–18.

Chemero, A., Turvey, M.T., 2008. Autonomy and hypersets. BioSystems 91, 320–
330.

Chemero, A., Turvey, M.T., 2007. Complexity, hypersets, and the ecological
perspective on perception-action. Biol. Theory 2, 23–36.

Chu, D., Ho, W.K., 2006. A category theoretical argument against the possibility of
artificial life: Robert Rosen’s central proof revisited. Artif. Life 12, 117–134.

Chu, D., Ho, W.K., 2007a. The localization hypothesis and machines. Artif. Life 13,
299–302.

Chu, D., Ho, W.K., 2007b. Computational realizations of living systems. Artif. Life
13, 369–381.

Cornish-Bowden, A., 1989. Metabolic control theory and biochemical systems
theory: different objectives, different assumptions, different results. J. Theor.
Biol. 136, 365–377.

Cornish-Bowden, A., Cárdenas, M.L., 2007. Organizational invariance in (M,R)-
systems. Chem. Biodivers. 4, 2396–2406.

Cornish-Bowden, A., Cárdenas, M.L., 2008. Self-organization at the origin of life. J.
Theor. Biol. 252, 411–418.

Cornish-Bowden, A., Cárdenas, M.L., 2009. Catalysis at the origin of life viewed in
the light of the (M,R)-systems of Robert Rosen. In: Kettner, C., Hicks, M.G.
(Eds.), Systems Chemistry. Beilstein Institute, Frankfurt, pp. 21–33.

Cornish-Bowden, A., Cárdenas, M.L., Letelier, J.C., Soto-Andrade, J., 2007. Beyond
reductionism: metabolic circularity as a guiding vision for a real biology of
systems. Proteomics 7, 839–845.

Cottam, R., Ranson, W., Vounckx, R., 2007. Re-mapping Robert Rosen’s (M,R)-
systems. Chem. Biodivers. 4, 2352–2368.
17 It is important to remember that ‘‘replication’’ in Rosen’s terminology has

nothing to do with DNA replication, but corresponds to what we have called

organizational invariance. His teminology appears, not surprisingly, to have misled

some authors.

Please cite this article as: Cárdenas, M.L., et al., Closure to efficient
doi:10.1016/j.jtbi.2009.11.010
Dittrich, P., Ziegler, J., Banzhaf, W., 2001. Artificial chemistries: a review. Artif. Life
7, 225–275.

Fell, D., 1997. Understanding the Control of Metabolism. Portland Press, London.
Fernando, C., Rowe, J., 2007. Natural selection in chemical evolution. J. Theor. Biol.

247, 152–167.
Fernando, C., Rowe, J., 2008. The origin of autonomous agents by natural selection.

BioSystems 91, 355–373.
Fontana, W., Buss, L.W., 1996. The barrier of objects: from dynamical systems to

bounded organizations. In: Casti, J., Karlqvist, A. (Eds.), Boundaries and
Barriers. Addison-Wesley, Reading, MA, pp. 56–116.

Gancedo, C., Flores, C.L., 2008. Moonlighting proteins in yeasts. Microbiol. Mol.
Biol. Rev. 72, 197–210.
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Gánti, T., 2003b. Chemoton Theory. Kluwer Academic Publishers, New York.
Goudsmit, A.L., 2007. Some reflections on Rosen’s conceptions of semantics and

finality. Chem. Biodivers. 4, 2427–2435.
Heinrich, R., Rapoport, T.A., 1974. A linear steady-state theory of enzymatic chains:

general properties, control and effector strength. Eur. J. Biochem. 42, 89–95.
Hofmeyr, J.-H.S., 2007. The biochemical factory that autonomously fabricates

itself: a systems biological view of the living cell. In: Boogerd, F.C., Bruggeman,
F.J., Hofmeyr, J.H.-S., Westerhoff, H.V. (Eds.), Systems Biology: Philosophical
Foundations. Elsevier, Amsterdam, pp. 219–242.

Kacser, H., Burns, J.A., 1973. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104.
Kauffman, S.A., 1986. Autocatalytic sets of proteins. J. Theor. Biol. 119, 1–24.
Kauffman, S.A., 1993. The Origins of Order. Oxford University Press, New York p. 299.
Kercel, S.W., 2007. Entailment of ambiguity. Chem. Biodivers. 4, 2369–2385.
King, G.A.M., 1997. Symbiosis and the origin of life. Orig. Life 8, 39–53.
King, G.A.M., 1982. Recycling, reproduction, and life’s origins. BioSystems 15, 89–97.
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M.L., 2004. Metabolic closure in (M,R)-systems. In: Pollack, J., Bedau, M.,
Husbands, P., Ikegami, T., Watson, R.A. (Eds.), Artificial Life, IX. MIT Press,
Cambridge, MA, pp. 450–455.

Letelier, J.-C., Kuboyama, T., Yasuda, H., Cárdenas, M.L., Cornish-Bowden, A., 2005.
A self-referential equation, f ðf Þ ¼ f , obtained using the theory of (M,R)-
systems: overview and applications. In: Anai, H., Horimoto, K. (Eds.), Algebraic
Biology 2005. Universal Academy Press, Tokyo, pp. 115–126.
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