
Management of Big Semantic Data

Javier D. Fernández 1,2 Mario Arias3 Miguel A. Mart́ınez-Prieto 1,2

Claudio Gutiérrez 2

1 DataWeb Research, Department of Computer Science, University of Valladolid, Spain

2 Department of Computer Science, University of Chile, Chile

3 Digital Enterprise Research Institute, National University of Ireland, Galway

Chapter 4

Management of Big Semantic Data

In 2007 Jim Gray preached about the effects of the Data Deluge in the sciences (Hey,

Tansley, and Tolle 2009). Whereas experimental and theoretical paradigms originally led

science, some natural phenomena were not easily addressed by analytical models. In this

scenario, computational simulation arose as a new paradigm enabling scientists to deal with

these complex phenomena. Simulation produced increasing amounts of data, particularly

from the use of advanced exploration instruments (large-scale telescopes, particle colliders,

etc.) In this scenario, scientists were no longer interacting directly with the phenomena, but

used powerful computational configurations to analyze the data gathered from simulations

or captured by instruments. Sky maps built from the Sloan Digital Sky Survey observations,

or the evidences found about the Higgs Boson are just two successful stories of just another

paradigm, what Gray called the fourth paradigm: the eScience.

eScience sets the basis for scientific data exploration and identifies the common problems

arising when dealing with data at large scale. It deals with the complexities of the whole

scientific data workflow, from the data creation and capture, through the organization and

sharing of these data with other scientists, to the final processing and analysis of such

data. Gray linked these problems to the way in which data is encoded “because the only

way that scientists are going to be able to understand that information is if their software

can understand the information”. In this way, data representation emerges as on of the key

1

factors in the process of storing, organizing, filtering, analyzing, and visualizing data at large

scale, but also for sharing and exchanging them in the distributed scientific environment.

Despite of its origins in science, the data deluge effects apply to many other fields. It

is easy to find real cases of massive data sources, many of them part of our everyday lives.

Common activities, such as adding new friends on social networks, sharing photographies,

buying something electronically, or clicking in any result returned from a search engine,

are continuously recorded in increasingly large datasets. Data is the new “raw material of

business”.

Although business is one of the major contributors to the data deluge, there are many

others players that should not go unnoticed. The Open Government movement, around

the world, also are converting public administrations in massive data generators. In recent

years, they have released large datasets containing educational, political, economic, criminal,

census information, among many others. Besides, we are surrounded by multitude of sensors

which continuously report information about temperature, pollution, energy consumption,

the state of the traffic, the presence or absence of a fire, etc. Any information anywhere and

in anytime is recorded in big and constantly evolving heterogeneous datasets which take part

in the data deluge. If we add the scientific contributions, the datasets released by traditional

and digital libraries, geographic data or collections from mass-media, we can see that the

data deluge is definitely an ubiquitous revolution.

From the original eScience has evolved what has been called data science (Loukides 2012),

a discipline that cope with this ubiquity, and basically refers to the science of transforming

data in knowledge. The acquisition of this knowledge strongly depends on the existence of

an effective data linkage which enables computers for integrating data from heterogeneous

datasets. We bump again with the question of how information is encoded for different kinds

of automatic processing.

Definitively, data and information standards are at the ground of this revolution, and due

to its size, semi-automatic processing of them is essential. An algorithmic (and standardized)

data encoding is crucial to enable computer exchange and understanding; for instance, this

data representation must allow computers to resolve what a gene is or what a galaxy is

or what a temperature measurement is (Hey, Tansley, and Tolle 2009). Nowadays, the use

2

of graph-oriented representations and rich-semantic vocabularies are gaining momentum.

On the one hand, graphs are flexible models for integrating data with different degrees of

structure, but also enable these heterogeneous data to be linked in an uniform way. On the

other hand, vocabularies describe what data mean. The most practical trend, in this line,

suggests the use of the Resource Description Framework: RDF (Manola and Miller 2004), a

standard model for data encoding and semantic technologies for publication, exchange and

consumption of this Big Semantic Data at universal scale.

This chapter takes a guided tour to the challenges of Big Semantic Data management, and

the role that it plays in the emergent Web of Data. Section 4.1 provides a brief overview

of Big Data and its dimensions. Section 4.2 summarizes the Semantic Web foundations and

introduces the main technologies used for describing and querying semantic data. These

basics set the minimal background for understanding the notion of Web of Data. It is pre-

sented in Section 4.3 along with the Linked Data project and its open realization within the

Linked Open Data movement. Section 4.4 characterizes the stakeholders and the main data

flows performed in this Web of Data: publication, exchange, and consumption, defines them

and delves in their potential for data interoperability, but also in the scalability drawbacks

arising when Big Semantic Data must be processed and queried. Innovative compression

techniques are introduced in Section 4.5, showing how the three Big Data dimensions (vol-

ume, velocity, and variety) can be successfully addressed through an integrated solution,

called HDT (Header-Dictionary-Triples). Section 4.6 comprises our experimental results,

showing that HDT allows scalability improvements to be achieved for storage, exchange,

and query answering of such emerging data. Finally, Section 4.7 concludes and devises the

potential of HDT for its progressive adoption in Big Semantic Data management.

4.1 Big Data

Much has been said and written these days about Big Data. News in relevant magazines

(Cukier 2010; Dumbill 2012b; Lohr 2012), technical reports (Selg 2012) and white papers

from leading enterprises (Dijcks 2012), some emergent research works in newly established

3

conferences1, disclosure books (Dumbill 2012a) and more applied ones (Marz and Warren

2013) are flooding us with numerous definitions, problems, and solutions related to Big Data.

It is, obviously, a trending topic in technological scenarios, but it also is producing political,

economical, and scientific impact.

We will adopt in this article a simple Big Data characterization. We refer to Big Data

as “the data that exceed the processing capacity of conventional database systems” (Dumbill

2012b). Thus, any of those huge datasets generated in the data deluge may be considered

Big Data. It is clear that they are too big, they move too fast, and they do not fit, generally,

the relational model strictures (Dumbill 2012b). Under these considerations, Big Data result

in the convergence of the following three “V’s”:

Volume is the most obvious dimension because of the large amount of data continuously

gathered and stored in massive datasets exposed for different uses and purposes. Scal-

ability is the main challenge related to Big Data volume by considering that effective

storage mechanisms are the first requirement in this scenario. It is worth noting that

storage decisions influence data retrieval, the ultimate goal for the user, that expects

it to be performed as fast as possible, specially in real-time systems.

Velocity describes how data flow, at high rates, in an increasingly distributed scenario.

Nowadays, velocity increases in a similar way than volume. Streaming data processing

is the main challenge related to this dimension because selective storage is mandatory

for practical volume management but also for real-time response.

Variety refers to various degrees of structure (or lack thereof) within the source data

(Halfon 2012). This is mainly due to Big Data may come from multiple origins (e.g.

sciences, politics, economy, social networks, or web server logs, among others) and each

one describes its own semantics, hence data follow a specific structural modeling. The

main challenge of Big Data variety is to achieve an effective mechanism for linking

diverse classes of data differing in the inner structure.

Whereas volume and velocity address physical concerns, variety refers to a logical question

mainly related to the way in which data are modeled for enabling effective integration. It

1Big Data conferences: http://lanyrd.com/topics/big-data/

4

is worth noting that the more data are integrated, the more interesting knowledge may be

generated, increasing the resulting dataset value. Under these considerations, one of the

main objectives in big data processing is to increase data value as much as possible by

directly addressing the Big Data variety. As mentioned, the use of semantic technologies

seems to be ahead in this scenario, leading to the publication of big semantic datasets.

4.2 What is Semantic Data?

Semantic data have been traditionally related to the concept of Semantic Web. The Semantic

Web enhances the current WWW by incorporating machine-processable semantics to their

information objects (pages, services, data sources, etc.). Its goals are summarized as follows:

1. To give semantics to information on the WWW. The difference between the approach

of information retrieval techniques (that currently dominate WWW information pro-

cessing) and database ones, is that in the latter data is structured via schemas, that

essentially are metadata. Metadata gives the meaning (the semantics) to data, allowing

structured query, that is, querying data with logical meaning and precision.

2. To make semantic data on the WWW machine-processable. Currently, on the WWW

the semantics of the data is given by humans (either directly during manual browsing

and searching, or indirectly via information retrieval algorithms which use human feed-

back entered via static links or logs of interactions). Although its current success, this

process has known limitations (Quesada 2008). For big data, it is crucial to automatize

the process of “understanding” (giving meaning to) data on the WWW. This amounts

to develop machine-processable semantics.

To fulfill these goals, the Semantic Web community and the World Wide Consortium

(W3C)2 have developed i) models and languages for representing the semantics, and ii)

protocols and languages for querying it. We will briefly describe them in the next items.

2http://www.w3.org

5

4.2.1 Describing Semantic Data

Two families of languages sufficiently flexible, distributively extensible, and machine-processable,

have been developed for describing semantic data.

1. The Resource Description Framework (RDF) (Manola and Miller 2004). It was

designed to have a simple data model, with a formal semantics, with an extensible URI-based

vocabulary, and which allows anyone to distributedly make statements about any resource

on the Web. In this regards, an RDF description turns out to be a set of URI triples, with

the standard intended meaning. It follows the ideas of semantic networks and graph data

specifications, based on universal identifiers. It gives basic tools for linking data, plus a

lightweight machinery for coding basic meanings. It has two levels:

a) Plain RDF is the basic data model for resources and relations between them. It is

based in a basic vocabulary: a set of properties, technically binary predicates. Formally it

consists of triples of the form (s, p, o) (subject-predicate-object) where s, p, o are URIs that

use distributed vocabularies. Descriptions are statements in the subject-predicate-object

structure, where predicate and object are resources or strings. Both subject and object can

be anonymous entities (blank nodes). Essentially RDF builds graphs labeled with meaning.

b) RDFS adds over RDF a built-in vocabulary with a normative semantics, the RDF

Schema (Brickley 2004). This vocabulary deals with inheritance of classes and properties,

as well as typing, among other features. It can be thought of as a lightweight ontology.

2. The Web Ontology Language (OWL) (McGuinness and van Harmelen 2004). It is

a version of logic languages adapted to cope with the Web requirements, composed of basic

logic operators plus a mechanism for defining meaning in a distributed fashion.

From a metadata point of view, OWL can be considered a rich vocabulary with high ex-

pressive power (classes, properties, relations, cardinality, equality, constraints, etc.). It comes

in many flavours, but this gain in expressive power is at the cost of scalability (complexity

of evaluation and processing). In fact, using the semantics of OWL amounts to introduce

6

logical reasoning among pieces of data, thus exploiting in complexity terms.

4.2.2 Querying Semantic Data

If one has scalability in mind, due to complexity arguments, the expressive power of the

semantics should stay at a basic level of metadata, that is plain RDF. This follows from the

W3C design principles of interoperability, extensibility, evolution and decentralization.

As stated, RDF can be seen as a graph labeled with meaning, in which each triple (s, p, o)

is represented as a direct edge-labeled graph s
p
−→ o. The data model RDF has a correspond-

ing query language, called SPARQL. SPARQL (Prud’hommeaux and Seaborne 2008) is the

W3C standard for querying RDF. It is essentially a graph-pattern matching query language,

composed of three parts:

a) The pattern matching part, which includes the most basic features of graph pattern

matching, like optional parts, union of patterns, nesting, filtering values of possible match-

ings, and the possibility of choosing the data source to be matched by a pattern.

b) The solution modifiers which, once the output of the pattern has been computed (in

the form of a table of values of variables), allow to modify these values applying standard

classical operators like projection, distinct, order and limit.

c) Finally, the output of a SPARQL query comes in tree forms. 1) May be: yes/no

queries (ASK queries); 2) Selections of values of the variables matching the patterns (SE-

LECT queries), and 3) Construction of new RDF data from these values, and descriptions

of resources (CONSTRUCT queries).

A SPARQL query Q comprises head and body. The body is a complex RDF graph pattern

expression comprising triple patterns (e.g. RDF triples in which each subject, predicate or

object may be a variable) with conjunctions, disjunctions, optional parts and constraints

over the values of the variables. The head is an expression that indicates how to construct

the answer for Q. The evaluation of Q against an RDF graph G is done in two steps: i) the

body of Q is matched against G to obtain a set of bindings for the variables in the body, and

7

then ii) using the information on the head, these bindings are processed applying classical

relational operators (projection, distinct, etc.) to produce the answer Q.

4.3 The Web of (Linked) Data

The WWW has enabled the creation of a global space comprising linked documents (Heath

and Bizer 2011) which express information in a human-readable way. All agree that the

WWW has revolutionized the way we consume information, but its document-oriented model

prevents machines and automatic agents for directly accessing to the raw data underlying

to any web page content. Then main reason is that documents are the atoms in the WWW

model and data lack of an identity within them. This is not a new story: an “universal

database”, in which all data can be identified at world scale, is a cherished dream in Computer

Science.

The Web of Data (Bizer, Heath, and Berners-Lee 2009) emerges under all previous consid-

erations in order to convert raw data into first class citizens of the WWW. It materializes the

Semantic Web foundations and enables raw data, from diverse fields, to be interconnected

within a cloud of data-to-data hyperlinks. It achieves a ubiquitous and seamless data inte-

gration to the lowest level of granularity over the WWW infrastructure. It is worth noting

that this idea does not break with the WWW as we know. It only enhances the WWW with

additional standards which enable data and documents to coexist in a common space. The

Web of Data grows progressively according to the Linked Data principles.

4.3.1 Linked Data

The Linked Data project3 originated in leveraging the practice of linking data to the semantic

level, following Tim Berners-Lee’s ideas (Berners-Lee 2006). Its authors state that:

Linked Data is about using the WWW to connect related data that wasn’t previ-

ously linked, or using the WWW to lower the barriers to linking data currently
3http://www.linkeddata.org

8

linked using other methods. More specifically, Wikipedia defines Linked Data as

”a term used to describe a recommended best practice for exposing, sharing, and

connecting pieces of data, information, and knowledge on the Semantic Web using

URIs (Uniform Resource Identifiers) and RDF”.

The idea is to leverage the WWW infrastructure to produce, publish and consume data

(not only documents in the form of web pages). These processes are done by different

stakeholders, with different goals, in different forms and formats, in different places. One of

the main challenges is the meaningful interlinking of this universe of data (Hausenblas and

Karnstedt 2010). It relies on the following four rules:

1. Use URIs as names for things. This rule enables each possible real-world entity or

its relationships to be unequivocally identified at universal scale. This simple decision

guarantees any raw data has its own identity in the global space of the Web of Data.

2. Use HTTP URIs so that people can look up those names. This decision leverages HTTP

to retrieve all data related to a given URI.

3. When someone looks up a URI, provide useful information, using standards. It stan-

dardizes processes in the Web of Data and pacts the languages spoken by stakeholders.

RDF and SPARQL, together with semantic technologies described in the previous sec-

tion, defines the standards mainly used in the Web of Data.

4. Include links to other URIs. It materializes the aim of data integration by simply adding

new RDF triples which link data from two different datasets. This inter-dataset linkage

enables the automatic browsing.

These four rules provide the basics for publishing and integrating Big Semantic Data

into the global space of the Web of Data. They enable raw data to be simple encoded

by combining the RDF model and URI-based identification, both for entities and for their

relationships adequately labeled over rich semantic vocabularies. Tim Berners-Lee expresses

as follows the Linked Data relevance (Berners-Lee 2002):

Linked Data allows different things in different datasets of all kinds to be connected.

The added value of putting data on the WWW is given by the way it can be queried in

9

combination with other data you might not even be aware of. People will be connecting

scientific data, community data, social web data, enterprise data, and government data from

other agencies and organizations, and other countries, to ask questions not asked before.

Linked data is decentralized. Each agency can source its own data without a big cumber-

some centralized system. The data can be stitched together at the edges, more as one builds

a quilt than the way one builds a nuclear power station.

A virtuous circle. There are many organizations and companies which will be motivated

by the presence of the data to provide all kinds of human access to this data, for specific

communities, to answer specific questions, often in connection with data from different sites.

The project and further information about linked data can be found in (Bizer, Heath,

and Berners-Lee 2009; Heath and Bizer 2011).

4.3.2 Linked Open Data

Although Linked Data does not prevent its application in closed environments, (private

institutional networks on any class of intranet) the most visible example of adoption and

application of its principles runs openly. The Linked Open Data (LOD) movement set

semantic data to be released under open licenses which do not impede data reuse for free.

Tim Berners-Lee also devised a “five-stars” test to measure how these Open Data implements

the Linked Data principles:

1. Make your stuff available on the web (whatever format).

2. Make it available as structured data (e.g. excel instead of image scan of a table).

3. Use non-proprietary format (e.g. CSV instead of excel).

4. Use URLs to identify things, so that people can point at your stuff.

5. Link your data to other people’s data to provide context.

10

The LOD cloud has grown significantly since its origins in May 20074. The first report

pointed that 12 datasets were part of this cloud, 45 were acknowledged in September 2008,

95 datasets in 2009, 203 in 2010, and 295 different datasets in the last estimation (September

2011). These last statistics5 point that more than 31 billion triples are currently published

and more than 500 million links establish cross-relations between datasets. Government data

are predominant in LOD, but other fields like geography, life sciences, media or publications

are also strongly represented. It is worth emphasizing the existence of many cross-domain

datasets comprising data from some diverse fields. These tend to be hubs because providing

data which may be linked from and to the vast majority of specific datasets. DBpedia6 is

considered the nucleus for the LOD cloud (Auer, Bizer, Kobilarov, Lehmann, and Ives 2007).

In short, DBpedia gathers raw data underlying to the Wikipedia web pages and exposes the

resulting representation following the Linked Data rules. It is an interesting example of Big

Semantic Data, and its management is considered within our experiments.

4.4 Stakeholders and Processes in Big Semantic Data

Although we identify data scientists as one of the main actors in the management of Big

Semantic Data, we also unveil potential “traditional” users when moving from a Web of

documents to a Web of data, or, in this context, to a Web of Big Semantic Data. The

scalability problems arising for data experts and general users cannot be the same, as these

are supposed to manage the information under different perspectives. A data scientist can

make strong efforts to create novel semantic data or to analyze huge volumes of data created

by third parties. She can make use of data-intensive computing, distributed machines and

algorithms: to spend several hours performing a closure of a graph is perfectly accepted. In

contrast, a common user retrieving, for instance, all the movies shot in New York in a given

year, expects not an immediate answer, but a reasonable response time. Although one could

establish an strong frontier between data (and their problems) of these worlds, we cannot

forget that establishing and discovering links between diverse data is beneficial for all parties.

For instance, in life sciences it is important to have links between the bibliographic data of

4http://richard.cyganiak.de/2007/10/lod/
5http://www4.wiwiss.fu-berlin.de/lodcloud/state/
6http://dbpedia.org

11

publications and the concrete genes studied in each publication, thus another researchers

can look up previous findings of the genes they are currently studying.

The concern here is to address specific management problems while remaining in a general

open representation and publication infrastructure in order to leverage the full potential

of Big Semantic Data. Under this premise, a first characterization of the involved roles

and processes would allow researchers and practitioners to clearly focus their efforts on a

particular area. This section provides an approach toward this characterization. We first

establish a simple set of stakeholders in Big Semantic Data, from where we define a common

data workflow in order to better understand the main processes performed in the Web of

Data.

4.4.1 Participants and Witnesses

One of the main breakthroughs after the creation of the Web, was the the consideration of the

common citizen as the main stakeholder, i.e., an part involved not only in the consumption,

but also in the creation of content. To emphasize this fact the notion of Web 2.0 was coined,

and its implications such as blogging, tagging or social networking became one of the roots

of our current sociability.

The Web of Data can be considered as a complementary dimension to this successful idea,

which addresses the datasets problems of the Web. It focused on representing knowledge

through machine readable descriptions (i.e. RDF), using specific languages and rules for

knowledge extraction and reasoning. How this could be achieved by the general audience, and

exploited for the general market, will determine its chances to success beyond the scientific

community.

To date, neither the creation of self-described semantic content nor the linkage to other

sources, are simple tasks for a common user. There exists several initiatives to bring semantic

data creation to a wider audience, being the most feasible the use of RDFa (Adida, Herman,

Sporny, and Birbeck 2012). Vocabulary and link discovery can also be mitigated through

searching and recommendation tools (Volz, Bizer, Gaedke, and Kobilarov 2009; Hogan,

Harth, Umbrich, Kinsella, Polleres, and Decker 2011). However, in general terms, one could

12

Creator

• From scratch

• Conversion from other data format

• Data integration form existing content

Publisher

• Linked Data complient

Consumer

• Direct consumption

• Intensive consumer processing

• Composition of data

Automatic

stakeholders

Supervised

processes

Human

stakeholders

Figure 1: Stakeholder classification in Big Semantic Data management.

argue that the creation of semantic data is still almost as narrow as the original content

creation in Web 1.0. In the LOD statistics, previously reported, only 0.42% of the total data

is user-generated. It means that public organizations (governments, universities, digital

libraries, etc.), researchers and innovative enterprises are the main creators, whereas citizens

are, at this point, just witnesses of a hidden increasingly reality.

This reality shows that these few creators are able to produce huge volumes of RDF

data, yet we will argue, in next section, about the quality of these publication schemes (in

agreement with empirical surveys (Hogan, Umbrich, Harth, Cyganiak, Polleres, and Decker

2012)). In what follows, we characterize a minimum set of stakeholders interacting with this

huge graph of knowledge with such an enormous potential. Figure 1 illustrates the main

identified stakeholders within Big Semantic Data. Three main roles are present: creators,

publishers and consumers, with an internal subdivision by creation method or intended use.

In parallel, we distinguish between automatic stakeholders, supervised processes, and human

stakeholders. We define below each stakeholder, assuming that i) this classification may not

13

be complete as it is intended to cover the minimum foundations to understand the managing

processes in Big Semantic Data and ii) categories are not disjoint; an actor could participate

with several roles in a real-world scenario.

Creator: one that generates a new RDF dataset by, at least, one of these processes:

• Creation from scratch: the novel dataset is not based on a previous model. Even if the

data exist beforehand, the data modeling process is unbiased from the previous data

format. RDF authoring tools7 are traditionally used.

• Conversion from other data format: the creation phase is highly determined by the

conversion of the original data source; potential mappings between source and target

data could be used; e.g. from relational databases (Arenas, Bertails, Prud’hommeaux,

and Sequeda 2012)), as well as (semi-)automatic conversion tools8.

• Data integration from existing content: the focus moves to an efficient integration of

vocabularies and the validation of shared entities (Knoblock, Szekely, Ambite, Gupta,

Goel, Muslea, Lerman, and Mallick 2012).

Several tasks are shared among all three processes. Some examples of this commonalities

are the identification of the entities to be modeled (but this task is more important in the

creation from scratch, as no prior identification has been done) or the vocabulary reuse

(crucial in data integration in which different ontologies could be aligned). A complete

description of the creation process is out of the scope of this work (the reader can find a

guide for Linked Data creation in (Heath and Bizer 2011)).

Publisher: one that makes RDF data publicly available for different purposes and users.

From now on, let us suppose that the publisher follows the Linked Data principles. We dis-

tinguish creators from publishers as, in many cases, the roles can strongly differ. Publishers

do not have to create RDF content but they are responsible of the published information, the

availability of the offered services (such as querying), and the correct adaptation to Linked

Data principles. For instance, a creator could be a set of sensors giving the temperature in

a given area in RDF (Atemezing, Corcho, Garijo, Mora, Poveda-Villalón, Rozas, Vila-Suero,

7A list of RDF authoring tools can be found at http://www.w3.org/wiki/AuthoringToolsForRDF
8A list of RDF converters can be found at http://www.w3.org/wiki/ConverterToRdf

14

and Villazón-Terrazas 2012), while the publisher is an entity who publish this information

and provide entry points to this information.

Consumer: one that makes use of published RDF data:

• Direct consumption: a process whose computation task mainly involves the publisher,

without intensive processing at the consumer. Downloads of the total dataset (or

subparts), online querying, information retrieval, visualization or summarization are

simple examples in which the computation is focused on the publisher.

• Intensive consumer processing: processes with a non-negligible consumer computation,

such as offline analysis, data mining or reasoning over the full dataset or a subpart (live

views (Tummarello, Cyganiak, Catasta, Danielczyk, Delbru, and Decker 2010)).

• Composition of data: those processes integrating different data sources or services,

such as federated services over the Web of Data (Schwarte, Haase, Hose, Schenkel, and

Schmidt 2011; Taheriyan, Knoblock, Szekely, and Ambite 2012) and RDF snippets in

search engines (Haas, Mika, Tarjan, and Blanco 2011).

As stated, we make an orthogonal classification of the stakeholders attending the nature

of creators, publishers and consumers. For instance, a sensor could directly create RDF data,

but it could also consume RDF data.

Automatic stakeholders, such as sensors, Web processes (crawlers, search engines, recom-

mender systems), RFID labels, smart phones, etc. Automatic RDF streaming, for instance,

would become a hot topic, specially within the development of smart cities (De, Elsaleh,

Barnaghi, and Meissner 2012). Note that, although each piece of information could be

particularly small, the whole system can be seen also as a big semantic dataset.

Supervised processes, i.e. processes with human supervision, as semantic tagging and

folksonomies within social networks (Garćıa-Silva, Corcho, Alani, and Gómez-Pérez 2012).

Human stakeholders, who perform most of the task for creating, publishing or consuming

RDF data.

The following running example provides a practical review of this classification. Nowa-

15

days, an RFID tag could document a user context through RDF metadata descriptions

(Foulonneau 2011). We devise a system in which RFID tags provide data about tempera-

ture and position. Thus, we have thousands of sensors providing RDF excerpts modeling the

temperature in distinct parts of a city. Users can visualize and query online this informa-

tion, establishing some relationships for example with special events (such as a live concert

or sport matches). In addition, the RDF can be consumed by a monitoring system, e.g. to

alert the population in case of extreme temperatures.

Following the classification, each sensor is an automatic creator, conforming all together

a potentially huge volume of RDF data. Whereas a sensor should be designed to take

care of RDF description (e.g. to follow a set of vocabularies and description rules and to

minimize the size of descriptions), it can not address publishing facilities (query endpoints,

services to user, etc.). Alternatively, intermediate hubs would collect the data and the

authoritative organization will be responsible of its publication, and applications and services

over these data. This publication authority would be considered as a supervised process

solving scalability issues of huge RDF datastreams for collecting the information, filtering it

(e.g. eliminating redundancy) and finally complying with Linked Data standards. Although

these processes could be automatic, let us suppose that human intervention is needed to

define links between data, for instance linking positions to information about city events.

Note also that intermediate hubs could be seen as supervised consumers of the sensors,

yet the information coming from the sensors is not openly published but streamed to the

appropriate hub. Finally, the consumers are humans, in case of the online users (concerned

of query resolution, visualization, summarization, etc.) or an automatic (or semi-atomatic)

process, in case of monitoring (doing potential complex inference or reasoning).

4.4.2 The Workflow of Publication-Exchange-Consumption

The previous RFID network example shows the enormous diversity of processes and different

concerns for each type of stakeholder. In what follows, we will consider the creation step

out of the scope of this work, because our approach relies on the existence of big RDF

datasets (without belittling those ones which can be created hereinafter). We focus on tasks

involving large-scale management; for instance, scalability issues of visual authoring a big

16

RDF dump

SPARQL Endpoints/
APIs

dereferenceable URIs

Reasoning/Integration

Quality/Provenance

Indexing

I

Q/P

R/I

sensor

Figure 2: Publication-Exchange-Consumption workflow in the Web of Data.

RDF dataset are comparable to RDF visualization by consumers, or the performance of

RDF data integration from existing content depends on efficient access to the data and thus

existing indexes, a crucial issue also for query response.

Management processes for publishers and consumers are diverse and complex to gen-

eralize. However, it is worth characterizing a common workflow present in almost every

application in the Web of Data in order to place scalability issues in context. Figure 2

illustrates the identified workflow of Publication-Exchange-Consumption.

Publication refers to the process of making RDF data publicly available for diverse pur-

poses and users, following the Linked Data principles. Strictly, the only obligatory “service”

in these principles is to provide dereferenceable URIs, i.e., related information of an en-

tity. In practice, publishers complete this basic functionality exposing their data through

public APIs, mainly via SPARQL endpoints, a service which interprets the SPARQL query

language. They also provide RDF dumps, files to fully or partly download the RDF dataset.

Exchange is the process of information exchange between publishers and consumers. Al-

though the information is represented in RDF, note that consumers could obtain different

“views” and hence formats, some of then not necessarily in RDF. For instance, the result of

a SPARQL query could be provided in a CSV file or the consumer would request a summary

with statistics of the dataset in a XML file. As we are issuing management of semantic

datasets, we restrict exchange to RDF interchange. Thus we rephrase exchange as the pro-

cess of RDF exchange between publishers and consumers after an RDF dump request, a

SPARQL query resolution or another request or service provided by the publisher.

Consumption can involve, as stated, a wide range of processes, from direct consumption to

intensive processing and composition of data sources. Let us simply define the consumption

17

as the use of potentially large RDF data for diverse purposes.

A final remark must be done. The workflow definition seems to restrict the management

to large RDF datasets. However, we would like to open scalability issues to a wider range

of publishers and consumers with more limited resources. For instance, similar scalability

problems arise when managing RDF in mobile devices; although the amount of information

could be potentially smaller, these devices have more restrictive requirements for transmis-

sion costs/latency, and for post-processing due to their inherent memory and CPU con-

straints (Le-Phuoc, Parreira, Reynolds, and Hauswirth 2010). In the following, whenever we

provide approaches for managing these processes in large RDF datasets, we ask the lecture

to take into consideration this appreciation.

4.4.3 State-of-the-art for Publication-Exchange-Consumption

This section summarizes some of the current trends to address publication, exchange and

consumption at large scale.

Publication schemes: the straightforward publication, following Linked Data principles,

presents several problems in large datasets (Fernández, Mart́ınez-Prieto, and Gutiérrez 2010);

a previous analysis of published RDF datasets reveals several undesirable features; the prove-

nance and metadata about contents are barely present, and their information is neither com-

plete nor systematic. Furthermore, the RDF dump files have neither internal structure nor

a summary of their content. A massive empirical study of Linked Open Data datasets in

(Hogan, Umbrich, Harth, Cyganiak, Polleres, and Decker 2012) draws similar conclusions;

few providers attach human readable metadata to their resources or licensing information.

Same features can be applied to SPARQL endpoints, in which a consumer knows almost

nothing about the content she is going to query beforehand. In general terms, except for

the general Linked Data recommendations (Heath and Bizer 2011), few works address the

publication of RDF at large scale.

The Vocabulary of Interlinked Datasets: VoiD (Alexander, Cyganiak, Hausenblas, and

Zhao 2009) is the nearest approximation to the discovery problem, providing a bridge between

publishers and consumers. Publishers make use of a specific vocabulary to add metadata

18

to their datasets, e.g. to point to the associated SPARQL endpoint and RDF dump, to

describe the total number of triples and to connect to linked datasets. Thus, consumers

can look up this metadata to discover datasets or to reduce the set of interesting datasets

in federated queries over the Web of Data (Akar, Hala, Ekinci, and Dikenelli 2012). Se-

mantic Sitemaps (Cyganiak, Stenzhorn, Delbru, Decker, and Tummarello 2008) extends the

traditional Sitemap Protocol for describing RDF data. They include new XML tags so that

crawling tools (such as Sindice9) can discover and consume the datasets.

As a last remark, note that deferenceable URIs can be done in a straightforward way, pub-

lishing one document per URI, or set of URIs. However, the publisher commonly materializes

the output by querying the dataset at URI resolution time. This moves the problem to the

underneath RDF store, which has also to deal with scalability problems (see “Efficient RDF

Consumption” below). The empirical study in (Hogan, Umbrich, Harth, Cyganiak, Polleres,

and Decker 2012) also confirmed that publishers often do not provide locally-known inlinks

in the dereferenced response which must be taken into account by consumers.

RDF Serialization Formats. As we previously stated, we focus on exchanging large-scale

RDF data (or smaller volumes in limited resources stakeholders). Under this consideration,

the RDF serialization format directly determines the transmission costs and latency for con-

sumption. Unfortunately, datasets are currently serialized in plain and verbose formats such

as RDF/XML (Beckett 2004) or Notation3: N3 (Berners-Lee 1998), a more compact and

readable alternative. Turtle (Beckett and Berners-Lee 2008) inherits N3 compact ability

adding interesting extra features, e.g. abbreviated RDF datasets. RDF/JSON (Alexan-

der 2008) has the advantage of being coded in a language easier to parse and more widely

accepted in the programming world. Although all these formats present features to “abbre-

viate” constructions, they are still dominated by a document-centric and human-readable

view which adds an unnecessary overhead to the final dataset representation.

In order to reduce exchange costs and delays on the network, universal compressors (e.g.

gzip) are commonly used over these plain formats. In addition, specific interchange oriented

representations may be also used. For instance, the Efficient XML Interchange Format: EXI

(Schneider and Kamiya 2011) may be used for representing any valid RDF/XML dataset.

9http://sindice.com/

19

Efficient RDF Consumption. The aforementioned variety of consumer tasks hinders

to achieve a one-size-fits-all technique. However, some general concerns can be outlined.

In most scenarios, the performance is influenced by i) the serialization format, due to the

overall data exchange time, and ii) the RDF indexing/querying structure. In the first case,if a

compressed RDF has been exchanged, a previous decompression must be done. In this sense,

the serialization format affects the consumption through the transmission cost, but also with

the easiness of parsing. The latter factor affects the consumption process in different ways:

• For SPARQL endpoints and dereferenceable URIs materialization, the response time

depends on the efficiency of the underlying RDF indexes at the publisher.

• Once the consumer has the dataset, the most likely scenario is indexing it in order to

operate with the RDF graph, e.g. for intensive operation of inference, integration, etc.

Although the indexing at consumption could be performed once, the amount of resources

required for it may be prohibitive for many potential consumers (specially for mobile de-

vices comprising a limited computational configuration). In both cases, for publishers and

consumers, an RDF store indexing the datasets is the main actor for efficient consumption.

Diverse techniques provide efficient RDF indexing, but there are still workloads for scal-

able indexing and querying optimization (Sidirourgos, Goncalves, Kersten, Nes, and Mane-

gold 2008; Schmidt, Meier, and Lausen 2010). On the one hand, some RDF stores are built

over relational databases and perform SPARQL queries through SQL, e.g. Virtuoso10. The

most successful relational-based approach performs a vertical-partitioning, grouping triples

by predicate and storing them in independent 2-column tables (S,O) (Sidirourgos, Goncalves,

Kersten, Nes, and Manegold 2008; Abadi, Marcus, Madden, and Hollenbach 2009). On the

other hand, some stores: Hexastore (Weiss, Karras, and Bernstein 2008) or RDF-3X (Neu-

mann and Weikum 2010) build indexes for all possible combinations of elements in RDF

(SPO, SOP, PSO, POS, OPS, OSP), allowing i) all triple patterns to be directly resolved

in the corresponding index, and ii) the first join step to be resolved through fast merge-

join. Although it achieves a global competitive performance, the index replication largely

increases spatial requirements. Other solutions take advantage of structural properties of

10
http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF

20

the data model (Tran, Ladwig, and Rudolph 2012), introduce specific graph compression

techniques (Atre, Chaoji, Zaki, and Hendler 2010; Álvarez-Garćıa, Brisaboa, Fernández,

and Mart́ınez-Prieto 2011), or use distributed nodes within a Map-Reduce infrastructure

(Urbani, Maassen, and Bal 2010).

4.5 An Integrated Solution for Managing Big Semantic Data

When dealing with Big Semantic Data, each step in the workflow must be designed to address

the three Big Data dimensions. Whereas variety is managed through semantic technologies,

this decision determines the way volume and velocity are addressed. As previously discussed,

data serialization has a big impact on the workflow, as traditional RDF serialization formats

are designed to be human readable instead of machine processable. They may fit smaller

scenarios in which volume or velocity are not an issue, but under the presented premises, it

clearly becomes a bottleneck of the whole process. We present, in the following, the main

requirements for an RDF serialization format of Big Semantic Data.

• It must be generated efficiently from another RDF input format. For instance,

a data creator having the dataset in a semantic database must be able to dump it

efficiently into an optimized exchange format.

• It must be space efficient. The generated dump should be as small as possible,

introducing compression for space savings. Bear in mind, that big semantic datasets

are shared on the Web of Data, and they may be transferred through the network

infrastructure to hundreds or even thousands of clients. Reducing size will not only

minimize the bandwidth costs of the server, but also the waiting time of consumers

that are retrieving the dataset for any class of consumption.

• It must be ready to post-process. A typical case is performing a sequential triple-

to-triple scanning for any post-processing task. This can seem trivial, but is clearly time

consuming when Big Semantic Data is post-processed at the consumer. As show in our

experiments, just parsing a dataset of 640 million triples, serialized in NTriples and gzip-

compressed, wastes more than 40 minutes on a modern computational configuration.

21

• It must be easy to convert to other representations. The most usual scenario

at consumption involves loading the dataset into an RDF Store. Most of the solutions

reviewed in the previous section use disk-resident variants of B-Trees, which keep a

subset of the pages in main memory. For instance, if data is already sorted, this

process is more efficient than doing it on unsorted elements. Therefore having the data

pre-sorted can be a step ahead in these cases. Also, many stores keep several indexes for

the different triples orderings (SPO, OPS, PSO...). If the serialization format enables

data traversing to be performed in different orders, the multi-index generation process

can be completed more efficiently.

• It should be able to locate pieces of data within the whole dataset. It is

desirable to avoid a full scan over the dataset just to locate a particular piece of data.

Note that this scan is a highly time consuming process in Big Semantic Data. Thus,

the serialization format must retain all possible clues enabling direct access to any piece

of data in the dataset. As explained in the SPARQL query language, a basic way of

specifying which triples to fetch is specifying a triple pattern where each component is

either a constant or a variable. A desirable format should be ready to solve most of

the combinations of triple patterns (possible combinations of constants or variables in

subject, predicates and objects). For instance, a typical triple pattern is to provide a

subject, leaving the predicate and object as variables (and therefor the expected result).

In such case, we pretend to locate all the triples that talk about a specific subject. In

other words, this requirement contains a succinct intention; data must be encoded in

such a way that “the data are the index”.

4.5.1 Encoding Big Semantic Data: HDT

Our approach, HDT: Header-Dictionary-Triples (Fernández, Mart́ınez-Prieto, and Gutiérrez

2010), considers all the previous requirements, addressing a machine-processable RDF serial-

ization format which enables Big Semantic Data to be efficiently managed within the common

workflows of the Web of Data. The format formalizes a compact binary serialization opti-

mized for storage or transmission over a network. It is worth noting that HDT is described

and proposed for standardization as W3C Member Submission (Fernández, Mart́ınez-Prieto,

22

Gutiérrez, and Polleres 2011). In addition, a succinct data structure has been proposed

(Mart́ınez-Prieto, Arias, and Fernández 2012) to browse HDT-encoded datasets. This struc-

ture holds the compactness of such representation and provides direct access to any piece of

data as described below.

HDT organizes Big Semantic Data in three logical components (Header, Dictionary, and

Triples) carefully described to address RDF peculiarities but also considering how these data

are actually used in the Publication-Exchange-Consumption workflow.

Header. The Header holds, in plain RDF format, metadata describing a big semantic

dataset encoded in HDT. It acts as an entry point for a consumer, who can peek on certain

key properties of the dataset to have an idea of its content, even before retrieving the whole

dataset. It enhances the VoID Vocabulary (Alexander, Cyganiak, Hausenblas, and Zhao

2009) to provide a standardized binary dataset description in which some additional HDT-

specific properties are appended11. The Header component comprises four distinct sections:

• Publication Metadata provides information about the publication act, for instance

when was the dataset generated, when was it made public, who is the publisher, where

is the associated SPARQL endpoint, etc. Many properties of this type are described

using the popular Dublin Core Vocabulary12.

• Statistical Metadata provides statistical information about the dataset, such as the

number of triples, the number of different subjects, predicates, objects, or even his-

tograms. For instance, this class of metadata is very valuable or visualization software

or federated query evaluation engines.

• Format Metadata describes how Dictionary and Triples components are encoded.

This allows to have different implementations or representations of the same data in

different ways. For instance one could prefer to have the triples in SPO order whereas

other applications might need it in OPS. Also the dictionary could apply a very ag-

gressive compression technique to minimize the size as much as possible, whereas other

implementation could be focused on query speed and even include a full-text index to

11http://www.w3.org/Submission/2011/SUBM-HDT-Extending-VoID-20110330/
12http://dublincore.org/

23

accelerate text searches. These metadata enable the consumer for checking how an

HDT-encoded dataset can be accessed in the data structure.

• Additional Metadata. Since the Header contains plain RDF, the publisher can

enhance it using any vocabulary. It allows specific dataset/application metadata to

be described. For instance, in life sciences a publisher might want to describe, in the

Header, that the dataset describes a specific class of proteins.

Since RDF enables data integration at any level, the Header component ensures that

HDT-encoded datasets are not isolated and can be interconnected. For instance, it is a great

tool for query syndication. A syndicated query engine could maintain a catalog composed

by the Headers of different HDT-encoded datasets from many publishers and use it to know

where to find more data about a specific subject. Then, at query-time, the syndicated query

engine can either use the remote SPARQL endpoint to query directly the third-party server,

or even download the whole dataset and save it in a local cache. Thanks to the compact size

of HDT-encoded datasets, both the transmission and storage costs are highly reduced.

Dictionary. The Dictionary is a catalog comprising all the different terms used in the

dataset, such as URIs, literals and blank nodes. A unique identifier (ID) is assigned to each

term, enabling triples to be represented as tuples of three IDs which, respectively, reference

the corresponding terms in the dictionary. This is a first step toward compression, since

it avoids long terms to be repeatedly represented. This way, each term occurrence is now

replaced by its corresponding ID, which encoding requires less bits in the vast majority of

the cases. Furthermore, the catalog of terms within the dictionary may be encoded in many

advanced ways focused on boosting querying or reducing size. A typical example is to use

any kind of differential compression for encoding terms sharing long prefixes, e.g. URIs.

The dictionary is divided into sections depending on whether the term plays subject,

predicate, or object roles. Nevertheless, in semantic data is quite common that a URI

appears both as a subject in one triple and as object on another. To avoid repeating those

terms twice in the subjects and in the objects sections, we can extract them into a fourth

section called shared Subject-Object.

Figure 3 depicts the 4-section dictionary organization and how IDs are assigned to the

24

Subjects
Objects

PredicatesShared
1

|sh|

|S|

1

|sh|

|O|

1

|P|

Figure 3: HDT dictionary organization into four sections.

corresponding terms. Each section is sorted lexicographically and then correlative IDs are

assigned to each terms from 1 to n. It is worth noting that, for subjects and objects, the

shared Subject-Object section uses the lower range of IDs; e.g. if there are m terms playing

interchangeably as subject and object, all IDs x such that x < m belong to this shared

section.

HDT allows to use different techniques of dictionary representation. Each one can handle

its catalog of terms in different ways, but must always implement these basic operations:

• locate(term): finds the term and returns its ID.

• extract(id): extracts the term associated to the ID.

• numElements(): returns the number of elements of the section.

More advanced techniques might also provide these optional operations:

• prefix(p): finds all terms starting with the prefix ’p’.

• suffix(s): finds all terms ending with the suffix ’s’.

• substring(s): finds all the terms containing the substring ’s’.

• regex(e): finds all strings matching the specified regular expression ’e’.

For instance, these advanced operations are very convenient when serving query sugges-

tions to the user, or when evaluating SPARQL queries that include REGEX filters.

25

We suggest a Front-Coding (Witten, Moffat, and Bell 1999) based representation as the

most simple way of dictionary encoding. It has been successfully used in many WWW-based

applications involving URL management. It is a very simple yet effective technique based

on differential compression. This technique applies to lexicographically sorted dictionaries

by dividing them into buckets of b terms. By tweaking this bucket size, different space/time

tradeoffs can be achieved. The first term in the bucket is explicitly stored and the remaining

b − 1 ones are encoded with respect to their precedent: the common prefix length is first

encoded and the remaining suffix is appended. More technical details about these dictionaries

are available in (Brisaboa, Cánovas, Claude, Mart́ınez-Prieto, and Navarro 2011).

The work of (Mart́ınez-Prieto, Fernández, and Cánovas 2012) surveys the problem of en-

coding compact RDF dictionaries. It reports that Front-Coding achieves a good performance

for a general scenario, but more advanced techniques can achieve better compression ratios

and/or handle directly complex operations. In any case, HDT is flexible enough to support

any of these techniques, allowing stakeholders to decide which configuration is better for

their specific purposes.

Triples. As stated, the Dictionary component allows spatial savings to be achieved, but it

also enables RDF triples to be compactly encoded, representing tuples of three IDs referring

the corresponding terms in the Dictionary. Thus, our original RDF graph is now transformed

into a graph of IDs which encoding can be carried out in a more optimized way.

We devise a Triples encoding that organizes internally the information in a way that

exploits graph redundancy to keep data compact. Moreover, this encoding can be easily

mapped into a data structure that allows basic retrieval operations to be performed efficiently.

Triple patterns are the SPARQL query atoms for basic RDF retrieval. That is, all triples

matching a template (s, p, o) (where s, p and o may be variable) must be directly retrieved

from the Triples encoding. For instance, in the geographic dataset Geonames13, the triple

pattern below searches all the subjects whose feature code (the predicate) is ’P’ (the object),

a shortcode for “country”. In other words, it asks about all the URIs representing countries:

? <http://www.geonames.org/ontology#featureCode> <http://www.geonames.org/ontology#P>

13http://www.geonames.org

26

7 8 5 6 7

2 4 4 1 3 4

1 0 1 0 0

1 1 1 1 0 1

Sp

Bp

So

Bo

1 7 2 .

1 8 4 .

2 5 4 .

2 6 1 .

2 6 3 .

2 7 4 .

ID-triples

Predicates:

Objects:

Subjects:

2 4 4 44 1 3

7 8 5 6

1

Predicates:

Objects:

2

7

33 4

77

44444

1 2

1 1 0 0 1 0 0011 0000

11 11 11 1111 01

Bitmap Triples

Figure 4: Description of Bitmap Triples.

Thus, the Triples component must be able to retrieve the subject of all those triples matching

this pair of predicate and object.

HDT proposes a Triples encoding named BitmapTriples (BT). This technique needs the

triples to be previously sorted in a specific order, such as subject-predicate-object (SPO).

BT is able to handle all possible triple orderings, but we only describe the intuitive SPO

order for explanation purposes.

Basically, BT transforms the graph into a forest containing as many trees as different

subjects are used in the dataset, and these trees are then ordered by subject ID. This way,

the first tree represents all triples rooted by the subject identified as 1, the second tree

represents all triples rooted by the subject identified as 2, and so on. Each tree comprises

three levels: the root represents the subject, the second level lists all predicates related

to the subject, and finally the leaves organize all objects for each pair (subject, predicate).

Predicate and object levels are also sorted:

• All predicates related to the subject are sorted in increasing way. As Figure 4 shows,

predicates are sorted as {5,6,7} for the second subject.

• Objects follow an increasing order for each path in the tree. That is, objects are

internally ordered for each pair (subject, predicate). As Figure 4 shows, the object 5

is listed first (because it is related to the pair (2,5)), then 1,3 (by considering that

these are related to the pair (2,6)), and 4 is the last object because of its relation to

(2,7).

Each triple in the dataset is now represented as a full path root-to-leave in the corre-

sponding tree. This simple reorganization reveals many interesting features:

27

• The subject can be implicitly encoded given that the trees are sorted by subject and

we know the total number of trees. Thus, BT does not perform a triples encoding, but

it represents pairs (predicate, object). This is an obvious spatial saving.

• Predicates are sorted within each tree. This is very similar to a well-known problem:

posting list encoding for Information Retrieval (Witten, Moffat, and Bell 1999; Baeza-

Yates and Ribeiro-Neto 2011). This allows applying many existing and optimized

techniques to our problem. Besides, efficient search within predicate lists is enabled by

assuming that the elements follow a known ordering.

• Objects are sorted within each path in the tree, so i) these can be effectively encoded,

and ii) these can also be efficiently searched.

BT encodes the Triples component level-by-level. That is, predicate and object levels

are encoded in isolation. Two structures are used for predicates: i) an ID sequence (Sp)

concatenates predicate lists following the tree ordering; ii) a bitsequence (Bp) uses one bit

per element in Sp: 1 bits mean that this predicate is the first one for a given tree, whereas

0 bits are used for the remaining predicates. Object encoding is performed in a similar way:

So concatenates object lists, and Bo tags each position in such way that 1 bits represent

the first object in a path, and 0 bits the remaining ones. The right part of the Figure 4

illustrates all these sequences for the given example.

4.5.2 Querying HDT-encoded datasets: HDT-FoQ

An HDT-encode dataset can be directly accessed once its components are loaded into the

memory hierarchy of any computational system. Nevertheless, this can be tuned carefully

by considering the volume of the datasets and the retrieval velocity needed by specific ap-

plications. Thus, we require a data structure that keeps the compactness of the encoding to

load data at the higher levels of the memory hierarchy. Data in faster memory always means

faster retrieval operations. We call this solution HDT-FoQ: HDT Focused on Querying.

Dictionary. The dictionary component must be able to be directly mapped from the

encoding to the computer because it must embed enough information to resolve the basic

28

operations previously described. Thus, this component follows the idea of “the data are the

index”. We invite interested readers to review the paper of (Brisaboa, Cánovas, Claude,

Mart́ınez-Prieto, and Navarro 2011) for a more detailed description on how dictionaries

provide indexing capabilities.

Triples. The previously described BitmapTriples approach is easy to map due to the simplic-

ity of its encoding. Sequences Sp and So are loaded into two integer arrays using respectively

log(|P |) and log(|O|) bits per element. Bitsequences can also be mapped directly, but in this

case they are enhanced with an additional small structure (González, Grabowski, Mäkinen,

and Navarro 2005) that ensures constant time resolution for some basic bit-operations.

This simple idea enables efficient traversal of the Triples component. All these algorithms

are described in (Mart́ınez-Prieto, Arias, and Fernández 2012), but we review them in prac-

tice over the example in Figure 4. Let us suppose that we ask for the existence of the triple

(2,6,1). It implies that the retrieval operation is performed over the second tree:

1. We retrieve the corresponding predicate list. It is the 2nd one in Sp and it is found by

simply locating where is the second 1 bit in Bp. In this case P2 = 3, so the predicate

list comprises all elements from Sp[2] until the end (because no more this is the last 1

bit in Bp). Thus, the predicate list is {5,6,7}.

2. The predicate 6 is searched in the list. We binary search it and find that it is the second

element in the list. Thus, it is at position P2 + 2 − 1 = 3 + 2 − 1 = 4 in Sp, so we are

traversing the 4th path of the forest.

3. We retrieve the corresponding object list. It is the 4th one in So. We obtain it as before:

firstly locate the fourth 1 bit in Bo: O4 = 4 and then retrieves all objects until the next

1 bit. That is, the list comprises the objects {1,3}.

4. Finally, the object list is binary searched and locates the object 3 in its first position.

Thus, we are sure that the triple (2,6,1) exist in the dataset.

All triple patterns providing the subjects are efficiently resolved on variants of this process.

Thus, the data structure directly mapped from the encoding provides fast subject-based

retrieval, but makes difficult accessing by predicate and object. Both ones can be easily

29

accomplished with a limited overhead on the space used by the original encoding. All fine-

grain details about the following decisions are also explained in (Mart́ınez-Prieto, Arias, and

Fernández 2012).

Enabling access by predicate. This retrieval operation demands direct access to the second

level of the tree, so it means efficient access to the sequence Sp. However, the elements of Sp

are sorted by subject, so locating all predicate occurrences demands a full scanning of this

sequence and this result in a poor response time.

Although, accesses by predicate are uncommon in general (Arias, Fernández, andMart́ınez-

Prieto 2011), some applications could require them (e.g. extracting all the information de-

scribed with a set of given predicates). Thus, we must address it by considering the need

of another data structure for mapping Sp. It must enable efficient predicate locating but

without degrading basic access because it is used in all operations by subject. We choose a

structure called wavelet tree.

The wavelet tree (Grossi, Gupta, and Vitter 2003) is a succinct structure which reorganizes

a sequence of integers, in a range [1, n], to provide some access operations to the data in

logarithmic time. Thus, the original Sp is now loaded as a wavelet tree, not as an array. It

means a limited additional cost (in space) which holds HDT scalability for managing Big

Semantic Data. In return, we can locate all predicate occurrences in logarithmic time with

the number of different predicates used for modeling in the dataset. In practice, this number

is small and it means efficient occurrences location within our access operations. It is worth

noting that to access to any position in the wavelet tree has also now a logarithmic cost.

Therefore, access by predicate is implemented by firstly performing an occurrence-to-

occurrence location, and for each one traversing the tree by following comparable steps to

than explained in the previous example.

Enabling access by object. The data structure designed for loading HDT-encoded datasets,

considering a subject-based order, is not suitable for doing accesses by object. All the

occurrence of an object are scattered throughout the sequence So and we are not able to

locate them unless we do sequential scan. Furthermore, in this case an structure like the

Wavelet Tree becomes inefficient; RDF datasets usually have few predicates, but they contain

30

many different objects and logarithmic costs result in very expensive operation.

We enhance HDT-FoQ with an additional index (called O-Index), that is responsible for

solving accesses by object. This index basically gathers the positions in where each object

appears in the original So. Please note, that each leave is associated to a different triple, so

given the index of an element in the lower level, we can guess the predicate and subject the

associated by traversing the tree upwards using the bitsequences as previously.

In relative terms, this O-Index has a significant impact in the final HDT-FoQ requirements

because it takes considerable space in comparison to the other data structures used for

modeling the Triples component. However, in absolute terms, the total size required by

HDT-FoQ is very small in comparison to that required by the other competitive solutions in

the state-of-the-art. All these results are analyzed in the next section.

Joining Basic Triple Patterns. All this infrastructure enables basic triple patterns to be

resolved, in compressed space, at higher levels of the hierarchy of memory. As we show below,

it guarantees efficient triple pattern resolution. Although this kind of queries are massively

used in practice (Arias, Fernández, and Mart́ınez-Prieto 2011), the SPARQL core is defined

around the concept of Basic Graph Pattern (BGP) and its semantics to build conjunctions,

disjunctions, and optional parts involving more than a single triple pattern. Thus, HDT-

FoQ must provide more advanced query resolution to reach a full SPARQL coverage. At

this moment, it is able to resolve conjunctive queries by using specific implementations of

the well-known merge and index join algorithms (Ramakrishnan and Gehrke 2000).

4.6 Experimental Results

This section analyzes the impact of HDT for encoding Big Semantic Data within the Publication-

Exchange-Consumption workflow described in the Web of Data. We characterize the pub-

lisher and consumer stakeholders of our experiments as follows:

• The publisher is devised as an efficient agent implementing a powerful computational

configuration. It runs on an Intel Xeon E5645@2.4GHz, hexa-core (6cores-12siblings:

31

Table 1: Statistics of the real-world datasets used in the experimentation.

Dataset Plain Ntriples Size (GB) Available at

LinkedMDB 6,148,121 0,85 http://queens.db.toronto.edu/∼oktie/linkedmdb
DBLP 73,226,756 11,16 http://DBLP.l3s.de/DBLP++.php

Geonames 119,316,724 13,79 http://download.Geonames.org/all-Geonames-rdf.zip

DBpedia 296,907,301 48,62 http://wiki.dbpedia.org/Downloads37

Freebase 639,078,932 84,76 http://download.freebase.com/datadumps/14

Mashup 1,055,302,957 140,46 Mashup of Geonames+Freebase+DBPedia

2 thread per core), 96GB DDR3@1066Mhz.

• The consumer is designed on a conventional configuration because it plays the role of

any agent consuming RDF within the Web of Data. It runs on an AMD-PhenomTM-II

X4 955@3.2GHz, quad-core (4cores-4siblings: 1thread per core), 8GB DDR2@800MHz.

The network is regarded as an ideal communication channel: free of errors and any other

external interferences. We assume a transmission speed of 2Mbyte/s.

All our experiments are carried out over an heterogeneous data configuration of many

colors and flavors. We choose a variety of real-world semantic datasets of different sizes and

from different application domains (see Table 1). In addition, we join together the three

bigger datasets into a large mashup of more than 1 billion triples to analyze performance

issues in an integrated dataset.

The prototype running these experiments is developed in C++ using the HDT library

publicly available at the official RDF/HDT website15.

4.6.1 Publication Performance

As explained, RDF datasets are usually released in plain-text form (NTriples, Turtle, or

RDF-XML), and their big volume is simply reduced using any traditional compressor. This

way, volume directly affects the publication process because the publisher must, at least,

process the dataset to convert it to a suitable format for exchange. Attending to the current

practices, we set gzip compression as the baseline and we also include lzma because of its

15
http://www.rdfhdt.org

32

Figure 5: Dataset compression (expressed as percent of the original size in NTriples).

effectiveness. We compare their results against HDT, in plain and also in conjunction with

the same compressors. That is, HDT plain implements the encoding described in Section

4.5.1, and HDT+X stands for the result of compressing HDT plain with the compressor X.

Figure 5 shows compression ratios for all the considered techniques. In general, HDT

plain requires more space than traditional compressors. It is an expected result because

both Dictionary and Triples use very basic approaches. Advanced techniques for each com-

ponent enable significant improvements in space. For instance, our preliminary results using

the technique proposed in (Mart́ınez-Prieto, Fernández, and Cánovas 2012) for dictionary

encoding, show a significant improvement in space. Nevertheless, if we apply traditional com-

pression over the HDT-encoded datasets, the spatial requirements are largely diminished. As

shown in Figure 5, the comparison changes when the HDT-encoded datasets are compressed

with gzip and lzma. These results show that HDT+lzma achieves the most compressed rep-

resentations, largely improving the effectiveness reported by traditional approaches. For

instance, HDT+lzma only uses 2.56% of the original mashup size, whereas compressors require

5.23% (lzma) and 7.92% (gzip).

Thus, encoding the original Big Semantic Data with HDT and then applying compres-

sion reports the best numbers for publication. It means that publishers using our approach

33

Table 2: Publication times (minutes).

Dataset gzip lzma
HDT+

gzip lzma

LinkedMDB 0.19 14.71 1.09 1.52
DBLP 2.72 103.53 13.48 21.99

Geonames 3.28 244.72 26.42 38.96
DBPedia 18.90 664.54 84.61 174.12
Freebase 24.08 1154.02 235.83 315.34
Mashup 47.23 2081.07 861.87 1033.03

require 2 − 3 times less storage space and bandwidth than using traditional compression.

These savings are achieved at the price of spending some time to obtain the correspond-

ing representations. Note that traditional compression basically requires compressing the

dataset, whereas our approach firstly transforms the dataset into its HDT encoding and

then compresses it. These publication times (in minutes) are depicted in Table 2.

As can be seen, direct publication, based on gzip compression, is up to 20 times faster than

HDT+gzip. The difference is slightly higher compared to HDT+lzma, but this choice largely

outperforms direct lzma compression. However, this comparison must be carefully analyzed

because publication is a batch process and it is performed only once per dataset, whereas

exchange and post-processing costs are paid each time that any consumer retrieves the

dataset. Thus, in practical terms, publishers will prioritize compression versus publication

time because: i) storage and bandwidth savings, and ii) the overall time that consumers wait

when they retrieve the dataset.

4.6.2 Exchange Performance

In the ideal network regarded in our experiments, exchange performance is uniquely deter-

mined by the data size. Thus, our approach also appears as the most efficient because of

it excellent compression ratios. Table 3 organizes processing times for all datasets and each

task involved in the workflow. Column exchange lists exchanging times required when lzma

(in the baseline) and HDT+lzma are used for encoding.

For instance, the mashup exchange takes roughly half an hour for HDT+lzma and slightly

more than one hour for lzma. Thus, our approach reduces by the half exchange time and

34

also saves bandwidth in the same proportion for the mashup.

4.6.3 Consumption Performance

In the current evaluation, consumption performance is analyzed from two complementary

perspectives. First, we consider a post-processing stage in which the consumer decompresses

the downloaded dataset and then indexes it for local consumption. Every consumption task

directly relies on efficient query resolution, thus, our second evaluation focuses on query

evaluation performance.

Both post-processing and querying tasks require an RDF store enabling indexing and

efficient SPARQL resolution. We choose three well-known stores for fair comparison with

respect to HDT-FoQ:

• RDF3X16 was recently reported as the fastest RDF store (Huang, Abadi, and Ren 2011).

• Virtuoso17 is a popular store performing on relational infrastructure.

• Hexastore18 is a well-known memory-resident store.

Post-processing. As stated, this task involves decompression and indexing in order to

make queryable the compressed dataset retrieved from the publisher. Table 3 also organizes

post-processing times for all datasets. It is worth noting that we compare our HDT+lzma

against a baseline comprising lzma decompression and RDF3X indexing because it reports the

best numbers. Cells containing “>24h” mean that the processes was not finished after 24

hours. Thus, indexing the mashup in our consumer is a very heavy task requiring a lot of

computational resources and also wasting a lot of time.

HDT-based post-processing largely outperforms RDF3X for all original datasets in our

setup. HDT performs decompression and indexing from ≈ 25 (DBPedia) to 114 (Freebase)

times faster than RDF3X. This situation is due to two main reasons. On the one hand, HDT-

encoded datasets are smaller than its counterparts in NTriples and it improves decompression
16RDF3X is available at http://www.mpi-inf.mpg.de/∼neumann/rdf3x/
17Virtuoso is available at http://www.openlinksw.com/
18Hexastore has been kindly provided by the authors.

35

Table 3: Overall client times (seconds). Baseline means that the file is downloaded in
NTriples format, compressed using lzma and indexed using RDF-3X. HDT means that the
file is downloaded in HDT, compressed with lzma and indexed using HDT-FoQ.

Dataset Config. Exchange Decomp. Index Total

LinkedMDB
Baseline 9.61 5.11 111.08 125.80
HDT 6.25 1.05 1.91 9.21

DBLP
Baseline 164.09 70.86 1387.29 1622.24
HDT 89.35 14.82 16.79 120.96

Geonames
Baseline 174.46 87.51 2691.66 2953.63
HDT 118.29 19.91 44.98 183.18

DBPedia
Baseline 1659.95 553.43 7904.73 10118.11
HDT 832.35 197.62 129.46 1159.43

Freebase
Baseline 1910.86 681.12 58080.09 60672.07
HDT 891.90 227.47 286.25 1405.62

Mashup
Baseline 3757.92 1238.36 >24h >24h
HDT 1839.61 424.32 473.64 2737.57

performance. On the other hand, HDT-FoQ generates its additional indexing structures (see

Section 4.5.2) over the original HDT encoding whereas RDF3X first needs parsing the dataset

and then building their specific indexes from scratch. Both features share an important fact:

the most expensive processing was already done in the server side and HDT-encoded datasets

are clearly better for machine consumption.

Exchange and post-processing times can be analyzed in together due to it is the total time

than a consumer must wait until the data is able to be efficiently used in any application.

Our integrated approach, around HDT encoding and data structures, completes all the tasks

8 − 43 times faster than the traditional combination of compression and RDF indexing. It

means, for instance, that the configured consumer retrieves and makes queryable Freebase

in roughly 23 minutes using HDT, but it needs almost 17 hours to complete the same

process over the baseline. In addition, we can see that indexing is clearly the heavier task

in the baseline, whereas exchange is the longer task for us. However, in any case, we always

complete exchange faster due to our achievements in space.

Querying. Once the consumer has made the downloaded data queryable, the infrastructure

is ready to build on-top applications issuing SPARQL queries. The data volume emerges

again as a key factor because it restricts the ways indexes and query optimizers are designed

and managed.

36

Figure 6: Comparison on querying performance on Geonames.

On the one hand, RDF3X and Virtuoso rely on disk-based indexes which are selectively

loaded into main memory. Although both are efficiently tuned for this purpose, these I/O

transfers result in very expensive operations that hinder the final querying performance. On

the other hand, Hexastore and HDT-FoQ always hold their indexes in memory, avoiding

these slow accesses to disk. Whereas HDT-FoQ enables all datasets in the setup to be

managed in the consumer configuration, Hexastore is only able to index the smaller one,

showing its scalability problems when managing Big Semantic Data.

We obtain two different sets of SPARQL queries to compare HDT-FoQ against the in-

dexing solutions within the state-of-the-art. On the one hand, 5000 queries are randomly

generated for each triple pattern. On the other hand, we also generate 350 queries of each

type of two-way join, subdivided in two groups depending on whether they have a small

or big amount of intermediate results. All these queries are run over Geonames in order to

include both Virtuoso and RDF3X in the experiments. Note that, both classes of queries

are resolved without the need of query planning, hence the results are clear evidence of how

the different indexing techniques perform.

Figure 6 summarizes these querying experiments. The X-axis lists all different queries: the

left subgroup lists the triple patterns, and the right ones represents all different join classes.

The Y-axis means the number of times that HDT-FoQ is faster than its competitors. For

instance, in the pattern (S,V,V) (equivalent to dereference the subject S), HDT-FoQ is more

than 3 times faster than RDF3X and more than 11 times faster than Virtuoso. In general,

37

HDT-FoQ always outperforms Virtuoso, whereas RDF3X is slightly faster for (V,P,V), and

some join classes. Nevertheless, we remain competitive in all theses cases and our join

algorithms are still open for optimization.

4.7 Conclusions and Next Steps

This chapter presents basic foundations of Big Semantic Data management. First, we trace

a route from the current data deluge, the concept of Big Data and the need of machine-

processable semantics on the WWW. The Resource Description Framework (RDF) and the

Web of (Linked) Data naturally emerge in this well-grounded scenario. The former, RDF,

is the natural codification language for semantic data, combining the flexibility of semantic

networks with a graph data structure that makes it an excellent choice for describing meta-

data at Web Scale. The latter, the Web of (Linked) Data, provides a set of rules to publish

and link Big Semantic Data.

We justify the different and various management problems arising in Big Semantic Data

by characterizing their main stakeholders by role (Creators/Publishers/Consumers) and na-

ture (Automatic/Supervised/Human). Then, we define a common workflow Publication-

Exchange-Consumption, existing in most applications in the Web of Data. The scalability

problems arising to the current state-of-the-art management solutions within this scenario

set the basis of our integrated proposal HDT, based on the W3C standard RDF.

HDT is designed as a binary RDF format to fulfill the requirements of portability (from

and to other formats), compact ability, parsing efficiency (readiness for post-processing) and

direct access to any piece of data in the dataset. We detail the design of HDT and we argue

that HDT-encoded datasets can be directly consumed within the presented workflow. We

show that lightweight indexes can be created once the different components are loaded into

the memory hierarchy at the consumer, allowing for more complex operations such as joining

basic SPARQL Triple Patterns. Finally, this compact infrastructure, called HDT-FoQ (HDT

Focused on Querying) is evaluated toward a traditional combination of universal compression

(for exchanging) and RDF indexing (for consumption).

38

Our experiments show how HDT excels at almost every stage of the publish-exchange-

consumption workflow. The publisher spends a bit more time to encode the Big Semantic

dataset, but in return, the consumer is able to retrieve it twice as fast, and the indexing

time is largely reduced to just a few minutes for huge datasets. Therefore, the time since

a machine or human client discovers the dataset until she is ready to start querying its

content is reduced up to sixteen times by using HDT instead of the traditional approaches.

Furthermore, the query performance is very competitive compared to state-of-the art RDF

stores, thanks to the size reduction the machine can keep a vast amount of triples in main

memory, avoiding slow I/O transferences.

There are several areas where HDT can be further exploited. We foresee a huge potential

of HDT to support many aspects of the workflow Publish-Exchange-Consume. HDT-based

technologies can emerge to provide supporting tools for both publishers and consumers. For

instance a very useful tool for a publisher is setting up a SPARQL endpoint on top of an HDT

file. As the experiments show, HDT-FoQ is very competitive on queries, but there is still

plenty of room for SPARQL optimization, by leveraging efficient resolution of triple patterns,

joins and query planning. Another useful tool for publishers is configuring a dereferenceable

URI materialization from a given HDT. Here the experiments also show that performance

will be very high because HDT-FoQ is really fast on queries with a fixed RDF subject.

Acknowledgments

This work was partially funded by MICINN (TIN2009-14009-C02-02); Science Foundation

Ireland: Grant No.∼SFI/08/CE/I1380, Lion-II; Fondecyt 1110287 and Fondecyt 1-110066.

The first author is granted by Erasmus Mundus, the Regional Government of Castilla y León

(Spain) and the European Social Fund. The third author is granted by the University of

Valladolid: programme of Mobility Grants for Researchers (2012)

39

References

Abadi, D., A. Marcus, S. Madden, and K. Hollenbach (2009). SW-Store: a vertically

partitioned DBMS for Semantic Web data management. The VLDB Journal 18, 385–

406.

Adida, B., I. Herman, M. Sporny, and M. Birbeck (Eds.) (2012). RDFa 1.1 Primer. W3C

Working Group Note. http://www.w3.org/TR/xhtml-rdfa-primer/.

Akar, Z., T. G. Hala, E. E. Ekinci, and O. Dikenelli (2012). Querying the Web of In-

terlinked Datasets using VOID Descriptions. In Proc. of the Linked Data on the Web

Workshop (LDOW).

Alexander, K. (2008). RDF in JSON: A Specification for serialising RDF in JSON. In

Proc. of the 4th Workshop on Scripting for the Semantic Web (SFSW).

Alexander, K., R. Cyganiak, M. Hausenblas, and J. Zhao (2009). Describing Linked

Datasets-On the Design and Usage of voiD, the ’Vocabulary of Interlinked Datasets’.

In Proc. of the Linked Data on the Web Workshop (LDOW).

Álvarez-Garćıa, S., N. Brisaboa, J. Fernández, and M. Mart́ınez-Prieto (2011). Compressed

k2-triples for full-in-memory RDF engines. In Proc. 17th Americas Conference on In-

formation Systems (AMCIS), pp. paper 350.

Arenas, M., A. Bertails, E. Prud’hommeaux, and J. Sequeda (Eds.) (2012). A Direct Map-

ping of Relational Data to RDF. W3C Recommendation. http://www.w3.org/TR/rdb-

direct-mapping/.

Arias, M., J. D. Fernández, and M. A. Mart́ınez-Prieto (2011). An Empirical Study of

Real-World SPARQL Queries. In Proc. of 1st Workshop on Usage Analyss and the

Web of Data (USEWOD). http://arxiv.org/abs/1103.5043.

40

Atemezing, G., O. Corcho, D. Garijo, J. Mora, M. Poveda-Villalón, P. Rozas, D. Vila-

Suero, and B. Villazón-Terrazas (2012). Transforming Meteorological Data into

Linked Data. Semantic Web Journal [under review] . http://www.semantic-web-

journal.net/sites/default/files/swj281 0.pdf (accessed October 8, 2012).

Atre, M., V. Chaoji, M. Zaki, and J. Hendler (2010). Matrix “Bit” loaded: a scalable

lightweight join query processor for RDF data. In Proc. of the 19th World Wide Web

Conference (WWW), pp. 41–50.

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives (2007). Dbpedia: A nucleus

for a web of open data. In Proc. of the 6th International Semantic Web Conference

(ISWC), pp. 11–15.

Baeza-Yates, R. and B. A. Ribeiro-Neto (2011). Modern Information Retrieval - the con-

cepts and technology behind search (2 ed.). Pearson Education Ltd.

Beckett, D. (Ed.) (2004). RDF/XML Syntax Specification (Revised). W3C Recommenda-

tion. http://www.w3.org/TR/rdf-syntax-grammar/.

Beckett, D. and T. Berners-Lee (2008). Turtle - Terse RDF Triple Language. W3C Team

Submission. http://www.w3.org/TeamSubmission/turtle/.

Berners-Lee, T. (1998). Notation3. W3C Design Issues.

http://www.w3.org/DesignIssues/Notation3.

Berners-Lee, T. (2002). Linked Open Data. What is the idea?

http://www.thenationaldialogue.org/ideas/linked-open-data (accessed October 8,

2012).

Berners-Lee, T. (2006). Linked Data: Design Issues.

http://www.w3.org/DesignIssues/LinkedData.html (accessed October 8, 2012).

Bizer, C., T. Heath, and T. Berners-Lee (2009). Linked Data - The Story So Far. Inter-

national Journal on Semantic Web and Information Systems 5, 1–22.

Brickley, D. (2004). RDF Vocabulary Description Language 1.0: RDF Schema. W3C Rec-

ommendation. http://www.w3.org/TR/rdf-schema/.

Brisaboa, N., R. Cánovas, F. Claude, M. Mart́ınez-Prieto, and G. Navarro (2011). Com-

pressed String Dictionaries. In Proc. of 10th International Symposium on Experimental

Algorithms (SEA), pp. 136–147.

41

Cukier, K. (2010). Data, data everywhere. The Economist (February, 25).

http://www.economist.com/opinion/displaystory.cfm?story id=15557443 (accessed

October 8, 2012).

Cyganiak, R., H. Stenzhorn, R. Delbru, S. Decker, and G. Tummarello (2008). Semantic

sitemaps: Efficient and flexible access to datasets on the semantic web. In Proc. of the

5th European Semantic Web Conference (ESWC), pp. 690–704.

De, S., T. Elsaleh, P. M. Barnaghi, and S. Meissner (2012). An Internet of Things Plat-

form for Real-World and Digital Objects. Scalable Computing: Practice and Experi-

ence 13 (1).

Dijcks, J.-P. (2012). Big Data for the Enterprise. Oracle (white paper) (January).

http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf (ac-

cessed October 8, 2012).

Dumbill, E. (2012a). Planning for Big Data. O’Reilly Media.

Dumbill, E. (2012b). What is big data? Strata (January, 11).

http://strata.oreilly.com/2012/01/what-is-big-data.html (accessed October 8, 2012).

Fernández, J. D., M. A. Mart́ınez-Prieto, and C. Gutiérrez (2010). Compact Representa-

tion of Large RDF Data Sets for Publishing and Exchange. In Proc. of the 9th Inter-

national Semantic Web Conference (ISWC), pp. 193–208.

Fernández, J. D., M. A. Mart́ınez-Prieto, C. Gutiérrez, and A. Polleres (2011). Binary

RDF Representation for Publication and Exchange (HDT). W3C Member Submission.

http://www.w3.org/Submission/2011/03/.

Foulonneau, M. (2011). Smart semantic content for the future internet. In Metadata and

Semantic Research, Volume 240 of Communications in Computer and Information Sci-

ence, pp. 145–154. Springer Berlin Heidelberg.

Garćıa-Silva, A., O. Corcho, H. Alani, and A. Gómez-Pérez (2012). Review of the state of

the art: discovering and associating semantics to tags in folksonomies. The Knowledge

Engineering Review 27 (01), 57–85.

González, R., S. Grabowski, V. Mäkinen, and G. Navarro (2005). Practical implementation

of rank and select queries. In Proc. of 4th International Workshop Experimental and

Efficient Algorithms (WEA), pp. 27–38.

42

Grossi, R., A. Gupta, and J. Vitter (2003). High-order entropy-compressed text indexes.

In Proc. of 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.

841–850.

Haas, K., P. Mika, P. Tarjan, and R. Blanco (2011). Enhanced results for web search. In

Proc. of the 34th International Conference on Research and Development in Informa-

tion Retrieval (SIGIR), pp. 725–734.

Halfon, A. (2012). Handling big data variety. http://www.finextra.com/community/fullblog.

aspx?blogid=6129 (accessed October 8, 2012).

Hausenblas, M. and M. Karnstedt (2010). Understanding Linked Open Data as a Web-

Scale Database. In Proc. of the 1st International Conference on Advances in Databases.

Heath, T. and C. Bizer (2011). Linked Data: Evolving the Web into a Global Data Space.

Synthesis Lectures on the Semantic Web: Theory and Technology, Morgan & Claypool.

Hey, T., S. Tansley, and K. M. Tolle (2009). Jim Gray on eScience: a transformed scientific

method. In The Fourth Paradigm. Microsoft Research.

Hogan, A., A. Harth, J. Umbrich, S. Kinsella, A. Polleres, and S. Decker (2011). Searching

and browsing linked data with swse: The semantic web search engine. Journal of Web

Semantics 9 (4), 365–401.

Hogan, A., J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and S. Decker (2012). An

empirical survey of linked data conformance. Web Semantics: Science, Services and

Agents on the World Wide Web 14 (0), 14 – 44.

Huang, J., D. Abadi, and K. Ren (2011). Scalable SPARQL querying of large RDF graphs.

Proceedings of the VLDB Endowment 4 (11), 1123–1134.

Knoblock, C. A., P. Szekely, J. L. Ambite, S. Gupta, A. Goel, M. Muslea, K. Lerman, and

P. Mallick (2012). Semi-Automatically Mapping Structured Sources into the Semantic

Web. In Proc. of the 9th Extended Semantic Web Conference (ESWC).

Le-Phuoc, D., J. X. Parreira, V. Reynolds, and M. Hauswirth (2010). RDF On the Go: An

RDF Storage and Query Processor for Mobile Devices. In Proc. of the 9th International

Semantic Web Conference (ISWC). http://ceur-ws.org/Vol-658/paper503.pdf.

Lohr, S. (2012). The Age of Big Data. The New York Times (February, 11).

http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-

43

world.html (accessed October 8, 2012).

Loukides, M. (2012). What is Data Science? O’Reilly Media.

Manola, F. and E. Miller (Eds.) (2004). RDF Primer. W3C Recommendation.

www.w3.org/TR/rdf-primer/.

Mart́ınez-Prieto, M., M. Arias, and J. Fernández (2012). Exchange and Consumption of

Huge RDF Data. In Proc. of the 9th Extended Semantic Web Conference (ESWC), pp.

437–452.

Mart́ınez-Prieto, M., J. Fernández, and R. Cánovas (2012). Querying RDF Dictionaries in

Compressed Space. ACM SIGAPP Applied Computing Reviews 12 (2), 64–77.

Marz, N. and J. Warren (2013). Big Data: Principles and best practices of scalable realtime

data systems. Manning Publications.

McGuinness, D. L. and F. van Harmelen (Eds.) (2004). OWL Web Ontology Language

Overview. W3C Recommendation. http://www.w3.org/TR/owl-features/.

Neumann, T. and G. Weikum (2010). The RDF-3X Engine for Scalable Management of

RDF data. The VLDB Journal 19 (1), 91–113.

Prud’hommeaux, E. and A. Seaborne (Eds.) (2008). SPARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query/. W3C Recommendation.

Quesada, J. (2008). Human Similarity theories for the semantic web. In Proceedings of the

First International Workshop on Nature Inspired Reasoning for the Semantic Web.

Ramakrishnan, R. and J. Gehrke (2000). Database Management Systems.

Osborne/McGraw-Hill.

Schmidt, M., M. Meier, and G. Lausen (2010). Foundations of SPARQL Query Optimiza-

tion. In Proc. of the 13th International Conference on Database Theory (ICDT), pp.

4–33.

Schneider, J. and T. Kamiya (Eds.) (2011). Efficient XML Interchange (EXI) Format 1.0.

W3C Recommendation. http://www.w3.org/TR/exi/.

Schwarte, A., P. Haase, K. Hose, R. Schenkel, and M. Schmidt (2011). FedX: optimiza-

tion techniques for federated query processing on linked data. In Proc. of the 10th

International Conference on the Semantic Web (ISWC), pp. 601–616.

44

Selg, E. (2012). The next Big Step - Big Data. GFT Technologies AG (technical report).

http://www.gft.com/etc/medialib/2009/downloads/techreports/2012.Par.0001.File.

tmp/gft techreport big data.pdf (accessed October 8, 2012).

Sidirourgos, L., R. Goncalves, M. Kersten, N. Nes, and S. Manegold (2008). Column-store

Support for RDF Data Management: not All Swans are White. Proc. of the VLDB

Endowment 1 (2), 1553–1563.

Taheriyan, M., C. A. Knoblock, P. Szekely, and J. L. Ambite (2012). Rapidly integrating

services into the linked data cloud. In Proc. of the 11th International Semantic Web

Conference (ISWC).

Tran, T., G. Ladwig, and S. Rudolph (2012). Rdf data partitioning and query process-

ing using structure indexes. IEEE Transactions on Knowledge and Data Engineer-

ing 99 (PrePrints).

Tummarello, G., R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and S. Decker (2010).

Sig.ma: Live views on the web of data. Web Semantics: Science, Services and Agents

on the World Wide Web 8 (4), 355–364.

Urbani, J., J. Maassen, and H. Bal (2010). Massive Semantic Web data compression

with MapReduce. In Proc. of the 19th International Symposium on High Performance

Distributed Computing (HPDC) 2010, pp. 795–802.

Volz, J., C. Bizer, M. Gaedke, and G. Kobilarov (2009). Discovering and Maintaining

Links on the Web of Data. In Proc. of the 9th International Semantic Web Conference

(ISWC), pp. 650–665.

Weiss, C., P. Karras, and A. Bernstein (2008). Hexastore: Sextuple Indexing for Semantic

Web Data Management. Proc. of the VLDB Endowment 1 (1), 1008–1019.

Witten, I. H., A. Moffat, and T. C. Bell (1999). Managing Gigabytes : Compressing and

Indexing Documents and Images. Morgan Kaufmann.

45

